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Age and diet shape the genetic 
architecture of body weight in diversity 
outbred mice
Kevin M Wright1†, Andrew G Deighan2, Andrea Di Francesco1, Adam Freund1, 
Vladimir Jojic1, Gary A Churchill2*, Anil Raj1*†

1Calico Life Sciences LLC, South San Francisco, United States; 2The Jackson 
Laboratory, Bar Harbor, United States

Abstract Understanding how genetic variation shapes a complex trait relies on accurately 
quantifying both the additive genetic and genotype–environment interaction effects in an age- 
dependent manner. We used a linear mixed model to quantify diet- dependent genetic contributions 
to body weight measured through adulthood in diversity outbred female mice under five diets. We 
observed that heritability of body weight declined with age under all diets, except the 40% calorie 
restriction diet. We identified 14 loci with age- dependent associations and 19 loci with age- and 
diet- dependent associations, with many diet- dependent loci previously linked to neurological func-
tion and behavior in mice or humans. We found their allelic effects to be dynamic with respect to 
genomic background, age, and diet, identifying several loci where distinct alleles affect body weight 
at different ages. These results enable us to more fully understand and predict the effectiveness of 
dietary intervention on overall health throughout age in distinct genetic backgrounds.

Editor's evaluation
This is an outstanding dissection of the genetic architecture of body weight at the genome- wide 
level across time and across environments. The use of a multiparental mouse population permits 
high- resolution mapping. The statistical analyses are advanced, leveraging new models, as well as 
tools developed specifically for this mouse population. The corresponding results are presented in 
nice and informative figures.

Introduction
Quantifying the contributions of genetic and environmental factors to population variation in an age- 
dependent phenotype is critical to understanding how phenotypes change over time and in response 
to external perturbations. The identification of genetic loci that are associated with a complex trait in 
an age- and environment- dependent manner allows us to elucidate the dynamics and context depen-
dence of the genetic architecture of the trait and facilitates trait prediction. For health- related traits, 
these genetic loci may also facilitate greater understanding and prediction of age- related disease 
etiology, which is an important step to genetically or pharmacologically manipulating these traits to 
improve health.

Standard approaches used to identify genetic loci associated with quantitative traits can be 
confounded by nonadditive genetic effects such as genotype–environment (G×E) and genotype–age 
(G×A) interactions (Robinson et al., 2017), contributing to the ‘missing heritability’ of quantitative 
traits (Sul et al., 2016). The linear statistical models routinely used in genetic mapping analyses do 
not account for variation in population structure between environments and polygenicity in G×E 
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interactions. Population structure can substantially increase the false- positive rate when testing for 
G×E associations (Moore et al., 2019). Furthermore, not accounting for polygenic G×E interactions 
has the potential to incorrectly estimate the heritability of quantitative traits in the context of specific 
environments (Sul et al., 2016). To address these limitations, recent efforts have generalized standard 
linear mixed models (LMMs) with multiple variance components that allow for polygenic G×E interac-
tions and environment- dependent residual variation (Sul et al., 2016; Runcie and Crawford, 2019; 
Moore et al., 2019; Dahl et al., 2020). Moreover, these LMMs substantially increase the power to 
discover genomic loci that are associated with phenotype in both an environment- independent and 
environment- dependent manner.

In this study, we used an LMM to investigate the classic quantitative trait, body weight, in a large 
population of diversity outbred (DO) mice. Body weight was measured longitudinally from early devel-
opment to late adulthood, before and after the imposition of dietary intervention at 6 months of age. 
We expect diet and age to be important factors affecting body weight and growth rate; however, it 
remains to be determined how these factors will interact with genetic variation to shape growth. Two 
early studies found significant genetic correlations for body weight and growth rate during the first 
10 weeks of mouse development, which supported the hypothesis that growth rates during early 
and late development were affected by pleiotropic loci (Cheverud et al., 1996; Riska et al., 1984). 
Subsequent experiments found that the heritability of body weight increased monotonically with age 
throughout development: from 29.3% to 76.1% between 1 and 10 weeks of age (Cheverud et al., 
1996), from 6% to 24% between 1 and 16 weeks of age (Gray et al., 2015), and from 9% to 32% 
between 5 and 13 weeks of age (Parker et al., 2016). The heritability of growth rate also varied with 
age, but exhibited a peak of 24% at 3 weeks of age and then declined to nearly 4% at 16 weeks of age 
(Gray et al., 2015). The strength of association and effect size of QTLs for body weight and growth 
rate were specific to early or late ages and were inconsistent with the hypothesis that pleiotropic 
alleles affect animal size at early and late developmental stages (Cheverud et al., 1996; Gray et al., 
2015). While these results are well supported, their interpretation is somewhat limited because body 
weight measurements ceased at young ages and significant QTLs encompassed fairly large chromo-
somal regions. Given these limitations, we were motivated to ask two questions: Will fine- mapping 
to greater resolution reveal single genes that function at either early or late developmental stages, or 
reveal multiple genes in tight linkage with variable age- specific effects? How will the effect of these 
loci change at later ages and under different diets?

eLife digest Body weight is one trait influenced by genes, age and environmental factors. 
Both internal and external environmental pressures are known to affect genetic variation over time. 
However, it is largely unknown how all factors – including age – interact to shape metabolism and 
bodyweight.

Wright et al. set out to quantify the interactions between genes and diet in ageing mice and found 
that the effect of genetics on mouse body weight changes with age. In the experiments, Wright et 
al. weighed 960 female mice with diverse genetic backgrounds, starting at two months of age into 
adulthood. The animals were randomized to different diets at six months of age. Some mice had 
unlimited food access, others received 20% or 40% less calories than a typical mouse diet, and some 
fasted one or two days per week.

Variations in their genetic background explained about 80% of differences in mice’s weight, but 
the influence of genetics relative to non- genetic factors decreased as they aged. Mice on the 40% 
calorie restriction diet were an exception to this rule and genetics accounted for 80% of their weight 
throughout adulthood, likely due to reduced influence from diet and reduced interactions between 
diet and genes. Several genes involved in metabolism, neurological function, or behavior, were asso-
ciated with mouse weight.

The experiments highlight the importance of considering interactions between genetics, environ-
ment, and age in determining complex traits like body weight. The results and the approaches used 
by Wright et al. may help other scientists learn more about how the genetic predisposition to disease 
changes with environmental stimuli and age.

https://doi.org/10.7554/eLife.64329
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We expect the interaction of dietary interventions, such as calorie restriction (CR) or intermittent 
fasting (IF), with genetics to greatly impact the body weight trajectories of mice. Researchers have 
observed genotype- dependent reductions in body weight in the 7–50 weeks after imposing a 40% CR 
diet, and variation in heritability of this trait with age from 42% to 54% (Rikke et al., 2006). A second 
study subjected a large genetic- mapping population to dietary intervention and identified multiple 
loci with significant genetic and genotype–diet interaction effects on body weight at 2–6 months of 
age (Vorobyev et al., 2019). These studies identified substantial diet- and age- dependent genetic 
variance for body weight in mice, similar to what has been found in humans (Robinson et al., 2017; 
Couto Alves et  al., 2019; Wang et  al., 2019). It, however, remains to be determined how the 

Figure 1. Study design and body weight data summaries. (A) Outline of study design. (B) Median (interquartile 
range) body weight in grams and (C) median (interquartile range) growth rate in grams per day for five dietary 
treatments from 60 to 660 days of age. Vertical gray dotted line denotes the onset of dietary intervention at 
180 days of age.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Raw phenotype measurements.

https://doi.org/10.7554/eLife.64329
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contribution of specific genetic loci to body weight changes in response to different dietary interven-
tions and whether the effects observed in younger mice are indicative of the maintenance of body 
weight in adult mice.

In order to address these questions, we measured the body weight of multiple cohorts of genetically 
diverse mice from the DO population (Svenson et al., 2012) from 60 to 660 days of age (Figure 1A). 
At 180 days of age, we randomized mice by body weight and assigned each mouse to one of five 
dietary regimes – ad libitum (AL), 20% and 40% daily CR, and 1 or 2 days per week IF. Longitudinal 
measurements of body weight in these DO mice allowed us to discover the age- dependent genetic 
determinants of body weight and growth rate in the context of different dietary interventions.

In the following sections, we first describe the study design and collection of the genetic and body 
weight measurements. Second, we motivate the use of the gene–environment mixed model (G×EMM) 
(Dahl et al., 2020) to model genetic associations in these data and give an overview of our analyses. 
We next use this model to identify genetic loci having additive or genotype–diet interaction effects 
on body weight. We fine- map candidate loci and determine the scope of pleiotropy for age- and 
diet- specific effects. We find many, but not all, loci are associated with body weight in a narrow age 
range and localize to small genomic regions, in some cases to single genes. We utilize the full genome 
sequence of the DO founders and external chromatin accessibility data to further narrow the genomic 
regions to a small number of candidate variants at each locus. Interestingly, many diet- specific body 
weight loci localize genes implicated in neurological function and behavior in mice or humans.

Results and discussion
Study design and measurements
The DO house mouse (Mus musculus) population was derived from eight inbred founder strains and is 
maintained at Jackson Labs as an outbred heterozygous population (Svenson et al., 2012). This study 
contains 960 female DO mice, sampled at generations: 22–24 and 26–28. There were two cohorts 
per generation for a total of 12 cohorts and 80 animals per cohort. Enrollment occurred in successive 
quarterly waves starting in March 2016 and continuing through November 2017.

A single female mouse per litter was enrolled into the study after wean age (3 weeks old), so that 
no mice in the study were siblings and maximum genetic diversity was achieved. Mice were housed 
in pressurized, individually ventilated cages at a density of eight animals per cage (cage assignments 
were random). Mice were subject to a 12 hr:12 hr light:dark cycle beginning at 06:00 hr. Animals exit 
the study upon death. All animal procedures were approved by the Animal Care and Use Committee 
at The Jackson Laboratory.

From enrollment until 6 months of age, all mice were on an AL diet of standard rodent chow 5KOG 
from LabDiet. At 6 months of age, each cage of eight animals was randomly assigned to one of five 
dietary treatments, with each cohort equally split between the five groups (N = 192/group): AL, 20% 
CR (20), 40% CR (40), 1 day per week fast (1D), and 2 days per week fast (2D) (see Figure 1A). In a 
previous internal study at the Jackson Laboratory, the average food consumption of female DO mice 
was estimated to be 3.43 g/day. Based on this observation, mice on 20% CR diet were given 2.75 g/
mouse/day and those on 40% CR diet were given 2.06 g/mouse/day. Food was weighed out for an 
entire cage of eight. Observation of the animals indicated that the distribution of food consumed was 
roughly equal among all mice in a cage across diet groups.

Mice on AL diet had unlimited food access; they were fed when the cage was changed once a 
week. In rare instances when the AL mice consumed all food before the end of the week, the grain was 
topped off midweek. Mice on 20% and 40% CR diets were fed daily. We gave them a triple feeding on 
Friday afternoon to last till Monday afternoon. As the number of these mice in each cage decreased 
over time, the amount of food given to each cage was adjusted to reflect the number of mice in that 
cage. Fasting was imposed weekly from Wednesday noon to Thursday noon for mice on 1D diet and 
Wednesday noon to Friday noon for mice on 2D diet. Mice on 1D and 2D diets have unlimited food 
access (similar to AL mice) on their nonfasting days.

From enrollment until 660 days of age, each animal underwent a number of phenotypic assays 
to assess a wide range of physiological health parameters. These included two 7- day stints in Sable 
Systems Promethion metabolic cages at 120 and 390  days of age, two blood draws at 160 and 
480 days of age, and one of each of the following challenge- based assays at 300–330 days of age: 

https://doi.org/10.7554/eLife.64329
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3- day stint in a cage with wheel, rotarod, grip strength, dual- energy X- ray absorptiometry, echocar-
diogram, Y- maze spontaneous alternation, and acoustic startle.

Body weight measurements
Body weight was measured once every week for each mouse throughout its life. The body weight 
measurements for this analysis were collated on February 1, 2020, at which point 941 mice (98%) had 
measurements at 180 days, 890 (93%) at 365 days, 813 (85%) at 550 days, and 719 (75%) at 660 days. 
For these analyses, we included all body weight measures for each mouse up to 660 days of age. 
We smoothed out measurement noise, either due to errors in measurement or swaps in assigning 
measurements to mice, using an  ℓ1  trend filtering algorithm (Kim et al., 2009), which calculates a 
piecewise linear trend line for body weight for each mouse over its measurement span. The degree 
of smoothing was learned by minimizing the error between the predicted fit and measurements at 
randomly held- out ages across all mice. In the rest of this article, body weight and growth rate refer 
to the predicted fits from  ℓ1  trend filtering.

We present the average trends in body weight and growth rate, stratified by dietary intervention, 
in Figure 1B and C, respectively. The body weight and growth rate trends without  ℓ1  trend filtering 
are presented in Figure 1—figure supplement 1. The most prominent observation from these trends 
is that dietary intervention contributes the most to variation in body weight in this mouse popula-
tion. After accounting for this source of variation, there remain substantial and different quantities of 
variation in body weight trends within the different dietary interventions, suggesting the existence of 
heteroscedastic noise or plausible G×D interaction effects on body weight trajectories.

Genotype measurements
We collected tail clippings and extracted DNA from 954 animals (http://agingmice.jax.org/protocols). 
Samples were genotyped using the 143,259- probe GigaMUGA array from the Illumina Infinium II 
platform (Morgan et al., 2015) by NeoGen Corp. (genomics.neogen.com/). We evaluated genotype 
quality using the R package: qtl2 (Broman et al., 2019). We processed all raw genotype data with 
a corrected physical map of the GigaMUGA array probes (https://kbroman.org/MUGAarrays/muga_ 
annotations.html). After filtering genetic markers for uniquely mapped probes, genotype quality, and 
a 20% genotype missingness threshold, our dataset contained 110,807 markers.

We next examined the genotype quality of individual animals. We found seven pairs of animals 
with identical genotypes, which suggested that one of each pair was mislabeled. We identified and 
removed a single mislabeled animal per pair by referencing the genetic data against coat color. Next, 
we removed a single sample with missingness in excess of 20%. The final quality assurance analysis 
found that all samples exhibited high consistency between tightly linked markers: log odds ratio error 
scores were less than 2.0 for all samples (Lincoln and Lander, 1992). The final set of genetic data 
consisted of 946 mice.

For each mouse, starting with its genotypes at the 110,807 markers and the genotypes of the 8 
founder strains at the same markers, we inferred the founders- of- origin for each of the alleles at each 
marker using the R package: qtl2 (Broman et al., 2019). This allowed us to test directly for association 
between founder- of- origin and phenotype (rather than allele dosage and phenotype, as is commonly 
done in QTL mapping) at all genotyped markers. Using the founder- of- origin of consecutive typed 
markers and the genotypes of untyped variants in the founder strains, we then imputed the genotypes 
of all untyped variants (34.5 million) in all 946 mice. Targeted association testing at imputed variants 
allowed us to fine- map QTLs to a resolution of 1–10 genes.

Motivating models for environment-dependent genetic architecture
Genome- wide QTL analyses in model organisms over the last decade have predominantly employed 
linear mixed models (e.g., EMMA Kang et al., 2008), FastLMM [Lippert et al., 2011], GREML [Yang 
et al., 2011], GEMMA [Zhou and Stephens, 2012], and LDSC [Bulik- Sullivan et al., 2015], expanding 
on the heuristic that samples sharing more of their genome have more correlated phenotypes than 
genetically independent samples. We found that the distributions of covariances in body weight, 
measured at 500 days of age, between animal pairs within the AL treatment were nearly indistinguish-
able when we partition pairs into high- kinship (>0.2) and low- kinship groups (Figure 2, no significant 
separation between solid and dashed red lines). However, animal pairs in the 40% CR treatment 

https://doi.org/10.7554/eLife.64329
http://agingmice.jax.org/protocols
https://www.neogen.com/en-gb/
https://kbroman.org/MUGAarrays/muga_annotations.html
https://kbroman.org/MUGAarrays/muga_annotations.html


 Research article      Genetics and Genomics

Wright et al. eLife 2022;11:e64329. DOI: https://doi.org/10.7554/eLife.64329  6 of 29

exhibited significantly lower covariance in body weight in the low- kinship group compared to the 
high- kinship group (Figure  2, significant separation between solid and dashed orange lines). This 
observation suggests that the genetic contribution to body weight is different in distinct dietary envi-
ronments. This observation also motivates the use of recently developed generalized linear mixed 
models to conduct genome- wide QTL analysis because they more fully account for environment- 
dependent genetic variances, reduce false- positive rates, and increase statistical power (Yang et al., 
2011; Sul et al., 2016; Runcie and Crawford, 2019; Moore et al., 2019; Dahl et al., 2020).

Simulations
To evaluate the accuracy of G×EMM and compare it against standard linear mixed models like EMMA 
(Kang et al., 2008), we simulated phenotypic variation under a broad range of values for proportion 
of phenotypic variance explained by genetics (PVE) in each of two environments. For all simulations, 
we fixed the total sample size to  N = 946  and used the observed kinship matrix for the 946 DO mice 
in this study. For these simulations, the environment- specific genetic contribution  PVEe , environment- 
specific noise  σ

2
e  , and the relative distribution of samples between environments are the tunable 

parameters. In order to explore how the two models behaved under a wide range of conditions, 
we varied  PVEe ∈ {0.05, 0.10, . . . , 0.95} , fixed  σ

2
e1 = σ2

e2 = 1.0 , and assigned samples to environments 
either at a 1:1 ratio or a 4:1 ratio (i.e., a total of 114 parameter values). For each setting of the tunable 
parameter values, we ran 50 replicate simulations and in each simulation, we randomly assigned 
samples to one of the two environments. Given the environment assignments, kinship matrix, and the 
set of tunable parameter values for each simulation, we computed the environment- specific genetic 
variance using Equation 13, Equation 14, and Equation 15. Next, we generated the vector of pheno-
types from a multivariate normal distribution with zero mean and covariance structure dependent 
upon the observed kinship matrix, environment assignments, tunable parameter settings, and the 
environment- specific genetic variance for each environment. Using the simulated phenotypes, we 

Figure 2. Illustrating diet- dependent association between genetic and phenotypic similarities. Phenotypic 
divergence between animal pairs is quantified by the covariance in body weight at 500 days of age. We plot 
the cumulative density of body weight covariance for all pairs of animals in the ad libitum (AL) and 40% calorie 
restriction (CR) dietary treatments, partitioned into high- kinship (>0.2) or low- kinship groups. We test for 
separability between the high- and low- kinship distributions using the Mann–Whitney U test, and report p- values 
from this test. The reported area under the curve (AUC) is a standard transformation of the Mann- Whitney U test 
statistic.

https://doi.org/10.7554/eLife.64329
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computed estimates of  PVEtot  under both the EMMA and G×EMM models and estimates of  PVEe  
under the G×EMM model.

We first evaluated the accuracy of  PVEtot  estimated from the two models and found that the 
G×EMM model estimated total PVE with little bias and lower variance compared to EMMA in nearly 
all simulations across the suite of parameter combinations that we investigated (Figure 3A and B). In 
particular, we found that EMMA substantially underestimated the total PVE in comparison to G×EMM 
when samples were equally distributed between environments and there was substantial difference in 
PVE or noise between environments. This is because  PVEe  will have a greater impact on  PVEtot  when 
both environments are more equally represented in the study sample.

Next, we examined the sensitivity and specificity of the G×EMM model to quantify environment- 
specific genetic contribution to phenotypic variance. We found that when samples were equally 
distributed between environments, G×EMM accurately estimates  PVEe  under a wide range of param-
eter values (Figure 3C). When there was a skew in the number of samples between environments, 
the  PVEe  estimate for the environment with the larger sample size was as accurate as when there 
was no skew in sample size (similar to Figure 3C, result not shown). In contrast, the  PVEe  estimate 
for the environment with the smaller sample size was more variable and the median  PVEe  estimates 
were consistently lower than the true  PVEe  (Figure  3D). Finally, we observed that increasing the 
environment- specific noise terms,  σ

2
e1  and  σ

2
e2 , increased the variance of our estimates of  PVEe  but 

introduced little bias (results not shown).
Overall, the G×EMM model outperforms the EMMA model in estimating total PVE and shows little 

bias in estimating environment- specific PVE across a broad range of scenarios relevant to our study.

Overview of analyses
Starting with body weight measurements in 959 mice from 30 to 660 days of age, and founder- of- 
origin alleles inferred at 110,807 markers in 946 mice, we first quantified how the heritability of body 
weight and growth rate changes with age and between dietary contexts. We used the G×EMM model 
(described in detail in ‘Materials and methods’) to account for both additive environment- dependent 
fixed effects and polygenic gene–environment interactions. We considered two different types of 
environments: diet and generation. The five diet groups were applied from 180 to 660 days and the 
12 generations were applied from 30 to 660 days. Next, we performed genome- wide QTL mapping 
for body weight at each age independently, testing for association between body weight and the 
inferred founder- of- origin at each genotyped marker. For ages 180–660 days, we additionally tested 
for association between body weight and the interaction of diet and founder- of- origin at each marker. 
We computed p- values using a sequential permutation procedure (Besag and Clifford, 1991; Shim 
and Stephens, 2015) at each variant for each of the additive and interaction tests and used these to 
assign significance (Abney, 2015). Finally, for each significant locus, we performed fine- mapping to 
identify the putative causal variants and founder alleles driving body weight and underlying functional 
elements (genes and regulatory elements) to ascertain the possible mechanisms by which these vari-
ants act.

PVE of body weight across age and diet
First, we quantified the overall contribution of genetics to variation in body weight and, importantly, 
how this contribution changed with age. We applied both EMMA and G×EMM to body weight esti-
mated every 10 days. Since the mice from each generation cohort were measured at the same time 
every week, we used generation as a proxy for the shared environment that mice are exposed to as 
part of the study design. We accounted for generation- specific fixed effects (α in Equation 1) in both 
models and genotype- generation random effects (γ) in G×EMM. For ages after dietary intervention 
( ≥ 180  days), we additionally accounted for diet- specific fixed effects in both models and genotype- 
diet random effects in G×EMM. We estimated the variance components in the model at each age 
independently and computed the total and diet- dependent PVE using Equation 7 and Equation 13.

In Figure 4A, we observed that the PVE of body weight steadily increased during early adulthood 
and up to 180 days of age, when dietary intervention was imposed. The G×EMM model estimates 
a higher PVE than the EMMA model during this age interval because the former model specifically 
accounts for polygenic genotype- generation effects. Following dietary intervention, PVE decreased in 
four of the five dietary groups; the one exception was the 40% CR group, which maintained a high PVE 

https://doi.org/10.7554/eLife.64329
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Figure 3. Evaluating gene–environment mixed mode (G×EMM) and EMMA using simulated datasets. (A). Comparison of true  PVEtot  to that estimated 
from EMMA (left panel) and G×EMM (right panel). Simulations were run with an equal number of samples in each environment ( Ne1 = Ne2 ) and 
with the same value for the environment- specific error terms ( σ

2
e1 = σ2

e2 = 1 ). (B). Same as (A) but with a 4:1 ratio of samples between environments 
( Ne1 = 4 × Ne2 ). (C). Plot of the true  PVEe2  vs. the G×EMM estimate of  PVEe2 . Gray points are the results of individual simulations, orange lines 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.64329
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( PVE40 ≈ 0.8 ) (Figure 4A) and low total phenotypic variance (Figure 4—figure supplement 3A, top- 
right panel) from 180 to 660 days of age. In contrast, the AL group had the lowest PVE and greatest 
total phenotypic variance in the same age range. Notably,  ℓ1  trend filtering of the raw measurements 
proved useful in quantifying smoothly varying trends in the PVE of body weight and growth rate, 
and improving our estimates of the PVE of growth rate by reducing the effect of measurement noise 
(Figure 4—figure supplement 1). Moreover, these results were robust to variation in the genetic data 
used to calculate the kinship matrix and to survival bias at 660 days of age.

The kinship matrix used for estimating these PVE values was computed based on the founder- of- 
origin of marker variants (Aylor et al., 2011). When using kinship estimated using biallelic marker 
genotypes (as is commonly done in genome- wide association studies [GWAS]), we observed largely 
similar trends in PVE; however, differences in PVE between diets after 400 days were harder to discern 
due to much larger standard errors for the estimates (Figure 4—figure supplement 3A, left panels). 
To test for bias or calibration errors in our PVE estimates, we randomly permuted the body weight 
trends between mice in the same diet group and recalculated the total and diet- dependent PVE 
values. Consistent with our expectations, PVE dropped to nearly zero for the permuted dataset 
(Figure 4—figure supplement 3B, left panel), indicating that the PVE estimates are well- calibrated. 
Finally, to evaluate the contribution of survival bias to our estimates, we recomputed PVE at all ages 
after restricting the dataset to mice that were alive at 660 days. We observed PVE estimates largely 
similar to those computed from the full dataset, suggesting very little contribution of survival bias to 
our estimates (Figure 4—figure supplement 3C).

When using kinship computed from genotypes, we note that the PVE in the permuted dataset does 
not drop to zero, suggesting that genotype- based kinship includes some background relatedness 
that can explain some of the phenotypic variation even after permuting the labels (Figure 4—figure 
supplement 3B, right panel). The genotype- based kinship includes two components: the genetic 
sharing between the founder strains and the genetic sharing arising from the breeding strategy used 
to develop the DO panel. Randomly permuting the phenotype labels breaks the link between pheno-
typic similarity and the latter component of genotype- based kinship, but does not effectively break 
the link with the former component. Kinship computed using the founder allele probabilities explic-
itly includes only the latter component; this component explains little phenotypic variation once the 
phenotype labels are randomly permuted.

Next, we quantified the age- dependent contribution of genetics to variation in growth rate, 
enabled by the dense temporal measurement of body weight. As before, we applied EMMA and 
G×EMM to growth rate estimated every 10 days. In Figure 4B, we observed that PVE of growth rate 
increases rapidly during early adulthood, and then decreases to negligible values around 240 days of 
age. In contrast to body weight, PVE of growth rate is substantially lower at all ages, and there is little 
divergence in PVE across diet groups for most ages. Notably, the decrease and subsequent increase 
in growth rate PVE coincide with specific metabolic, hematological, and physiological phenotyping 
procedures that these mice underwent at specific ages as part of the study (Figure 1—figure supple-
ment 1). Due to lower values and greater variance in PVE of growth rate with age, we focus on body 
weight throughout the rest of the article.

In summary, the 40% CR intervention produced the greatest reduction in average body weight 
and maintained a high PVE after dietary intervention. This is because the genetic variance in body 
weight remained relatively high and the environmental variance remained relatively low throughout 
this interval. In contrast, body weight PVE steadily decreased with age in each of the four less restric-
tive diets, which was due to a steady increase in noise (nongenetic variance) and not a decrease in the 
genetic variance of body weight (Figure 4—figure supplement 3A). Even though the genetic vari-
ance in body weight is nearly constant across diets from 180 to 660 days of age, the effect of specific 
variants may change with age.

denote the median and 95% interquartile range (IQR). The three panels differ in the true proportion of phenotypic variance explained by genetics 
(PVE) specific to environment 1,  PVEe1 ∈ {0.2, 0.5, 0.8} . Simulations were run with an equal number of samples in each environment ( Ne1 = Ne2 ) and 
with the same value for the environment- specific error terms ( σ

2
e1 = σ2

e2 = 1 ). (D). Same as (C) but with a 4:1 ratio of samples between environments 
( Ne1 = 4 × Ne2 ).

Figure 3 continued

https://doi.org/10.7554/eLife.64329
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Figure 4. Proportion of phenotypic variance explained by genetics. (A) Body weight proportion of phenotypic variance explained by genetics (PVE) 
(± SE) for 30–660 days of age. Total PVE estimates are derived from the EMMA (light gray) and gene–environment mixed mode (G×EMM) (dark gray) 
models. Diet- dependent PVE values were derived from the G×EMM model. Dotted vertical line at 180 days depicts the time at which all animals were 
switched to their assigned diets. (B) Growth rate PVE; details the same as (A).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Proportion of phenotypic variance explained by genetics (PVE) using raw measurements.

Figure supplement 2. Proportion of phenotypic variance explained by genetics (PVE) overlayed with phenotyping.

Figure supplement 3. Sensitivity of proportion of phenotypic variance explained by genetics (PVE).

Figure supplement 4. Proportion of phenotypic variance explained by genetics (PVE) with no constraints on variance components.

Figure supplement 5. Proportion of phenotypic variance explained by genetics (PVE) comparing full and diagonal  Ω .

Figure supplement 6. Proportion of phenotypic variance explained by genetics (PVE) decomposition.

https://doi.org/10.7554/eLife.64329
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Genome-wide QTL analysis of body weight across age and diet
We sought to identify loci significantly associated with body weight in a diet- dependent and age- 
dependent manner. To this end, we tested for association between the inferred founder- of- origin of 
each typed variant and body weight at each age independently. We note that body weight measure-
ments taken at different ages are not independent; that is, we may detect a locus at a specific age if 
it has small effects on body weight acting over a long period of time or a large effect on body weight, 
resulting in rapid bursts in growth. Thus, a locus identified as significant at a specific age indicates its 
cumulative contribution to body weight at that age.

We identified 29 loci significantly associated with body weight at any age in the additive or inter-
action models using a genome- wide Bonferroni- corrected  p ≤ 10−4

  threshold for both the additive 
and the genotype–diet interaction tests (Figure 5—figure supplement 1). Additionally, we report 
suggestive genotype–diet interaction QTLs using a weaker threshold of  p ≤ 10−3

 . The Bonferroni 
correction was computed based on the expected number of linkage- disequilibrium (LD) blocks in 
our dataset; as a proxy for the number of LD blocks, we used the number of top eigenvalues of the 
LD matrix between genotyped variants that explained at least 90% of the variance across markers. 
This threshold also corresponds to a 10% variant- level expected false discovery rate, using the 
Benjamini–Hochberg method (Benjamini and Hochberg, 1995). In order to focus on highly signifi-
cant associations, we also used the number of eigenvalues explaining 99.5% of the variance across 
markers (Gao et al., 2010), resulting in a more stringent threshold of  p ≤ 1.1 × 10−5

  (see Table 1). 
Notably, these thresholds hold for the interaction tests as well because we have only one test per 
marker. Using all biallelic variants imputed from the complete genome sequences of the eight DO 
founder strains (Keane et  al., 2011), we retested the genetic association for the 29 candidate 
loci with the additive and interaction models. Specifically, we tested for association between all 
imputed genotype variants and body weight, accounting for kinship estimated using founder- of- 
origin inferred at genotyped variants as before (see file “ emma_ vs_ gxemm. xlsx” in Data Release: 
Results for a comparison of the number of significant loci with those obtained using the EMMA 
model).

Our fine- mapping analysis confirmed 24 candidate loci: 5 loci unique to the additive model, 10 
loci unique to the interaction model, and 9 loci significant in both models (Table 1). We identified 
body weight associations with age- dependent effects from early adulthood to adulthood: four 
diet- independent loci were associated with body weight exclusively during early adulthood (ages 
60–160  days) and three were associated exclusively during adulthood (ages 200–660  days); the 
remaining seven loci were associated prior to the imposition of dietary restriction at day 180 and 
continued to be associated into adulthood (Table 1). The majority of diet- dependent loci (12 of 19) had 
a detectable effect on body weight at least 240 days after dietary intervention (ages 420–660 days; 
Table 1). For each candidate body weight locus, we sought to determine the likely set of causal vari-
ants and estimate the effect of the eight founder alleles in a diet- and age- dependent manner.

Improved mapping resolution with founder allele patterns
In order to facilitate characterization and interpretation of the genetic associations at each locus, we 
sought to represent these associations in terms of the effects of founder haplotypes (Zhang et al., 
2022). First, we determined the founder- of- origin for each allele at every variant that was significant 
in at least one age. This allowed us to assign a founder allele pattern (FAP) to each significant variant 
in the locus. For example, if a variant with alleles A/G had allele A in founders AJ, NZO, and PWK and 
the allele G in the other five founders, then we assign A to be the minor allele of this variant and define 
the FAP of the variant to be AJ/NZO/PWK. Next, we grouped variants based on FAP and define the 
logarithm of the odds (LOD) score of the FAP group to be the largest LOD score among its constit-
uent variants. (Note that, by definition, no variant can be a member of more than one FAP group.) 
By focusing on the FAP groups with the largest LOD scores, we significantly reduced the number of 
putative causal variants (Table 1, see file  all_ significant_ snps. csv in Data Release: Results), while repre-
senting the age- and diet- dependent effects of these loci in terms of the effects of its top FAP groups. 
We further narrowed the number of candidates by intersecting the variants in top FAP groups with 
functional annotations (e.g., gene annotations, regulatory elements, tissue- specific regulatory activity, 
etc.). For many loci, this procedure identified candidate regions containing 1–3 genes (Table 1), and 
we provide the full list of all genes within candidate regions in the file  all_ significant_ genes. csv in Data 

https://doi.org/10.7554/eLife.64329
https://doi.org/10.6084/m9.figshare.13190708
https://doi.org/10.6084/m9.figshare.13190708
https://doi.org/10.6084/m9.figshare.13190708
https://doi.org/10.6084/m9.figshare.13190708
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Table 1. Candidate diet- independent and diet- dependent body weight loci.
For each locus, we identified the variant with the lowest p- value at any age, the founder allele pattern (FAP) of this variant, the 
number of significant variants that comprise this lead FAP, the genomic positions spanning these significant FAP variants, and all 
ages for which at least one FAP variant is associated with body weight. For loci in which the lead FAP is comprised of fewer than 10 
significant variants, we also present results for the second FAP. We list candidate genes for loci where the FAP spans three or fewer 
genes. Highly significant associations ( p ≤ 1.1 × 10−5

 ) are denoted with ***, significant associations ( p ≤ 10−4
 ) with **, and suggestive 

associations ( p ≤ 10−3
 ) with *.

FAP position (Mb) Significant variants

Significant age 
range (days)

Age- 
dependent 
nonlinearity

Lead 
candidate 
genes (if ≤3)Chrm

Founder Allele 
Pattern (FAP)

FAP 
rank p- Value Start End Total

Open 
chromatin

Diet- independent

1

AJ/NOD 1 3.24E- 05 ** 152.046626 152.046626 1 1 60

1.44E- 05

Trmt1l, Edem3

AJ/NOD/129 2 3.05E- 05 ** 151.473677 152.280212 58 10 60 —

2 129/CAST/PWK 1 2.17E- 05 ** 77.154962 77.357295 80 8 120–360 2.83E- 09
Ccdc141, 
Sestd1

3
AJ/NOD/NZO/
CAST 1 1.89E- 05 ** 50.533599 50.595073 55 — 200–260 5.03E- 12 Slc7a11

4

AJ 1 6.81E- 06 *** 58.950364 60.267128 5 2 260–360

3.82E- 19

Ugcg

PWK/WSB 2 2.80E- 05 ** 59.461248 59.981846 39 3 100–300 —

6 AJ/NOD 1 2.75E- 07 *** 53.61761 55.555977 89 2 60–200 1.55E- 26 Creb5

7 B6/CAST 1 4.20E- 06 *** 71.375007 72.786849 47 1 80–160 2.48E- 11 Mctp2

7
AJ/129/NZO/
PWK 1 5.70E- 06 *** 134.08785 134.704465 20 2 80–200 9.17E- 10 Adam12

10

129/NZO/PWK/
WSB 1 4.99E- 06 *** 9.078054 9.078054 1 — 540–660

9.52E- 06

Samd5

129/NZO/WSB 2 2.25E- 05 ** 8.903387 9.092694 10 2 540 Sash1, Samd5

10 CAST/PWK 1 5.98E- 06 *** 91.163191 91.905287 2,779 81 120–660 4.09E- 10 Anks1b, Apaf1

11

AJ/NZO/PWK/
CAST 1 5.89E- 05 ** 58.155424 58.155424 1 — 80

2.35E- 05

—

B6/CAST 2 4.91E- 05 ** 56.985645 59.035309 603 70 80–100 —

12 NZO/CAST 1 6.47E- 05 ** 99.520559 99.907182 43 3 160–260 3.83E- 12 Foxn3

15 B6/129/NZO 1 4.77E- 07 *** 99.390603 99.65295 92 20 260–600 1.50E- 13
Aqp2, Aqp5, 
Aqp6

17 AJ/NOD/WSB 1 8.56E- 06 *** 6.753277 8.85311 149 11 60–420 1.23E- 10 Pde10a

19
AJ/129/NZO/
PWK 1 7.90E- 05 ** 23.025043 23.17612 58 14 80–120 4.46E- 09 Trpm3, Klf9

Diet- dependent

1 NOD/CAST 1 4.89E- 04 * 151.032114 153.716837 28 3 360–660 3.32E- 04 —

2
AJ/CAST/PWK/
WSB 1 7.74E- 04 * 22.192222 22.78664 86 8 480 1.32E- 04 —

2 PWK 1 3.34E- 04 * 73.590142 75.371564 1,672 44 280–300 4.62E- 03 —

3
NOD/CAST/
PWK/WSB 1 3.87E- 05 ** 50.184746 50.419821 5 — 420–660 7.90E- 04 Slc7a11

3 B6/PWK 1 8.29E- 05 ** 156.74554 156.74554 1 — 660 1.60E- 05 Negr1

129/CAST/WSB 2 7.33E- 04 * 156.133466 156.387825 170 8 660 —

Table 1 continued on next page
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Release: Results. In order to demonstrate the utility of this approach, we first examined a single locus 
on chromosome 6 strongly associated under the additive model.

We used this approach to examine a diet- independent locus on chromosome 6 significantly asso-
ciated with body weight during early adulthood (Figure 5A). Interestingly, this same locus was nomi-
nally associated with body weight in certain dietary treatments at later ages. We hypothesized that 
the functional variant(s) responsible for the diet- dependent body weight association at this locus are 
among the variants in the respective lead FAP groups because they exhibit the strongest statistical 
association and it is unlikely any additional variants are segregating in this genomic interval beyond 
those identified in the full genome sequences of the eight founder strains. For the diet- independent 
locus, at age 120, we identified 87 significantly associated variants; of these, 79 could be assigned 
to the lead FAP group and shared a similarly high LOD score (Figure 5B). All of these variants are 
single- nucleotide polymorphisms (SNPs located in the gene Creb5, 78 are intronic and 1 a synon-
ymous exon variant). For the diet- dependent locus, at age 600 days, we identified 617 variants as 
significant; of these, 507 could be assigned to the lead FAP and shared a similarly high LOD score 
(Figure 5D). Also, 2 of the 507 variants were intergenic structural variants; of the remaining SNPs, 5 
were noncoding exon variants, 167 were intronic, and the remainder were intergenic. Given that all 
candidate variants were noncoding, we next sought to determine whether they were located in regu-
latory elements across a number of tissues, identified as regions of open chromatin measured using 
ATAC- seq (Cusanovich et al., 2018) or DNase- seq (Gorkin et al., 2020) (see file " chromatin_ accessi-
bility_ celltypes. xlsx" in Data Release: Results for a description of the cell types for each of the assays, 
and their grouping into tissues). For the diet- independent and diet- dependent loci, we found 2 and 
101 variants, respectively, that were located in regions of open chromatin (Figure 5C and E). Notably, 
both variants with diet- independent effects lay within the same muscle- specific regulatory element 

FAP position (Mb) Significant variants

Significant age 
range (days)

Age- 
dependent 
nonlinearity

Lead 
candidate 
genes (if ≤3)Chrm

Founder Allele 
Pattern (FAP)

FAP 
rank p- Value Start End Total

Open 
chromatin

4

129/NOD/PWK 1 9.61E- 04 * 57.696301 57.84652 10 1 200

5.10E- 07

Palm2, Pakap, 
Akap2

NOD 2 9.76E- 04 * 57.669827 57.669827 1 — 200 —

5 NOD 1 3.88E- 05 ** 19.213904 21.57007 153 16 420–660 2.26E- 03 Magi2, Ptpn12

5 PWK 1 5.84E- 04 * 68.986655 70.490341 277 — 360–480 2.28E- 03 Kctd8

5

AJ/129/NOD/
WSB 1 4.00E- 05 ** 117.543498 118.050453 7 — 480–540

1.55E- 03

—

B6/CAST/PWK 2 1.04E- 04 * 116.797769 118.270745 69 10 360–600 —

6 B6/CAST/PWK 1 1.04E- 04 * 54.146132 55.452827 507 101 540–660 7.51E- 04 Ghrhr

6 B6/CAST 1 1.68E- 05 ** 139.190506 140.141694 111 5 240–420 9.63E- 03 Pik3c2g

7 NZO/PWK 1 9.60E- 04 * 133.838117 133.924023 218 3 420 3.19E- 07 Adam12

12

AJ/B6 1 6.29E- 04 * 78.06102 79.734912 10 2 420–540

4.23E- 04

Gphn

WSB 2 9.84E- 04 * 78.107988 78.932842 122 8 360–420 Gphn

12
AJ/CAST/PWK/
WSB 1 3.53E- 04 * 102.447268 102.56532 43 4 420–480 2.59E- 05 —

13 NZO/WSB 1 1.00E- 04 ** 117.100864 118.777463 99 1 200–300 1.14E- 03 Fgf10

15 AJ/129/NOD 1 3.52E- 04 * 10.738034 12.040137 53 4 240–300 1.27E- 04 —

17 B6/129/NZO 1 7.52E- 04 * 6.755865 7.598818 26 3 300–360 3.23E- 03 —

18 129/CAST 1 3.86E- 04 * 71.36087 71.58844 16 1 480–540 6.92E- 03 Dcc

19 AJ/B6/WSB 1 1.24E- 04 * 21.806665 22.051277 32 1 220–300 3.54E- 03 —

Table 1 continued
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Figure 5. Distinct founder allele patterns (FAPs) contribute to diet- independent and diet- dependent effects 
on body weight within a region on chromosome 6. (A) Manhattan plots of additive genetic associations and 
genotype–diet associations on chromosome 6 at multiple ages. (B, D) Fine- mapping loci associated with body 
weight: diet- independent association at 120 days of age and diet- dependent association at 600 days of age. Solid 

Figure 5 continued on next page
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located within Creb5, suggesting that these variants likely affected body weight by regulating gene 
expression in muscle cells.

Next, we identified a locus on chromosome 12 with strong diet- dependent effects on body weight 
from 300 to 420 days of age (Table 1; Figure 6). Upon fine- mapping the locus with the strongest asso-
ciation, at 420 days of age, we identified 77 significant variants partitioning into two distinct lead FAP 
groups, with similarly high LOD scores and centered at the same gene (Figure 6A and B). The rank 
1 FAP group contained variants with the minor allele specific to AJ and B6, whereas the rank 2 FAP 
group contained variants with the minor allele specific to WSB (Figure 6A). We found that the minor 
allele of the lead imputed variant in the AJ/B6 FAP group was associated with increased body weight 
in the 2D fasting diet, but had little effect on the other four diets (Figure 6C). In contrast, the minor 
allele of the lead imputed variant from the WSB- specific FAP group had the largest positive effect on 
body weight in the AL and 1D fast diet and largest negative effect on body weight in the 40% CR 
diet (Figure 6C). The striking difference in diet- specific effects for WSB and AJ/B6 alleles suggests 
that there are multiple functional variants affecting body weight at this locus (e.g., allelic heteroge-
neity; Singh, 2013). Of the 77 variants, the AJ/B6 FAP group contained six intergenic SNPs and four 
intronic SNPs spanning three genes: Gphn (gephyrin), Plekhh1, and Rad51b (Figure 6A). One of these 
10 variants is located in a regulatory element active specifically in adipose tissue. The remaining 67 
significant variants all belonged to the WSB- specific FAP group; of these, 23 SNPs were intergenic and 
44 were intronic and centered at the gephyrin gene. Also, 4 of these 67 variants were located in regu-
latory elements active in adipose tissue as well as other tissues relevant to metabolism (Figure 6D).

No evidence for pleiotropic alleles affecting diet-independent and 
dependent effects
We identified a diet- independent locus on chromosome 6 significantly associated with body weight 
during early adulthood and nominally associated with body weight in certain dietary treatments at 
later ages (Figure 5A). One explanation for this result is a single pleiotropic allele affecting body 
weight at two distinct stages of life: early adulthood and mid- late adulthood. Alternatively, this result 
could be explained by multiple alleles at a single locus (perhaps similar to the allelic heterogeneity 
observed in Figure 6) or multiple loci in tight LD. Fine- mapping this locus using the additive model, we 
identified the variant with the highest LOD score to be at 53.6 Mb. The minor allele at this lead variant 
was common to the AJ and NOD founders, while the remaining six founders possessed the alternate 
allele; this defined the lead diet- independent FAP at this locus to be AJ/NOD (Figure 5B). Separately, 
we fine- mapped this locus using the interaction model, identified the lead variant at 55.1 Mb, and 
determined the lead FAP to be B6/CAST/PWK (Figure 5D). These results do not support the plei-
otropy hypothesis and were consistent with the hypothesis that distinct body weight alleles derived 
from different DO founders were responsible for the diet- dependent and diet- independent body 
weight associations.

We next fine- mapped other QTLs that had diet- dependent and diet- independent associations 
located in adjacent genomic regions to assess whether the associations were due to a single pleio-
tropic allele or, as we found on chromosome 6 (Figure 5B and D), the additive and interaction effects 

circles indicate significant variants. Colors denote variants with shared FAPs; ranks 1, 2, and 3 by logarithm of the 
odds (LOD) score are colored red, orange, and yellow, respectively. (C, E) Significant variants, colored by their FAP 
group, along with the gene models (shown in blue) and the tissue- specific activity of regulatory elements near 
these variants (shown in gray). Significant variants that lie within regulatory elements are highlighted as diamonds, 
and regulatory elements that contain a significant variant are highlighted in black.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Age- and diet- dependent Manhattan plots for body weight, with gene–environment mixed 
mode (G×EMM).

Figure supplement 2. Age- and diet- dependent Manhattan plots for body weight, with EMMA.

Figure supplement 3. Loci with significant diet- independent and diet- dependent associations with body weight.

Figure supplement 4. Distinct founder allele patterns (FAPs) drive diet- independent and diet- dependent 
associations with body weight at various loci.

Figure 5 continued
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were due to distinct alleles. Of the eight additional diet- dependent and diet- independent associations 
that colocalized to the same genomic region (Table 1), all of them were consistent with the hypoth-
esis that distinct FAPs rather than a single pleiotropic allele were responsible for diet- dependent and 
diet- independent associations. The first six loci were located in adjacent genomic regions (Figure 5—
figure supplement 3). The remaining two loci were composed of similar (although, not identical) 
FAP groups located in overlapping genomic regions (Figure 5—figure supplement 4). At one of 
these loci, on chromosome 3, the FAP driving the diet- dependent association was NOD/CAST/PWK/
WSB, whereas the diet- independent association was due to AJ/NOD/NZO/CAST (Figure 5—figure 
supplement 4A). The diet- dependent and diet- independent chromosome 7 loci are due to differential 
effects between NZO/PWK and AJ/129/NZO/PWK, respectively (Figure 5—figure supplement 2D). 
In summary, we identified multiple instances of diet- dependent and diet- independent associations 

Figure 6. Multiple founder allele patterns (FAPs) at a body weight QTL on chromosome 12 show distinct diet- dependent effects. (A) Fine- mapping loci, 
under the interaction model, at 420 days of age. Significant variants are marked as solid circles. Colors denote variants with shared FAPs; ranks 1, 2, and 
3 by logarithm of the odds (LOD) score are colored red, orange, and yellow, respectively. (B) Log odds ratio as a function of age, for a single variant that 
exhibits the strongest association from each of the top three FAPs. (C) Age and diet- dependent effect size of variants with the strongest associations 
specific to either the WSB minor allele or AJ/B6 minor allele. (D) Significant variants, colored by their FAP, along with the gene models (shown in blue) 
and the tissue- specific activity of regulatory elements near these variants (shown in gray). Significant variants that lie within regulatory elements are 
highlighted as diamonds and regulatory elements that contain a significant variant are highlighted in black.

https://doi.org/10.7554/eLife.64329
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that mapped to the same genomic region and for all of these loci we determined that distinct FAPs 
were responsible for diet- dependent or diet- independent effects on body weight.

Nonlinear changes in genetic effects with age
We found that the relationship between model LOD score and age was similar for each of the three 
lead FAPs at the diet- independent and diet- dependent loci on chromosome 6 (Figure 7A and B). 
The minor allele of the lead variant at the diet- independent locus was associated with increased body 

Figure 7. Body weight loci on chromosome 6 exhibit age- and diet- specific effects. (A) Log odds ratio of additive body weight association as a function 
of age for the lead variant from each founder allele pattern (FAP) group. Red, orange, and yellow colors denote lead variant for rank 1, 2, and 3 FAPs. 
(B) Same as (A) for interaction body weight association on chromosome 6. (C, D) Estimated mean (SE) effect on body weight (grams) of the minor allele 
for the lead imputed variant. For the diet- dependent locus (D), effects are shown for each diet treatment. (E) Estimated mean effect (±SE) on body 
weight of each founder allele for the genotyped marker with the highest logarithm of the odds (LOD) score from the additive model. (F) Estimated 
effect (±SE) on body weight of each founder allele under the ad libitum (AL) and 20% calorie restriction (CR) diets.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Diet- dependent association with body weight in a locus on chromosome 5.

Figure supplement 2. Nonlinear trends in genetic effects with respect to age and dietary intervention.

https://doi.org/10.7554/eLife.64329
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weight at young ages (Figure 7C), whereas the minor allele for the lead diet- dependent variant had a 
positive effect on body weight under the 20% CR diet, a nearly neutral effect under the 40% CR, and 
a negative effect under the AL diet (Figure 7D). We next measured the effect of each founder allele 
at the lead diet- independent genotyped marker and, consistent with the lead FAP group for the diet- 
independent association, the AJ and NOD alleles had large positive effects at young ages (Figure 7E). 
For the diet- dependent association, B6, CAST, and PWK alleles were associated with decreased body 
weight in the AL diet and increase in body weight in the 20% CR diet (Figure 7F), consistent with their 
role in defining the lead diet- dependent FAP group. This example clearly demonstrates the insight 
gained by focusing on lead FAP variants to link specific founder alleles to variation in body weight and 
narrow the number of potential functional variants underlying body weight.

Given high temporal resolution in the measurements of body weight, we tested for nonlinearity 
in the trends of effect size with age for all significant loci in Table  1. Specifically, for each diet- 
independent locus, we tested for nonlinearity in the effect size trend with age in at least one founder 
allele of the lead variant, and for each diet- dependent locus, we tested for nonlinearity in at least one 
(founder, diet) pair at the lead variant (referred to as ‘age- dependent nonlinearity’). In addition to diet- 
dependent nonlinearity, we also observed age- dependent nonlinearity at the diet- independent locus 
on chromosome 6 (Figure 7C;  p = 1.35 × 10−13

 ). Surprisingly, the nonlinearity at this locus appears 
to be largely driven by the AJ founder background (Figure 7E; AL, yellow trace,  p = 1.55 × 10−26

  
vs. NOD, navy trace,  p = 6.5 × 10−6

 ), indicating that the effects of different founder alleles on body 
weight can have substantially different trends with age. Overall, we observed age- dependent nonlin-
earity to be predominant, with all 14 diet- independent loci exhibiting nonlinear trends with at least 
one founder allele (Table 1). In contrast, we observed nonlinear trends with age for diet- dependent 
effects to be less common, with only 4 of 19 diet- dependent loci exhibiting nonlinear trends with age 
in the effects of at least one founder allele under one diet. Additionally, nonlinearity was often specific 
to a subset of founder strains that are driving the associations at each locus, suggesting that the 
genetic background plays an important role when interpreting the dynamics of the genetic architec-
ture of body weight in DO mice. Notably, such age- dependent nonlinearity often cannot be discerned 
even with large cross- sectional data that are typical of modern GWAS in humans.

Nonlinear changes in diet-specific genetic effects
The diet- dependent locus on chromosome 6 illustrated a rather counterintuitive result; while we 
observed an approximately linear reduction in median body weight between the AL, 20% CR, and 
40% CR diets in response to a linear reduction in calories (Figure 1B), the effects of this locus on body 
weight were nonlinear in the context of each diet (Figure 7D). We defined diet- dependent effects 
to have a nonlinear trend with respect to diet (referred to as ‘diet- dependent nonlinearity’) if the 
genetic effects in the context of either the 20% CR or 1D fast treatments deviated substantially from 
the average of the genetic effects in the context of AL and 40% CR diets or AL and 2D fast diets, 
respectively. We observed a second instance of diet- dependent nonlinearity at a locus we mapped 
to chromosome 5. This locus had the strongest diet- dependent association observed in the genome. 
The lead FAP group, containing variants with an allele private to the NOD strain, was associated with 
large positive effect on body weight in the 20% CR diet, a small positive effect in the 1D fast diet, 
and nearly neutral effects in the 40% CR, 2D fast, and AL diets (Figure 7—figure supplement 1). In 
total, we found this pattern to be quite common, with 9 of the 19 significant loci identified under the 
interaction model exhibiting diet- dependent nonlinearity (Figure 7—figure supplement 2).

Candidate body weight genes linked to neurological and metabolic 
processes
Of the 24 significant loci from the additive and interaction models, we identified 14 loci with lead FAP 
groups spanning 1–3 genes (Table 1). Many of these genes implicated in modulating body weight are 
also known to affect neurological and metabolic processes.

One example is the neuronal growth regulator 1 (Negr1) gene, a candidate linked to body weight 
in mid- late adulthood via the lead 129/CAST/WSB FAP group within a diet- dependent locus on 
chromosome 3. This gene is highly expressed in the cerebral cortex and hippocampus in the rat 
brain (Miyata et  al., 2003) and is known to regulate synapse formation of hippocampal neurons 
and promote neurite outgrowth of cortical neurons (Hashimoto et  al., 2008; Sanz et  al., 2015). 
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Negr1 has also been implicated in obesity (Lee et al., 2012), autistic behavior, memory deficits, and 
increased susceptibility to seizures (Singh et al., 2018) in mice, and body mass index (Speliotes et al., 
2010), and major depressive disorder (Hyde et al., 2016) in humans. Another example is the gephyrin 
gene (Gphn) implicated by two distinct FAP groups in the diet- dependent locus on chromosome 12 
(Figure 6A). Gephyrin is a key structural protein at neuronal synapses that ensures proper localization 
of postsynaptic inhibitory receptors. Gephyrin is also known to physically interact with mTOR and 
is required for mTOR signaling (Sabatini et al., 1999), suggesting two plausible pathways for influ-
encing body weight. On chromosome 1, murine Trmt1l (Trmt1- like), a gene with sequence similarity 
to orthologous tRNA methyltransferases in other species, was linked to body weight during early 
adulthood (Figure 5—figure supplement 3A). Mice deficient in this gene, while viable, have been 
found to exhibit altered motor coordination and abnormal exploratory behavior (Vauti et al., 2007), 
suggesting that the association at this locus is possibly mediated through modulating exploratory 
behavior. The association of these three candidates with mouse body weight is consistent with human 
body mass index and obesity GWAS that found an enrichment of genes active in the central nervous 
system (Locke et al., 2015; Yengo et al., 2018; Schlauch et al., 2020).

Among candidates that affect metabolic processes, Creb5, a gene linked to diet- independent 
effects on body weight (Figure 5B), has previously been reported to be linked to metabolic pheno-
types in humans, with differential DNA methylation detected between individuals with large differ-
ences in waist circumference, hypercholesterolemia, and metabolic syndrome (Salas- Pérez et  al., 
2019). Another gene important for metabolic control in the liver, Pik3c2g was linked to diet- dependent 
effects on body weight in mid- adulthood. Pik3c2g- deficient mice are known to exhibit reduced liver 
accumulation of glycogen and develop hyperlipidemia, adiposity, and insulin resistance with age 
(Braccini et al., 2015). Edem3, another candidate gene at the locus on chromosome 1 linked to body 
weight in early adulthood (Figure 5—figure supplement 3A), has previously been linked to short 
stature in humans based on family- based exome sequencing and differential expression in chondro-
cytes (Hauer et al., 2019). Possibly sharing a similar mechanism, Adam12, a candidate gene in both a 
diet- independent and diet- dependent locus on chromosome 7, is known to play an important role in 
the differentiation, proliferation, and maturation of chondrocytes (Horita et al., 2019).

Future considerations
To summarize, we found that the effects of age and diet on body weight differ substantially with 
respect to the genetic background and type of dietary intervention imposed. These results high-
light that with knowledge of these environment- dependent effects, we can generate more accurate 
predictions of body weight trajectories than would be possible from knowledge of genotype, age, or 
diet alone. Moreover, with the elucidation of specific candidate genes and variants underlying these 
effects, we are not limited to predicting how this complex quantitative trait changes with age, but 
can also identify specific targets for genetic or pharmacological manipulation in an effort to improve 
organismal health.

One important limitation to our study is the lack of direct measurements of food consumption 
and feeding behaviors for each mouse in the population; this makes it difficult to ascertain how much 
variation in body weight can be ascribed to variation in such behaviors. Additionally, CR was imposed 
based on the average food consumed by a typical DO mouse rather than a per- mouse baseline of 
food consumption. Furthermore, CR interventions were imposed on a per- cage basis, not a per- 
mouse basis, because all animals were housed in groups of eight. Therefore, the social hierarchy 
within each cage likely contributed to additional variation in body weight (Baud et al., 2017). Addi-
tionally, we note that over the course of this study each animal underwent a number of phenotypic 
assays (Figure 1—figure supplement 1) that would further contribute to study- specific variation in 
body weight. Accounting for these sources of variation will be a promising avenue for future research, 
helping interpret many of the associations identified in our study.

A second important consideration for this study is the potential for survival bias to lead to inflated 
PVE values and false- positive associations at later ages. To evaluate the presence of survival bias, we 
computed PVE at all ages restricting to animals that survived to 660 days of age (75% of animals in 
our study). We observed similar PVE values to those from the full dataset, across the full age range, 
suggesting that survival bias has very little effect on the results presented in this paper (Figure 4—
figure supplement 3C, top- left panel). However, as these animals age and the survival bias of the 
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population increases, genetic analyses of body weight at ages past 660 days will need to explicitly 
account for this effect.

In this study, we have elucidated the dynamics and context dependence of the genetic architecture 
of body weight from 60 to 660 days of age. By 660 days of age, nearly all surviving animals have real-
ized their maximum adult body weight and the majority of animals have yet to experience appreciable 
loss of body weight indicative of late- age physiological decline. Under AL diet, reduced body weight 
has been associated with greater longevity, whereas under 40% CR conditions, greater longevity is 
associated with the maintenance of high body weight (Liao et al., 2011). Our future research will 
assess whether we observe a similar result in this DO population and determine whether alleles at 
body weight loci are predictive of life span in a diet- dependent manner.

Materials and methods
Polygenic models for gene × environment interactions
G×EMM (Dahl et al., 2020) is a generalization of the standard linear mixed model that allows for poly-
genic G×E effects. Under this model, the phenotype is written in terms of genetic effects as follows:

 Y = α0 +
∑E

e=1 Zeαe +
∑V

v=1 Gvβv +
∑E

e=1
∑V

v=1 GvZeγve + ε,  (1)

where  Y ∈ RN   is the vector of phenotypes over  N   samples,  Gv, v = 1, . . . , V   are genotypes of  V   bial-
lelic SNPs,  Ze, e = 1, . . . , E  are binary vectors over  E  environments, and  ε  denotes the residual vector.

In our application,  Y  is the vector of  ℓ1  trend filtered body weights at a specific age; we do not 
standardize the body weights so that the estimated effects are interpretable and comparable across 
ages. When testing for association with the founder- of- origin of markers,  Gnv ∈ [0, 1]8; ∥Gnv∥1 = 1  is a 
vector denoting the probability that the two alleles of the marker came from each of the eight founder 
lines from which the DO population is derived.  ∥ · ∥1  denotes the  L1 - norm of a vector. Alternatively, 
when testing for association with the allele dosage of a variant,  Gnv ∈ [0, 2]  is the expected allele count 
at variant  v . Finally,  Zne = 1  denotes that sample  n  is subject to environment  e . Prior to dietary inter-
vention, the environments in our model are the 12 generations over which the DO samples span (i.e., 
 E = 12 ). After dietary intervention, the environments further include the five diet groups (i.e.,  E = 17 ).

The effects of covariates,  α , are modeled as fixed while the genetic effects, 

 β , and genotype–environment effects,  γ , are modeled as random. Assuming heteroscedastic noise, 

 ε ∼ N (0,Θ) , a normal prior on the random genetic effects,  βv ∼ N (0, ϱ2/V) , and a normal prior 
on the random G×E effects,  γv· ∼ N (0, 1

VΩ) , we get  Y ∼ N (µ,Λ) , where  µ = α0 +
∑

e Zeαe  and 

 
Λ = Θ + ϱ2K +

∑
e,e′ Ωee′

(
K ◦

(
ZeZT

e′
))

 
 is a diagonal matrix with entries specified as  Θnn =

∑
e Z2

neσ
2
e  , 

 K  is the kinship matrix with entries defined as  Kmn = 1
V
∑

v GT
mvGnv ,  ϱ

2
  is the variance of environment- 

independent genetic effects,  Ω ∈ RE×E  is the variance–covariance matrix representing the co- varia-
tion in environment- dependent genetic effects between pairs of environments, and  A ◦ B  denotes the 
Hadamard product of matrices  A  and  B . We do not include an environment- independent noise term 
since it is nonidentifiable.

Off- diagonal elements of Ω quantify the covariance in the interaction effect sizes between pairs of 
environments; thus, a diagonal Ω assumes that the interaction effect sizes between pairs of environ-
ments are uncorrelated. This assumption of diagonal Ω could lead to some bias in the estimates of the 
variance components, although bias in PVE estimates are expected to be minimal. We computed PVE 
estimates using a full Ω and a diagonal Ω and observed little difference (Figure 4—figure supplement 
5). For the sake of computational simplicity, we assumed all off- diagonal elements of Ω to be zero in 
this study. Note that each of the above parameters and data vectors in the model may be distinct at 
different ages.

Recent work has shown that non- negativity constraints on the variance components are both 
important in order to obtain unbiased estimates and unnecessary to achieve valid estimates of heri-
tability (Steinsaltz et al., 2020). Nevertheless, we constrained the variance components to be non- 
negative since they are more interpretable in the context of our study. While it is likely that this 
constraint contributes to the small bias observed in our simulations (Figure 3), we observed almost 
no bias in heritability estimates for body weight due to the constraint, likely because of strong signals 
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in the data (Figure 4—figure supplement 4). We have also included a flag in our published code to 
relax this constraint when estimating the variance components.

Proportion of phenotypic variance explained by genetics
Decomposing the phenotype into genetic and nongenetic effects,  Y = YG + Yε , the expected propor-
tion of phenotypic variance explained by genetic effects is approximately given as

 
PVE = E

[
V
[
YG

]
V
[
Y
]
]
≈ E

[
V
[
YG

]]
E
[
V
[
Y
]] VarG

VarY
,
  

(2)

where  V
[
·
]
  denotes the sample variance. The expected sample phenotypic variance conditional on 

environment  e  can be written as

 
E
[
V
[
Y|e

]]
= E

[∑
n Y2

nZne
]

Ne
−

E
[(∑

n YnZne
)2
]

N2
e

,
  

(3)

where  Zne  is an indicator variable denoting whether sample  n  belongs to environment  e , and 

 Ne =
∑

n Zne  is the number of samples in environment  e . Under the G×EMM model, starting from 
Equation 1 and integrating out the random effects, we can write the numerator of the first term in 
the expectation as

 

E
[∑

n Y2
nZne

]
=

∑
n µ

2
nZne + ϱ2

V
∑

n,v G2
nvZne

+
∑

e′,e′′
Ωe′e′′

V
∑

n,v G2
nvZneZne′Zne′′ +

∑
n ΘnnZne,  

(4)

and the numerator of the second term in the expectation as

 

E
[(∑

n YnZne
)2
]

=
(∑

n µnZne
)2 + ϱ2

V
∑

v
∑

n,n′ GnvGn′vZneZn′e

+
∑

e′,e′′
Ωe′e′′

V
∑

v
∑

n,n′ GnvGn′vZn,e′Zn′e′′ZneZn′e

+
∑

n ΘnnZne,   

(5)

where  e′  and  e′′  iterate over all environments and  n′  and  n′′  iterate over all samples. Therefore, the 
expected sample phenotypic variance can be decomposed as follows:

 

E
[
V
[
Y|e

]]
=
(∑

n µ
2
nZne

Ne
−

(∑
n µnZne

)2

N2
e

)

+ϱ2
(

tr(K◦We)
Ne

− sum(K◦We)
N2

e

)

+
∑

e′ Ωe′e′
(

tr(K◦We◦We′ )
Ne

− sum(K◦We◦We′ )
N2

e

)

+tr(Θ ◦ We)
(

Ne−1
N2

e

)
,

  

(6)

where  We = ZeZT
e  ,  tr(·)  denotes that trace of a matrix,  sum(·)  denotes the sum of all entries of the 

matrix, and  A ◦ B  denotes the Hadamard product of matrices  A  and  B . The first term quantifies the 
phenotypic variance explained by fixed effects, the second and third terms together quantify the 
phenotypic variance explained by genetic effects  

(
E
[
V
[
YG|e

]])
 , and the fourth term quantifies the 

residual (unexplained) phenotypic variance. The total proportion of variance explained by genetics in 
the entire sample can now be computed using Equation 2.

 
PVEtot = VarG

VarY
,
  

(7)

 

VarG = ϱ2
(

tr(K)
N − sum(K)

N2

)

+
∑

e Ωee
(

tr(K◦We)
N − sum(K◦We)

N2

)
,
  

(8)
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VarY = VarG

+




(∑
n µ

2
n

)

N
−

(∑
n µn

)2

N2




+ tr(Θ)
(

N − 1
N2

)
.

  

(9)

The two terms in  VarG  are genetic contributions to phenotypic variation that are shared across envi-
ronments and specific to environments, respectively. The second and third terms in  VarY   are pheno-
typic variation explained by fixed effects and unexplained residual phenotypic variation, respectively.

The expected total sample phenotypic variance (across all environments) again has two terms, as 
in Equation 3; the numerator of the first term is written as

 

E
[∑

n Y2
n

]
=

∑
n µ

2
n + ϱ2

V
∑

n
∑

v G2
nv

+
∑

e,e′
Ωee′

V
∑

n
∑

v G2
nvZneZne′ +

∑
n Θnn,  

(10)

and the numerator of the second term is written as

 

E
[(∑

n Yn
)2
]

=
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n µn
)2 + ϱ2

V
∑

v
∑

n,n′ GnvGn′v

+
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e,e′
Ωee′

V
∑

v
∑

n,n′ GnvGn′vZneZn′e′ +
∑
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(11)

The expected total sample phenotypic variance can be decomposed as follows:

 

E
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V
[
Y
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=
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2
n
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N2

)

+
∑

e Ωee
(
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N − sum(K◦We)
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)

+tr(Θ)
(
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)
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(12)

The proportion of variance explained by genetics conditional on environment can be computed by 
substituting the above in Equation 2.

 
PVEe = VarG|e

VarY|e
,
  

(13)

 

VarG|e = ϱ2
(
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Ne

− sum(K◦We)
N2

e

)

+
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(
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(
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N2

e

)
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(15)

The proportion of phenotypic variance explained by genetic effects is equivalent to narrow- sense 
heritability, once variation due to additive effects of environment, batch, and other study design 
artifacts have been removed. In this work, we use the more general term, proportion of variance 
explained, to accommodate variation due to effects of diet and environment.

Under the EMMA model, the expected total sample phenotypic variance simplifies to

 

E
[
V
[
Y
]]

=
(∑

n µ
2
n

N −
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n µn
)2

N2

)

+ϱ2
(

tr(K)
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)

+θ2
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)
,

  

(16)
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where  θ  denotes the homoscedastic noise. The first component quantifies the phenotypic variance 
explained by fixed effects, the second component quantifies the phenotypic variance explained by 
genetic effects  

(
E
[
V
[
YG

]])
 , and the third component quantifies the residual (unexplained) pheno-

typic variance. Substituting these into Equation 2 gives us the proportion of variance explained by 
genetics under the EMMA model.

Genome-wide association mapping
Additive genetic effects
To test for additive effect of a genetic variant on the phenotype, we include the focal variant among 
the fixed effects in the model while treating all other variants to have random effects.

 Y =
∑

c Xcαc + ϕsGs +
∑

v Gvβv +
∑

v,e GvZeγve + ε  (17)

Applying the priors described above for  βv ,  γv , and  ε , we can derive the corresponding mixed- 
effects model is as follows:

 Y ∼ N
(∑

c Xcαc + ϕsGs,Λs
)

,  (18)

where  Λs = Θ + ϱ2Ks +
∑

e Ωee
(
Ks ◦ We

)
  and  Ks  is the kinship matrix after excluding the entire 

chromosome containing the variant  s  (leave- one- chromosome- out [LOCO] kinship). Leaving out the 
focal chromosome when computing kinship increases our power to detect associations at the focal 
variant (Lippert et al., 2011). The test statistic is the log likelihood ratio  Φ

a(Y, Gs)  comparing the 
alternate model  H : ϕs ̸= 0  to the null model  H0 : ϕs = 0 .

 Φa(Y, Gs) = log max L(ϕs,α,σ,ϱ,Ω)
max L(ϕs=0,α,σ,ϱ,Ω)  (19)

Genotype–environment effects
To test for effects of interaction between genotype and environment on the phenotype, we include 
a fixed effect for the focal variant and its interactions with the set of all environments of interest ( E ) 
while treating all other variants to have random effects for their additive and interaction contributions:

 Y =
∑

c Xcαc + ϕsGs +
∑

e∈E χseGsZe +
∑

v̸=s Gvβv +
∑

v̸=s,e GvZeγve + ε.  (20)

The corresponding mixed- effects model is

 Y ∼ N
(∑

c αcXc + ϕsGs +
∑

e∈E χseGsZe,Λs
)

,  (21)

and the test statistic is:

 Φi(Y, Gs) = log max L(χs·,ϕs,α,σ,ϱ,Ω)
max L(χs·=0,ϕs,α,σ,ϱ,Ω) ,  (22)

where  χs·  is a vector notation for all  χse . Note that this statistic tests for the presence of interaction 
effects between the focal variant and any of the environments of interest.

Likelihood and gradients for G×EMM model
Under the full G×EMM model, the phenotype  Y  depends on fixed and random effects as follows:

 Y ∼ N (µ,Λ),  (23)

where  µ = α0 +
∑

e Zeαe  captures all fixed effects and 
 
Λ = Θ + ϱ2K +

∑
e ΩeeK ◦

(
ZeZT

e

)
 
 captures 

the covariance after integrating out the random effects. The parameters to be estimated in this model 
are  α ,  σ ,  ϱ , and  Ω . The complete log likelihood can be written as

 L = −N
2 log(2π) − 1

2 log detΛ− 1
2
(
Y − Xα

)T
Λ−1 (Y − Xα

)
.  (24)

Maximizing the log likelihood over  α  gives us

 
α̂ = arg maxα L =

(
XTΛ−1X

)−1 (
XTΛ−1Y

)
.
  (25)
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Substituting this into the log likelihood, we get

 Lα̂ = −N
2 log(2π) − 1

2 log detΛ− 1
2 YTPY,  (26)

where 
 
P = Λ−1 − Λ−1X

(
XTΛ−1X

)−1
XTΛ−1

 
.

Computing the gradient of  Lα̂  involves evaluating the following gradients:

 
∂Λ
∂σ2

e
= IZe  (27)

 
∂Λ
∂ϱ2 = K  (28)

 
∂Λ
∂Ωee

= K ◦ (ZeZT
e )  (29)

 
∂ log detΛ = tr

(
Λ−1∂Λ

)
  (30)

 ∂Λ−1 = −Λ−1∂ΛΛ−1  (31)

 ∂P = −P∂ΛP,  (32)

where  IZe  is a diagonal matrix with elements of the vector  Ze  on the diagonal. Thus,

 
∂Lα̂

∂σ2
e

= − 1
2 tr(Λ−1IZe ) + 1

2 YTPIZe PY
  (33)

 
∂Lα̂

∂ϱ2 = − 1
2 tr

(
Λ−1K

)
+ 1

2 YTPKPY
  (34)

 
∂Lα̂
∂Ωee

= − 1
2 tr

(
Λ−1Ke

)
+ 1

2 YTPKePY,
  (35)

where  Ke = K ◦ (ZeZT
e ) .

Permutations
Since the assumptions underlying the G×EMM model are unlikely to hold exactly in practice, we used 
permutations to assess the significance of the observed values of  Φa  and  Φi . Specifically, for each 
variant  s , we generated  M   independent random permutations  µ1, . . . ,µM  of  (1, . . . , N)  and computed 
test statistics  Φ

a/i
m Φa/i (µm(Y), Gs

)
  for each permutation  µm . The p- value associated with  Φa  and  Φi  is 

then given as

 pa/i = #{m:Φa/i
m ≥Φa/i}+1
M+1   (36)

We used a sequential procedure (Besag and Clifford, 1991; Shim and Stephens, 2015) to 
compute the p- value that helps avoid large numbers of permutations for nonsignificant results, 
substantially speeding up computation. Specifically, instead of a fixed large number of permutations 
 M  , we performed  Ms  permutations for each variant  s  until  Ca/i

s #{m : Λa/i
m ≥ Λa/i} = 10  or  Ms = 108 . The 

p- value for the sth variant is then a random sample from the interval  [
Cs
Ms

, Cs+1
Ms+1 ] . This scheme allows 

us to estimate p- value quickly without carrying out large numbers of permutations at every marker. 
Although the precision of this estimate is lower for markers that are not significant (i.e., most of the 
genome), precision increases as the significance of association increases.

Tests for nonlinearity in trends of effect size with age
We test for nonlinear dependence between effect size and age by comparing two models: a null 
model that only allows for linear dependence between age and effect size and an alternate model 
that allows for dependence between effect size and higher- order powers of age. While this test can be 
applied to evaluate nonlinear effect- size trends for any covariate (e.g., dietary intervention, genotype, 
etc.), we focus our attention to tests for nonlinear trends in the effect sizes of the founder alleles and 
the effect sizes of the interaction between founder alleles and diet.

Specifically, the estimated effects  ̂ϕst  and their standard errors  ψ̂st  can be modeled as

 ϕ̂st ∼ N (ϕst, ψ̂st); t ∈ {40, 50, . . . , 660}  (37)

https://doi.org/10.7554/eLife.64329
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and the two models of the effect size trends are

 

Hnℓ : ϕst = φ0 + φ1t + φ2t2 + φ3t3

Hℓ : ϕst = φ0 + φ1t,   
(38)

where  t  denotes the ages (in days) at which we test for association between a genetic variant and 
body weight and  ϕst  the unobserved effect sizes at these ages. We used a likelihood ratio test statistic 
( ℵ ) to compare the two models and quantify the evidence for nonlinearity in effect size trends with 
age and assessed significance using p- values computed using a chi- squared distribution with degree- 
of- freedom 2.

 ℵ = 2 ln max L(φ)
max L(φ;φ2=φ3=0) ,  (39)

where  L(φ)  is the likelihood under the model in Equation 37.
We apply this test for each of the founder effects in each of the 14 diet- independent loci (112 tests) 

and each of the 19 founder- x- diet interaction effects in each of the diet- dependent loci (760 tests). 
We assign a diet- independent trend as significantly nonlinear if we observe a  p < 10−4

  and assign a 
diet- dependent trend as significantly nonlinear if we observe a  p < 10−5

  (Bonferroni- corrected p- value 
thresholds).

Data and software release
Data used in this study, and significant QTLs, can be downloaded from the following links:

• Genotypes: https://doi.org/10.6084/m9.figshare.13190735
• Body Weight: https://doi.org/10.6084/m9.figshare.13190702
• Covariates: https://doi.org/10.6084/m9.figshare.13190615
• Results (QTLs, functional annotations): https://doi.org/10.6084/m9.figshare.13190708

Our Python implementation of the EMMA and G×EMM models can be down-
loaded from https://github.com/calico/do_qtl; (Raj, 2021; copy archived at 
swh:1:rev:3d23d3fbd7768b74b0bba6183de1570a65a2d93d).
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