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ABSTRACT. This paper investigated the static and dynamic behaviors of 
isotropic cracked simply supported beam using finite element analysis (FEA), 
ANSYS software. Modal and harmonic vibration analysis of intact and 
damaged beam were performed in order to extract mode shapes of bending 
vibration, natural frequencies and obtain frequency response diagram. Static 
finite element analysis of undamaged and damaged simply supported beam 
was carried out to determine static deflection, then stiffness of intact and 
cracked beam was computed using conventional formula. Crack damage 
severity of damaged beam was calculated and it is noticed that as crack 
position is increased from left hand support of beam up to central point and 
crack depth is increased, then crack damage severity increases. The effect of 
mode shape pattern is investigated and it is found that the amount of 
decreasing of natural frequency is proportional to the normalized mode shape 
at position of crack. The exhibited correlation between results for damaged 
beam revealed that crack damage severity is proportional to static deflection 
and inversely proportional to first mode frequency. 
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INTRODUCTION  
 

tructures must work in safety during service life but the initiation of a breakdown period on it is due to damages as 
cracks [1]. Crack may be caused by manufacturing and material defects and furthermore, fatigue cracks in structures 
are easily triggered under periodical alternating loads in operating conditions [2]. The mass and stiffness 

distributions of the structure are to be an effective on the dynamic behavior of the structure, i.e., dynamic response, 
natural frequencies and mode shapes of a structure [3]. Vibration-based inspection methodology is one of the modern 
approaches to non-destructive testing and evaluation (NDE) [4]. A noticeable shift in the natural frequencies is revealed 
by plotting the deformation responses in the Y-direction for the intact and cracked cantilever beams [5].   The effects of 
the developed damage in the structure are the reduction of the rigidity of the structure and altering the associated dynamic 
and static properties to some extent [6]. For monitoring the crack, mostly modal frequencies are used where modal 
frequencies are properties of the whole component [7]. A change in model parameters i.e. model frequencies, model 
damping values and mode shapes associated with each model frequencies characterizes the change in dynamic 
characteristics of damaged structures [8]. The reduction of natural frequency of the component occurs as a result of crack 
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and by measuring the change in the natural frequencies of the component due to crack, many methods have been 
developed to identify the crack [7]. The complex structures are decomposed into simple elements such as beams, columns 
and plates using the structural elements during the machine design process and the functioning of the whole machine may 
stop due to failure of any small component [9]. Khalkar and Ramachandran [10] carried out static and modal analyses for 
intact and cracked cantilever beam by ANSYS software to get static deflection and natural frequency. They determined 
stiffness of intact and various cracked cases of a cantilever beam based on results of ANSYS static deflection. Through 
this research study [10], it is found that when the crack position is kept constant and crack depth is increased, then 
stiffness of the beam decreases and when the crack depth is kept constant and crack position is varied from the fixed end, 
then stiffness of the beam increases. In this work, the damaged simply supported beam with single edge crack is 
investigated for its natural frequencies of bending vibration modes, mode shape pattern of bending vibration, static 
deflection and stiffness to study crack damage severity. Also, the correlation between results of crack damage severity and 
results of dynamic and static parameters are investigated.  

 
 

METHODOLOGY 
 

n this study, the cracked simply supported beam is considered as an Euler–Bernoulli beam. The crack is uniformly 
extending along the damaged beam width and the crack is considered as fully open edge. The material of damaged 
and undamaged beams used in the analysis is considered as isotropic and homogeneous. The governing differential 

equation of the free transverse vibration of an undamaged Euler-Bernoulli beam without crack which is uniform, isotropic 
and homogeneous can be written as [11]: 
 

    
 

 

4 2, ,
04 2

y x t y x tA

EIx t
                                   (1) 

 
where the origin of x and y is at left end of the beam, y(x, t) is the function of the transverse displacements, E is modulus 
of elasticity, I is the area moment of inertia, ρ is mass density, A is the cross-sectional area and t is time. According to [12], 
for solution Eqn. (1), assume that: 
 

    , j ty x t Y x e                                                     (2) 

 

where  1j , ω is natural frequency of the beam. 
By substituting Eqn. (2) into Eqn. (1), then Eqn. (3) can be expressed as [12]:  
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where ζ = x / L is normalized location, x is the coordinate and its origin at left end of beam and λ is non-dimensional 
frequency parameter.  
According to [12], the general solution of Eqn. (3) can be written as the following: 
 

                cos sin cosh sinhY A B C D                                  (5) 

 
The damaged beam can be simulated as two uniform beam segments, joined by a torsional spring at the position of crack 
[13]. The modes of harmonic vibration for these two beam segments can be written as [12]: 
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                cos sin cosh sinh1 1 1 1 1Y A B C D                           (6) 

 
                cos sin cosh sinh2 2 2 2 2Y A B C D                        (7) 

 
where Ai and Bi, i=1, 2, 3, 4, are coefficients can be obtained from the boundary conditions. 
The boundary conditions for the simply supported beam at the supports are [12] 
At the supports no displacement and no moments:  
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If ζ = µ = Lc / L is the normalized crack position, Lc is the crack distance from left hand support, the continuity 
conditions at the crack position are [12]: 
 

Displacement:        1 2Y Y                                                   (12) 
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 Shear force:  
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Compatibility condition i.e., jump in the slope at the crack location due to rotational flexibility can be defined as [14]: 
 

      
 

 

2
1 1 2

2
dY d Y dY

E KTd dd
                                   (15) 

 
KT is the bending spring constant at cracked section and it is, originally calculated by [15] and can be written as [14]: 
 

 1K cT                                                           (16) 
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where c is compliance, f (s/h) is dimensionless local compliance function, s, is depth of crack and h, is height of beam.  
According to elementary beam theory, Sayyad and Kumar [13] are expressed the relationship between the changes in 
Eigen frequency and the crack location and stiffness of crack for a simply supported beam as the following: 
 

   2sinf f n x EI K Ln n T                                                                     (19) 

 
where Δfn is the difference of Eigen frequencies between un-cracked and cracked beams and n is number of bending 
mode. From Eqns. (16), (17), (18) and (19) the following equation can be extracted as [13]:  
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Single characteristic equation for simply supported beam with a single crack can be expressed as [16]: 
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where K0 is non-dimensional stiffness of the rotational spring. 
If F is zero frequency applied load at midpoint of beam, the deflection at the center point of simply supported beam can 
be written as [17]: 
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Figure 1: Model of damaged simply supported beam. 
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MODEL OF DAMAGED BEAM  
 

n this study, an aluminum damaged simply supported beam model with single open edge crack of depth (s) at 
distance (Lc) from left hand support of beam as shown in Figure 1 is used to determine crack damage severity and 
modal parameters for cracked beam. The geometry properties of the undamaged and damaged beam are length (L) = 

0.44 m, and cross-sectional area (A) = 0.026×0.026 m2. The crack location ratio µ is defined as µ = Lc / L and crack 
depth ratio Ψ is defined as Ψ = s / h, where (h) is height of beam. The material properties of the undamaged and 
damaged beam are Young’s modulus of elasticity (E) = 70 GPa, Poisson’s ratio (ν) = 0.346 and density (ρ) = 2710 kg/m3. 
In order to consider different damage scenarios of the beam in the analysis, crack location ratio 0.1, 0.3 and 0.4 are chosen 
and for each crack location ratio crack depth ratio is varied as 0.2, 0.3 and 0.4.   
 

 
 

Figure 2: FEA results of frequency of first mode 
 
 
VALIDATION 
 

n order to validate the developed model used in this study, the results of FEA frequency of the first mode of bending 
vibration for different three scenarios of cracked simply supported beam used by Khalkar [17] is obtained (see Figure 
2), comparing it with those available in the literature as shown in Fig. 3. The following beam and crack parameters 

are given in Table 1 [17]. The solid 186 element is adopted for meshing the 3D model of cracked simply supported beam 
in the finite element analysis. In the analysis for the three scenarios of cracked beam, the location of crack is measured 
from left hand support of beam (LHS) as considered in [17]. From Figure 3, it is found that FEA results meet with 
excellent agreement with the results already published by Khalkar [17] and thus verifies the precise of results of finite 
element analysis (FEA) used in this study. 
 

I 
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Parameter Value 
Elastic modulus 2.104×1011 N/m2 

Density 7820 kg/m3 
Poisson’s ratio 0.3 
Beam length 0.36 m 

Beam cross sectional area 0.02×0.02 m2 
 

Table 1: Beam and crack parameters [17] 
 

   

Figure 3: Comparison of the results of first mode frequency 
 

 
 

Figure 4: Finite element model of damaged simply supported beam: µ = 0.3, Ψ = 0.4 
 

NUMERICAL ANALYSIS 
 

he numerical analysis is carried out for both undamaged and damaged beams using finite element analysis (FEA), 
ANSYS. In the analysis, modal and static analysis respectively are used to obtain mode shapes of bending 
vibration and static deflection, respectively. Harmonic analysis is carried out to see difference between frequencies 

of undamaged and damaged beams in the frequency response diagram. In the static and harmonic analysis load of 300 N 
is applied at the central point of the simply supported beam. A 20 node structural solid element (solid 186) was adopted in 
the analysis to model the beam. A special mesh around the crack tip was established with singular elements surrounding 
the crack apex (see Figure 4).  

T 
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MODE EXTRACTION AND HARMONIC FREQUENCY  
   

n modal analysis, the block Lanczos method was used to estimate frequencies of first two mode shapes of bending 
vibration for undamaged and damaged beams. The first natural frequencies of damaged beams are calculated 
analytically using Eq. 20 [13] and compared with those of FEA. As depicted in Table 2, it is found that analytical 

results have been met with good agreement with the FEA results and thus validates the precise of developed model used 
in this study.  
 

Crack location 
ratio (µ) 

Crack depth 
ratio (Ψ) 

First natural frequency (Hz) Variation (%) 
Analytical FEA

0.1 0.2 302.39 303.648 -0.4 

0.1 0.3 294.13 302.708 -2.9 

0.1 0.4 283.3 301.155 -6.3 

0.2 0.2 302.9 302 0.3 

0.2 0.3 295.2 298.82 -1.2 

0.2 0.4 285.1 293.71 -3 

0.3 0.2 303.66 299.978 1.2 

0.3 0.3 296.87 294.298 0.9 

0.3 0.4 287.8 285.407 0.8 

0.4 0.2 304.6 298.418 2 

0.4 0.3 298.97 290.861 2.7 

0.4 0.4 291.39 279.35 4.1 

0.5 0.2 305.7 297.85 2.6 

0.5 0.3 301.4 289.63 3.9 

0.5 0.4 295.4 277.23 6.2 

Healthy un-damaged beam 309.34 304.34 1.6 
 

Table 2: Comparison between analytical and numerical results 
 
Finite element analysis (FEA) results for the first two mode of bending vibration for some scenarios of damaged beam are 
depicted in Figures 5, 6 and 7. Figures 8 and 9 show the plotted of first two frequencies of bending mode as a function of 
crack location ratio for varying crack depth ratio. The influence of crack location ratio and crack depth ratio on first two 
frequencies of bending mode is indicated in Figures 10 and 11. From Figures 8, 9, 10 and 11 it is observed the following: 

1- When the crack depth ratio is kept constant and crack location ratio is increased from the left hand support of the 
simply supported beam, then first frequency of bending mode decreases up to central point of the beam. 

2- When the crack depth ratio is kept constant and crack location ratio is increased from the beam midpoint towards 
the right hand support of the beam, then first frequency of bending mode increases.  

3- For the second mode of bending vibration, when the crack depth ratio is kept constant the decreasing of 
frequency is the following ways: (a) at µ = 0.1, it is moderate decreasing, (b) at µ = 0.3, it is maximum decreasing, 
and (c) at µ = 0.4, it is minimum decreasing. 

The amount of decreasing frequencies for damaged beam is showed as shift between frequencies of damaged and 
undamaged beams in frequency response diagram as indicated in Figures 12 and 13. The shift between frequencies of 
damaged and undamaged beams can be expressed as: 
 

  f f fn n cn                                                (24) 

 
where n is number of bending mode, f is un-damaged beam frequency and fc is damaged beam frequency. 
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Figure 5: FEA results of first two mode shapes of bending vibration for damaged beam: µ = 0.1, Ψ = 0.4 

 
Figure 6: FEA results of first two mode shapes of bending vibration for damaged beam: µ = 0.3, Ψ = 0.4 
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Figure 7: FEA results of first two mode shapes of bending vibration for damaged beam: µ = 0.4, Ψ = 0.4 

 

Figure 8: Variation of first bending mode frequency vs. crack 
location ratio. 

Figure 9: Variation of second bending mode frequency vs. crack 
location ratio.

 
 
CRACK DAMAGE SEVERITY 
 

n this study, similar to Khalkar [17], static finite element analysis is carried out and static deflection at the midpoint of 
undamaged and damaged beams is obtained. FEA static deflection plots for some scenarios of damaged beam are 
shown in Figure 14. Figure 15 shows the variation of static deflection versus crack location ratio and crack depth 

ratio. From Figure 15, it is observed that when the crack location ratio is increased from the left hand support of the 
simply supported beam up to midpoint of the beam and crack depth ratio is increased, then static deflection increases. 
Stiffness of undamaged and damaged beams is computed using the following conventional formula [18]:  

I 
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


F
K                                                                                                 (25)          

 
where K is stiffness of beam, F is load and δ is static deflection or zero frequency deflection.  In this study, the severity of 
crack can be expressed as crack damage severity (%) which is estimated using the following equation:                        
 


  100

K Kundamaged damaged
K

Kundamaged
                                             (26) 

 
where ΔK is crack damage severity, Kundamaged is stiffness of undamaged beam and Kdamaged is stiffness of damaged beam.  
 

 
Figure 10: Variation of first bending mode frequency vs. µ and Ψ. 

 

 
Figure 11: Variation of second bending mode frequency vs. µ and Ψ. 
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Figure 12: Harmonic response for the damaged beam; Ψ = 0.4 in the range of 250-350 Hz 

 

 
Figure 13: Harmonic response for the damaged beam; Ψ = 0.4 in the range of 1070-1170 Hz 

 
The variation of crack damage severity versus crack location ratio and crack depth ratio is depicted in Figure 16. From 
Figure 16, it is found that when the crack location ratio is increased from the left hand support of the simply supported 
beam up to midpoint of the beam and crack depth ratio is increased, then crack damage severity of the beam increases.  

 
Figure 14: Static deflection for damaged beam; Ψ = 0.4: (a) µ = 0.1, (b) µ = 0.3, (c) µ = 0.4 
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Figure 15: Variation of static deflection vs. µ and Ψ 
  

 
Figure 16: Variation of crack damage severity vs. µ and Ψ. 

 
 

DISCUSSION OF RESULTS 
 

n this section, the correlation between the outcomes of the analysis, i.e., results for the damaged simply supported 
beam are discussed. When zero frequency deflection is increased, then crack damage severity of the damaged beam 
increases as shown in Figure 17. As frequency of first mode of bending vibration is decreased, then crack damage 

severity of the damaged beam increases as shown in Figure 18. For the first two modes of bending vibration, when 
normalized mode shape at location of crack is increased, then shift between frequencies of damaged and undamaged 
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beams increases as depicted in Figures 19 and 20, i.e., ∂f1 is proportional to UY1 and ∂f2 is proportional to UY2. On the 
other hand, it is found that the normalized mode shape at location of crack depends on the pattern of mode shape.  
 

 
Figure 17: Variation of crack damage severity vs. static deflection 

 
Figure 18: Variation of crack damage severity vs. first mode frequency 

 

 
Figure 19: Plot of UY1 vs. ∂f1 



 

E.S.M.M. Soliman, Frattura ed Integrità Strutturale, 58 (2021) 151-165; DOI: 10.3221/IGF-ESIS.58.11                                                              
 

164 
 

 

 
Figure 20: Plot of UY2 vs. ∂f2 

 
 
CONCLUSION 
 

n this study, the finite element analysis (FEA) is applied for un-cracked and cracked simply supported beams to 
investigate crack damage severity and its correlation to static and dynamic parameters. For first two mode shape of 
bending vibration for undamaged and damaged beams, frequencies are calculated and also mode shape pattern is 

obtained. Furthermore, frequency response diagram is obtained to determine the shift in frequencies between undamaged 
and damaged beams. It is observed that the pattern of mode shape seems to be an effective in the determining the value 
of normalized mode shape at location of crack. Any decrease in the frequency is largest, i.e. maximum shift between 
undamaged and damaged beams in frequency response diagram is due to largest value of normalized mode shape at 
location of crack. Based on FEA static deflection, stiffness of damaged beam was computed and crack damage severity is 
estimated. From the results, it is found that when static deflection is increased and first mode frequency is decreased, then 
crack damage severity (%) increases. Furthermore, in this study, pattern of mode shape played a vital role for interpreting 
decreasing or increasing natural frequencies for damaged beam. 
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