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Abstract. We revisit the implementation of the Krylov subspace method based on the
Hessenberg process for general linear operator equations. It is established that at each
step, the computed approximate solution can be regarded by the corresponding approach
as the minimizer of a certain norm of residual corresponding to the obtained approximate
solution of the system. Test problems are numerically examined for solving tensor equations
with a cosine transform product arising from image restoration to compare the performance
of the Krylov subspace methods in conjunction with the Tikhonov regularization technique
based on Hessenberg and Arnoldi processes.
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1. Introduction

A multidimensional array of data is called a tensor whose modes stand for its number
of indices. Throughout this paper, vectors and matrices are denoted by lowercase
and capital letters, respectively, and tensors are represented by Euler script.

For the sake of generality, we consider the following linear operator equation:

F(X) = G, (1)

where F(·) is a given linear operator from RI1×I2×···×IN onto RI1×I2×···×IN . The ten-
sor equation in the form (1) incorporates several classes of tensor equations recently
mentioned in the literature, including multilinear systems [6, 9, 19], the Sylvester
matrix equation [4, 5, 7], the Stein tensor equation [4], etc. Basically, special cases
of equation (1) appear in numerous areas such as a Markov process [8], physics [9],
and numerical discretization of (high order) partial differential equations [4, 5, 7, 19]
from engineering problems.

Based on the Arnoldi process, several variants of Krylov subspace methods have
been developed in the literature for solving systems in the form (1), see [4, 5, 9, 10]
and references therein. To be more precise, let us consider the Sylvester tensor equa-
tion (STE) as a special case of (1) and review some of recently proposed methods
to solve STEs. To this end, first, we need to present the definitions of the mode-n
product [22].
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Definition 1. The n-mode (matrix) product of a tensor X ∈ RI1×I2×···×IN with a
matrix U ∈ RJ×In is denoted by X×n U and is of size

I1 × · · · × In−1 × J × In+1 × · · · × IN ,

and its elements are defined as follows:

(X×n U)
i1···in−1jin+1···iN

=

In∑
in=1

xi1i2···iNujin .

Consider the STE as follows:

X×1 A
(1) + X×2 A

(2) + · · ·+ X×N A(N) = D, (2)

where the right-hand side tensor D ∈ RI1×I2×···×IN and coefficient matrices A(n) ∈
RIn×In (n = 1, 2, . . . , N) are known, and X ∈ RI1×I2×···×IN is unknown. In the
literature, several variants of the Krylov subspace methods were proposed for solving
the above STE, see [5, 7, 10, 23, 26] and the references therein. In particular,
Kressner and Tobler [23] applied Krylov subspace methods based on the (extended)
Arnoldi process for the case that the right-hand side D is a tensor of low rank. For the
case when D does not necessarily have a low rank, Chen and Lu [10] developed the
generalized minimal residual (GMRES) method in a tensor framework. The tensor
form of the full orthogonalization method (FOM) was presented in [6]. STEs with
dense coefficient matrices A(1), A(2), . . . , A(N) can possibly arise from discretization
of three-dimensional partial differential equations by spectral methods [24, 25]. In
[26], it is observed that using the Hessenberg process instead of the Arnoldi process
can lead to a computationally cheaper Krylov subspace method when the coefficient
matrices in the STE are dense.

It is known that replacing the Hessenberg process by the Arnoldi process can
lead to cost–effective Krylov subspace methods, see [18, 29]. This fact motivated
several researchers to extend Krylov subspace methods based on the Hessenberg
process for solving different types of linear operator equations in the form (1). For
instance, the block Changing Minimal Residual method based on the Hessenberg
(CMRH) method was proposed in [1] to solve linear systems of the form AX = B,
where A is nonsymmetric. The weighted and flexible versions of block CMRH were
also presented in [2]. Gu et al. [13] proposed a restarted Hessenberg method to
solve shifted nonsymmetric linear systems. In [14], the restarted CMRH process
was presented for solving multi–shifted linear systems with non-Hermitian coeffi-
cient matrices. Recently, a Hessenberg–type method was applied for the solution of
PageRank problems, see [15]. Brief discussions are included in Appendix A to re-
call Hessenberg and Arnoldi processes associated with linear operator F(·) in tensor
equation (1) and compare their computational costs.

The remainder of this paper is organized as follows: In Section 2, we briefly ex-
plain how the Hessenberg method is used for solving (1). The optimality property of
an approximate solution obtained by the Hessenberg method is established in Section
3. Numerical experiments are reported in Section 4 to disclose comparison results
between Hessenberg and Arnoldi processes in conjunction with the Tikhonov regu-
larization technique for a class of tensor equations arising from image restoration.
We finish the paper by some concluding remarks in Section 5.
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2. An overview of the Hessenberg method

In this section, we briefly review the implementation of the Hessenberg method for
(1). To do so, we need to recall the inner product between two tensors and its induced
norm. The inner product between two same size tensors X and Y in RI1×I2×···×IN
is given by

〈X,Y〉 =

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

xi1i2···iN yi1i2···iN . (3)

Given a tensor X ∈ RI1×I2×···×IN , the induced norm from the above inner product
is defined by

‖X‖2 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

x2i1i2···iN .

Corresponding to the tensor X ∈ RI1×I2×···×IN , frontal slices or column tensors
of X have the following form:

X:: · · · :︸ ︷︷ ︸ k
(N−1)−times

∈ RI1×I2×···×IN−1 , k = 1, 2, . . . , IN ;

for further details, see [22]. When X is a tensor of order three, we also use the
notation X(k) to denote its k-th frontal slice.

Constructing iterative schemes based on the Hessenberg process for solving (1) fol-
lows from a similar strategy used in [26] and related details are omitted here. Basi-
cally, one can develop the Hessenberg method by constructing the basis {V1,V2, . . .,
Vm} for the following Krylov subspace:

Km(F ,R0) = span{R0,F(R0), . . . ,Fm−1(R0)}, (4)

using Algorithm 1 in Appendix A such that

〈Vi+1,Yj〉 = 0, for j = 1, 2, . . . , i,

in which the linearly independent tensors Yis of order I1×I2×· · ·×IN are available,
R0 = G−F(X0) and the initial guess X0 ∈ RI1×I2×···×IN is given.

In what follows, we define

H̄m :=

(
Hm

e>mhm+1,m

)
,

where the (i, j)-th entry of Hm is denoted by hij computed in lines 5 and 8 of
Algorithm 1.

Suppose that Ṽm and Ỹm are (N + 1)-mode tensors with column tensors Vis and
Yis for i = 1, 2, . . . ,m. The following theorem is useful to derive Krylov subspace
methods based on the Hessenberg process for linear operator equations in the form
(1). The proof of theorem follows from similar strategies used in [5, 26].
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Theorem 1. Let W̃m be the (N+1)-mode tensor with column tensors Wj := F(Vj)
for j = 1, . . . ,m. Then the following statements hold:

W̃m = Ṽm+1 ×(N+1) H̄
>
m, (5)

W̃m = Ṽm ×(N+1) H
>
m + hm+1,mZ×(N+1) Em, (6)

in which Z is an (N + 1)−mode tensor with ”m” column tensors 0, . . . , 0,Vm+1 and
Em is an m×m matrix of the form Em = [0, . . . , 0, em], where em is the m-th column
of the identity matrix of order m.

Let V1,V2, . . . ,Vm be a basis for Km(F ,R0) produced via Algorithm 1. The
m-th approximate solution Xm is determined such that

Xm ∈ X0 +Km(F ,R0),

which implies that

Xm = X0 +

m∑
i=1

Viy
(i)
m . (7)

The following orthogonality conditions in the Hessenberg method are imposed:

〈Rm,Yi〉 = 0, for i = 1, 2, . . . ,m, (8)

to obtain the unknown vector ym = (y
(1)
m ; y

(2)
m ; . . . ; y

(m)
m ) where Rm = G − F(Xm)

and the Matlab notation (w1;w2; . . . ;wm) represents the vector (w1, w2, . . . , wm)>.
Using Theorem 1 it is not difficult to verify that ym satisfies

Hmym = βe1, (9)

with β = 〈R0,Y1〉. It can be verified that

Rm = G−F(Xm) = −hm+1,my
(m)
m Vm+1,

for more details, see [26].

3. An optimality property of the Hessenberg method

Let F : RI1×I2×···×IN → RI1×I2×···×IN be a given arbitrary invertible linear oper-
ator, i.e., F(X) = 0 implies X = 0. In this section, we show that the computed
approximate solution by the Hessenberg method at each step satisfies an optimality
property. To this end, first we need to recall a special case of the contracted tensor
product.

Definition 2 (see [5]). The �N product between N -mode tensors X ∈ RI1×···×IN−1×IN

and Y ∈ RI1×···×IN−1×ĨN is defined as an IN × ĨN matrix whose (i, j)-th entry is

[X�N Y]ij = tr(X::···:i �
N−1 Y::···:j), N = 3, 4, . . . ,

where
X�2 Y = X>Y, X ∈ RI1×I2 ,Y ∈ RI1×Ĩ2 .
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We comment that the �N product between X and Y is a reformulation of a
special case of the contracted product [11]. As pointed out in [5], it can be verified
that

〈X,Y〉 = tr(X�N Y), N = 2, 3, . . . , (10)

for X,Y ∈ RI1×I2×···×IN .
Now we define a new inner product and its associated norm as well in order to

establish the following proposition showing that the computed approximate solu-
tion by the Hessenberg method is the minimizer of a residual corresponding to the
approximate solution of (1).

Definition 3. Let Ỹk be an (N + 1)-mode tensor with frontal slices Yi for i =
1, 2, . . . ,m and let ε > 0 be given. For X,Z ∈ RI1×I2×···×IN , we define the following
inner product:

〈X,Z〉Ỹk,ε =
〈
Ỹk �

(N+1) X, Ỹk �
(N+1) Z

〉
+ ε 〈X,Z〉 . (11)

The corresponding tensor norm is given by ‖X‖2Ỹk,ε = 〈X,X〉Ỹk,ε.
We add the following remark to the previous definition to clarify the fact that

the bilinear form (11) is an inner product.

Remark 1. Considering equality (10), one can see that〈
Ỹk �

(N+1) X, Ỹk �
(N+1) Z

〉
= 〈wx, wz〉 ,

where wx = (〈Y1,X〉 ; 〈Y2,X〉 ; . . . ; 〈Ym,X〉) and wz = (〈Y1,Z〉 ; 〈Y2,Z〉 ; . . . ; 〈Ym,Z〉) .
Therefore, the bilinear form (11) is basically the summation of two inner products.
Since ε > 0, it is not difficult to verify that the bilinear form (11) is indeed an inner
product.

Proposition 1. Assume that the linear operator F(·) is invertible, i.e., F(X) = 0
implies X = 0. Let Xk be the k-th approximate solution of F(X) = G obtained after
implementing the Hessenberg method. Then, there exists ε̂ > 0 such that

‖G−F(Xk)‖Ỹk,ε <
∥∥∥G−F(X̂)

∥∥∥
Ỹk,ε

for 0 < ε < ε̂, (12)

for any X̂ ∈ X0+Kk(F ,R0) provided that Ỹk�(N+1)F(Xk−X̂) 6= 0. Here the frontal
slices of the (N + 1)-mode tensor Ỹk are given by Y1,Y2, . . . ,Yk such that

〈Rk,Yi〉 = 0, for i = 1, 2, . . . , k,

in which Rk = G−F(Xk).

Proof. Let X̂ ∈ X0 +Kk(F ,R0) and Ỹk �(N+1) F(Xk − X̂) 6= 0. It is not difficult to
verify that∥∥∥G−F(X̂)

∥∥∥2
Ỹk,ε

=
〈
G−F(X̂),G−F(X̂)

〉
Ỹk,ε

=
〈
Rk + F(Xk − X̂),Rk + F(Xk − X̂)

〉
Ỹk,ε

= ‖Rk‖2Ỹk,ε + 2
〈
Rk,F(Xk − X̂)

〉
Ỹk,ε

+
∥∥∥F(Xk − X̂)

∥∥∥2
Ỹk,ε

. (13)
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Notice that F(X̂ − Xk) 6= 0, hence, the invertibility of F(·) implies that F(X̂) 6=
F(Xk). From (13), one can see that∥∥∥G−F(X̂)

∥∥∥2
Ỹk,ε

= ‖Rk‖2Ỹk,ε + 2
(〈

Ỹk �
(N+1) Rk, Ỹk �

(N+1) F(Xk − X̂)
〉

+ ε
〈
Rk,F(Xk − X̂)

〉)
+
∥∥∥F(Xk − X̂)

∥∥∥2
Ỹk,ε

.

Invoking the fact that Ỹk �(N+1) Rk is a zero vector, we obtain∥∥∥G−F(X̂)
∥∥∥2
Ỹk,ε

= ‖Rk‖2Ỹk,ε +
∥∥∥F(Xk − X̂)

∥∥∥2
Ỹk,ε

+ 2ε
〈
Rk,F(Xk − X̂)

〉
> ‖Rk‖2Ỹk,ε +

∥∥∥F(Xk − X̂)
∥∥∥2
Ỹk,ε
− 2ε

∣∣∣〈Rk,F(Xk − X̂)
〉∣∣∣ . (14)

If
〈
Rk,F(Xk − X̂)

〉
= 0, the assertion follows from the above inequality for any ε >

0. Consequently, without loss of generality, we assume that
〈
Rk,F(Xk − X̂)

〉
6= 0

and define

ε̂ :=

∥∥∥Ỹk�(N+1)F(Xk − X̂)
∥∥∥2

2
∣∣∣〈Rk,F(Xk − X̂)

〉∣∣∣ . (15)

In view of (14), for any ε < ε̂, we have∥∥∥G−F(X̂)
∥∥∥2
Ỹk,ε

> ‖Rk‖2Ỹk,ε +
∥∥∥F(Xk − X̂)

∥∥∥2
Ỹk,ε
− 2ε̂

∣∣∣〈Rk,F(Xk − X̂)
〉∣∣∣

= ‖Rk‖2Ỹk,ε + ε
∥∥∥F(Xk − X̂)

∥∥∥2
> ‖Rk‖2Ỹk,ε = ‖G−F(Xk)‖2Ỹk,ε ,

which completes the proof.

We end this part with the following remark on choosing ε.

Remark 2. Assume that the assumptions of Proposition 1 hold. In view of (15)
and the Cauchy–Schwarz inequality, one may set

ε̂ =
1

2
· min
06=Z∈Kk(F,R0)

{
‖W(Z)‖
‖Rk‖

| Rk 6= 0 and W(Z) 6= 0

}
to eliminate the dependency of ε̂ on X̂ in the statement of Proposition 1 where
W(Z) := Ỹk �(N+1) F(Z). In fact, the k-th approximate solution obtained via the
Hessenberg method satisfies the optimality property (12) for any 0 < ε < ε̂.

4. An application from image processing

Developing efficient image deblurring methods is an active area of research. For
iterative methods based on the Krylov subspace, one can refer to [4, 7, 12, 26, 30,
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31, 32] and the references therein. For example, Guo et al. [16] recently developed
a three-dimensional fractional total variation– based model for a three–dimensional
image deblurring problem.

In this section, we aim to experimentally illustrate the performance of the Hes-
senberg method in the context of image deblurring. For this application, the im-
plementation of the Hessenberg method has been already considered in [26], where
equation (1) is reduced to the Sylvester tensor equation. Here, we implement the
method for solving an alternative tensor equation. To this end, before presenting
numerical results, we need to review some preliminaries.

4.1. Basic concepts

To present our mentioned tensor equation in reported numerical experiments, we
need to recall the definition of the ∗c-product from [20].

Definition 4 (∗c-product). Let A ∈ Rm×`×n and B ∈ R`×p×n. The tensor-tensor
product C = A ∗c B is of size m× p× n such that

Ĉ(i) := Â(i)B̂(i), for i = 1, . . . , n,

where Â = A×3M , B̂ = B×3M and C = Ĉ×3M
−1. The matrix M = W−1C(I+Z)

can be computed in Matlab using

C = dct(eye(n)), W = diag(C(:, 1)), Z = diag(ones(n− 1, 1), 1).

We consider the following tensor equation:

A ∗c X = G, (16)

where tensor A ∈ R`×`×m and the right-hand side G ∈ R`×p×m are given and X ∈
R`×p×m is the unknown tensor. The tensor problem (16) may appear in engineering,
signal processing, and image and video data processing problems, see [12, 20, 21, 27,
28].

Notice that the linear operator F(·) takes the following form:

F : R`×p×m → R`×p×m

X 7→ F(X) := A ∗c X.

In the sequel, we briefly explain the strategy for exploiting tensors to reformat a
typical discrete model for image blurring; for further details, see [20]. Consider the
linear system of equations

Bx = g, (17)

where B denotes the discrete blurring matrix of order n2 and x is the vectorized form
of the image X. The right-hand side of the above equation contains an error e called
”noise”, i.e., g = ĝ + e, where ĝ is the unknown noise-free unavailable right-hand
side. Following the discussions in [20], one can reformulate equation (17) by

A ∗c X = G, G = Ĝ + N, (18)
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where the image X is obtained by ”reshaping” the first column of mat(X), and the
right-hand side tensor G is obtained by ten(g), for the definition of mat(·) and ten(·),
see [20] . The tensor G in (18) is contaminated by a noise tensor N with normally
distributed random entries with zero mean and scaled to correspond to a specific
noise level η = ‖N‖/‖G‖.

Let B = T ⊗T , T is a Toeplitz matrix representing a Gaussian blur. We created
T ∈ Rn×n in Matlab as follows:

T =
1√

2πσ2
· toeplitz (z) , (19)

with

z =
[
exp

(
−([0 : band− 1]2· )/(2σ

2)
)
, zeros(1, n− band)

]
,

where the band and σ are given for each of our test problems, and ”toeplitz(·)”
is a command in Matlab. To generate thecoefficient tensor A in (18), we set
A(i) = T (i, 1)T for i = 1, 2, . . . , n, recalling that A(i) denotes the i-th frontal slice of
A.

4.2. Numerical experiments

All numerical experiments were computed using Matlab version 9.9 (R2020b) run-
ning on an Intel Core i5 CPU at 2.50 GHz with 8 GB of memory using Tensor
Toolbox [3].

The Tikhonov regularization technique consists of replacing the solution of (18)
by the following minimization problem:

min
X∈R`×p×m

{
‖A ∗c X− G‖2 + µ‖X‖2

}
,

where µ > 0 is the regularization parameter. In what follows, we compare the
performance of Hessenberg and Arnoldi methods in conjunction with the Tikhonov
regularization method. The corresponding methods are called Hessenberg-Tikhonov
and Arnoldi-Tikhonov methods, respectively. For more details on the implemen-
tation of the Hessenberg and Arnoldi methods in conjunction with the Tikhonov
regularization method, we refer the readers to [6, 7, 26].

In Table 1, we report the total required number of iterations and consumed CPU-
time (in seconds) under ”Iter” and ”CPU(s)”, respectively. For more details, we also
disclose the relative error

Err :=
‖Xµk,k − X̂‖
‖X̂‖

,

where X̂ denotes the exact solution of the problem with the error-free right-hand side
tensor Ĝ associated with G, and Xµk,k denotes the k-th computed approximation de-
termined by the algorithms. We note that the deblurred images based on computed
regularized solutions are obtained by reshaping the first column of mat(Xµk,k). The
regularization parameter µk is determined by the discrepancy principle, for more
details, see [17, Chapter 7].
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The initial approximate solution in all experiments is the zero tensor and the
iterations were terminated once a maximum 60 number of iterations is reached or
the following condition holds:

‖Xµk,k − Xµk−1,k−1‖
‖Xµk−1,k−1‖

≤ τ, (20)

for a user-specified value of the parameter τ > 0.
In tables 1 and 2, the Matlab function PSNR denotes the peak signal-to-noise

ratio between the original and a blurred (or restored) image in decibels. The higher
the PSNR, the better the quality of the deblurred image.

We examine the following two test problems to compare the performance of the
Hessenberg-Tikhonov and Arnoldi-Tikhonov methods to restore an image contami-
nated by blur and noise.

Example 1. We use the blur operator obtained by (19) and set τ = 5 ·10−3 in (20).
The results are reported for the following two cases:

Case I. band = 11 and σ = 4. The exact solution is the rice image from Matlab.

Case II. band = 16 and σ = 6. The exact solution is the airplane‡ image.

Both gray-scale images are represented by an array of 256 × 256 pixels. The
original and blurred-noisy images are plotted in Figure 1. The blurred-noisy image
G is obtained by reshaping the first column of mat(G). The obtained regularized
solutions are shown in Figure 1 for the noise level η = 0.01.

Case I

Noise level (η) Method Iter CPU(s) Err PSNR

0.01
Hessenberg-Tikhonov 6 0.6176 1.3911 · 10−1 23.4779
Arnoldi-Tikhonov 9 1.3402 1.8424 · 10−1 21.3066

0.001
Hessenberg-Tikhonov 8 1.0822 1.0984 · 10−1 25.7960
Arnoldi-Tikhonov 12 2.1456 1.0965 · 10−1 25.8106

Case II

Noise level (η) Method Iter CPU(s) Err PSNR

0.01
Hessenberg-Tikhonov 12 2.1506 8.1811 · 10−2 24.0145
Arnoldi-Tikhonov 10 1.5554 8.5115 · 10−2 23.6695

0.001
Hessenberg-Tikhonov 6 0.5611 6.8164 · 10−2 25.5971
Arnoldi-Tikhonov 10 1.4410 6.9903 · 10−2 25.3772

Table 1: Comparison results for Example 1

We report the numerical results for Example 1 in Table 1. As observed, here
both methods work well and determine suitable approximations for the exact solu-
tion for both noise levels. Overall, using the Hessenberg-Tikhonov method leads to

‡This image is available at: http://sipi.usc.edu/database/download.php?vol=misc&img=5.1.11
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Figure 1: Original, noisy and restored images using Tikhonov regularization in conjunction with
the Hessenberg and Arnoldi processes

better results than the Arnoldi-Tikhonov method in Case I. For the second case, the
Hessenberg-Tikhonov method surpasses the Arnoldi-Tikhonov method for the level
of noise η = 0.001. For the noise of level η = 0.01, the Hessenberg-Tikhonov method
provides a slightly more accurate solution than the Arnoldi-Tikhonov method.

Example 2. The exact solution of this test example is the boat§ image, which is
represented by an array of 512 × 512 pixels and displayed in Figure 2. We use the
blur operator obtained by (19) with band = 3, σ = 4. The iterations are terminated
as soon as the stopping criterion (20) is satisfied, where τ = 4 · 10−2.

Results for this example are reported in Table 2. Both methods work well for
both noise levels. The original, noisy and restored images are plotted in Figures 2
and 3. As seen, here, the Hessenberg-Tikhonov method consumes slightly less CPU-
time (in seconds) in comparison with the Arnoldi-Tikhonov method. The provided
approximate solutions by Hessenberg-Tikhonov are also a bit more accurate.

Noise level (η) Method Iter CPU(s) Err PSNR

0.01
Hessenberg-Tikhonov 4 5.5581 1.2472 · 10−1 23.5330
Arnoldi-Tikhonov 4 5.6118 1.2915 · 10−1 23.2042

0.001
Hessenberg-Tikhonov 4 5.5583 1.0742 · 10−1 24.8391
Arnoldi-Tikhonov 4 5.6160 1.1840 · 10−1 23.9633

Table 2: Comparison results for Example 2

§This image is available at: https://sipi.usc.edu/database/download.php?vol=misc&img=boat.512
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Figure 2: Exact image (left) and contaminated image (right)

Figure 3: Restored images using Tikhonov regularization in conjunction with the Hessenberg and
Arnoldi processes for noise of level 0.01

5. Conclusions

The Hessenberg method was considered to solve a general class of linear operator
equations. It was shown that at each iterate the Hessenberg method produces an
approximate solution satisfying an optimality property. The performance of the
Hessenberg method had not been previously reported in the literature for solving
the tensor equation A ∗c X = G. Therefore, two image restoration test problems in
the above form were taken from [20]. Numerical comparison results were reported
between the Hessenberg and Arnoldi processes in conjunction with the well-known
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Tikhonov regularization technique.
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Appendix A.

In this part, we summarize the Hessenberg and Arnoldi processes. Brief discussions
are also included to compare the computational costs of these processes. In addition,
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we recall the presented algorithm in [6] for finding the set of indices for which a tensor
takes its maximum value in modulus.

Notice that the well-known Arnoldi process can be regarded as a special case
of Algorithm 1 setting Vi = Yi for i = 1, 2, . . . ,m. In practical implementation, in
the Hessenberg process the tensor Yi is chosen as a tensor having only one nonzero
entry equal to one. We comment that the iterative methods based on the Hessenberg
process are applied with the pivoting strategy to avoid a possible breakdown, for
further details, see [18, 29]. To this end, at each step of the Hessenberg process,
Algorithm 2 is used for finding the set of indices corresponding to the maximum
element (in modulus) of a tensor; for more details, see [26]. Basically, in this case,
Algorithm 1 reduces to Algorithm 3.

We finish this part by comparing the number of required operations for the
Arnoldi process and Algorithm 3 at each step of computing the new approximation
for the solution of (1). Evidently, the differences between the number of operations
in Arnoldi process and Algorithm 3 are in the requirement of using Algorithm 2,
computing the values of β and hi,j for i = 1, 2, . . . ,m + 1 and j = 1, 2, . . . ,m.
At each step, the total number of operations of the Arnoldi process is higher than
Algorithm 3 due to more expensive computational costs of hi,j in the Arnoldi process.
Basically, the evaluation of each hi,j corresponds to computing an inner product of
the form (3). Consequently, lines 6 and 10 of Algorithm 3 demonstrate that each
step of the Arnoldi process is more expensive than Algorithm 3. Notice that the
cost of implementing Algorithm 2 is negligible, especially in the case when N �
max(I1, I2, . . . , IN ).

Algorithm 1 Hessenberg process. [26]

Require: Input tensor V and scalar m ≥ 1 as the maximum allowed dimension of
the Krylov subspace;

Ensure: The upper Hessenberg matrix H̄m = [hi,j ](m+1)×m and (N + 1)-mode

tensor Ṽm with the column tensors V1,V2, . . . ,Vm.
1: Set β = 〈V,Y1〉 and V1 = V/β.
2: for j = 1, 2, . . . ,m do
3: W = F(Vj);
4: for i = 1, 2, . . . , j do
5: hi,j = 〈Yi,W〉;
6: W = W− hi,jVi;
7: end for
8: hj+1,j = 〈Yj+1,W〉. If hj+1,j = 0, then stop;
9: Vj+1 = W/hj+1,j ;

10: end for



Optimality property of the Hessenberg method 239

Algorithm 2 Pivoting strategy for a τ−mode tensor [6, Algorithm 1]

Require: Input a tensor R ∈ RI1×I2×···×Iτ ;
Ensure: Index group (i1, i2, . . . , iτ );

1: [∼, j] = max(|vec(R)|);
2: for i = 1 : (τ − 1) do

3: iτ−i+1 =

 j
τ−i∏
`=1

I`

;

4: ` = j − (iτ−i+1 − 1)
τ−i∏
`=1

I`;

5: j = `;
6: end for
7: i1 = `− (i2 − 1)I1;

Algorithm 3 Hessenberg−BTF process with maximum strategy. [26]

Require: Input an I1 × I2 × . . .× IN , tensor V and the restart parameter m.
Ensure: The upper Hessenberg matrix H̄m = [hi,j ](m+1)×m and (N + 1)-mode

tensor Ṽm with the column tensors V1,V2, . . . ,Vm.
1: Determine triple (i1,0, i2,0, . . . , iN,0) using Algorithm 2 for the input V;
2: Set β = Vi1,0,i2,0,...,iN,0 ; V1 = V/β; and p1,η = iη,0 for η = 1, 2, . . . , N ;
3: for j = 1, . . . ,m do
4: U = F(Vj);
5: for i = 1, . . . , j do
6: hi,j = Upi,1,pi,2,...,pi,N ;
7: U = U− hi,jVi;
8: end for
9: Determine triple (i1,0, i2,0, . . . , iN,0) using Algorithm 2 for the input U;

10: Set hj+1,j = Ui1,0,i2,0,...,iN,0 ; Vj+1 = U/hj+1,j ; pj+1,η = iη,0 for η =
1, 2, . . . , N ;

11: end for


