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Abstract: Item Response Theory represents one of the major advances in the field of developing valid and reliable measures 
in psychology. Among the main models used in this perspective are the Rasch model and the logistic models. These parametric models, 
however, are not suitable for all applications in psychology, since a substantial number of databases in psychology do not satisfy 
the assumptions of these models: unidimensionality; latent monotonicity; local independence; and, for some models, non-intersecting 
functions. Given this framework, the objective of this study was to present the theoretical and practical foundations of Mokken Scale 
Analysis (MSA). We present some historical issues involving the development of MSA, in addition to the main characteristics and 
assumptions of the two models used in this perspective. After exemplifying a MSA application, limitations and final considerations 
are presented, supporting the decision-making process for researchers who come to use MSA.
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Fundamentos Teóricos e Práticos da Análise de Escala de Mokken em Psicologia
Resumo: A Teoria de Resposta ao Item representa um dos principais avanços para a construção de medidas válidas e confiáveis em 
psicologia. Entre os principais modelos utilizados nessa perspectiva estão o modelo de Rasch e os modelos logísticos. Esses modelos 
paramétricos, no entanto, não podem ser utilizados em todas as aplicações em psicologia, uma vez que um número substancial 
dos bancos de dados em psicologia não satisfaz os pressupostos desses modelos: unidimensionalidade; monotonicidade latente; 
independência local; e, para alguns modelos, não-interseção de funções. Dessa forma, o objetivo deste estudo foi apresentar 
os fundamentos teóricos e práticos da Análise de Escala de Mokken (AEM). São apresentadas questões históricas envolvendo 
o desenvolvimento da AEM, além das principais características e pressupostos dos dois modelos usados nessa perspectiva. 
Após exemplificação de uma AEM, limitações e considerações finais são apresentadas, apoiando o processo de tomada decisão para 
pesquisadores que venham a usar a AEM.

Palavras-chave: inferência não-paramétrica, teoria de resposta ao item, medidas

Fundamentos Teóricos y Prácticos del Análisis de la Escala de Mokken en Psicología
Resumen: La Teoría de Respuesta al Ítem representa uno de los mayores avances en el campo del desarrollo de medidas válidas en 
psicología. Entre los principales modelos utilizados en esta perspectiva se encuentran los modelos logísticos. Estos modelos no son 
adecuados para todas las aplicaciones en psicología, ya que algunas bases de datos en psicología no satisfacen las suposiciones 
de estos modelos: unidimensionalidad; monotonicidad latente; e independencia local; y, para algunos modelos, funciones que 
no se interceptan. Teniendo en cuenta este marco, el objetivo de este estudio fue presentar los fundamentos teóricos y prácticos 
del Análisis de la Escala de Mokken (AEM). Presentamos algunas cuestiones históricas relacionadas con el desarrollo de AEM, 
además de las principales características y suposiciones de los dos modelos utilizados en esta perspectiva. Después de ejemplificar 
un AEM, se presentan las limitaciones y consideraciones finales, apoyando o procesando la tomada de decisión para investigadores 
que van a usar el AEM.

Palabras clave: inferencia no parametrica, teoría de respuesta al item, medidas

Among psychologists and psychometricians, it is quite 
common to use techniques related to Factor Analysis (FA) and 
Item Response Theory (IRT) to gather evidence of validity 
for psychological instruments (Mair, 2018). Most of these 
techniques are categorized as parametric. This means that  
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they are based on statistical models that limit what is called 
a “good measure”. An alternative to using parametric models 
is nonparametric models (Sijtsma & van der Ark, 2017). 
Nonparametric models are models that do not make specific 
restrictions on the type of functional relationship expected 
to be found between the variables included in the model; 
in the case of IRT, aptitude and response probabilities.

One of the most promising nonparametric psychometric 
analysis techniques is the Mokken Scale Analysis 
(MSA; Mokken, 1971). In the mathematical scope of MSA, 
tests are used to allow a wider range of observations 
to form psychometric measures (Sijtsma & Molenaar, 2002). 
In order to present the advantages that can be achieved 
by using MSA, the objective of this study was to present 
the theoretical and practical foundations of Mokken Scale 
Analysis (MSA). The following sections will present the 
history and conceptualization of this practice, followed by 
the definition of basic concepts of MSA. Next, the two MSA 
models are presented. To support the use of MSA, essential 
information is presented in the report of this analysis, 
in addition to exemplification of an application. Finally, 
the main limitations and conclusions are presented.

Historical Conceptualization of MSA

The concept of item response functions emerged around 
1950 (Gregory, 2014). It is possible to identify two main 
authors for the popularization of using item response models. 
The first is Georg Rasch, creator of the Rasch model, which uses 
a logistic function, with additive effects between individual 
aptitude and item difficulty (Bond, Yan, & Heene, 2021). 
Frederic M. Lord, in 1980, proposed extensions of the Rasch 
model, generating the family of models known as “logistic 
models” (Gregory, 2014). Such models are named like this 
as they use extensions of the logistic function as the item 
response function. IRT, however, only became more widely 
used around the 1970s, when both its advantages over 
traditional psychometric methods and the use of computers 
to perform the analysis became popular.

In the Brazilian context, IRT receives attention mainly 
due to its applications in large-scale educational assessments 
in the National System of Basic Education Assessment 
(Sistema Nacional de Avaliação da Educação Básica, SAEB) 
and in the National High School Exam (Exame Nacional 
do Ensino Médio, ENEM; Gonçalves & Dias, 2018). 
While the SAEB is aimed at evaluating the performance in 
Portuguese and Mathematics of students enrolled in the fifth 
and ninth grade of elementary school and in the third grade 
of high school, ENEM is an assessment used to evaluate 
the competence of students who are completing, or have 
already completed, high school and wish to enter a university 
in Brazil. The application of IRT in these contexts allows 
the comparability of performances over the years, serving 
as a basis for evaluating academic development at the 
national level, as well as ensuring, to some extent, evaluation 
fairness and equality.

IRT models are generally referred to as latent trait 
models. This denomination is used to emphasize that the item 
response process is explained by constructs hypothesized 
from the content of the items, in addition to other processes 
of validation of the measures (Slaney, 2017). Given the 
statistical sophistication related to IRT, it is possible to assess 
characteristics of items and tests more fully, allowing more 
complex analyses and uses. For example, adaptive testing 
(Magis, Yan, & von Davier, 2017), a set of procedural 
techniques that aims to decrease the quantity of items 
a participant must answer, is basically possible only when 
using IRT, although nonparametric alternatives exist.

Two main theoretical contributions that preceded 
and inspired the creation of IRT were factor analysis 
(FA; Mair, 2018) and the Guttman scale (Sijtsma & 
van der Ark, 2017). FA is a statistical technique that is used 
to estimate how well one or more latent variables can explain 
the variability of observed scores, used in psychology 
generally with the objective of identifying evidence of 
structural validity of an instrument. However, one of 
the main criticisms of using FA in psychological data is that 
they are usually measured at the ordinal level, while the 
statistical model of FA assumes that these data are measured 
at the interval or ratio level (Zhang, Chen, & Liu, 2020). 
It is worth noting that FA with a polychoric correlation 
matrix considers that the data are measured at the ordinal 
level. However, polychoric correlation assumes that the 
observed variable was generated from a discretization of 
a latent continuous variable with a normal distribution. 
Thus, FA starts from the estimation of both the correlation 
matrix and the factorial parameters, which increases the 
chance of bias, especially when the assumptions of the 
polychoric correlation are not met.

On the other hand, the Guttman scale (Sijtsma & 
van der Ark, 2017) was created to be applied to tests consisting 
of binary items, assuming that the response pattern of the 
respondents is deterministic. The Guttman scale consists 
of a one-dimensional set of items, which are ranked in 
order of difficulty, from least to the most difficult. Since 
the response pattern is considered deterministic, the set of 
possible responses is predictable. This means that, in a given 
application, any participant who misses a certain item will 
not be able to hit any of the following items, since these are 
more difficult ones. However, empirical data show that it is 
not uncommon to find patterns in the data that contradict 
this assumption (Engelhard, 2008). Hitting a more difficult 
item after giving a wrong answer on an easier item is called 
a Guttman error. In the Guttman model, Guttman errors are 
not allowed. Thus, IRT models can be considered stochastic 
versions of the Guttman scale, being relevant to the present 
context the Rasch model and the Mokken Scale Analysis.

The Rasch model was one of the first stochastic 
item response models. It predicts that the chance that 
a respondent will answer an item correctly, P(X = 1), 
is described by an item response function (IRF), determined 
by the following equation:
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where θ is the latent aptitude of the individual and δ 
the difficulty of the item. It is important to point out that 
despite the applicability of the Rasch model in different 
contexts, its use is also criticized. The first issue is that 
the model assumes that all items present the same level 
of discrimination, defined as the degree to which the item 
differentiates between individuals with different levels of the 
latent trait (Bond et al., 2021). Other parametric models, 
such as the two-parameter logistic model (2PLM), were created to 
overcome this problem. However, another criticism is related 
precisely to the fixed form of these models, which will give 
rise to a “S” shaped IRF, which does not always adequately 
fit the data (Wiberg, Ramsay, & Li., 2018).

Seeking to solve this problem, Mokken developed his 
Mokken Scale Analysis procedure (MSA; Mokken, 1971). 
The MSA is similar to the Rasch model and the 2PLM in 
that they are all probabilistic models of the Guttman scale. 
However, the MSA is a model described as “nonparametric”, 
since it does not assume the exact form of the IRF, 
sustaining more flexible versions of the assumptions of 
unidimensionality, monotonicity, and local independence, 
in addition to the assumption of non-intersection for one of 
its models (Sijtsma & van der Ark, 2017). Thus, there are 
two models that are derived from the MSA: the more severe 
model of Double Monotonicity, in which the items can differ 
in their difficulty, but cannot intersect, as in the Rasch model; 
and the less severe model of Monotone Homogeneity, 
in which items differ in difficulty and may intersect, which 
resembles the 2PLM.

Assumptions and Models of the MSA

MSA, being an IRT model, is based on the idea that 
the combined effects of a latent variable, called item difficulty, 
with another latent variable, called aptitude of individuals, 
affects the probability of response of individuals to a set of 
items on an instrument (Andrade, Laros, & Lima, 2021). 
However, as MSA is nonparametric, the logistic model cannot 
be used to estimate the values of these latent variables. Thus, 
MSA models use Likert scores (Sijtsma & Molenaar, 2002), 
also known as sum scores, to generate estimates of the 
aptitudes of the respondents in the sample. This procedure is 
considered acceptable because, asymptotically, the sum scores 
tend to approach the true score (Sijtsma & Molenaar, 2002). 
Based on these scores, different procedures are used to test 
the four general assumptions of the MSA: unidimensionality; 
monotonicity; local independence; and non-intersection of 
the IRFs. The first three are general assumptions common 
to parametric IRT, while the fourth is generally an implicit 
assumption in many parametric IRT models.

An important fundamental difference between MSA 
and traditional IRT modeling is highlighted. As it is 
nonparametric, MSA does not establish a “S” shaped IRF 

like the ones seem in graphical representations that relate 
the latent variables to the probabilities of response for 
parametric models. For this reason, MSA cannot be used to 
estimate the latent scores of individuals. Therefore, tunning 
of MSA models is conducted differently. In a parametric IRT 
model, the dimensionality of the items is usually tested using 
some technique such as Parallel Analysis (Irwing, Booth, & 
Hughes, 2018; Mair, 2018), which is then followed by 
the adjustment of the desired IRT model. The individual 
adjustment indices of items and respondents are used to 
exclude or even discard models. In MSA, as it does not 
present a specific model to be adjusted, the approach used 
is to validate the estimates made using sum scores by testing 
the assumptions of the models (Sijtsma & Molenaar, 2002).

Unidimensionality is the idea that a single latent trait 
from the individuals interacts with latent characteristics of the 
items, expressed, for instance, in a parametric model of IRT 
such as Equation 1, in which the symbol θ (theta) represents 
the aptitude of the respondents and the symbol δ (delta) 
represents the difficulty of the items. Local independence 
is the idea that the observed correlation, or dependence, among 
items is explained exclusively by θ, and multidimensional 
models apply an extension of this assumption. Latent 
monotonicity (as distinguished from observed monotonicity) 
represents the idea that if an individual has more of the 
latent trait, then his probability of giving a correct answer, 
or to use a higher ordered category on a scale, should also 
increase. In parametric models, the function that represents 
this assumption is “S” shaped. However, in nonparametric 
models, given that there is no specific function to relate 
latent traits with the probability of correctness of the items, 
any function that is positively increasing can be used. Finally, 
non-intersecting means that item-item response functions 
must not intersect.

From these assumptions, two models of MSA 
are derived. The first model respects the first three 
assumptions (unidimensionality, local independence, 
and latent monotonicity). This model is called the monotone 
homogeneity model (MHM; Mokken, 1971), and is also known 
as the nonparametric gradual response model. When the 
four assumptions of unidimensionality, local independence, 
latent monotonicity, and non-intersection are respected, 
the double monotonicity model (DMM) can be used. 
The main difference between these two models is that the 
MHM allows ranking only the respondents, while the DMM 
allows ranking both respondents and items. This feature 
of the DMM is known as invariant item ordering (IIO), 
which means that the ordering of items according to their 
average score is the same for all values of the latent scale, 
thus allowing the ordering of items by their difficulty levels 
(Sijtsma & Molenaar, 2002).

To test the assumptions of the models, the main index used 
is the Loevinger scalability coefficient, H (Loevinger, 1948). 
There are three scalability indices: the item pairs index (Hij); 
the item index (Hj); and the general index of the test (H). 
Equations (2), (3), and (4) respectively represent the ways 
to calculate such indices.
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In this notation, Xi is the sum score of item i, Xj is the sum 
score of item j, and R-j is the rest score of the test when item j 
is disregarded, which is simply the sum score of all the items 
minus item j. It is possible to observe that the scalability 
indices depend on the covariance between the items (for the 
pairs of items indices), on the covariance between some item 
j and the rest score (for the individual item index) and on the 
sum of these covariance of the items with the total score. 
The superscript max indicates the maximum covariance that 
two items could have if there were no Guttman errors.

According to the Guttman scale, an individual with 
an aptitude greater than the difficulty of the item will necessarily 
always hit or mark the answer to such an item positively. 
Correspondingly, an individual with an aptitude lower than 
the item’s difficulty will necessarily always make a mistake or 
mark the answer to that item negatively. From this, the expected 
scalogram can be estimated by the empirical scalogram, 
which is defined by the collected data. Keeping the marginal 
distributions constant (i.e., the sums of the rows and columns 
do not change), the cell in which a difficult item is correct 
(XD = 1), but an easy item is wrong (XF = 0) must be set to 
zero and the other cells must be modified accordingly. Thus, 
MSA determines that the more similar the empirical scalogram 
is to the expected scalogram, the more strongly the items are 
related and, therefore, must represent the same construct. 
Deviations from the empirical scalogram from the expected 
scalogram are called Guttman errors.

Finally, it is worth noting that the theoretical values of the 
H indices can vary between –1 and +1, and the assumptions of 
unidimensionality, local independence, and latent monotonicity 
imply: 0 ≤ Hij ≤ 1, for all i ≠ j; 0 ≤ Hj ≤ 1, for all j; and 0 ≤ H ≤ 1. 
This means that, if the assumptions are respected, the observed 
values of the H indices should not be less than 0, although 
it is possible to observe negative values when the items are not 
suitable for the scale (Sijtsma & Molenaar, 2002). This means 
that the calculation of scalability coefficients, besides being 
descriptive, also serves predictive purposes of the quality 
of the measures, allowing more robust inferences.

How to Conduct an MSA? Application and Exemplification 
in Four Steps

The use of MSA does not differ much from the use 
of traditional psychometric models. This means that, first, 
the dimensionality of the scale is assessed and then the quality 
of the model adjustment is tested (Sijtsma & Molenaar, 2002). 
The main difference lies in the fact that, while parametric IRT 

models test the quality of items according to fixed assumptions, 
MSA tests these assumptions directly. For example, while 
a Rasch model will always impose the same level of 
discrimination on all items, MSA tests the intersection of the 
item response functions and, if no intersection is desired, items 
with such a characteristic are discarded. Thus, the quality of 
the model depends on which assumptions are used and how 
well those assumptions are met by the data.

The example presented below was fully analyzed using 
the mokken package (van der Ark, Koopman, Straat, & van 
den Bergh, 2021) of the R software (R Core Team, 2022). 
Currently, as far as we know, this is the only free software 
alternative to perform MSA. We used a database available 
in the mokken package, with responses to 12 dichotomous 
items administered to 425 children from 2nd to 6th grade in 
The Netherlands (Verweij, Sijtsma, & Koops, 1996). 
Each item is a transitive reasoning task about physical 
properties of objects, with two items used as pseudo-items 
(items 11 and 12), four items about length relationships (items 
01, 02, 07, and 09), five items about width relationships 
(items 03, 04, 05, 08, and 10), and one item related to area 
relations (item 06). The code used to conduct the analyzes can 
be accessed at: https://github.com/vthorrf/TutorialMokken.

First step: Dimensionality analysis. From the MSA 
perspective, the dimensionality analysis is performed through 
the Automated Item Selection Procedure (AISP; Mokken, 1971; 
Sijtsma & Molenaar, 2002). The AISP uses the scalability 
coefficient Hi to select the most representative item of the 
dimension and then, uses the scalability coefficient of pairs 
of items to select the largest subset of items that measure the 
same attribute (Mokken, 1971). After selecting the best items 
for the first dimension, unselected items are tested as an attempt 
to compose a second subscale, and so on, until it is no longer 
possible to allocate any item to any subscale.

A simulation study showed that among three traditional 
AISP implementations, the one that uses a genetic algorithm 
has the best performance in recovering the correct 
dimensionality of scales (Straat, van der Ark, & Sijtsma, 2013). 
It has also been identified in this study that the scalability 
coefficient of item pairs, using the best item as a reference, 
should not be less than 0.30. Sijtsma and Molenaar (2002) 
also suggest that it is necessary to use several possible limits 
for the relationship with the best item, starting from the value 
of 0.30, in order to ensure greater richness of the analysis. 
Using these recommendations, Table 1 was generated in 
which all items are represented in the rows and the minimum 
values of the scalability coefficient (Hj) of the best item 
represented in the columns.

It was expected that the pseudo-items would not 
be aggregated to any subscale, and this was exactly the 
result obtained. It can also be observed that the higher 
the minimum value of the scalability coefficient with the 
best item, the fewer the items kept in the scales. In general, 
the AISP identified that, at most, two scales can be generated, 
represented by the numbers 1 and 2. The empty spaces, 
per column, indicate that, using that limit, the respective 
item does not form a scale with any other item.

https://github.com/vthorrf/TutorialMokken
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Table 1
Dimensionality analysis of the transitive reasoning test

Item Content

Scalability Index, Hj

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

09 Length 1 1 1 1 1 1 1 2 2 2 1

12 Pseudoitem

10 Width 1 1 1 1 1 2 2 1

11 Pseudoitem

04 Width 2 2

05 Width

02 Length 2 2

07 Length 1 1 1 1 1 1 1 1

03 Width 1 1 1 1 1 2

01 Length 1 1 1 1

08 Width 1 1 1 1 1 1 1 2 2 2 1

06 Area 1 1 1 1 1 1 2 1 1 1

The transitive reasoning test was designed to be 
unidimensional. Therefore, using as a reference the 
scale numbered as 1 (because it is the most frequent at 
all levels), we can observe that this subscale is constant 
up to the limit of 0.45. This means that a very robust scale 
may probably be created using items 01, 03, 06, 07, 08, 09, 
and 10. Thus, as expected, pseudo-items 11 and 12 would 
be discarded, in addition to items 02, 04, and 05, which 
probably have more Guttman errors than would be expected 
for unidimensional items. On the other hand, the second 
scale does not show consistency when varying the limits of 
the scalability coefficient, which indicates that it is probably 
a spurious scale.

Second step: Latent monotonicity analysis. Junker and 
Sijtsma (2000) showed that, for dichotomous items, latent 
monotonicity implies observed monotonicity. Although for 
polytomous items this is not always true, tests of observed 
monotonicity also generate good estimates for polytomous 
items, although more conservative ones. The observed 
monotonicity test proposed by the authors involves 
a regression between the scores of individual items and the 
rest scores, which are obtained by omitting the selected item 
from the total test score. In other words, considering the 
scale found from the AISP, to test the observed monotonicity 
of item 09, for example, this item is regressed on the Likert 
score from items 01, 03, 06, 07, 08, and 10. If significant 
non-monotonic increments are detected between both 
variables, we infer that there is probably no observed and no 
latent monotonicity in item 09.

One problem with using rest scores to test latent 
monotonicity is that the number of respondents at different 
score levels can be very small (Sijtsma & Molenaar, 2002).  
This problem can be overcome by grouping respondents 
with adjacent rest scores until a minimum proportion 

of individuals per score is greater than a pre-defined criterion. 
However, using n/10 as a default for such criterion, if the 
sample (n) is greater than or equal to 500; n/5 if the sample 
is between 250 and 500; and max (n/30,50) if the sample 
is less than 250, robust results will generally be obtained.

Using only the items that were kept after the AISP, 
we used three criteria for the minimum score union value: 
the default criterion; the number of possible scores; and the 
ratio between sample size and scale size. That is, with binary 
items on a seven-item scale, the lowest possible residual 
score is 0 and the highest possible rest score is 6, which 
represents 7 possible score categories. Thus, the criteria 
were equal, respectively, to 425/5 = 85; 7; and 425/7 ≈ 61. 
Table 2 presents the items, the scalability indices of each 
item (Hj), the number of active pairs (AP)—which represents 
the maximum possible amount of monotonicity tests for each 
item—, the number of violations (Vi) of monotonicity that 
were identified for each item, the magnitude of the largest 
violation (MaxVi), the z-value of this largest violation 
(Zmax) for inferential testing, and the number of violations 
that were significant in each item (Zsig).

The first thing to note is that, using different criteria, 
no monotonicity violation was ever observed. In part, 
this probably occurred since the scalability coefficient, 
used in the AISP, tends to keep items that are monotonic 
in relation to their dimension (Sijtsma & Molenaar, 2002). 
However, the AISP will not always select only monotonic 
items, which justifies this analysis. Moreover, the number of 
APs, in some cases, was equal to 1 or 0. When this occurs, 
it is not possible to adequately test the monotonicity in 
that item. Very high values should also be avoided since 
response categories that were not very expressive can 
generate spurious confirmations of monotonicity violation.
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Table 2
Analysis of observed monotonicity of items on the transitive 
reasoning scale
Items Hj Criterion AP Vi MaxVi Zmax Zsig

09 0.50
85 1 0 - - -
61 3 0 - - -
7 10 0 - - -

10 0.52
85 3 0 - - -
61 3 0 - - -
7 10 0 - - -

07 0.51
85 3 0 - - -
61 3 0 - - -
7 15 0 - - -

03 0.53
85 3 0 - - -
61 3 0 - - -
7 10 0 - - -

01 0.46
85 3 0 - - -
61 6 0 - - -
7 15 0 - - -

08 0.55
85 1 0 - - -
61 3 0 - - -
7 10 0 - - -

06 0.59
85 0 0 - - -
61 1 0 - - -
7 6 0 - - -

Note. Hj = scalability of items; AP = number of active pairs of rest 
scores; Vi = number of violations of monotonicity; MaxVi = largest 
violation of monotonicity; Zmax = z-score of the largest violation; 
Zsig = number of statistically significant violations.

Thus, from Table 2, we can see that using increasingly 
lenient criteria, they were not enough to identify monotonicity 
violations in any of the items. We can also observe that the 
standard criterion (85) caused many items to present APs 
equal to 1, which means that it would not be possible to 
adequately test the monotonicity in these items. Finally, 
item 06 can only be tested on the most lenient criterion of all, 
which means that the item probably does not have adequate 
variability in scores and, therefore, offers little information 
about the actual score of the respondents. In sum, we can 
choose to also exclude item 06 from our scale.

Third step: Non-intersection analysis. This third 
step is optional and depends on which MSA model one 
intends to use. If it is assumed that the items can intersect, 
then the monotone homogeneity model (MHM) will be used, 
and this step is not necessary (although there is inferential 
value in executing it anyway). However, if it is assumed 
that the items should not intersect, the double monotonicity 
model (DMM) will be used, and it is necessary to test if the 
non-intersection assumption is really upheld in the data.

Sijtsma and Molenaar (2002) describe three methods to 
test for non-intersection: p-matrix method; rest score method; 
and residual division method (restsplit). Although, to the 
best of our knowledge, there are no studies that compare the 
performance of each method, the residual division method 
has not yet been implemented in the mokken package and 
the rest score method is affected by the same limitation 

that was found in the monotonicity analysis: a minimum 
size must be established a priori for the size of the score 
clusters. Thus, the p-matrix method is preferred, which 
can be known in more detail in Mokken (1971). In short, 
the method creates matrices of partial associations 
among items, also using the amount of Guttman errors 
among items as a basis, controlling for the presence of other 
items. Thus, two matrices are generated: the P(++) matrix, 
which evaluates the positive associations; and the P(--) matrix, 
which evaluates negative associations. Using only the items 
that were kept by the AISP and by the monotonicity analysis, 
the analysis presented in Table 3 was performed.

Table 3
Non-intersecting analysis of response functions to the transitive 
reasoning scale item

Items Hj AP Vi MaxVi Zmax Zsig

09 0.49 20 0 - - -

10 0.51 20 0 - - -

07 0.49 20 0 - - -

03 0.53 20 0 - - -

01 0.47 20 0 - - -

08 0.55 20 0 - - -

Note. Hj = scalability of items; AP = number of active pairs of rest 
scores; Vi = number of violations of non-intersection; MaxVi = largest 
violation of non-intersection; Zmax = z-score of the largest violation; 
Zsig = number of statistically significant violations.

To identify the items that do not intersect, just check the 
Zsig column. If this value is equal to or greater than one, 
then the item in question has at least one intersection that is 
statistically significant and, therefore, may present problems 
for the construction of the scale. Again, although after the 
removal of the items by the AISP and the analysis of manifest 
monotonicity, only items that present non-intersecting 
remained, this will not always be true. For this reason, 
if the DMM model is to be used, it is a necessary condition 
to carry out a non-intersection analysis and to remove items 
that have violations. Unlike the monotonicity analysis, 
in the case of non-intersection, a single violation can already 
be considered as critical to reject the DMM, since this 
violation demonstrates that the items had at least one point 
of intersection.

Fourth step: Analysis of local independence. 
The last step involves testing the assumption of local 
independence. Straat et al. (2016) proposed the use of 
conditional associations tests, which, if they demonstrate 
positive covariances between items, indicate the 
existence of local independence for the items. Conditional 
associations generate three local independence deviation 
indices: W(1); W(2); and W(3). These indices are used to 
identify different types of local independence violations. 
We present in Table 4 the test only for the items that were 
kept after the previous analyses.
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Table 4
Local independence analysis of the transitive reasoning scale

Index Item Item 
09

Item 
10

Item 
07

Item 
03

Item 
01

Item 
08

W(1) 09 1.847 1.476 1.329 0.794 0.310
10 0.725 0.968 1.151 0.657 0.114
07 0.005 0.936 1.166 1.014 0.023
03 0.506 1.247 0.353 0.169 0.077
01 0.310 1.494 1.997 1.933 0.426
08 0.052 2.087 1.227 2.455 0.400

W(2) 7.811 5.753 5.449 4.691 7.617 7.150
W(3) 09

10 0.698
07 1.967 0.543
03 1.623 1.555 0.078
01 2.375 1.489 1.133 0.626
08 1.148 1.468 1.728 0.809 1.996

To know which item has local dependence, it is necessary 
to carry out a procedure to find out how extreme is each of the 
values presented. It is necessary to test each value in the table 
for the following relationship: wij > Qi3 + (3 x [Qi3 – Mi]). 
In this test, wij represents each possible value of the index W(i), 
Qi3 is the third quartile of the set of values of the index W(i) and 
Mi is the median of the set of values of the index W(i). Using 
such a procedure, it has been verified that only item 1 
is considered as extreme in the W(3) index. From this result, 
the researcher can choose one of two actions. The first is to 
keep the item, given that it was identified as a local dependent 
in only one of the three indices. The second, which may be the 
most appropriate, is to remove the item and redo the analysis, 
as the results are dependent on the dataset used. Following 
the second action, Table 5 was generated.

Table 5
Local independence analysis of the transitive reasoning scale after 
removing item 01

Index Item Item 09 Item 10 Item 07 Item 03 Item 08

W(1) 09 0.967 0.564 0.464 0.037

10 0.489 0.553 0.836 0.011

07 0.005 0.936 1.114 0.018

03 0.432 1.247 0.353 0.032

08 0.052 1.473 0.557 1.754

W(2) 3.432 2.446 2.956 2.760 4.097

W(3) 09

10 0.205

07 1.283 0.131

03 1.117 0.923 0.089

08 0.826 1.187 1.452 0.631

In Table 5, none of the items was considered as an outlier 
in the distribution of any of the indices. Therefore, we have 
thus discovered the best scale that can be generated from the 
original transitive reasoning scale, having as a criterion the 
fulfillment of all the necessary assumptions to have a good 
measure in terms of unidimensionality, latent monotonicity, 
non-intersection, and local independence.

Discussion

MSA is a special type of nonparametric item modeling 
that allows checking the robustness of more flexible 
versions of the assumptions of parametric IRT models. 
The advantages of using MSA are summarized by Junker and 
Sijtsma (2001) in three main reasons. The first is to provide 
a deeper understanding of how IRT parametric models 
work by directly analyzing their assumptions. Second, 
it offers a more flexible framework for applications where 
parametric models fit the data poorly, which allows for more 
flexible scales than are possible with parametric models. 
Finally, MSA procedures make it possible to use a smaller 
number of items and samples (Wind, 2022) than those 
used in large-scale tests adjusted with parametric models, 
given that, instead of trying to estimate parameters, MSA tests 
the assumptions of the models.

In more practical terms, we believe that Stout (2001) 
offers an orientation that maximizes the quality of scale 
development. The author suggests that before using 
any parametric model of IRT, it is necessary to perform 
an MSA. By doing this, in addition to being able to verify 
the assumptions necessary to carry out a parametric IRT 
analysis, it is also possible that, if these assumptions are 
not met, a more flexible scale is developed, which meets 
nonparametric IRT assumptions. Among these analyses, 
one of the most important is the dimensionality analysis, 
usually assessed through exploratory or confirmatory factor 
analyses. MSA, being a type of IRT analysis, unlike Factor 
Analysis, allows the analysis of dimensionality to be better 
aligned with the theory and mathematical form of the IRT. 
This makes the MSA the center of a thorough analysis of 
evidence of structural validity, given its basically necessary 
condition of evaluating the assumptions that form a scale 
if its structure is not known a priori (Stout, 2001).

The present study prioritized the exposition of the 
fundamentals of MSA, as well as the basic analytical procedures 
to carry it out. Thus, many more advanced discussions ended 
up being left out. For example, Ligtvoet (2015) proposed 
a method to assess measure invariance in the context of MSA, 
a topic that we did not discuss. We also did not discuss how 
violations of assumptions can be accessed with the effect size 
named as Crit (Crișan, Tendeiro, & Meijer, 2019). Of course, 
we did not include many other MSA innovations. However, 
this happened for two reasons. First, many of these procedures 
are not yet implemented in any statistical package. Thus, 
we would not be able to implement the analyzes directly. 
Second, some of these procedures are new and, therefore, 
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their properties and validity are still poorly understood. 
Therefore, it is emphasized that future studies should delve 
deeper into these more modern procedures and in which 
scenarios they are valid and provide additional information 
to the basic procedure in a robust and reliable way.

Finally, it is important to emphasize the existence of 
other nonparametric IRT models that can be used in order to 
estimate item parameters and latent scores, as an alternative 
to parametric models. An example is Wiberg et al. (2018), 
who proposed the optimal scoring procedure, which apply 
nonparametric regression techniques, and which can estimate 
latent scores that do not follow a normal distribution, as long 
as the scores have a scale with limits (for example, scores 
ranging from 0 to 10). This model does not exhaust the list of all 
nonparametric IRT models, but it helps to demonstrate that it is 
possible to complement MSA to estimate latent item parameters 
and scores without the need to use parametric IRT models.
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