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The emerging role of deubiquitylating 
enzymes as therapeutic targets in cancer 
metabolism
Rongfu Tu1,2†, Junpeng Ma1,2†, Peng Zhang1,3†, Ye Kang1,2, Xiaofan Xiong4, Junsheng Zhu1,2, Miao Li1,2 and 
Chengsheng Zhang1,2,3,5*  

Abstract 

Cancer cells must rewire cellular metabolism to satisfy the unbridled proliferation, and metabolic reprogramming 
provides not only the advantage for cancer cell proliferation but also new targets for cancer treatment. However, 
the plasticity of the metabolic pathways makes them very difficult to target. Deubiquitylating enzymes (DUBs) are 
proteases that cleave ubiquitin from the substrate proteins and process ubiquitin precursors. While the molecular 
mechanisms are not fully understood, many DUBs have been shown to be involved in tumorigenesis and progression 
via controlling the dysregulated cancer metabolism, and consequently recognized as potential drug targets for cancer 
treatment. In this article, we summarized the significant progress in understanding the key roles of DUBs in cancer 
cell metabolic rewiring and the opportunities for the application of DUBs inhibitors in cancer treatment, intending to 
provide potential implications for both research purpose and clinical applications.

Keywords: Deubiquitylating enzymes, Cancer metabolism, Aerobic glycolysis, Fatty acid metabolism, Targeted 
therapy
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Introduction
Tumorigenesis is dependent on the reprogramming of 
cellular metabolism, which has been recognized as one of 
the hallmarks of cancer [1, 2]. Cell proliferation requires 
nutrients, energy, and biosynthetic activities to duplicate 
all macromolecular components during each passage 
through the cell cycle. It is therefore not surprising that 
metabolic activities in uncontrolled cancer cells are fun-
damentally different from those in normal cells.

Interestingly, the dysregulated cancer cell metabo-
lism provides not only proliferation advantages but also 
new targets for cancer diagnosis and therapy [3–6]. For 

instance, the enhanced glucose uptake by cancer cells 
allows the clinicians to image cancer using the glucose 
analog 2-(18F)-fluoro-2-deoxy-D-glucose (FDG) by 
positron emission tomography (PET) [7]. The FDG-PET 
combined with computer tomography (PET/CT) has 
a > 90% sensitivity and specificity for detection of metas-
tases of most epithelial cancers [7]. Moreover, inhibitors 
of nucleotide metabolism (also known as antimetabo-
lites), including methotrexate, 5-fluorouracil, 6-mer-
captopurine and pemetrexed, which antagonize the 
activity of enzymes involved in nucleotide biosynthesis, 
have been successfully used in modern chemotherapy 
regimens to prolong cancer patient survival [8, 9]. Unfor-
tunately, these chemotherapies are not tumor-specific, 
and frequently cause severe side effects due to on-target 
inhibition of the same enzymes in normal cells [10]. One 
exception is the recent success in the development of 
inhibitors targeting oncogenic isocitrate dehydrogenase 

Open Access

Cancer Cell International

*Correspondence:  cszhang99@xjtu.edu.cn
†Rongfu Tu, Junpeng Ma and Peng Zhang contributed equally to this 
work
1 Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong 
University, 277 Yanta West Road, Xi’an 710061, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5238-083X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-022-02524-y&domain=pdf


Page 2 of 14Tu et al. Cancer Cell International          (2022) 22:130 

1 (IDH1) and IDH2 mutations. However, IDH-activat-
ing mutations, which were primarily identified in a sub-
set of astrocytomas, oligodendrogliomas, gliomas and 
acute myeloid leukemias, are less frequently occurred in 
other human cancers [11, 12]. For other cancer types, it 
remains less clear which pathways of the cellular metabo-
lism could represent a realistic, targetable vulnerability 
of tumor cells in comparison with normal counterparts. 
A better understanding of the underlying tumor-specific 
metabolic regulatory mechanisms may help develop and 
optimize novel therapeutic strategies targeting cancer 
cells [9, 10, 13].

While the detailed molecular mechanisms responsi-
ble for the abnormal cancer metabolism remain largely 
unknown, increasing number of studies have shown that 
deubiquitylating enzymes (DUBs) play a key role in gov-
erning tumor cell metabolic rewiring, including aero-
bic glycolysis, gluconeogenesis, de novo lipid synthesis, 
glutamine metabolism, and non-essential amino acid 
metabolism. In this review article, we aim to discuss the 
regulation of cancer metabolism by DUBs in carcinogen-
esis and the potential of targeting DUBs as strategies to 
improve cancer therapy.

DUBs
The post-translational modification of cellular proteins 
through ubiquitylation is a dynamic and reversible pro-
cess coordinated by the action of ubiquitin-conjugating 
enzymes and DUBs [14]. DUBs can remove ubiquitin 
chains or mono ubiquitin from post-translationally mod-
ified proteins, which not only can lead to protein stabi-
lization by rescue from either proteasomal or lysosomal 
degradation, but also affect protein functioning by alter-
ing interactome and/or subcellular localization [15]. 
Moreover, DUBs are required for both generation and 
recycling of free ubiquitin, and therefore play a key role 
in maintaining the cellular ubiquitin homeostasis [15, 
16]. Approximately 100 DUBs have been identified in the 
human genome, which can be categorized into six major 
subfamilies based on the active site homology. There are 
four families of Cys-dependent proteases, which contain 
a catalytic triad of Cys, His and Asp/Asn. Ubiquitin-spe-
cific proteases (USPs, 56 members) represent the bulk 
of the DUBs; Ovarian tumor proteases (OTUs,14 mem-
bers) can be divided into three subclasses including otu-
bains, OTUs and A20-like OTUs; Ubiquitin C-terminal 
hydrolases (UCHs) family was the first to be structurally 
characterized; Josephins (also termed MJDs) family con-
tains a poly-Gln stretch, the extension of which leads to 
the neurodegenerative disorder Machado–Joseph dis-
ease (MJD) [16, 17]. Jad1/Pad/MPN-domain-containing 
metalloenzymes (JAMMs), containing zinc-dependent 
metalloproteases, are commonly found in association 

with large protein complexes [16, 17]. Motif interacting 
with ubiquitin-containing novel DUB family (MINDYs), 
a recently identified subfamily, is highly selective at cleav-
ing K48-linked polyubiquitin [18] (Fig. 1).

A comprehensive analysis of human cancers by in situ 
hybridization indicated that DUBs are frequently dys-
regulated in tumor samples [19]. Indeed, plenty of DUBs 
were found to be highly expressed in tumor samples 
(Additional file  1: Table  S1) and function as biomark-
ers for cancers [20]. The dysregulated DUBs have been 
shown to be involved in tumorigenesis via regulating the 
stability of specific oncoprotein or tumor suppressor sub-
strates [16]. Moreover, the aberrantly expressed DUBs 
were proposed as potential therapeutic targets for cancer 
treatment because they may modulate protein fate in a 
cancer-specific manner [16, 17, 20–24].

DUBs and aerobic glycolysis
In mammalian cells, glucose is one of the major sources 
of cellular energy and new cell mass. Glucose is metabo-
lized via glycolysis to pyruvate, which can be oxidatively 
metabolized to  CO2 in the tricarboxylic acid (TCA) cycle 
to generate a large amount of ATP through the process 
of oxidative phosphorylation (Fig.  2). Pyruvate can also 
be reductively metabolized to lactate, a process known 
as fermentation, which does not require oxygen but is far 
less efficient in ATP generation [25]. Tumor cells typi-
cally convert a majority of glucose to lactate even in the 
presence of oxygen, a phenomenon known as aerobic gly-
colysis or Warburg effect, which has been confirmed in 
a variety of tumor contexts and shown to correlate with 
poor prognosis [26]. The major function of aerobic glyco-
lysis is to maintain high levels of glycolytic intermediates 
to support anabolic reactions in tumor cells [25, 27, 28].

Several DUBs were reported to be involved in aero-
bic glycolysis via regulating glycolytic enzymes. In non-
small cell lung cancer (NSCLC), deubiquitinase Josephin 
Domain-containing protein 2 (JOSD2) was recently 
identified to display comprehensive effects on glucose 
catabolism, and thereby promoting cancer cell prolif-
eration [29]. Mechanistically, JOSD2 stabilizes metabolic 
enzymes aldolase A (ALDOA) and phosphofructoki-
nase-1 (PFK1) in vitro and in vivo. Furthermore, JOSD2 
expression, but not a catalytically inactive mutant, deu-
biquitinates and stabilizes the enzyme complex, thereby 
enhancing their activities and the glycolytic rate [29]. In 
hepatocellular carcinoma (HCC) cells, depletion of CSN5 
(also known as COP9 signalosome subunit 5, COPS5) 
caused a significant decrease in glucose uptake and the 
production of glycolytic intermediates. Mechanistically, 
CSN5 attenuated the ubiquitin–proteasome system-
mediated degradation of hexokinase 2 (HK2) through its 
deubiquitinase function; resumption of HK2 expression 
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Fig. 1 Structure of six representative subclasses of DUBs. The secondary structure is significantly different among these DUB classes, and the 
key catalytic site domains in each DUB are shown on the right of the structure. For USP7, we show a schematic diagram of the binding site and 
mechanism of action of one of the inhibitors. The labeled catalytic site information comes from UniProt (https:// www. unipr ot. org). UniProtKB and 
Protein Databank (PDB) codes: Ubiquitin specific peptidase 7 (USP7), Q93009, 1NB8; OTU deubiquitinase (ubiquitin aldehyde binding 2, OTUB2), 
Q96DC9, 1TFF; BRCA1 associated protein 1 (BAP1), Q92560, 1TQN; Josephin domain containing 2 (JOSD2), Q8TAC2, 6PGV; COP9 signalosome 
subunit 5 (CSN5), Q92905, 4F7O; MINDY lysine 48 deubiquitinase 1 (MINDY1), Q8N5J2, 5JKN (A chain)
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rescued the decreased glycolytic flux induced by CSN5 
knockdown, whereas inhibition of HK2 alleviated CSN5-
enhanced glycolysis. Moreover, there was a positive cor-
relation between CSN5 and HK2 in HCC samples [30]. 
Similarly, USP7 and USP20 were reported to deubiq-
uitinate and stabilize pyruvate kinase isoenzyme M2 
(PKM2) in Hela cells, indicating their roles in regulating 
glucose catabolism [31, 32] (Fig. 2).

DUBs are also involved in aerobic glycolysis via regu-
lating transcription factors or signaling pathways. In our 
recent study, USP29 was identified to promote glucose 
consumption and lactate secretion in multiple cancer 
cells during both normoxia and hypoxia [33]. USP29 sta-
bilizes oncogenic MYC (including c-MYC and N-MYC) 
and hypoxia-induced factor 1α (HIF1α), which are two 

major drivers of cancer metabolism in normoxia and 
hypoxia, respectively, by direct interaction and deubiq-
uitination. Moreover, systematic knockout of Usp29 in 
MYC-driven animal models markedly decreased the 
expression of intratumoral MYC, HIF1α, and their key 
downstream metabolic targets [33]. Consistently, another 
group recently reported that USP29 promotes aero-
bic glycolysis via stabilizing HIF1α to mediate sorafenib 
resistance in HCC cell lines, suggesting that USP29 may 
play a key role in the regulation of aerobic glycolysis in 
different cancer types [34]. In NSCLC, OTUB2 (OTU 
deubiquitinase, ubiquitin aldehyde binding 2) was sig-
nificantly upregulated in primary tissues and associated 
with tumor malignancy [35]. Additional investigations 
showed that OTUB2 stabilizes U2 small nuclear RNA 
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auxiliary factor 2 (U2AF2) to promote the Warburg effect 
and tumorigenesis via the AKT/mTOR signaling path-
way [35]. In pancreatic cancer, over-expressed ubiquitin 
carboxyl-terminal hydrolase L3 (UCHL3) was reported 
to stabilize Forkhead box protein M1 (FOXM1), which 
activates the transcription of LDHA, and promotes aero-
bic glycolysis of pancreatic cancer through the UCHL3-
FOXM1-LDHA axis [36]. In colorectal cancer (CRC) 
cells, knockdown of USP10 resulted in a significant 
increase in lactate production and glycolytic gene expres-
sion. USP10 specifically removes ubiquitination on the 
AMP-activated protein kinase (AMPK), which is a cru-
cial sensor of the cellular response to low energy [37, 38]. 
On the other hand, USP10 is phosphorylated and acti-
vated by AMPK under energy stress. Thus the USP10-
AMPK axis forms a positive feedforward loop to facilitate 
AMPK activation under energy stress [37, 38]. Although 
the detailed mechanisms remain unclear, USP28 was also 
reported to promote aerobic glycolysis of colorectal can-
cer by increasing stability of Forkhead Box C1 (FOXC1) 
[39] (Fig. 2).

DUBs and gluconeogenesis
Gluconeogenesis is the synthesis of glucose from small 
carbohydrate precursors, such as lactate and amino acids 
[40]. The gluconeogenesis pathway is usually inhibited 
in cancers because it antagonizes glycolysis. However, 
some types of cancers rely on abbreviated forms of glu-
coneogenesis to support their bioenergetic and ana-
bolic demands, especially under low glucose conditions; 
and thus, gluconeogenesis exerts context-dependent 
and highly important functions in tumorigenesis [40, 
41]. The entire pathway of gluconeogenesis consists of 
eleven enzyme-catalyzed reactions, three of which are 
catalyzed exclusively by gluconeogenesis enzymes phos-
phoenolpyruvate carboxykinase (PEPCK), fructose-
1,6-bisphosphatase (FBPase) and glucose-6-phosphatase 
(G6Pase) [40, 41].

In addition to aerobic glycolysis, DUBs also play 
important roles in cancer cell gluconeogenesis. Eco-
topic expression of USP44 was reported to suppress the 
progression and overcome gemcitabine resistance of 
pancreatic ductal adenocarcinoma (PDAC) by suppress-
ing glycolysis [42]. Further studies revealed that USP44 
directly interacts with and stabilizes Fructose-1,6-bis-
phosphatase (FBP1), one of the key enzymes in the pro-
cess of gluconeogenesis [42]. In CRC cells, USP7 was also 
reported to regulate gluconeogenesis through interact-
ing with sirtuin 7 (SIRT7) and suppressing its enzymatic 
activity. SIRT7 is essential to the expression of glucose-
6-phosphatase catalytic subunit (G6PC), a gluconeogenic 
gene [43] (Fig. 2).

DUBs and fatty acid metabolism
Alterations in fatty acid metabolism in cancer cells are 
increasingly being recognized. Fatty acids (FAs) consist 
of a terminal carboxyl group and a hydrocarbon chain, 
mostly occurring in even numbers of carbons, that can be 
either saturated or unsaturated [44]. FAs are required for 
energy storage, membrane proliferation, and the genera-
tion of signaling molecules [44]. The cellular FAs come 
from either exogenous sources or de novo synthesis. 
Normal cells take up much of their required FAs from the 
circulation via the activity of lipoprotein lipase (LPL) and 
fatty acid translocases such as CD36 [45]. In contrast, 
cancer cells acquire their FAs mainly from the de novo 
fatty acid synthesis [46].

Two key enzymes involved in de novo fatty acid syn-
thesis were regulated by DUBs. In ovarian cancer, USP13 
was shown to promote glutamine-dependent reductive 
carboxylation for lipogenesis [47]. Further investiga-
tion revealed that USP13 directly deubiquitinates and 
stabilizes ATP citrate lyase (ACLY), which is an impor-
tant enzyme linking carbohydrate to lipid metabolism 
by generating acetyl-CoA from citrate for fatty acid and 
cholesterol biosynthesis [47]. In HCCs that arise in mice 
maintained on high-fat diets, USP30 was phosphorylated 
and stabilized by IKKβ, and USP30 deletion attenuated 
lipogenesis and tumorigenesis in DEN/CCl4-induced 
animal model [48]. The upregulated USP30 interacted 
with and stabilzed ACLY and fatty acid synthase (FASN) 
[49]. Moreover, USP2a was suggested to play a critical 
role in prostate cancer cell survival by deubiquitinating 
and stabilizing FASN [48] (Fig. 3).

DUBs also participate in de novo lipid synthesis via 
the regulation of abnormal signaling pathways. The 
Sterol Regulatory Element Binding Proteins (SREBPs), 
which include three isoforms (SREBP1a, SREBP1c and 
SREBP2), are the master regulators of lipid homeosta-
sis, and SREBP-1c is the main transcription factor that 
mediates the activation of lipogenesis [50, 51]. USP7 
was involved in the progression of lipogenesis-associ-
ated HCC by interacting with and stabilizing ZNF638, 
which may selectively increase the cleavage of SREBP-
1c through AKT/mTORC1/S6K signaling pathway. The 
cleaved SREBP1c may transcriptionally activate lipogen-
esis-associated enzymes, including acetyl-CoA carboxy-
lase (ACC), FASN, and Stearoyl-CoA desaturase (SCD) 
[52]. USP10 was also reported to suppress lipid synthesis 
by forming a positive feedback loop with APMK under 
energy stress in CRC cells [38] (Fig. 3).

In addition to de novo fatty acid synthesis, DUBs are 
also involved in fatty acid oxidation. Elevated levels of 
USP18 was reported to promote lipolysis, increase fatty 
acid oxidation and augment lung cancer growth; fur-
ther investigation showed that USP18 directly stabilized 
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adipose triglyceride lipase (ATGL) protein by removing 
Interferon-Stimulated Gene 15 (ISG15) from the con-
jugated complex, and stabilized Uncoupling Protein 1 
(UCP1) via deubiquitination [53] (Fig. 3).

DUBs and glutamine metabolism
Glutamine, which is the most abundant amino acid in 
blood, belongs to a group of conditionally essential amino 
acids [54, 55]. Many cancer cells exhibit an increased 
dependence on exogenous glutamine and become glu-
tamine addicted [56]. Owing to glucose-derived pyruvate 
is mainly converted to lactate, glutamine is required for 
tumor cells to replenish the truncated TCA cycle through 
a process termed “anapleurosis” [28, 57–59]. Moreover, 
glutamine metabolism maintains mitochondrial integrity 
and NADPH levels needed for redox homeostasis and 
macromolecular synthesis [28, 57–59].

In human ovarian cancers, USP13 was frequently 
amplified and showed to be critical for glutamine cato-
bolism, and its depletion represses mitochondrial func-
tion [47]. USP13 may specifically deubiquitinates and 
thus upregulates oxoglutarate dehydrogenase (OGDH), a 
key enzyme that oxidizes α-KG to succinate [47]. In our 
recent study, USP29 played a key role in controling glu-
taminolysis in Burkitt’s lymphoma and Neuroblastoma 
[32]. USP29 deubiquitinates and stabilizes oncogenic 
MYC (including c-MYC and N-MYC), which directly 
activates the transcription of multiple genes involved in 
glutamine metabolism, including glutamate dehydroge-
nase 1(GLUD1), glutamic-oxaloacetic transaminase 2 

(GOT2) and glutamic–pyruvic transaminase1/2 (GPT1/
GPT2). These findings indicated that DUBs may play an 
important role in glutamine metabolism (Fig. 4).

DUBs and metabolism of non‑essential amino acids 
(NEAAs)
In addition to glutamine metabolism, accumulating evi-
dence suggested that other non-essential amino acids 
(NEAAs) may also play critical roles in the pathogenesis 
of cancer [60]. NEAAs may influence tumor progression 
through macromolecule biosynthesis, maintenance of 
redox homeostasis, and numerous allosteric and epige-
netic regulatory mechanisms [60].

Serine is involved in many crucial cellular processes, 
such as nucleotide synthesis, folate metabolism, and 
macromolecule synthesis [61]. Highly proliferative tumor 
cells exhibit strong demand for serine, which can be sat-
isfied by enhancing either import from the extracellular 
environment or de novo synthesis from glucose. Notably, 
enhancement of the serine synthesis pathway (SSP) is a 
major metabolic reprogramming event that is important 
for oncogenic transformation in many cancers [62–65]. 
In NSCLC, JOSD2 was also identified as a positive regu-
lator of SSP via deubiquitinating and stabilizing phos-
phoglycerate dehydrogenase (PHGDH), a key enzyme 
that drives the first committed step in de novo serine 
biosynthesis [29]. In colorectal cancer (CRC), USP7 was 
reported to promote serine deprivation resistance. Low 
concentration of cellular serine was found to suppress 
the expression of USP7 through an unknown mechanism 
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[66]. USP7 deubiquitinates and stabilizes Yes-associated 
protein (YAP), which activates downstream signaling 
pathways and promotes cell proliferation [66] (Fig. 4).

Solute carrier family 7 member 11 (SLC7A11, also 
called XCT), the catalytic subunit of the cystine/glu-
tamate amino acid transport system  Xc-, is the major 
transporter of extracellular cystine [67–69]. Intracel-
lular cystine is rapidly converted to cysteine, which 
subsequently serves as the rate-limiting precursor for 
glutathione synthesis [67–69]. Cystine depletion or drugs 
that block SLC7A11-mediated cystine uptake increase 
reactive oxygen species (ROS) and induce ferropto-
sis, which is an iron-dependent form of nonapoptotic 
cell death [70, 71]. BRCA1-associated protein 1 (BAP1) 
is a tumor suppressor gene with frequent inactivating 

mutations and deletions in human cancers [72]. Wildtype 
BAP1 was shown to inhibit cystine uptake, leading to 
ferroptosis and tumor suppression [73]. The mecha-
nistic studies revealed that BAP1 reduced histone 2A 
ubiquitination (H2Aub) on the SLC7A11 promoter and 
repressed SLC7A11 expression in a DUB-dependent 
manner [73]. OTUB1 (OTU deubiquitinase, ubiquitin 
aldehyde binding 1), which is overexpressed in a variety 
of human cancers, was shown to function as a major reg-
ulator for SLC7A11 stability [74]. OTUB1 interacted with 
and stabilized SLC7A11 in an enzyme activity-dependent 
manner. Functionally, the OTUB1-SLC7A11 axis was 
critical for tumor growth and OTUB1 inactivation pro-
motes ferroptosis in human cancer cells primarily by 
down-regulating SLC7A11 levels [74] (Fig. 4).
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Targeting DUBs for cancer therapy
Targeting the dysregulated cancer metabolism has been 
recognized as a promising strategy for cancer treatment 
and multiple inhibitors directly targeting key metabolic 
enzymes have been developed [6]. In principle, direct 
inhibition of wild-type metabolic enzymes could cause 
severe “on-target” toxicity to normal tissues, since nor-
mal cells also depend on the same metabolic machinery. 
However, given the fact that many DUBs were highly 
elevated in various cancers and considered as cancer 
biomarkers [20], it is conceivable that targeting the 
key upstream regulators of metabolic enzymes, such 
as DUBs, may become an alternative approach for can-
cer therapy. The clinical application of lenalidomide (a 
ligand of ubiquitin E3 ligase cereblon) and bortezomib 
(targeting proteasome) in the treatment of multiple 
myeloma has facilitated the development of small-
molecule inhibitors targeting other components of the 
ubiquitin proteasome system (UPS) [75]. Compared to 
E1 (Ub-activating enzymes) and E2 (Ub-conjugating), 
E3 ubiquitin ligases are more suitable targets for small-
molecule inhibitors due to specificity concerns [76]. 
Interestingly, most DUBs are cysteine enzymes, which 
are ideal targets for the development of small molecule 
inhibitors [77], and are likely to be more druggable than 
E3 ligases owing to the lack of defined catalytic residues 
in the latter [17]. Indeed, dozens of DUB inhibitors 
have shown promising results in the preclinical studies 
(Table 1).

USP1 inhibitors
USP1 was reported to play an oncogenic role in multiple 
cancers via diverse mechanisms [78–80]. USP1 is associ-
ated with UAF1 (WDR48, also named USP1 associated 
factor 1) in tumor cells, and this interaction is important 
for its cellular function. In prostate cancer, USP1 was 
reported to stabilize histone demethylase lysine-spe-
cific demethylase 4A (KDM4A) and indirectly activates 
the expression of C-MYC, which is a driver of deregu-
lated cancer metabolism; inhibition of USP1 by ML323, 
a nanomolar inhibitor of USP1-UAF1 with remarkable 
selectivity, caused a dramatic downregulation of C-MYC 
and sensitized cells to enzalutamide treatment [81, 82]. 
Moreover, ML323 was reported to potentiate cisplatin 
cytotoxicity in NSCLC and osteosarcoma cells [83], 
represses breast cancer metastasis [79] and promote CRC 
chemosensitivity [84]. SJB3-019A is an inhibitor that 
selectively blocks USP1 enzymatic activity, and treatment 
of multiple myeloma (MM) cells with SJB3-019A triggers 
apoptosis and downregulates MM stem cell renewal [85]. 
Similarly, SJB3-019A was also reported to repress cell 
proliferation and induce B-ALL cell apoptosis [86].

USP2 inhibitors
USP2 was responsible for stabilizing many tumor-asso-
ciated proteins, including FASN [48], mouse double 
minute 4 (MDM4)/MDMX [87, 88] and cyclin D1 [89]. 
ML364 is a small molucule inhibitor that directly binds to 
USP2. Ml364 was reported to induce cell cycle arrest in 
CRC and Mantle Cell Lymphoma [90] and dampen TGF-
β-triggered signaling and metastasis in HCC [91]. In 
breast cancers, ML364 potentiates the pro-degradation 
effects of HSP90 inhibitors on ErbB2 and hence sensitizes 
ErbB2-positive cells to HSP90 inhibition. The combina-
tion of USP2 and HSP90 inhibitors effectively restrains 
ErbB2-positive breast cancer xenograft growth in  vivo 
[92]. Lithocholic acid (LCA) derivatives were reported 
to function as USP inhibitors; lithocholic acid hydroxy-
amide (LCAHA), which is the most potent LCA deriva-
tive, was showed to inhibit USP2a (one isform of USP2) 
and arrest cell cycle [89].

USP7 inhibitors
USP7 plays comprehensive roles in cancers by regu-
lating both oncogenic drivers and tumor suppressors, 
such as N-MYC, HIF1α, Notch Receptor 1 (Notch1), 
MDM2, p53, and Phosphatase and Tensin Homolog 
(PTEN) [93]. Several small molecule inhibitors of USP7 
have been developed for cancer treatment, of which 
P5091 and P22077 were most widely studied. P5091, 
a tri-substituted thiophene with dichlorophenylthio, 
nitro, and acetyl substituents mediating anti-USP7 activ-
ity, was firstly reported to induce apoptosis in multiple 
myeloma cells resistant to conventional and bortezomib 
therapies [94], and then showed antitumor effect in 
various cancers, including CRC, ovarian cancer, blad-
der cancer, prostate cancer and HCC [95, 96]. In gastric 
cancer, depletion of USP7 by p5091 decreased PD-L1 
(Programmed Cell Death 1 Ligand 1, also known as 
CD274) expression and sensitized gastric cancer cells 
to T cell killing [97]. Moreover, p5091 was reported to 
significantly modulate the phenotype and function of 
M2  (CD11b+F4/80+CD86−CD206+) macrophages, and 
combinational treatment of p5091 and Programmed Cell 
Death 1 (PD1) antibody exerted synergistic anti-tumor 
effect in lung cancer [98]. These studies suggest that 
combinational therapy with specific DUB inhibitors and 
immune checkpoint inhibitors (e.g. PD-1/PD-L1 antibod-
ies) may become another innovative approach for cancer 
treatment in future. P22077, a selective inhibitor of USP7 
and the related protein USP47, was shown to induce 
cytotoxicity in chronic myelogenous leukemia (CML) 
cells with or without TKI resistance and eliminates leuke-
mia stem/progenitor cells in CML mice [85, 99]. P22077 
was also found to be able to overcome chemoresistance 
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in MYCN-amplified neuroblastoma, HCC and pancreatic 
cancer [87, 100, 101].

Inhibitors for proteasome‑associated DUBs
USP14, UCHL5 (Ubiquitin C-Terminal Hydrolase L5) 
and Rpn11 (Proteasome 26S Subunit, Non-ATPase 14, 
PSMD14, also known as Rpn11) are three proteasome-
associated DUBs. While Rpn11 is an integral part of 
the proteasome, association of USP14 and UCLH5 
with the 19S RP is transient [102]. Inhibition of protea-
some deubiquitinating activity is relatively a new cancer 
therapy strategy [103]. VLX1570, a dual USP14/UCHL5 

inhibitor, was reported to induce apoptosis of multiple 
myeloma cells [104]. VLX1570 was approved to undergo 
phase I clinical trial in patients with confirmed diagno-
sis of multiple myeloma with relapsed and/or refrac-
tory disease, but the clinical trial was suspended due to 
dose-limiting toxicity [105]. Interestingly, VLX1570 was 
also showed to induce cytotoxicity in Acute Lympho-
blastic Leukemia (ALL) [106, 107]. Auranofin, a gold-
containing compound clinically used to treat rheumatic 
arthritis, was recently approved for Phase II clinical trial 
to treat chronic lymphocytic leukemia (CLL) but its anti-
cancer mechanism is poorly understood. Auranofin was 

Table1 DUB inhibitors developed for cancer treatment

DUB Target Inhibitor Functions affected by 
the inhibitor

Cancer type Stage Refs.

USP1 PCNA and FANCD2 Pimozide Synthetic lethal with 
cisplatin

NSCLC Preclinical  [111]

PCNA and FANCD2 GW7647 Synthetic lethal with 
cisplatin

NSCLC Preclinical  [111]

ID1 C527 Growth inhibition multiple myeloma Preclinical  [112]

ID proteins SJB3-019A Inhibition of DNA Repair 
and triggering apoptosis

multiple myeloma and 
B-ALL

Preclinical  [85, 86]

PCNA,FANCD2 and 
KPNA2

ML323 DNA damage and sup-
pression of metastasis

Osteosarcoma, NSCLC 
and breast cancer

Preclinical  [79, 83]

USP2 cyclin D1 ML364 Cell cycle arrest CRC and Mantle Cell 
Lymphoma

Preclinical  [90]

cyclin D1 LCAHA G0/G1 arrest CRC Preclinical  [89]

FASN, MDM2, cyclin D1 
and Aurora-A

6TG Cell killing and drug 
resistance

BRCA2 defective tumours Preclinical  [113–115]

USP7 MDM2 HBX41108 Inhibition of Cell Prolifera-
tion

CRC Preclinical  [116]

SYK HBX19818 Cell death AML Preclinical  [117]

PLK1,Maf and N-MYC P5091 Cell cycle and cell death Multiple cancers Preclinical  [94, 118–120]

MDM2 GNE6640/6776 Synergy with PIM kinase 
inhibition

Breast cancer and Osteo-
sarcoma

Preclinical  [121]

MDM2 FT671/827 Inhibition of tumor 
growth

Osteosarcoma and CRC Preclinical  [122]

MDM2/MDM4 XL188 Cell death Ewing sarcoma Preclinical  [123, 124]

USP7/USP47 N-MYC, YB-1 et al P22077 Drug resistance Multiple cancers Preclinical  [99–101, 125–128]

USP9X Not reported Degrasyn Gemcitabine resistance Pancreatic cancer Preclinical  [129]

USP14 AR proteins IU1 Inhibition of proliferation Breast cancer Preclinical  [130]

USP14/UCHL5 CXCR4 VLX1570 ER Stress Multiple myeloma, ALL Preclinical  [104, 106, 131]

Proteasome Auranofin Apoptosis Multiple cancers Phase II  [108, 109]

UCHL1 TβRI and SMAD2 6RK73 Inhibition of migration 
and extravasation

Breast cancer Preclinical  [132]

CSN5 Cullin-RING E3 ubiquitin 
ligases

CSN5i-3 Inhibition of tumor 
growth

Large cell lymphoma 
and CRC 

Preclinical  [133]

RPN11 Proteins at the 19S pro-
teasome entry gate

O-phenanthroline Apoptosis Multiple myeloma Preclinical  [134]

Proteins at the 19S pro-
teasome entry gate

Quinoline-8-thiol ER stress CRC Preclinical  [110]

Pan DUBs Global protein stability PR-619 ER stress, G2/M cell cycle 
arrest and apoptosis

Multiple cancers Preclinical  [126, 135, 136]
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reported to induce cytotoxicity by targeting UCHL5/
USP14 in various cancers [108, 109]. Rpn11 is a member 
of the JAMM zinc metalloprotease family of DUBs and 
a catalytic subunit of the 19S regulatory particle of the 
proteasome. Capzimin, which was developed and opti-
mized based on the Rpn11 inhibitor Quinoline-8-thiol (1, 
8TQ), causes a broad inhibition of cancer cell prolifera-
tion [110].

Conclusion and perspective
DUBs have been shown to be involved in many aspects of 
metabolic processes, including glucose, glutamine, amino 
acids and fatty acids metabolism via regulating the meta-
bolic enzymes, transporters, transcription factors and/or 
signaling pathways, and to play important roles in tumori-
genesis and progression by modulating cancer cell metabo-
lism (Fig. 5). Despite tremendous progress have been made 
in the past decade, many important questions remain to be 
addressed in order to have a better understanding of the 
comprehensive roles of DUBs in cancer metabolism. For 

instance, the upstream regulatory mechanisms of DUBs 
and whether the cancer cell metabolic rewiring affects the 
expression or activity of DUB remain largely unknown. 
Systemic knockout of many DUBs did not exhibit obvious 
effect on the growth and development in animal models, 
but significantly inhibited tumorigenesis (e.g. USP29 and 
USP30), indicating that they may specifically function in 
cancer. Thus, it is urgent to analyze their protein structures 
and develop highly selective small molecule inhibitors 
against cancer. These studies will not only help us to fur-
ther characterize the DUBs associated with cancer metab-
olism, but also identify novel potent and cancer-specific 
DUB inhibitors for cancer target therapy. Moreover, it is 
conceivable that combinational therapy with specific DUB 
inhibitors and other types of target therapeutic agents (e.g. 
inhibitors targeting EGFR mutations) as well as immune 
checkpoints inhibitors (e.g. PD-1/PD-L1 antibodies) may 
become another innovative approach for cancer treatment 
in future.

Transporters Transcription factors Signaling pathways

Glucose
metabolism

Glutamine
metabolism

Amino acids
metabolism

Fatty acids
metabolism

Deubiquitylating Enzymes (DUBs)

Others
metabolism

Metabolic enzymes

Z

Y (TF)

X

(e.g. PKM2 and FASN) (e.g. SLC7A11) (e.g. C-MYC and HIF1α) (e.g. AKT/mTORC pathway)

Cancer Metabolism and Progression
Fig. 5 A schematic diagram illustrating the roles of DUBs in cancer metabolism and progression. DUBs are involved in multiple metabolic 
processes, including glucose, glutamine, amino acids and fatty acids metabolism through regulation of metabolic enzymes, transporters, 
transcription factors and signaling pathways, and play key roles in tumorigenesis and progression
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