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Abstract. In this paper, we find all the solutions of the title Diophantine equation in
positive integer variables (m,n, x, y), where for a positive integer k, Pk is the kth term of
the Pell sequence.
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1. Introduction

Let (Pn)n≥0 be the Pell sequence given by P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn,
for all n ≥ 0. The Diophantine equation

P x
n + P x

n+1 = Pm (1)

in nonnegative integers (m,n, x) was recently studied by some of us in [18]. We
proved that all the solutions in positive integers (m,n, x) come from the identity

P 2
n + P 2

n+1 = P2n+1,

and so we have x = 2 and m = 2n + 1, for all positive integers n. A more general
equation P x

n + P x
n+1 + · · · + P x

n+k−1 = Pm, in positive integers (n, k,m, x) was
studied in [13]. Other exponential Diophantine equations involving members of the
Pell sequence appear in [10]. In this paper, we study a different extension of the
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equation (1). Namely, we allow an extra exponent y on its right–hand side, so we
look at the equation

P x
n + P x

n+1 = P y
m (2)

in positive integers m,n, x and y. Following the argument from [11], we prove the
following theorem.

Theorem 1. All solutions (m,n, x, y) in positive integers of the Diophantine equa-
tion (2) have y = 1. In particular, they also have x = 2 and m = 2n+ 1.

The proof of Theorem 1 uses linear forms in logarithms of algebraic numbers,
a reduction algorithm originally introduced by Baker and Davenport in [1], as well
as the LLL algorithm. In Section 2, we recall some properties of the Pell sequence,
state the variant version of Matveev’s theorem due to Bugeaud-Mignotte-Siksek [5],
and two results on reduction methods (the Baker-Davenport reduction method and
the LLL algorithm). The last section is devoted to the proof of our main result.
This is done in eight steps. For the first step, we consider the very small values
of the parameters and determine the solutions. For the remaining steps, we take
n ≥ 2, x ≥ 3, y ≥ 2, m ≥ 3. The second step consists in using the properties of
the Pell sequence to prove that |(n+ 1)x−my| < 2max{x, y}. In the next step,
we denote M := min{m,n + 1}, N := max{m,n + 1} and use Baker’s method to
bound x, y in terms of M,N . These bounds are very high. The fourth step consists
in considering N ≤ 1000 and using continued fractions we prove that there is no
solution with y ≥ 2 in this range. For the remaining steps, we work under the
assumption that N > 1000. We use again Baker’s method to bound x, y,N in terms
of M . For the sixth step, we consider M ≤ 1000 and use the LLL algorithm to prove
that the Diophantine equation (2) has no solution with n ≥ 2, x ≥ 3, y ≥ 2, m ≥ 3
in this range. In the next step, another application of Baker’s method allows us to
obtain an absolute bound of m,n, x, y; that is, max{x, y} < 3 × 10111. For the last
step, we use the Baker-Davenport reduction method to obtain a contradiction to the
condition M > 1000.

2. Preliminary results

2.1. The Pell sequence

Let (α, β) := (1+
√
2, 1−

√
2) be the roots of the characteristic equation x2−2x−1 = 0

of the Pell sequence (Pn)n≥0. The Binet’s formula

Pn =
αn − βn

2
√
2

holds for all n ≥ 0. (3)

This implies easily that the inequality

αn−2 ≤ Pn ≤ αn−1 (4)

holds for all positive integers n. The Pell sequence has a companion (Qn)n≥0 given
by Q0 = 2, Q1 = 2 an Qn+2 = 2Qn+1 +Qn, for all n ≥ 0. Its Binet’s formula is

Qn = αn + βn, for all n ≥ 0.
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There are several relations among members of the sequences (Pn)n≥0 and (Qn)n≥0

such as P2n = PnQn valid for all n ≥ 0. We will freely use such relations whenever
we need them. We also have that the inequality

Pn

Pn+1
≤ 3

7
holds for all n ≥ 2, (5)

a fact which can be easily verified by induction.

2.2. Linear forms in logarithms

For any non-zero algebraic number γ of degree d over Q, whose minimal polynomial
over Z is a

∏d
j=1

(
X − γ(j)

)
with a ≥ 1, we denote by

h(γ) =
1

d

log a+

d∑
j=1

logmax
{
1,
∣∣∣γ(j)

∣∣∣}


the usual absolute logarithmic height of γ.
We start by recalling Theorem 9.4 of [5], which is a modified version of a result

of Matveev [15].

Theorem 2. Let s ≥ 1, γ1, . . . , γs be nonzero real algebraic numbers and let b1, . . . , bs
be integers. Let D be the degree of the number field Q(γ1, . . . , γs) over Q and let Aj

be a positive real number satisfying

Aj ≥ max{Dh(γj), | log γj |, 0.16} for j = 1, . . . , s.

Assume that
B ≥ max{|b1|, . . . , |bs|}.

If γb1
1 · · · γbs

s − 1 ̸= 0, then

|γb1
1 · · · γbs

s − 1| ≥ exp(−1.4 · 30s+3 · s4.5 ·D2(1 + logD)(1 + logB)A1 · · ·As).

2.3. Reduction methods

The following result is a slightly modified version of Lemma 5 (a) in [9].

Lemma 1. Let T be a positive integer, let p/q be a convergent of the continued
fraction of the irrational γ such that q > 6T , and let A,B, µ be some real numbers
with A > 0 and B > 1. Let

ε := ||µq|| − T ||γq||,
where || · || denotes the distance from the nearest integer. If ε > 0, then there is no
solution of the inequality

0 < |mγ − n+ µ| < AB−k

in positive integers m,n and k with

m ≤ T and k ≥ log(Aq/ε)

logB
.



166 B.Faye, C.A.Gómez, F. Luca, S. E.Rihane, and A.Togbé

On one occasion, we need to find a lower bound for a linear form with bounded
integer coefficients in three variables for which methods based on continued fractions
are not applicable. Instead, we will use the LLL algorithm which we now briefly
describe. The following notations can be found in [7, Section 2.3.5].

Let γ1, . . . , γs ∈ R and X1, . . . , Xs be positive real numbers. We consider the
linear form

x1γ1 + x2γ2 + · · ·+ xsγs with xi ∈ [−Xi, Xi] ∩ Z.

We set X := max{Xi}, C > (sX)s and consider the integer lattice Ω generated by

bj := ej + ⌊Cγj⌉ es for 1 ≤ j ≤ s− 1 and bs := ⌊Cγs⌉ es,

where C is a sufficiently large positive constant. The next lemma is the main part
of Proposition 2.3.20 in [7, Section 2.3.5].

Lemma 2. Let X1, . . . , Xs be positive real numbers such that X := max{Xi} and
C > (sX)s is a fixed constant. With the above notation on Ω, we consider a reduced
basis {bi} to Ω and its associated Gram–Schmidt {b∗

i } basis. We set

c1 := max
1≤i≤s

||b1||
||b∗

i ||
, mΩ :=

||b1||
c1

, Q :=

s−1∑
i=1

X2
i , T :=

(
1 +

s∑
i=1

Xi

)
/2.

If the integers xi satisfy |xi| ≤ Xi for i = 1, . . . , s and mΩ
2 ≥ T 2 +Q, then we have∣∣∣∣∣

s∑
i=1

xiγi

∣∣∣∣∣ ≥
√
m2

Ω −Q− T

C
.

3. The proof of Theorem 1

3.1. The case when one of m,n, x, y is small

We may assume that y ≥ 2, since the case y = 1 was treated in [18]. For technical
reasons we would like to work with n ≥ 2 and x ≥ 3. Well, assume that n = 1.
Then the equation is

1 + 2x = P y
m.

Since y ≥ 2, it follows that x ≥ 3 so the above is a particular case of Catalan’s
conjecture solved by Preda Mihăilescu [17]. Its only solution 1 + 23 = 32 is not
convenient for us since 3 is not a member of the Pell sequence. This takes care of
the case when n = 1.

Assume next that x < 3. Then x ∈ {1, 2}. Suppose that x = 2. In this case, we
get P2n+1 = P 2

n + P 2
n+1 = P y

m with y ≥ 2. In particular, P2n+1 is a perfect power
and 2n+1 ≥ 5. It is known (see [8]) that the only perfect power which is a member
of the Pell sequence of index at least 5 is 132 = 169 = P7, but 13 is not a member
of the Pell sequence. This shows that the case x = 2 is not possible. Suppose next
that x = 1. Then we get

Pn + Pn+1 = P y
m.
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Since Pn ≡ n (mod 2), the left–hand side above is odd. Hence, Pm is odd, therefore
m is odd. On the left, we have Pn + Pn+1 = Qn+1/2. Let p be any prime factor of
Qn+1/2 which exists since n > 1, so Qn+1 > 2. Clearly, p is odd. We also have that
p | Pm, thus p | gcd(Qn+1, Pm). By a result of McDaniel (see [16]), it follows that if
we put d := gcd(n+1,m), then m/d is even. In particular, m is even, contradicting
the fact that m is odd. Hence, there are no solutions to our equation for x = 1 and
y ≥ 2.

3.2. An inequality among the variables m,n, x, y

In what follows, we assume that n ≥ 2, x ≥ 3, y ≥ 2. Note also that m > 1 is odd,
so m ≥ 3.

Lemma 3. If (m,n, x, y) is a solution of (2) with n ≥ 2, x ≥ 3 and y ≥ 2, then the
inequality

|(n+ 1)x−my| < 2max{x, y} (6)

holds.

Proof. Equation (2) and inequality (4) imply that

αy(m−2) < P y
m = P x

n + P x
n+1 < (Pn + Pn+1)

x < P x
n+2 < αx(n+1)

and
αy(m−1) > P y

m = P x
n + P x

n+1 > P x
n+1 > αx(n−1),

which lead to

−2y < (n+ 1)x−my and my − (n+ 1)x > −2x+ y.

Therefore, we obtain the desired inequality

|(n+ 1)x−my| < 2max{x, y}.

3.3. Bounds on x and y in terms of N and M

From now on, we set

M := min{m,n+ 1} and N := max{m,n+ 1}.

Note that M ≥ 3.

Lemma 4. If (m,n, x, y) is a solution in positive integers of equation (2), with
n ≥ 2, x ≥ 3 and y ≥ 2, then both inequalities

x < 1.4× 1011MN logN and y < 1.4× 1011MN2 logN

hold.
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Proof. The equation (2) can be rewritten as

P y
m − P x

n+1 = P x
n .

By using inequality (5), we have

P y
mP−x

n+1 − 1 =

(
Pn

Pn+1

)x

≤ 1

2.33x
. (7)

Let
Λ1 := P y

mP−x
n+1 − 1

be the expression appearing on the left-hand side of inequality (7). Observe that Λ1

is positive. To get a lower bound for Λ1, we apply Theorem 2 with the data

s := 2, γ1 := Pm, γ2 := Pn+1, b1 := y, b2 := −x.

Since γ1 and γ2 are integers, we have D := 1. We can take A1 := m logα and
A2 := n logα. Now Matveev’s theorem gives that

|Λ1| > exp(−1.4× 305 × 24.5(m logα)(n logα)(1 + logmax{x, y})) (8)

> exp(−1.2× 109 ×m× n× log(max{x, y})),

where we used the fact that 1+logmax{x, y} < 2 logmax{x, y}, which holds because
max{x, y} ≥ x ≥ 3. Comparing inequalities (7) and (8), we obtain

x < 1.42× 109mn logmax{x, y}. (9)

If x > y, the above inequality gives

x < 1.42× 109mn log x. (10)

If y > x, Lemma 3 implies that

|my − (n+ 1)x| < 2y,

therefore, since m ≥ 3, we obtain

y ≤ (m− 2)y < (n+ 1)x ≤ Nx. (11)

Note that the case x = y does not occur by Fermat’s Last Theorem proved by Wiles.
So, inequality (9) shows that

x < 1.42× 109mn log(Nx). (12)

If
x ≤ N, (13)

we already have a bound on x. Otherwise, x > N and inequality (12) gives that

x < 1.42× 109mn log(Nx) < 3× 109mn log x. (14)
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Comparing (10), (13) and (14), we conclude that inequality (14) holds in all cases.
So, we have

x

log x
< 3× 109mn,

which gives us

x < 6× 109mn log(3× 109N2) < 1.4× 1011mn logN,

where we used the fact that log(3×109N2) < 22 logN for all N ≥ 3. From estimate
(11), we also deduce that

y < Nx < 1.4× 1011MN2 logN.

This finishes the proof of the lemma.

3.4. Solutions with N ≤ 1000

Lemma 5. There are no solutions to the Diophantine equation (2) with y ≥ 2 and
N ≤ 1000.

Proof. Assume that N ≤ 1000. By Lemma 4, we have

x < 1.4× 1011 × (103)2 log(103) < 1018,
y < 1.4× 1011 × (103)3 log(103) < 1021.

Put
Γ1 := y logPm − x logPn+1,

and observe that Γ1 > 0 since Λ1 = eΓ1 − 1 > 0. Hence, from (7), we get

0 < Γ1 < eΓ1 − 1 = Λ1 <
1

2.33x
.

Dividing both sides of the last inequality by x logPm, we get

0 <
y

x
− logPn+1

logPm
<

1

x2.33x logPm
. (15)

Observe that

2.33x logPm ≥ 2.33x log 5 > 2x for all x ≥ 3 and m ≥ 3.

Therefore, inequality (15) implies

0 <
y

x
− logPn+1

logPm
<

1

2x2
.

By Legendre’s criterion, we infer that y/x is a convergent to the continued fraction
of logPn+1/ logPm. Let d := gcd(x, y). By Fermat’s Last Theorem once again, it

follows that d ∈ {1, 2}, for otherwise the triple (X,Y, Z) = (P
x/d
n , P

x/d
n+1, P

y/d
m ) is a

positive integer solution to the Fermat equation Xd+Y d = Zd with integer exponent
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d ≥ 3 and coprime positive integersX and Y , which we know does not exist. Further,
since the convergent pk/qk of any irrational number γ satisfies qk ≥ Fk, where Fk is
the kth Fibonacci number, and since F91 > 1018, it follows that (x, y) = (pk, qk) or
(2pk, 2qk) for some k ≤ 90. Here, pk/qk is the kth convergent to logPn+1/ logPm

for some odd m ≥ 3, n ≥ 3, m coprime to n(n + 1) and N ≤ 1000. Indeed, all
the above assertions are clear except perhaps the assertion of m being coprime to
n(n + 1). But if say p divides both m and n, then Pp divides both P x

n and P y
m

but not P x
n+1, so our equation is impossible. A similar argument shows that m and

n + 1 are coprime. So, for all pairs (m,n) such that m ≥ 2, n ≥ 3, m coprime to
n(n + 1) and N ≤ 1000, we generated the first 90 convergents of logPn+1/ logPm

and checked whether for one of the pairs (x, y) ∈ {(pk, qk), (2pk, 2qk)} with x ≥ 3,
the congruence P x

n + P x
n+1 ≡ P y

m (mod p1010) holds, where p1010 = 252097800623
is the 1010th prime. The computations were carried on in Mathematica and the
PowerMod[A, u,B] feature of Mathematica was used to compute Au (mod B) for
B := p1010 and (A, u) ∈ {(Pn, x), (Pn+1, x), (Pm, y)}. This computation took a
couple of hours and we got no new solutions.

From now on we assume that N > 1000.

3.5. Bounds for x, y and N in terms of M

Let {w, z} = {x, y} be such that (w,M), (z,N) are the two pairs (x, n+ 1), (y,m).
We will prove the following lemma.

Lemma 6. If (m,n, x, y) is a solution to (2) with n ≥ 2, x ≥ 3 and y ≥ 2, then

N < 2× 1031M2(logM)2,
x < 1.3× 1028M2(logM)2,
y < 1047 ×M2(logM)3,

max{Mw,Nz} < 1047 ×M3(logM)3.

Proof. From lemmas 4 and 5, we have

max{x, y} < 1.4× 1011N3 logN < αN . (16)

The right-most inequality above holds in fact for all N ≥ 44. The inequality (16)
implies that

z

α2N
<

1

αN
. (17)

By the Binet’s formula (3) and the fact that β = −α−1, we have

P z
N =

αNz

8z/2

(
1− (−1)N

α2N

)z

=
αNz

8z/2
exp

(
z log

(
1− (−1)N

α2N

))
.

Following the argument in [11] and distinguishing between the cases N odd and N
even, we deduce that if we put

εN,z :=

(
1− (−1)N

α2N

)z

− 1,
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then

P z
N =

αNz

8z/2
(1 + εN,z) , and |εN,z| <

2

αN
. (18)

Since x ≥ 3 and N > 1000, we deduce easily from (7) and (18) that

P y
m

P x
n+1

,
P z
N

αNz/8z/2
∈
(
1

2
,
√
2

)
. (19)

Suppose now that N = n+ 1. Then z = x and

P y
m = P x

n+1 + P x
n =

α(n+1)x

8x/2
+

(
α(n+1)x

8x/2

)
εn+1,x + P x

n .

So, we get∣∣∣P y
mα−(n+1)x8x/2 − 1

∣∣∣ = ∣∣∣∣εn+1,x +
P x
n

α(n+1)x/8x/2

∣∣∣∣ (20)

< |εn+1,x|+
(

Pn

Pn+1

)x( P x
n+1

α(n+1)x/8x/2

)
<

2

αn+1
+

2

2.3x
≤ 4

2.3λ
,

where
λ := min{x,N}. (21)

Here we used, in addition to (19), the fact that α > 2.3. The same inequality is
obtained when N = m, because in this case z = y and

P x
n+1 = P y

m − P x
n =

αmy

8y/2
+

(
αmy

8y/2

)
εm,y − P x

n .

Thus, we have∣∣∣P x
n+1α

−my8y/2 − 1
∣∣∣ = ∣∣∣∣εm,y −

P x
n

αmy/8y/2

∣∣∣∣
< |εm,y|+

(
Pn

Pn+1

)x(P x
n+1

P y
m

)(
P y
m

αmy/8y/2

)
<

2

αm
+

2

2.3x
≤ 4

2.3λ
. (22)

From (20) and (22), we summarize that the inequality∣∣∣Pw
Mα−Nz8z/2 − 1

∣∣∣ < 4

2.3λ
(23)

holds, where λ is given by formula (21). We will use (23) and Matveev’s theorem
to get an upper bound on x and N in terms of M . We continue by getting a lower
bound on the left-hand side of inequality (23). For this, we take

s := 3, γ1 := PM , γ2 := α, γ3 := 2
√
2.
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We also take

b1 := w, b2 := −Nz, b3 := z.

Hence,

Λ2 := Pw
Mα−Nz8z/2 − 1

is the expression which appears under the absolute value on the left-hand side of
inequality (23). If Λ2 = 0, then we get α2Nz = P 2w

M 8z ∈ Z, which is impossible
since no power of α of a positive integer exponent can be an integer. Thus, Λ2 ̸= 0.
Observe next that γ1, γ2, γ3 are all real and belong to the field K = Q(

√
2), so we

can take D = 2. Next, since PM < αM , it follows that we can take

A1 = 2M logα > D logPM = Dh(γ1).

Next, since h(γ2) = (logα)/2 and h(γ3) = (log 8)/2, it follows that we can take
A2 = logα and A3 = log 8. Finally, Lemma 4 and that fact that N > 1000 tell us
that we have

max{Nz, z, w} < (1.4× 1011MN2 logN)×N
< (103)4 × logN ×MN2 ×N
< N4 ×N ×N4 = N9.

Hence, we can take B := N9. Matveev’s theorem tells us that

log |Λ2| > −1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + 9 logN)(2M logα)(logα)(log 8)

> −3.2× 1013 ×M logN, (24)

where we used the fact that 1 + 9 logN < 10 logN holds for all N ≥ 3. Comparing
(23) and (24), we get

λ < 4× 1013M logN. (25)

At this point, we remark the following aboutMw and Nz: if z > w, by inequality
(6), we have

Mw ≤ (N + 2)z ≤ 2Nz,

while if z < w, then, again by (6) and the fact that M ≥ 3, we have

Mw

3
≤ (M − 2)w ≤ Nz.

Therefore, Mw ≤ 3Nz. So, it is always the case that Mw ≤ 3Nz. A similar
argument shows that Nz ≤ 2Mw. Thus, we obtain

Nz

Mw
∈
(
1

3
, 2

)
. (26)

Next, we distinguish several cases.

Case 1. λ = N . In this case, by inequality (25), we get

N < 4× 1013M logN.
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Hence, we have

N < 2× 4× 1013M log(4× 1013M)

< 8× 1013M(30 logM)

< 2.4× 1015M logM. (27)

From Lemma 4, we get

x < 1.4× 1011MN logN

< 1.4× 1011M(2.4× 1015M logM) log(2.4× 1015M logM)

< 3.4× 1026M2 logM(36 + 2 logM)

< 3.4× 1026M2 logM(38 logM)

< 1.3× 1028M2(logM)2.

(28)

Thus, if w = x, then

Mw = Mx < 1.3× 1028M3(logM)2, (29)

while if w = y, then z = x and

Nz = Nx < (2.4× 1015M logM)(1.3× 1028M2(logM)2)

< 3.2× 1043M3(logM)3. (30)

Using (26) and from estimates (29) and (30), we deduce that

max{Nz,Mw} < 1044M3(logM)3. (31)

Since My ≤ max{Mw,Nz}, by inequality (31) we get

y < 1044M2(logM)3. (32)

Case 2. λ = x. In this case, from inequality (25), we have

x = λ < 4× 1013M logN. (33)

We now distinguish two subcases.

Case 2.1. N = m. Then M = n+ 1. Further, if x > y, then by inequality (6),

the fact that y ≥ 2 and (33), we have

N = m ≤ my

2
<

(n+ 3)x

2
< (n+ 1)x

= Mx < 4× 1013M2 logN,

while if x < y, then by inequality (6), the fact that y ≥ 3 in this case and (33), we
have

N = m ≤ my − 2y < (n+ 1)x = Mx < 4× 1013M2 logN.
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So, in this case we always have

N < 4× 1013M2 logN. (34)

Case 2.2. N = n+ 1. First, note that if y > x, then, by (6), we have

y < (m− 2)y < (n+ 1)x = Nx,

while if x > y, then

y ≤ my

2
<

(n+ 3)x

2
< (n+ 1)x = Nx.

Hence, the inequality
y < Nx (35)

also holds in this case.
Further, observe that z = x. Thus, we also have

P x
n =

αnx

8x/2

(
1− (−1)n

α2n

)x

.

Then, by (17), we have
x

α2n
=

x

α2N−2
<

α2

αN
.

The argument preceding (18) now shows that

P x
n =

αnx

8x/2
(1 + εn,x), where |εn,x| <

2α2

αN
.

Thus we get

P y
m = P x

n+1 + P x
n =

αnx(αx + 1)

8x/2
+

(
α(n+1)x

8x/2

)
εn+1,x +

(
αnx

8x/2

)
εn,x.

So, we have∣∣∣∣P y
mα−nx

(
8x/2

αx + 1

)
− 1

∣∣∣∣ < |εn+1,x|
(

αx

αx + 1

)
+ |εn,x|

(
1

αx + 1

)
<

4

αN
, (36)

where we used the facts that

|εn+1,x| <
2

αN
, |εn,x| <

2α2

αN
,

αx

αx + 1
< 1,

1

αx + 1
<

1

α2
,

since x ≥ 3.
We continue by getting a lower bound on the left-hand side of inequality (36)

using Matveev’s theorem again. For this, we take s := 3, γ1 := Pm, γ2 := α,
γ3 := (αx + 1)/8x/2. We also take b1 := y, b2 := −nx, b3 := −1. Hence,

Λ3 := P y
mα−nx

(
8x/2

αx + 1

)
− 1
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is the expression which appears under the absolute value on the left-hand side of
inequality (36). We first check that Λ3 ̸= 0. If Λ3 = 0, then

α2nx(αx + 1)2 = P 2y
m 8x ∈ Z.

Conjugating the above expression in Q(
√
2), we get that

α2nx(αx + 1)2 = β2nx(βx + 1)2,

which is impossible because its left-hand side is very large (at least α2000), while its
right-hand side is less than 2 for x ≥ 3. Observe that γ1, γ2, γ3 belong to Q(

√
2), so

we can takeD := 2. Next, as in the previous application, we can take A1 := 2M logα
and A2 := logα. For γ3, its conjugate in K is (−1)x(βx + 1)/8x/2, so its minimal
polynomial over the integers is a divisor of

a0X
2 + a1X + a2

= 8x
(
X − αx + 1

8x/2

)(
X − (−1)x

βx + 1

8x/2

)
= 8xX2 − 8x/2(αx + (−1)xβx + 1 + (−1)x)X + (−1)x(αx + βx + 1 + (−1)x).

Thus, we have a0 ≤ 8x,∣∣∣γ(1)
3

∣∣∣ = |γ3| =
αx + 1

8x/2
< 1.1

(
α

2
√
2

)x

< 1,

because x ≥ 3, and ∣∣∣γ(2)
3

∣∣∣ = |βx + 1|
8x/2

<
2

8x/2
< 1.

So, we can take

A3 = log 8x =
D log 8x

2
≥ D log a0

2
≥ Dh(γ3).

Finally, inequalities (33) and (35), and the fact that N > 1000, tell us that we can
take

max{|b1| , |b2| , |b3|} = max{Nx, y, 1} = Nx
< N × 4× 1013 ×M logN
= (103)4 ×MN × 40 logN
< N4 ×N2 ×N = N7.

In the above, we used the fact that N > 40 logN holds for all N > 1000. Thus we
get

log |Λ3| > −1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + 7 logN)(2M logα)(logα)(x log 8)

> −2.6× 1013Mx logN. (37)

Inserting (33) into (37), we get

log |Λ3| > −2.6× 1013M(4× 1013M logN) logN

= −1.1× 1027M2(logN)2. (38)
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From inequalities (36) and (38), we get

N < 1.3× 1027M2(logN)2. (39)

Taking the worst possibility between (34) and (39), we get that

N < 1.3× 1027M2(logN)2.

Now we use the following fact: if A > 100, then the inequality

t

(log t)2
< A implies t < 4A(logA)2.

From this inequality, if we take A := 1.3× 1027M2 and t := N , we get

N < 4× 1.3× 1027M2(log(1.3× 1027M2))2

< 5.2× 1027M2(2 logM)2
(
log(1.3× 1027)

2 log 3
+ 1

)2

< 2× 1031M2(logM)2. (40)

Using also inequality (33), we get

x < 4× 1013M logN

< 4× 1013M log(2× 1031M2(logM)2)

< 4× 1013M(4 logM)

(
log(2× 1031)

4 log 3
+ 1

)
< 2.8× 1015M logM. (41)

So, as in Case 1, we deduce that if w = x, then

Mw = Mx < 2.8× 1015M2 logM, (42)

while if w = y, then z = x and

Nz = Nx < (2× 1031M2(logM)2(2.8× 1015M logM)

< 6× 1046M3(logM)3. (43)

Using condition (26), we deduce from estimates (42) and (43)

max{Nz,Mw} < 1047M3(logM)3. (44)

In particular, since My ≤ max{Mz,Mw} and from (44), we also get

y < 1047M2(logM)3. (45)

From (27), (28), (31), (32), (40), (41), (44) and (45), we get the bounds appearing
in Lemma 6.
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Remark. For computational purposes, it might be interesting to make some
remarks. First, x must be even. Indeed, if x is odd, then

Qn+1/2 = Pn+1 + Pn | P x
n+1 + P x

n .

In particular, every odd prime factor of Qn+1 divides Pm. But Qn+1 = P2(n+1)/Pn,
so every primitive prime factor of P2(n+1) (namely prime factor of P2(n+1) which
does not divide Pk for any 1 ≤ k < 2(n + 1)) is a prime factor of Qn+1. By the
Carmichael’s version of the Primitive Divisor Theorem [6], P2(n+1) has a primitive
prime factor for all n ≥ 5 and by inspection one observes that it also has a primitive
prime factor for n ∈ {1, 2, 3, 4, 5} as well. Thus, since for us n ≥ 2, there is a
primitive p prime factor of P2(n+1) dividing Qn+1. Since Qn+1/2 | P y

m, we get that
p | Pm, so 2(n + 1) | m, a contradiction since m is odd. This shows that x is even.
Since x ≥ 3, we get that in fact x ≥ 4. Now the left–hand side of our equation is
u2x/ux, where {uk}k≥0 is the kth term of the Lucas sequence with roots Pn+1 and
Pn. By the Primitive Divisor Theorem one more time, since x ≥ 4, the number
u2x has a primitive prime factor q (see Table 1 in [2] for the “exceptional” members
of the Lucas sequence of index greater than 6 which lack primitive divisors). In
particular, the multiplicative order of Pn+1/Pn modulo q is exactly 2x. Thus, the
multiplicative order of Pn+1/Pn modulo Pm is exactly 2x as well. The main result
of [3] shows that

m ≤ 20000(2x)2 ≤ 80000x2.

One may combine the above bound with the bound on x given by Lemma 6 to get
some bound on m, which unfortunately ends up being worse than the bound on N
provided by the same Lemma 6.

3.6. The case when M ≤ 1000

Lemma 7. If (m,n, x, y) is a solution of equation (2) with x ≥ 3, n ≥ 2 and y ≥ 2,
then N > M > 1000.

Proof. Assume M ≤ 1000. By Lemma 6, we have that

X := max{w,Nz, z} < 1047 × (103)3(log(103))3 < 1057.

Note that by Lemma 3 we have that λ ≥ 3. Then the right-hand side of (23) is at
most 1/2 so by a classical argument it follows that∣∣∣w logPM −Nz logα+ z log(2

√
2)
∣∣∣ < 8

2.3λ
. (46)

We calculate a lower bound for the above absolute value through Lemma 2. We take
C := (3X)3 and consider the lattice Ω spanned by

γ1 := (1, 0, ⌊C logPM⌋) , γ2 := (0, 1, ⌊C logα⌋) , γ3 :=
(
0, 0,

⌊
C log(2

√
2)
⌋)

.

Using Mathematica, we estimate a reduced basis {bi} (LLL–algorithm) for Ω and
its associated Gram–Schmidt {b∗

i } basis. So, for each M ∈ [3, 1000] we calculated
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the parameters Q,T, c1 and mΩ = ||b1||/c1. By the conclusion of Lemma 2 together
with inequality (46), we obtain that

7.7× 10−500 <
∣∣∣w logPM −Nz logα+ z log(2

√
2)
∣∣∣ < 8

2.3λ
,

which leads to
λ < 1410.

Suppose λ = N , so N < 1410 andX = max{w,Nz, z} < 2.8×1024. A new reduction
cycle on inequality (46) yields 5.2× 10−218 as a lower bound for the above absolute
value, so N = λ < 610, contrary to the assumption N > 1000. Hence, λ = x, so
x < 1410.

Assume (N, z) = (n + 1, x), so (M,w) = (m, y). By inequality (36), it follows
that ∣∣∣w logPM − (N − 1)z logα+ log(8x/2/(αx + 1))

∣∣∣ < 4

αN
.

Fixing M and x, we are in a suitable position to apply the Baker-Davenport reduc-
tion method. We have

|uγ − v + µ| < AB−N ,

where we take

γ :=
logPM

logα
, µ :=

log(8x/2/(αx + 1))

logα
, A := 4.6

(
>

4

logα

)
, B := α,

and (u, v) = (w, (N − 1)z). By estimate (35), Lemma 6 and the fact that x < 1410,
we note that u = y < Nx < T := 1.4 × 1042. We loop over all even values
x ∈ [4, 1410] and all odd values m = M ∈ [3, 1000]. In all cases ε > 1.1×10−249 and
log(Aq/ε)/ logB < 1405, which is a lower bound for N . The same second reduction
cycle on inequality (46) leads to a contradiction on N .

Assume (N, z) = (m, y), so (M,w) = (n+ 1, x). Then by inequality (6),

max{N, y} < (n+ 1)x = Mx < 1.5× 106.

Returning to inequality (46), we note that according to the above inequalities X <
2.3 × 1012. A reduction cycle on inequality (46) once more leads to the conclusion
that λ = x < 320. Repeating the same reduction argument, we get x < 285. Thus,
(x, n) ∈ [3, 285]× [2, 999]. Then, by inequality (6) and the fact that m = N > 1000,
we get

998y < y(m− 2) < x(n+ 1) < 285000.

Hence, (y,m) ∈ [3, 285] × [1001, 2 + ⌊285000/y⌋]. Then, we check the congru-
ence P x

n + P x
n+1 ≡ P y

m (mod 1020). For the pairs (x, y) we used once again the
PowerMod[A, u,B] feature of Mathematica to compute

S = {P x
n + P x

n+1 (mod 1020) : (x, y) ∈ [3, 285]× [2, 999]},

while for the ring-hand side of (2) we used

Mod[Drop[LinearRecurrence[{2, 1}, {1, 2},#1], 1000]∧#2, 1020]&;

to compute Ry := {P y
m (mod 1020) : m ∈ [1001, 2 + ⌊285000/y⌋]}. Then we verify

that S ∩ Ry = ∅ for each y ∈ [3, 285]. This computation took four minutes and
showed that no new solutions exist when M ≤ 1000.
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3.7. An absolute bound on all the variables m,n, x, y

Lemma 8. If (m,n, x, y) is a solution of equation (2) with n ≥ 2, x ≥ 3 and y ≥ 2,
then

max{x, y} < 3× 10111.

Proof. Since N > M > 1000, it follows from Lemma 6 that

max{x, y} < 1047M2(logM)3 < αM−2 ≤ min{αn−1, αm}.

The above middle inequality holds for all M ≥ 142. Hence, all three inequalities

x

α2n
≤ 1

αn+1
,

x

α2n+2
≤ 1

αn+1
,

y

α2m
≤ 1

αm

hold, so we may write

P x
n =

αnx

8x/2
(1 + ζn,x), (47a)

P x
n+1 =

α(n+1)x

8x/2
(1 + ζn+1,x), (47b)

P y
m =

αmy

8y/2
(1 + ζm,y), (47c)

where

max{|ζn,x| , |ζn+1,x|} ≤ 2

αn+1
, |ζm,x| ≤

2

αm
.

We also have the analogs of condition (19), namely,

P x
n

αnx/8x/2
,

P x
n+1

α(n+1)x/8x/2
,

P y
m

αmy/8y/2
belong to

(
1

2
,
√
2

)
. (48)

Inserting approximation (47) into equation (2) and shuffling some terms, we get

αmy

8y/2
− α(n+1)x

8x/2
− αnx

8x/2
=

(
α(n+1)x

8x/2

)
ζn+1,x +

(
αnx

8x/2

)
ζn,x −

(
αmy

8y/2

)
ζm,y,

which, together with (48), yields the following string of inequalities:

∣∣∣αmy−(n+1)x8(x−y)/2 − 1
∣∣∣ < 1

αx
+ |ζn+1,x|+

|ζn,x|
αx

+

(
αmy/8y/2

α(n+1)x/8x/2

)
|ζm,y|

<
1

αx
+

3

αn+1

+

(
αmy/8y/2

P y
m

)(
P y
m

P x
n+1

)(
P x
n+1

α(n+1)x/8x/2

)
|ζm,y|

<
1

αx
+

2

αn+1
+

2
√
2

αm
<

6

αλ1
, (49)
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where λ1 := min{x,M} and also∣∣∣αmy−nx8(x−y)/2(αx + 1)−1 − 1
∣∣∣ < αx

αx + 1
|ζn+1,x|+

|ζn,x|
αx + 1

+

(
αx

αx + 1

)(
αmy/8y/2

α(n+1)x/8x/2

)
|ζm,y|

<
2

αn+1
+

2
√
2

αm
<

6

αM
. (50)

We apply Matveev’s theorem to the left-hand side of inequality (49) with s := 2,
γ1 := α, γ2 := 2

√
2, b1 := my − (n+ 1)x, b2 := x− y and D = 2. Thus,

Λ4 := αmy−(n+1)x8(x−y)/2 − 1.

Observe that Λ4 ̸= 0 since otherwise we would get that α2my−2(n+1)x = 8x−y ∈ Z,
and this is possible only if my = (n + 1)x and y = x, but this last equality is
not allowed. We take as in the prior application of this theorem A1 := logα and
A2 := log 8. Further, since x ≥ 4, the right-hand side in (49) is at most 6/α3 < 1/2.
Therefore, we obtain

α|my−(n+1)x|

8|x−y|/2 < 2.

So, we have

|b1| = |my − (n+ 1)x| < log(2× 8|y−x|/2)

logα

=

(
log 8

2 logα

)
|y − x|+ log 2

logα
< 2 |y − x|+ 1

< 4 |y − x| . (51)

Thus, using lemmas 6 and 7, we can take

B := M19 = M16 ×M2 ×M > (103)16M2(logM)3

> 4× 1047M2(logM)3 > 4max{x, y} > max{|b1| , |b2|}. (52)

Matveev’s theorem tells us that

log |Λ4| > −1.4× 305 × 24.5 × 22(1 + log 2)(1 + 19 logM)(logα)(log 8)

> −2× 1011 logM. (53)

Comparing estimates (49) and (53), we get

λ1 < 3× 1011 logM. (54)

We now distinguish two cases.

Case 1. λ1 = M . In this case, from (54), we get

M < 3× 1011 logM.
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Therefore, we obtain

M < 2× 3× 1011 log(3× 1011) < 2× 1013. (55)

Case 2. λ1 = x. In this case, from (54), we get

x < 3× 1011 logM. (56)

We apply Matveev’s theorem to the left-hand side of the inequality (50) with s := 3,
γ1 := α, γ2 := 2

√
2, γ3 := αx + 1, b1 := my − nx, b2 := x− y, b3 := −1 and D = 2.

Thus, we take
Λ5 := αmy−nx8(x−y)/2(αx + 1)−1 − 1.

Let us check that Λ5 ̸= 0. If Λ5 = 0, we get that

αx + 1 = 8(x−y)/2αmx−ny.

Conjugating the above relation in Q(
√
2), we get

βx + 1 = ±8(x−y)/2βmx−ny.

Multiplying the two above relations, we get

αx + βx + (−1)x + 1 = (αx + 1)(βx + 1)

= ±(αβ)my−nx8x−y

= ±8x−y. (57)

Since the left-hand side of equation (57) is larger than 1 for x ≥ 4, the sign in the
right-hand side is plus and x > y. Since x is even (see the remark at the end of the
previous section), the equation (57) becomes

αx + βx + 2 = 8x−y.

If 4|x, the above equation gives Q2
x/2 = 23(x−y), which is again impossible because

Qk is never divisible by 4 for any k. So 2||x, which in turn yields the relation
(Qx/2/2)

2 = 23(x−y)−2 − 1 ≡ −1 (mod 8), which is again impossible. Thus, Λ5 ̸= 0.
We take, as in the prior application of Matveev’s theorem, A1 := logα, A2 :=

log 8. As for α3 := αx + 1, this is an algebraic integer whose conjugate is βx + 1
whose absolute value is smaller than 2. Thus, one can see that

Dh(α3) ≤ log(αx + 1) + log 2 < log(2αx) + log 2

= x logα+ log 2 + log(1 + α−x) ≤ x

(
logα+

log 2

x
+

1

xαx

)
< 1.1x,

since x ≥ 4. So, we can take A3 := 1.1x. Finally, observe that by the calculation
(51), we have

|b1| = |my − nx| ≤ |my − (n+ 1)x|+ x < 2 |y − x|+ 2 + x
< 4max{x, y}.
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Hence, using lemmas 6 and 7, we conclude, as at estimate (52), that we can take

B = M19 = M16 ×M2 ×M > (103)16 ×M2 × (logM)3

> 4× 1047 ×M2 × (logM)3 > 4max{x, y} > max{|b1| , |b2|}.

Matveev’s theorem now implies that

log |Λ5| > −1.4× 306 × 34.5 × 22(1 + log 2)(1 + logM19)(logα)(log 8)(1.1x)

> −4× 1013x logM. (58)

From estimates (50) and (58), we get

M < 5× 1013x logM. (59)

Inserting estimate (56) into (59), we obtain

M < 5× 1013(3× 1011 × logM) logM < 2× 1025(logM)2.

Thus, one can see that

M < 4× 2× 1025(log(2× 1025))2 < 3× 1029. (60)

Comparing (55) and (60) on M in the two cases, we conclude that the inequality (60)
always holds. Inserting the above bound for M into the inequalities of Lemma 6, we
get

N < 2× 1031 × (3× 1029)2(log(3× 1029))2 < 1094,
x < 1.3× 1028(3× 1029)2(log(3× 1029))2 < 1091,
y < 1047 × (3× 1029)2(log(3× 1029))3 < 3× 10111.

3.8. Reducing the bound

We work more on inequality (49). Assume that λ1 > 400. Then 6/αλ1 < 1/2, so by
a classic argument we get∣∣∣(my − (n+ 1)x) logα− (y − x) log(2

√
2)
∣∣∣ < 12

αλ1
.

Thus, we see that∣∣∣∣∣my − (n+ 1)x

x− y
− log(2

√
2)

logα

∣∣∣∣∣ < 12

(logα) |x− y|αλ1
(61)

<
13

|x− y|αλ1
.

Since λ1 > 400, by Lemma 8, we have

αλ1 > α400 > 3× 10113 > 100max{x, y} > 100 |x− y| ,
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showing that the expression appearing on the right-hand side of (61) is smaller
than 1/(2 |x− y|)2, so by Legendre’s criterion, (my− (n+1)x)/(x− y) equals some
convergent pk/qk of γ := log(2

√
2)/ logα for some nonnegative integer k. If k < 100,

then

1

10120
<

1

1105q299
<min

{∣∣∣∣γ − pk
qk

∣∣∣∣ : k ∈ {0, 1, . . . , 99}
}
≤
∣∣∣∣γ − my − (n+ 1)x

x− y

∣∣∣∣< 13

αλ1
.

Therefore, we deduce that

λ1 <
log(13× 10120)

logα
< 317,

which is false since we assume that λ1 > 400. In the above, we used that if
[a0, . . . , a99, . . .] is the continued fraction of γ, then max{ak : 0 ≤ k ≤ 99} = 1102.
Thus, k ≥ 100, and since the 207th convergent p207/q207 of γ satisfies

q > 3× 10111 > |x− y| ,

we conclude that k ∈ [100, 207]. Since∣∣∣∣γ − p207
q207

∣∣∣∣ > 1

10227
,

we get
1

10227
<

∣∣∣∣γ − pk
qk

∣∣∣∣ < 13

|x− y|αλ1
≤ 13

q100αλ1
≤ 1

1053αλ1
,

giving

λ1 ≤ log(10278)

logα
< 732.

If M ≤ x, then we have M = λ1 < 732, a contradiction. Thus, x = λ1, therefore
x < 732. We get now a better bound for M . That is, using estimate (59) and
comparing it also with estimate (55) according to the two cases distinguished in
Subsection 3.7, we conclude that

M < 5× 1017x logM < 5× 732× 1017 logM < 3.7× 1020 logM,

giving
M < 2× 3.7× 1020 log(3.7× 1020) < 4× 1022,

which, via Lemma 6, yields

x < 1.3× 1028(4× 1022)2(log((4× 1022))2 < 6× 1076, (62)

y < 1047(4× 1022)2(log(4× 1022))3 < 3× 1097.

Now, the convergent p183/q183 of γ has q183 > 3× 1097 > |x− y| and∣∣∣∣γ − p183
q183

∣∣∣∣ > 1

10198
.
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Therefore, by an argument previously used, we have

λ1 <
log(13× 10198)

logα
< 522.

Thus, λ1 ∈ [3, 521]. Since M > 1000 and λ1 = min{x,M}, it follows that λ1 = x.
We now move on to inequality (50). Since M > 1000, we get∣∣∣(x− y) log(2

√
2)− (nx−my) logα− log(αx + 1)

∣∣∣ < 12

αM
.

Here, we fix x and apply again the Baker-Davenport reduction method. We have

|uγ − v + µ| < AB−M ,

where we take

γ :=
log(2

√
2)

logα
, µ := − log(αx + 1)

logα
, A := 14

(
>

12

logα

)
, B := α,

and (u, v) = (x−y, nx−my). By estimate (62), we can take T := 10100 as the bound
on |u|. We loop over all even values x ∈ [4, 520]. In all cases we choose q = q499
the denominator of the convergent of index 499 of γ. In all cases ε > 0.001 and
the worst (largest) upper bound on M is 707. This took a few seconds. This is a
contradiction since we assume that M > 1000. This finishes the proof of Theorem 1.
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[14] D.Marques, A.Togbé, On the sum of powers of two consecutive Fibonacci numbers,
Proc. Japan Acad. Ser. A 86(2010), 174—176.

[15] E.M.Matveev, An explicit lower bound for a homogeneous rational linear form in
the logarithms of algebraic numbers, II, Izv. Math. 64(2000), 1217–1269.

[16] W.L.McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences, Fi-
bonacci Q. 29(1991), 24–29.
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[18] S. E.Rihane, F. Luca, B. Faye, A.Togbé, On the exponential Diophantine equation
P x
n + P x

n+1 = Pm, Turkish J. Math. 43(2019), 1640–1649.
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