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ABSTRACT. Additive manufacturing research is continuously growing, and 
this field requires a full improvement of the capability and reliability of the 
processes involved. Of particular interest is the study of complex geometries 
production, such as lattice structures, which may have a potentially huge field 
of application, especially for biomedical products. 
In this work, the powder bed fusion technique was utilized to manufacture 
lattice structures with defined building angles concerning the build platform. 
A biocompatible Co-Cr-Mo alloy was used. Three different types of 
elementary cell geometry were selected: Face Centered Cubic, Diagonal, and 
Diamond. These cells were applied to the radially oriented lattice structures to 
evaluate the influence of their orientation in relation to the sample and the 
build platform. Moreover, heat treatment was carried out to study its influence 
on microstructural properties and mechanical behavior. Microhardness was 
measured, and compressive tests were performed to detect load response and 
to analyse the fracture mechanisms of these structures. 
The results show that the mechanical properties are highly influenced by the 
cell orientation in relation to the building direction and that the properties can 
be further tuned via HT. The favorable combination of mechanical properties 
and biocompatibility suggests that Co-Cr-Mo lattices may represent an 
optimal solution to produce customized metal implants.  
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INTRODUCTION 
 

M technologies have an important impact on the biomedical industry due to the enhanced possibilities of 
customizations for the production of bespoke implants [1–6]. Of particular interest for the metallic materials are 
the powder bed fusion (PBF) processes, which can be split into categories based on the utilized energy source or 

the binding mechanism, e.g. selective laser sintering (SLS) and selective laser melting (SLM) [4,7–11]. 
Various alloys can be processed using Laser Powder Bed Fusion (L-PBF) processes, such as stainless steel, titanium, and 
cobalt alloys [12–14]. Among these, Co-Cr alloys have good versatility and durability, together with biocompatibility [15]. 
In general, these alloys are used to produce surgical tools and prostheses such as hip and knee replacements due to their 
excellent wear and corrosion resistance [16,17]. For this application, the stress-shielding effect can occur, since the 
prostheses should have a similar stiffness to the bone, otherwise osteoporosis issues can arise [18]. While this could be a 
limitation for metallic alloys with high elastic modulus, such as Co-Cr, with additive manufacturing, the use of cellular 
configurations can help to overcome this problem.  
AM process can manufacture complex structures, taking advantage of layer-by-layer production. In comparison with other 
processing routes, it has more flexibility, together with the possibility to manufacture near-net-shape components without 
the need of expensive molds [19]. The lattice structures can be printed, that are topologically ordered and organized in 3D 
space with repeating open cells [20]. These structures are defined by node and strut dimensions (usually in the order of 
micrometres), and cell 3D dimensions. The stiffness of lattice structures can be tailored to be comparable with the 
physiological tissue while keeping the strength and biocompatibility of the Co-Cr alloys [21]. 
Lattice structures are composed of strut-based cell topologies, the most common are Body-Centered Cubic (BCC) and Face 
Centered Cubic (FCC) [22]. Moreover, other types of strut-based topologies exist, such as octet-truss, cubic, diagonal, and 
diamond [23]. Strut-based topologies can be characterized by the Maxwell number, M, which is calculated from the number 
of struts and nodes [24]. This number is useful to understand if the structures will be mechanically bending-dominated or 
stretch-dominated [25].  
Besides cell geometry, the mechanical response of a lattice structure also depends on the material microstructure. 
In this regard, an additional peculiar aspect of the L-PBF process is the extremely rapid solidification rate [15]. This 
influences the microstructure significantly, as already pointed out in the literature. In comparison with casting processes, 
the microstructure of Co-Cr alloy presents columnar grains growing in the building direction through the building layers, 
composed of fine cellular sub-grains [26]. 
Heat treatments may cause further modifications, providing the additional possibility to tune the lattice behavior according 
to the needs. In the literature [27], several heat treatments have been investigated to identify the effect of temperature, time, 
and cooling rate on the Co-Cr alloy samples manufactured by L-PBF. Heat treatments have a big influence on the mechanical 
properties, due to the microstructural changes they may induce [14,28]. 
In the present study, Face Centered Cubic (FCC), Diagonal (DG), and Diamond (DM) cells were selected and radially 
distributed for the lattice design due to their differences in terms of expected mechanical properties and porosity. The lattice 
structures were designed to investigate how the radial arrangement can affect the mechanical properties of the samples. This 
specific configuration is particularly relevant for biomedical applications, because the radially graded porosity is similar to 
the porosity of the physiological structure of the cortical bone, especially at the interface with trabecular bone lamellae [29–
32]. Moreover, biocompatible radially graded porous structures have already been demonstrated to promote and guide the 
repair of bone defects [33]. However, a few studies are available in the literature regarding the mechanical characterization 
of these structures produced using Co-Cr alloy [18]. 
This work aims to analyse and report the mechanical characterization of innovative Co-Cr-Mo radially graded porous 
samples manufactured by L-PBF. Furthermore, the lattice structures were built with different orientations (i.e., horizontal 
and vertical) as a promising design strategy for biomedical applications involving tissue repair guidance and porosity control. 
 
 
MATERIALS AND METHODS 
 
Sample production and post-processing 

attice structures were designed by 3D XPert software, (ProX® DMP 100, 3D system, Rock Hill, South Carolina, 
USA). Six cylindrical lattice samples with a height of 30 mm and a diameter of 24 mm with a nominal volume (Vn) 
of 13565 mm3, were designed. The porosity was to be 50% or more, according to ISO 13314 standard, with three 

different unit cell geometry: Face Centered Cubic (FCC), Diamond (DM), and Diagonal (DG). The samples were produced 
with an orientation of 0° and 90° on the building plate (XY), as reported in Fig. 1a. Moreover, Fig. 1b shows the radial 
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gradient directions of the cells in relation to the Z-axis. A lower density than the uniformly distributed lattice structures was 
expected. 
The volume of the cellular unit was 2(X) x 2(Y) x 2(Z) mm³. Nodal joints are designed with a spherical shape, with a diameter 
of 1.0 mm while the cross-sections of lattice struts are designed circular in shape with a diameter of 0,5 mm. The software 
can automatically generate the correct number of cells based on the dimension and the volume boundaries where it will be 
generated, setting the radial gradient as shown in Fig. 2.  
 

 
 

Figure 1: a) Orientations of the building samples on the building plate and b) the radial gradient direction of the cells. 
 
The 90° and 0° radially graded porous lattices are reported in Fig. 2a, 3c, 3e and Fig. 2b, 3d, 3f, respectively. Therefore, the 
increasing gradient of porosity from the centre to the edges of samples can be tailored based on the orientation, as shown 
in Fig. 2. The samples are named respectively FCC0, FCC90, DM0, DM90, DG0, and DG90 due to their orientation in 
relation to the building plate. 
 

 
 

Figure 2: Radially graded porous lattice structures. Top view of: (a) FCC90, (c) DM90, (e) DG90 samples and side view of: (b) FCC0 (d) 
DM0, (f) DG0 samples. 
 
Samples were manufactured using Co-Cr-Mo alloy powder produced by LaserForm®. The nominal chemical composition 
is reported in Table 1. 
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Co-Cr-Mo Co Cr Mo Ni Fe C Si Mn 

Wt min (%) Bal. 28.00 5.00 0.00 0.00 0.00 0.00 0.00 

Wt max (%)  30.00 6.00 0.10 0.50 0.02 1.00 1.00 
 

Table 1: Nominal chemical composition (wt%) of Co-Cr-Mo powders used for the production of samples. 
 
The ProX® DMP 100 printer (3D system®, Wilsonville, Oregon, USA), was used for printing the lattices in a controlled 
nitrogen inert gas atmosphere (O2<0.01%) The printer process parameters were set as reported in Table 2: 
 

Process Parameter Value 

Laser power [W] 50 

Spot diameter [µm] 80 

Scan speed [mm/s] 300 

Hatch spacing [µm] 50 

Layer thickness [µm] 30 
 

Table 2: Process parameters used for the production of samples. 
 
Supports were generated with the same process parameters as the lattice samples. 
Where present, the supports for 90° samples were removed using a metallographic cutting machine. Then, the samples were 
grinded with sandpaper paying attention not to alter the lattice structure to assure the reliability of the mechanical tests.  
Samples before and after heat treatment are named respectively as-built (AB) and heat-treated (HT) samples. 
Heat treatment was performed using a horizontal furnace for vacuum heat treatment. The samples were heated from room 
temperature up to 1200 °C with a heating rate of 13°C/min and soaked at 1200°C for 2h. A partial pressure was applied as 
the temperature reached 650°C and upwards, while vacuum cooling was carried out. The aim was to relieve residual stresses 
and homogenize the microstructure [14].  
 
Metallurgical, technological, and mechanical characterizations 
The sample dimensions were collected to compare the designed model and produced samples. The diameter and height of 
the cylinders were experimentally measured with a Vernier caliper. The relative density was evaluated as the ratio between 
the total volume occupied by the material in relation to the geometry of the cell, based on the CAD file, and the total volume 
of the whole full cylinder [27]. 
The optical microscope (LEICA DMI 5000 M, Wetzlar, Germany) was used to investigate the microstructure of the samples. 
The as-built and heat-treated samples were mounted in acrylic resin, polished up to mirror finishing, and electrolytically 
etched (for 60 seconds in 5% HCl solution) to identify the main microstructural features. The software ImageJ (National 
Institutes of Health, USA) was used to measure the size of melting pools and laser scan tracks. 
Moreover, Vickers microhardness measurements were performed with a Mitutoyo HM-200 (Mitutoyo Corporation, 
Kawasaki (Kanagawa), Japan) hardness testing machine to evaluate the effectiveness of the heat treatment. A load of 0.5 kg 
was applied for 15 s. Ten repetitions for each AB and HT sample were performed on the supports. 
Compressions tests were carried out with a servo-hydraulic testing machine INSTRON 8501 (Instron, Norwood, MA, USA) 
equipped with a 500 kN load cell. Tests were conducted in displacement control at a constant crosshead velocity of 2 
mm/min and the displacement was measured using the crosshead movement. 
Load-displacement curves were generated from Instron output data. Maximum compressive strength (ultimate strength), 
quasi-elastic gradient, plateau stress between 20% to 40% strain, and compressive offset stress at the plastic compressive 
strain of 0.2 % (yield stress), were calculated according to ISO 13314:2011 standard. Ultimate strength was detected as the 
maximum stress, the quasi-elastic gradient was calculated considering the linear trend of the elastic field, and the yield stress 
was calculated with a 0.2% deviation of the quasi-elastic trend line. Plateau stress was calculated for bending-dominated 
samples as the average value of stress corresponding to the compressive strain from 20% to 40%, according to ISO 
13314:2011. This is because their plateau was extended at higher values of strain, in contrast with stretch-dominated samples, 
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which present lower values of strain. The plateau stress was necessary to understand the behavior of the material and 
whether the response of the lattice was bending-dominated or stretch-dominated. 
Furthermore, fracture surfaces of samples were analyzed by scanning electron microscope (SEM), LEO EVO® 40 (Carl 
Zeiss AG, Italy), to investigate the fracture mechanism. 
 
 
RESULTS AND DISCUSSION 
 
Lattice structure 

 diameter of 24.1±0.1 mm was measured for the samples. Instead, a height of 30.3±0.1 mm was detected for the 
0° samples in contrast with the 90° ones which resulted in a height of 28.6±0.5 mm, due to the support removal 
of the samples.  

Moreover, the relative density was evaluated as a relevant parameter to determine the mechanical properties [1]. In Table 3 
the relative density of the samples is reported, where VL is the volume of the designed samples and Vn (nominal volume) 
is 13565 mm3. The density changes with the kind of cells. The FCC configuration exhibits the highest density, due to the 
higher number of struts in its configuration. 
 

Sample Building angle  
[°] 

VL 
[mm3] 

Relative density 
[%] 

FCC 
0 6040 45 

90 5480 40 

DM 
0 3100 23 

90 3160 23 

DG 
0 2690 20 

90 2890 21 
 

Table 3: Relative density of AB samples. 
 
It is worth mentioning that partially melted powder may be trapped inside the samples due to their complex geometry, at 
the expense of mechanical behavior and relative density estimation [19,34]. 
 
Microstructure 
Micrographs of the longitudinal (L) and transverse (T) cross-section of the 90° samples are shown in Fig. 3a and Fig. 3b. 
The microstructure of the 0° samples is not reported since they are characterized by the same features. The typical 
overlapped melt pools are shown in Fig. 3a on the L cross-section. They are caused by the melting powders under the 
focused laser energy. Instead, along the T cross-section, the elongated scan tracks are visible, revealing the pattern followed 
by the laser during the manufacturing process (Fig. 3b). 
The dimension of melt pools was estimated along the L-section as reported in the literature [35]. The melt pools are semi-
circular in shape and their dimension was compared with the laser beam diameter and layer thickness. The width and depth 
of melt pools range from 60 to 70 µm and from 30 to 35 µm, respectively. The average width is lower than the laser beam 
diameter, instead, the average depth is comparable with the layer thickness. This is due to the low value of laser power of 
50W because it has been demonstrated that this parameter plays an important role in determining the size and geometry of 
melt pools, i.e. higher laser power leads to deeper melt pools [36,37]. 
Porosity defects typical of L-PBF components, such as spherical porosities due to trapped gas [38] or lack-of-fusion 
porosities, are also visible in Fig. 3a, and Fig. 3b. 
In Fig. 3c and Fig. 3d, an extremely fine cellular sub-structure limited by melt pools boundary inside certain melt pools is 
visible. This metastable cellular microstructure is a peculiarity of the L-PBF technology, due to the extremely rapid 
solidification [39], and it is common for various alloys [40]. Unlike most metallic materials, for Co-Cr-Mo alloys, the cell 
boundaries can be distinguished due to the segregation of Mo and Cr, which surrounds the Co-Cr matrix, and not due to 
the presence of secondary phases, as recently reported in [40]. The cells are oriented in different directions inside the same 
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melt pool, as highlighted from the arrows in Fig. 3d, individuating different sub-grains that grow from the grain boundary 
following a preferential crystallographic orientation for Co-Cr alloy [39,40]. Since the grain growth is competitive, when 
they collide, one of them stops [41]. 
In addition, the micrographs reported in Fig. 3c and Fig. 3d show also examples of sintered particles and spatter, typical 
defects of components produced by L-PBF, usually characterized by poor surface finish in as-built conditions. In particular, 
the particle presented in Fig. 3d is characterized by a dendritic structure, indicating a solidification condition very different 
from the bulk material. 
 

 
 

Figure 3: Optical micrographs of longitudinal (a) and transverse (b) cross-sections of AB samples built at 90°. Examples of sintered 
particles, cellular sub-structure (c), spatter, and lamellar sub-structure (d). Optical micrograph of HT sample (e) and HT sample at higher 
magnification (f) built at 90° (some examples of equiaxed grains marked by white arrows). 
 
Regarding the grain structure, it is also well reported in the literature [32,42] that epitaxial columnar grains grow along the 
highest temperature gradient [43].  
In contrast with AB samples, HT samples show a completely different microstructure, as reported in Fig. 3e. It clearly shows 
the disappearance of melt pools and the presence of equiaxed grains highlighted by the presence of precipitates along the 
grain boundaries. These are also dispersed in the matrix, as visible in Fig. 3f at higher magnification.  
Various phenomena take place during heat treatment. During soaking at 1200 °C, the fine cellular structure is progressively 
fragmented and dissolved, leading to a more homogeneous distribution of solute atoms and the formation of precipitates 
[44]. The chemical composition of these particles is still a topic of discussion and further investigations are needed. A strong 
dependence on the chemical composition of the alloy is evident from the literature [40] and carbide particles [45] or Cr- and 
Mo-rich particles are identified according to the C level in the considered alloy [40]. In the present study, the extremely low 
content of C (0.02 wt. %) suggests that precipitates are mainly particles containing Cr and Mo rather than carbides. This is 
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consistent with a recent study [40] where a deep investigation of the evolution of microstructure during heat treatment is 
carried out. 
Recrystallization also occurs, promoted by the high density of dislocations and residual stresses present in AB conditions, 
and resulting in coarse equiaxed grains after heat treatment (Fig. 3e and 3f). This is also discussed by [40,46–48]. 
 
Micro hardness 
The hardness of AB samples built at 0° is 431 ± 9 HV and at 90° is 423 ± 11 HV, which is 24% and 29% higher compared 
to the hardness of the treated ones, 321 ± 10 HV and 318 ± 8 HV, respectively. A decrease of hardness in HT samples was 
observed. This is due to the microstructural change already discussed. In particular, the dissolution of the cellular structure 
and the recrystallization are mainly responsible for different strengthening mechanisms acting in the HT samples as 
compared to the AB ones, leading to the observed lower hardness. The effect of the building direction is negligible in HT 
ones. These results are supported by the literature [44,47–49]. 
 
Compressive properties of radially graded lattice structures 
The stress-strain curves recorded during compression tests are shown in Fig. 4 where the corresponding cell morphology is 
indicated. The different behavior of the samples is noticeable in the different shapes of the curves reported in Fig. 4. 
The test was considered completed when the samples started to collapse after bending to the ultimate strength value. From 
the graphs it is also possible to identify which samples are bending-dominated or stretch-dominated, following the Gibson 
Ashby law [20], considering that in stretch-dominated behavior the stress value is higher at a lower strain value. 
 

 
Figure 4: Stress-strain curves of: AB samples with: (a) FCC90, DM90, DG90 and (b) FCC0, DM0, DG0 (3 repetitions for each ones). 
HT samples with: (c) FCC90, DM90, DG90 and (d) FCC0, DM0, DG0 (3 repetitions for each ones). 
 
For the 90° samples, the curves in Fig. 4a suggest that FCC90 and DG90 unit cells exhibit stretch-dominated behavior. In 
particular, the samples crashed at 306 ± 17 MPa at 25% of strain for FCC90 cells and 164 ± 4 MPa at 20% strain for DG90 
cells. The curves of DM90 samples are instead characterized by bending-dominated behavior since they exhibit a more 
uniform trend, lower stress values, and deform more easily. The DM90 ultimate strength is 95 ± 3 MPa at 17% strain, 
followed by a decrease due to the collapse of the structure. Since strength is correlated with density, a higher value was 
expected for the DM cells samples in comparison with DG samples, due to the slightly lower relative density of unit DG 
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cells than the samples with DM cells [50]. The observed behavior could be caused by the radial orientation of cells as 
mentioned before. As expected, the samples with FCC cells, which featured the highest relative density, also exhibited the 
highest strength. In fact, for FCC AB samples the ultimate strength is 57% higher than for the DM and DG samples. 
The stress-strain in Fig. 4b shows that DG0 unit cells exhibit stretch-dominated behavior which is crashed at 65 ± 9 MPa 
at 35% strain, while bending-dominated is typical for DM0 and FCC0 cells arrangement. These lasts crashed at 76 ± 2 MPa 
at 42% strain and 160 ± 5MPa at 18% strain, respectively. 
Considering the influence of building orientation, for the AB specimens characterized by a stretch-dominated behavior, the 
resistance to compressive load is higher in the specimens built at 90° and on the contrary, the samples built at 0° can reach 
higher deformation. In fact, in Fig. 4b, it is possible to see that the 0° samples show a continuous increase in strain over 
30% whereas, for the 90° ones (Fig. 4a), the strain at failure is in the order of 25%. These differences depend on the relation 
between struts orientation and load direction, the lattice configuration with higher strength and lower elongation at failure 
are those in which the unit cell has more struts oriented along the load direction. 
For the samples characterized by bending-dominated behavior, represented by DM cell configuration, the effects mentioned 
above for the stretch-dominated behavior, are less marked, because neither in 0° samples nor in 90° ones the cells are 
oriented along the load direction. 
Furthermore, the HT samples were investigated to confirm the AB results. They have a different mechanical response as 
shown in Fig. 4c and Fig. 4d. In general, they reach higher deformations than the AB samples. As shown in Fig. 4c, FCC90 
samples collapsed at 427 ± 18 MPa at 35% strain and DG90 specimens at 185 ± 4 MPa at 30% strain, while the deformation 
of DM samples continued to increase over 40% strain, and they did not present a collapse point. FCC heat-treated samples 
showed an ultimate stress value 58% higher than DM and DG samples, due to the density of the structure geometries. 
The DM and FCC samples built at 0° are the only ones having a bending-dominated behaviour and therefore a plateau-
stress is reached. The plateau stress values of DM samples built at 0° and 90° were 75 MPa and 59 MPa, respectively, while 
for the FCC sample built at 0° was 112 MPa. In contrast with AB samples, the HT specimens do not present any plateau 
zone, because all of them are characterized by stretch-dominated behaviour, probably due to the transformation of the 
microstructure, which gives lower resistance, but higher isotropy and ductility. 
Additionally, in Fig. 5a and Fig. 5b, a summary of results of quasi-elastic gradient and yield stress is reported. 
The quasi-elastic gradient reported in Fig. 5a clearly shows that the influence of the building angle is almost negligible for 
FCC and DM structures. Regarding the DG samples, the values display a more pronounced deviation. Probably due to the 
building angle and the strut’s distribution influence their stiffness. The DG samples exhibit different properties built at 0° 
and 90°. 
 

 
 

Figure 5: Average values with a standard deviation of quasi-elastic gradient (a) and yield stress (b) of the AB and HT samples. 
 
The stiffness of AB and HT samples are similar, and their values differ by a maximum of 20%. 
As shown in Fig. 5b, the build angle does not significantly affect the yield stress, as indicated for the quasi-elastic gradient 
analysis. The exception is still for the DG samples. Moreover, the heat treatment is extremely relevant, because the yield 
stress values remarkably decrease after the treatment, as shown in Fig. 5b. When the samples are heat-treated, the linear 
elastic zone is less wide compared with the AB samples. This is probably due to the homogenization and coarsening of the 
microstructure during heat treatment.  
Both stiffness and strength data show an increase in accordance with the density, as expected. 
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The energy absorption data are reported in Fig. 6. After the heat treatment, it growths for all the samples independently 
from the cell morphology. This means that that the samples are able to reach higher deformation and therefore to absorb 
more energy when stressed. 
This behavior is consistent with the decrease in hardness recorded after heat treatment and appears interesting for 
applications in the biomedical fields, such as for surgical implants and tools [2,50]. 
 

 
Figure 6: Energy absorption values of the samples. 

 
The reported mechanical performance is in accordance with the literature [18,32,49,51-53]. In particular, the results obtained 
were compared with the literature to identify the main differences between the radially graded porous structure and 
uniformly distributed ones. The mechanical properties such as ultimate strength, yield stress, hardness, and energy 
absorption presented similar values for each configuration of the cell [1], [32], [37,53–55]. Instead, the radial arrangements 
give the lattices a stiffness homogenization along the planes perpendicular to the symmetry axis, contrary to the non-radially 
graded lattices, which are characterized by anisotropic stiffness [56,57]. 
 

 
 

Figure 7: Main failure modes after compression test on AB sample: a) FCC90, b) DM90, c) DG90, d) FCC0, e) DM0 and f) DG0. 
 
Failure modes and Fracture analysis 
The compression tests were ended after the first major structural collapse, usually signified by the fracture of the specimen 
into multiple pieces. Otherwise, they were terminated when the sample reached the strain of 50%-60%. 
Some examples of specimen failure, representative of the analysed AB samples, are reported in Figure 7. 
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Most of the specimens showed the presence of an inclined plane along which final failure occurred, although with some 
differences. For FCC90 and DG90 (Fig. 7a and Fig. 7c) failure was almost simultaneous along with layers at different heights 
and, as shown in Fig. 5a, no plateau was observed. For DM90, FCC0 and DM0 (Fig. 7b, Fig. 7d, and Fig. 7e) failure were 
more progressive and a plateau with small fluctuation was present (see Fig. 4a and Fig. 4b). On the contrary, DG0 samples 
(Fig. 7f) progressively crashed layer after layer and the plateau showed more evident fluctuations (Fig. 4b), suggesting a 
brittle nature of the failure mechanism.  
Some examples of heat-treated specimen failure, representative of all the analysed ones is reported in Fig. 8, again with the 
presence of different failure modes. In particular, while the FCC90 and the DG90 (Fig. 8a and Fig. 8c) failed similarly to 
the AB condition and the stress-strain behavior is of the same type (Fig. 4c), the DM90 (Fig. 8b) progressively crushed with 
a more extended and flatter plateau and very limited stress fluctuations.  
A similar response was observed (Fig. 4d) for FCC0 (Fig. 8d), with some discontinuities related to sudden local failures, and 
for DM0 and DG0 (Fig. 8e and Fig. 8f). For this latter condition, by comparison with AB, a damping effect due to the 
increased ductility related to HT can be appreciated. 
 

 
 

Figure 8: Main failure modes after compression test on HT samples: (a) FCC90, (b) DM90, c) DG90, d) FCC0, e) DM0 and f) DG0. 
 
Overall, the different failure modes observed at the macroscopical level agree with the literature confirming that by 
exploiting different combinations of lattice cell configurations, orientation, and post-treatments a variety of deformation 
behaviors can be achieved. The change of the failure mode through the heat treatment can be shown in other metals 
[22,58,59]. 
Representative SEM images of the fracture surface of the AB samples are shown in Fig. 9a, Fig. 9b, and Fig. 9c. Images 
related only to FCC and DG samples are shown since no different role of the microstructure was identified changing the 
design of the geometry of the lattice.  
At low magnification (Fig. 9a), details indicating a quasi-cleavage mechanism can be observed, as flat areas with parallel 
markings. Terrace-like steps were also presents where the fracture is crossing grain boundaries, probably due to the presence 
of defects that guide the fracture propagation. Similar features in terms of fracture behavior were also found in the literature 
[43,44] for samples after tensile tests, such as terrace-like steps and cleavage facets. 
Additional features can be identified by observing the specimen at higher magnification (Fig. 9b, Fig. 9c). For instance, the 
elongated markings indicated by arrows in Fig. 9b resemble the elongated cellular structure visible in the melt pools 
suggesting that these can influence the direction of fracture propagation. Similarly, according to the fracture propagation, 
the cell structure can be crossed in a normal direction. In this case, instead of elongated markings, a dimple-like structure 
may be detected, as in Fig. 9c. The size of these dimples is comparable with the cell spacing of the samples (Fig. 3) and this 
is also confirmed by the literature [46,58]. 
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In contrast, larger areas that exhibit ductile fracture are visible in HT sample [60], as shown in Fig. 9d. Coarser dimples than 
in AB samples are present probably due to the loss of extra-fine microstructure after heat treatment (Fig. 9e). Moreover, 
the presence of fine particles at the center of the dimples is shown in Fig. 9f. These fine particles are detected only in the 
HT samples, and they are associated with the formation of coarse precipitates during heat treatment, as visible in Fig. 3e. 
 

 
 

Figure 8: Representative SEM images of fracture mechanism of  AB samples (a), (b), (c), and HT samples (d), (e), (f). 
 
 
CONCLUSIONS 
 

he main aim of this work was to analyse the compression behavior of Co-Cr-Mo radially graded lattice structure, 
manufactured by L-PBF aimed to biomedical applications. Different lattice configurations printed at 0° and 90° 
build angles were considered to investigate the variation in sample properties due to the different orientations of the 

struts of FCC, DM and DG cells with a radial gradient direction. Moreover, the samples were heat-treated to study the 
consequent evolution of the mechanical properties. 
Based on the experimental results and discussion, it can be concluded that: 

 The building orientation resulted an important parameter affecting the mechanical response of the structures. In 
fact, for the AB samples, the ultimate stress of 90° samples is higher than for the 0° ones. In particular, the ultimate 
stress of FCC, DM, and DG samples built at 90° is 48%, 20%, and 61% higher than for those built at 0°, 
respectively. Both stiffness and strength showed a growing trend with the increase in density, where FCC showed 
the highest value. 

 For all three geometries, the radially graded porous structures exhibited different mechanical properties according 
to the orientation at 0° or 90° of the samples. The 0° specimens showed a continuous increase in strain over 30% 
while, for the 90° ones, at 25% strain the structure collapsed. These differences depend on the relationship between 

T 
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struts orientation and load direction. In particular, the lattice configuration with higher strength and lower 
elongation at failure are those in which the unit cell has more struts oriented along the load direction. 

 In general, the HT samples exhibited a more ductile behavior since a decrease in stiffness and hardness of the 
samples was recorded. This is consistent with the mainly ductile fracture behavior detected from the analysis of 
fracture surfaces, while AB structures exhibited features of a quasi-cleavage mechanism. 

The possibility to produce radially graded lattice structures was demonstrated. Moreover, it was shown how the mechanical 
properties are affected by cell geometry and orientation in combination with heat treatment. The obtained results give 
further insight into the possibility to tailor the mechanical properties of lattice structures according to a specific selected 
application. Therefore, the achieved results can open novel solutions for the proper repair of local defects within the bone 
and the acceleration of the regeneration of the physiological tissue due to the combination of mechanical and morphological 
stimuli. Additionally, the proposed configurations could represent an optimal solution to produce customized metal 
implants. 
 
 
ACKNOWLEDGMENT 
 

he authors deeply thank Mr. L. Lauri for support in SEM analysis and Mr. L. Riva for the production of samples. 
 
 

 
 
REFERENCES 
 
[1] Riva, L., Ginestra, P.S., Ceretti, E. (2021). Mechanical characterization and properties of laser-based powder bed–fused 

lattice structures: a review, Int. J. Adv. Manuf. Technol., 113(3–4), pp. 649–671, DOI: 10.1007/s00170-021-06631-4. 
[2] Buj-Corral, I., Tejo-Otero, A., Fenollosa-Artés, F. (2020). Development of am technologies for metals in the sector of 

medical implants, Metals (Basel)., 10(5), pp. 1–30, DOI: 10.3390/met10050686. 
[3] Johnson, N.S., Vulimiri, P.S., To, A.C., Zhang, X., Brice, C.A., Kappes, B.B., Stebner, A.P. (2020). Invited review: 

Machine learning for materials developments in metals additive manufacturing, Addit. Manuf., 36,  
DOI: 10.1016/j.addma.2020.101641. 

[4] Wang, C., Tan, X.P., Tor, S.B., Lim, C.S. (2020). Machine learning in additive manufacturing: State-of-the-art and 
perspectives, Addit. Manuf., 36(August), pp. 101538, DOI: 10.1016/j.addma.2020.101538. 

[5] Ginestra, P., Ferraro, R.M., Zohar-Hauber, K., Abeni, A., Giliani, S., Ceretti, E. (2020). Selective laser melting and 
electron beam melting of Ti6Al4V for orthopedic applications: A comparative study on the applied building direction, 
Materials (Basel)., 13(23), pp. 1–23, DOI: 10.3390/ma13235584. 

[6] Ginestra, P., Ceretti, E., Lobo, D., Lowther, M., Cruchley, S., Kuehne, S., Villapun, V., Cox, S., Grover, L., Shepherd, 
D., Attallah, M., Addison, O., Webber, M. (2020). Post processing of 3D printed metal scaffolds: A preliminary study 
of antimicrobial efficiency, Procedia Manuf., 47(2019), pp. 1106–1112, DOI: 10.1016/j.promfg.2020.04.126. 

[7] Sing, S.L., An, J., Yeong, W.Y., Wiria, F.E. (2016). Laser and electron-beam powder-bed additive manufacturing of 
metallic implants: A review on processes, materials and designs, J. Orthop. Res., 34(3), pp. 369–385,  
DOI: 10.1002/jor.23075. 

[8] Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R. (2012). Laser additive manufacturing of metallic components: 
Materials, processes and mechanisms, Int. Mater. Rev., 57(3), pp. 133–164, DOI: 10.1179/1743280411Y.0000000014. 

[9] Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., 
Medina, F., Wicker, R.B. (2009). Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer 
manufacturing, for biomedical applications, J. Mech. Behav. Biomed. Mater., 2(1), pp. 20–32,  
DOI: 10.1016/j.jmbbm.2008.05.004. 

[10] Murr, L.E., Esquivel, E. V., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Martinez, E.Y., Medina, F., Hernandez, D.H., 
Martinez, E., Martinez, J.L., Stafford, S.W., Brown, D.K., Hoppe, T., Meyers, W., Lindhe, U., Wicker, R.B. (2009). 
Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes 
compared to wrought Ti-6Al-4V, Mater. Charact., 60(2), pp. 96–105, DOI: 10.1016/j.matchar.2008.07.006. 

[11] Mazzoli, A. (2013). Selective laser sintering in biomedical engineering, Med. Biol. Eng. Comput., 51(3), pp. 245–256, 
DOI: 10.1007/s11517-012-1001-x. 

T 



 

F. Cantaboni et alii, Frattura ed Integrità Strutturale, 62 (2022) 490-504; DOI: 10.3221/IGF-ESIS.62.33                                                              
 

502 
 

[12] Ginestra, P.S., Riva, L., Allegri, G., Giorleo, L., Attanasio, A., Ceretti, E. (2020). Analysis of 3D printed 17-4 PH stainless 
steel lattice structures with radially oriented cells, Ind. 4.0 – Shap. Futur. Digit. World, , pp. 136–141,  
DOI: 10.1201/9780367823085-25. 

[13] Bayat, M., Thanki, A., Mohanty, S., Witvrouw, A., Yang, S., Thorborg, J., Tiedje, N.S., Hattel, J.H. (2019). Keyhole-
induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental 
validation, Addit. Manuf., 30, pp. 100835, DOI: 10.1016/j.addma.2019.100835. 

[14] Razavi, S.M.J., Avanzini, A., Cornacchia, G., Giorleo, L., Berto, F. (2021). Effect of heat treatment on fatigue behavior 
of as-built notched Co-Cr-Mo parts produced by Selective Laser Melting, Int. J. Fatigue, 142, pp. 105926,  
DOI: 10.1016/j.ijfatigue.2020.105926. 

[15] Wang, J.H., Ren, J., Liu, W., Wu, X.Y., Gao, M.X., Bai, P.K. (2018). Effect of selective laser melting process parameters 
on microstructure and properties of Co-Cr alloy, Materials (Basel), 11(9), DOI: 10.3390/ma11091546. 

[16] Gupta, S.K., Shahidsha, N., Bahl, S., Kedaria, D., Singamneni, S., Yarlagadda, P.K.D.V., Suwas, S., Chatterjee, K. (2021). 
Enhanced biomechanical performance of additively manufactured Ti-6Al-4V bone plates, J. Mech. Behav. Biomed. 
Mater., 119(March), pp. 104552, DOI: 10.1016/j.jmbbm.2021.104552. 

[17] Henriques, B., Bagheri, A., Gasik, M., Souza, J.C.M., Carvalho, O., Silva, F.S., Nascimento, R.M. (2015). Mechanical 
properties of hot pressed CoCrMo alloy compacts for biomedical applications, Mater. Des., 83, pp. 829–834,  
DOI: 10.1016/j.matdes.2015.06.069. 

[18] Limmahakhun, S., Oloyede, A., Sitthiseripratip, K., Xiao, Y., Yan, C. (2017). Stiffness and strength tailoring of cobalt 
chromium graded cellular structures for stress-shielding reduction, Mater. Des., 114, pp. 633–641,  
DOI: 10.1016/j.matdes.2016.11.090. 

[19] Jin, N., Yan, Z., Wang, Y., Cheng, H., Zhang, H. (2021). Effects of heat treatment on microstructure and mechanical 
properties of selective laser melted Ti-6Al-4V lattice materials, Int. J. Mech. Sci., 190, pp. 106042,  
DOI: 10.1016/j.ijmecsci.2020.106042. 

[20] Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M. (2019). SLM lattice structures: 
Properties, performance, applications and challenges, Mater. Des., 183, pp. 108137,  
DOI: 10.1016/j.matdes.2019.108137. 

[21] Liverani, E., Rogati, G., Pagani, S., Brogini, S., Fortunato, A., Caravaggi, P. (2021). Mechanical interaction between 
additive-manufactured metal lattice structures and bone in compression: implications for stress shielding of orthopaedic 
implants, J. Mech. Behav. Biomed. Mater., 121(March), pp. 104608, DOI: 10.1016/j.jmbbm.2021.104608. 

[22] Maskery, I., Aboulkhair, N.T., Aremu, A.O., Tuck, C.J., Ashcroft, I.A. (2017). Compressive failure modes and energy 
absorption in additively manufactured double gyroid lattices, Addit. Manuf., 16, pp. 24–29,  
DOI: 10.1016/j.addma.2017.04.003. 

[23] Amin Yavari, S., Ahmadi, S.M., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., Zadpoor, A.A. (2015). Relationship 
between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials, J. Mech. Behav. 
Biomed. Mater., 43, pp. 91–100, DOI: 10.1016/j.jmbbm.2014.12.015. 

[24] Abdelhamid, M., Czekanski, A. (2018). Impact of the lattice angle on the effective properties of the octet-truss lattice 
structure, J. Eng. Mater. Technol. Trans. ASME, 140(4), pp. 1747–1769, DOI: 10.1115/1.4040409. 

[25] Leary, M., Mazur, M., Williams, H., Yang, E., Alghamdi, A., Lozanovski, B., Zhang, X., Shidid, D., Farahbod-Sternahl, 
L., Witt, G., Kelbassa, I., Choong, P., Qian, M., Brandt, M. (2018). Inconel 625 lattice structures manufactured by 
selective laser melting (SLM): Mechanical properties, deformation and failure modes, Mater. Des., 157, pp. 179–199, 
DOI: 10.1016/j.matdes.2018.06.010. 

[26] Anantharaj, S., Kundu, S., Noda, S. (2020). Ur n al Pr, Nano Energy, , pp. 105514, DOI: 10.1016/j.addma.2021.102025. 
[27] Alomar, Z., Concli, F. (2020). A Review of the Selective Laser Melting Lattice Structures and Their Numerical Models, 

Adv. Eng. Mater., 22(12), pp. 1–17, DOI: 10.1002/adem.202000611. 
[28] Guoqing, Z., Junxin, L., Xiaoyu, Z., Jin, L., Anmin, W. (2018). Effect of Heat Treatment on the Properties of CoCrMo 

Alloy Manufactured by Selective Laser Melting, J. Mater. Eng. Perform., 27(5), pp. 2281–2287,  
DOI: 10.1007/s11665-018-3351-5. 

[29] Alabort, E., Barba, D., Reed, R.C. (2019). Design of metallic bone by additive manufacturing, Scr. Mater., 164, pp. 110–
114, DOI: 10.1016/j.scriptamat.2019.01.022. 

[30] Di Luca, A., Longoni, A., Criscenti, G., Mota, C., Van Blitterswijk, C., Moroni, L. (2016). Toward mimicking the bone 
structure: Design of novel hierarchical scaffolds with a tailored radial porosity gradient, Biofabrication, 8(4),  
DOI: 10.1088/1758-5090/8/4/045007. 

[31] Barba, D., Alabort, E., Reed, R.C. (2019). Synthetic bone: Design by additive manufacturing, Acta Biomater., 97, pp. 
637–656, DOI: 10.1016/j.actbio.2019.07.049. 



 

                                                            F. Cantaboni et alii, Frattura ed Integrità Strutturale, 62 (2022) 490-504; DOI: 10.3221/IGF-ESIS.62.33 
 

503 
 

[32] Caravaggi, P., Liverani, E., Leardini, A., Fortunato, A., Belvedere, C., Baruffaldi, F., Fini, M., Parrilli, A., Mattioli-
Belmonte, M., Tomesani, L., Pagani, S. (2019). CoCr porous scaffolds manufactured via selective laser melting in 
orthopedics: Topographical, mechanical, and biological characterization, J. Biomed. Mater. Res. - Part B Appl. 
Biomater., 107(7), pp. 2343–2353, DOI: 10.1002/jbm.b.34328. 

[33] Xie, J., MacEwan, M.R., Ray, W.Z., Liu, W., Siewe, D.Y., Xia, Y. (2010). Radially aligned, electrospun nanofibers as 
dural substitutes for wound closure and tissue regeneration applications, ACS Nano, 4(9), pp. 5027–5036,  
DOI: 10.1021/nn101554u. 

[34] Mahmoudi, M., Elwany, A., Yadollahi, A., Thompson, S.M., Bian, L., Shamsaei, N. (2017). Mechanical properties and 
microstructural characterization of selective laser melted 17-4 PH stainless steel, Rapid Prototyp. J., 23(2), pp. 280–294, 
DOI: 10.1108/RPJ-12-2015-0192. 

[35] Seede, R., Shoukr, D., Zhang, B., Whitt, A., Gibbons, S., Flater, P., Elwany, A., Arroyave, R., Karaman, I. (2020). An 
ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, 
microstructure, and mechanical properties, Acta Mater., 186, pp. 199–214, DOI: 10.1016/j.actamat.2019.12.037. 

[36] Zhao, C., Fezzaa, K., Cunningham, R.W., Wen, H., De Carlo, F., Chen, L., Rollett, A.D., Sun, T. (2017). Real-time 
monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction, Sci. Rep., 7(1), pp. 1–
11, DOI: 10.1038/s41598-017-03761-2. 

[37] Darvish, K., Chen, Z.W., Phan, M.A.L., Pasang, T. (2018). Selective laser melting of Co-29Cr-6Mo alloy with laser 
power 180–360 W: Cellular growth, intercellular spacing and the related thermal condition, Mater. Charact., 
135(September 2017), pp. 183–191, DOI: 10.1016/j.matchar.2017.11.042. 

[38] Zhang, B., Li, Y., Bai, Q. (2017). Defect Formation Mechanisms in Selective Laser Melting: A Review, Chinese J. Mech. 
Eng. (English Ed., 30(3), pp. 515–527, DOI: 10.1007/s10033-017-0121-5. 

[39] Prashanth, K.G., Eckert, J. (2017). Formation of metastable cellular microstructures in selective laser melted alloys, J. 
Alloys Compd., 707, pp. 27–34, DOI: 10.1016/j.jallcom.2016.12.209. 

[40] Roudnická, M., Molnárová, O., Drahokoupil, J., Kubásek, J., Bigas, J., Šreibr, V., Paloušek, D., Vojtěch, D. (2021). 
Microstructural instability of L-PBF Co-28Cr-6Mo alloy at elevated temperatures, Addit. Manuf., 44(April), pp. 102025, 
DOI: 10.1016/j.addma.2021.102025. 

[41] Chen, Z.W., Phan, M.A.L., Darvish, K. (2017). Grain growth during selective laser melting of a Co–Cr–Mo alloy, J. 
Mater. Sci., 52(12), pp. 7415–7427, DOI: 10.1007/s10853-017-0975-z. 

[42] Takaichi, A., Suyalatu., Nakamoto, T., Joko, N., Nomura, N., Tsutsumi, Y., Migita, S., Doi, H., Kurosu, S., Chiba, A., 
Wakabayashi, N., Igarashi, Y., Hanawa, T. (2013). Microstructures and mechanical properties of Co-29Cr-6Mo alloy 
fabricated by selective laser melting process for dental applications, J. Mech. Behav. Biomed. Mater., 21, pp. 67–76, 
DOI: 10.1016/j.jmbbm.2013.01.021. 

[43] Tonelli, L., Fortunato, A., Ceschini, L. (2020). CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser 
Energy Density on microstructure, surface morphology, and hardness, J. Manuf. Process., 52, pp. 106–119,  
DOI: 10.1016/j.jmapro.2020.01.052. 

[44] Zhang, M., Yang, Y., Song, C., Bai, Y., Xiao, Z. (2018). An investigation into the aging behavior of CoCrMo alloys 
fabricated by selective laser melting, J. Alloys Compd., 750, pp. 878–886, DOI: 10.1016/j.jallcom.2018.04.054. 

[45] Sing, S.L., Huang, S., Yeong, W.Y. (2020). Effect of solution heat treatment on microstructure and mechanical properties 
of laser powder bed fusion produced Co-28Cr-6Mo, Mater. Sci. Eng. A, 769, pp. 138511,  
DOI: 10.1016/j.msea.2019.138511. 

[46] Bawane, K.K., Srinivasan, D., Banerjee, D. (2018). Microstructural Evolution and Mechanical Properties of Direct Metal 
Laser-Sintered (DMLS) CoCrMo After Heat Treatment, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 49(9), pp. 
3793–3811, DOI: 10.1007/s11661-018-4771-4. 

[47] Kajima, Y., Takaichi, A., Kittikundecha, N., Nakamoto, T., Kimura, T., Nomura, N., Kawasaki, A., Hanawa, T., 
Takahashi, H., Wakabayashi, N. (2018). Effect of heat-treatment temperature on microstructures and mechanical 
properties of Co–Cr–Mo alloys fabricated by selective laser melting, Mater. Sci. Eng. A, 726, pp. 21–31,  
DOI: 10.1016/j.msea.2018.04.048. 

[48] Tonelli, L., Boromei, I., Liverani, E., Ceschini, L. (2021). Microstructural evolution induced by heat treatment in the 
Co28Cr6Mo alloy produced by selective laser melting, Metall. Ital., 113(2), pp. 22–30. 

[49] Dolgov, N, A., Dikova, T., Dzhendov, D., Pavlova, D., Simov, M. (2016). Mechanical Properties of Dental Co-Cr Alloys 
Fabricated via Casting and Selective Laser Melting, Sci. Proc. Ii Int. Sci. Conf. Innovations Eng. 2016, 33, pp. 29–33. 

[50] Liu, F., Zhang, D.Z., Zhang, P., Zhao, M., Jafar, S. (2018). Mechanical properties of optimized diamond lattice structure 
for bone scaffolds fabricated via selective laser melting, Materials (Basel), 11(3), DOI: 10.3390/ma11030374. 



 

F. Cantaboni et alii, Frattura ed Integrità Strutturale, 62 (2022) 490-504; DOI: 10.3221/IGF-ESIS.62.33                                                              
 

504 
 

[51] Özeren, E., Altan, M. (2020). Effect of structural hybrid design on mechanical and biological properties of CoCr 
scaffolds fabricated by selective laser melting, Rapid Prototyp. J., 26(4), pp. 615–624, DOI: 10.1108/RPJ-07-2019-0186. 

[52] Van Hooreweder, B., Kruth, J.P. (2017). Advanced fatigue analysis of metal lattice structures produced by Selective 
Laser Melting, CIRP Ann. - Manuf. Technol., 66(1), pp. 221–224, DOI: 10.1016/j.cirp.2017.04.130. 

[53] Cutolo, A., Neirinck, B., Lietaert, K., de Formanoir, C., Van Hooreweder, B. (2018). Influence of layer thickness and 
post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion, Addit. 
Manuf., 23, pp. 498–504, DOI: 10.1016/j.addma.2018.07.008. 

[54] Koizumi, Y., Okazaki, A., Chiba, A., Kato, T., Takezawa, A. (2016). Cellular lattices of biomedical Co-Cr-Mo-alloy 
fabricated by electron beam melting with the aid of shape optimization, Addit. Manuf., 12, pp. 305–313,  
DOI: 10.1016/j.addma.2016.06.001. 

[55] Lu, Y., Wu, S., Gan, Y., Zhang, S., Guo, S., Lin, J., Lin, J. (2016). Microstructure, mechanical property and metal release 
of As-SLM CoCrW alloy under different solution treatment conditions, J. Mech. Behav. Biomed. Mater., 55, pp. 179–
190, DOI: 10.1016/j.jmbbm.2015.10.019. 

[56] Tan, X.P., Tan, Y.J., Chow, C.S.L., Tor, S.B., Yeong, W.Y. (2017). Metallic powder-bed based 3D printing of cellular 
scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical 
properties and biocompatibility, Mater. Sci. Eng. C, 76, pp. 1328–1343, DOI: 10.1016/j.msec.2017.02.094. 

[57] Hacisalihoğlu, İ., Yildiz, F., Çelik, A. (2021). Experimental and Numerical Investigation of Mechanical Properties of 
Different Lattice Structures Manufactured from Medical Titanium Alloy by Using Laser Beam-Powder Bed Fusion, J. 
Mater. Eng. Perform., 30(7), pp. 5466–5476, DOI: 10.1007/s11665-021-05865-3. 

[58] Obadimu, S.O., Kourousis, K.I. (2021). Compressive behaviour of additively manufactured lattice structures: A review, 
Aerospace, 8(8), DOI: 10.3390/aerospace8080207. 

[59] Cutolo, A., Engelen, B., Desmet, W., Van Hooreweder, B. (2020). Mechanical properties of diamond lattice Ti–6Al–4V 
structures produced by laser powder bed fusion: On the effect of the load direction, J. Mech. Behav. Biomed. Mater., 
104, DOI: 10.1016/j.jmbbm.2020.103656. 

[60] Song, C., Zhang, M., Yang, Y., Wang, D., Jia-kuo, Y. (2018). Morphology and properties of CoCrMo parts fabricated 
by selective laser melting, Mater. Sci. Eng. A, 713, pp. 206–213, DOI: 10.1016/j.msea.2017.12.035. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


