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Abstract

In digital markets business decisions are increasingly taken by artificial intelligence (AI).
Especially in e-commerce, a growing share of retailers uses AI-driven algorithmic pricing,
whereas remaining vendors rely on manual price setting. However, policymakers have
raised concerns about anti-competitive tacit collusion between humans and Al that could
allow firms to soften competition. Therefore, we empirically investigate outcomes that
arise when humans and Al repeatedly interact in digital market environments. Based on
an economic laboratory experiment in near real-time, we compare the degree of tacit col-
lusion among humans and reinforcement learning algorithms to market settings where
only humans or only algorithms compete. Preliminary findings demonstrate that tacit
collusion emerges between humans and Al, although at lower levels than in settings with
only humans or only algorithms. Altogether, our study sheds light on competition in dig-
ital markets where Al plays an increasingly important role and thus bears timely policy
and managerial implications.

Keywords: Artificial Intelligence, Algorithmic Pricing, Human-Computer Interaction, Al-
gorithmic Collusion, Reinforcement Learning, IT Policy, AI Regulation, Economics of IS

Introduction

Technological advances in computing power and data storage present growing opportunities for the use of
artificial intelligence (AI) in organizational contexts. In consequence, business tasks and decisions are in-
creasingly delegated to Al learning algorithms based on the premise that they solve more complex problems,
derive more accurate predictions, and make more efficient decisions than their human counterparts (OECD
2017). A particular popular application area is algorithmic pricing, where algorithms determine and execute
pricing strategies for goods and services in an automated manner (Calvano et al. 2020a; Chen et al. 2016).

Although algorithmic pricing has been used for air travel, hotel bookings, and retail since the 1980s (Calvano
et al. 2020b; Ezrachi and Stucke 2017), the scope of application has recently expanded drastically, especially
due to the growth in e-commerce (Chen et al. 2016). Thereby, prices are increasingly set by AI-driven al-
gorithms that can process vast amounts of data and information (e.g., real-time data of customers and con-
sumers), and learn how to set prices given pre-specified objectives (Calvano et al. 2020a). At the same time,
widespread emergence of Al-driven algorithmic pricing has also raised significant concerns about its impact
on competition in digital markets. Policymakers and scholars have questioned whether the use of pricing
algorithms could lead to anti-competitive behavior through coordinated pricing that allows firms to soften
competition, resulting in excessive consumer prices (Ezrachi and Stucke 2017; Mehra 2016; Schwalbe 2018).
In particular, it is feared that Al-driven algorithmic pricing could facilitate collusion among firms without
explicit communication, i.e., allow competing firms to implicitly coordinate their prices to achieve higher
profits than in the competitive equilibrium (Harrington 2018; OECD 2017).
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Thus, the questions of whether and under which conditions Al-based pricing algorithms indeed facilitate
collusive outcomes have sparked a rapidly growing strand of academic literature. Calvano et al. (2020b),
Klein (2021), and Waltman and Kaymak (2008) show that reinforcement learning algorithms are indeed
able to learn collusive behavior by self-play in simulated market environments. Moreover, empirical find-
ings by Assad et al. (2020) suggest that the adoption of pricing algorithms in local German gasoline markets
has led to higher retail prices and softened competition. Despite this growing evidence that ATl may be able
to tacitly collude with other computer agents, far less is known about the outcomes and competitive pro-
cesses in market settings, where algorithms compete with human decision makers, which we will refer to
as hybrid market settings in this study. These hybrid market settings are very widespread in current prac-
tice. For example, about two-thirds of e-commerce vendors use computer programs to monitor and adjust
prices, while the remaining vendors rely on manual price setting (European Commission 2017). Therefore,
the high relevance of these market settings and the scant scientific knowledge call for more IS research on
the interaction between humans and computers in the contexts of algorithmic pricing (Caro et al. 2022; Jain
et al. 2018) and the regulation of Al technology (Gozman et al. 2020). To advance research on this topic, our
study empirically investigates the outcomes that arise when humans and AI compete and repeatedly interact
in dynamic market environments, focusing explicitly on e-commerce markets as an area of application. In
an economic laboratory experiment, we compare competition in hybrid markets that include both humans
and reinforcement learning algorithms to market settings where only human decision makers or only learn-
ing algorithms compete with each other, respectively. Based on a between-subjects experimental design,
our study isolates the causal effects of Al-driven pricing algorithms on market outcomes and competition
intensity in hybrid markets.

In particular, our findings aim to shed light on whether concerns about anti-competitive effects facilitated by
AT arise in market settings where algorithms interact with human decision makers. Beyond existing studies
on human-computer interaction (HCI) in Al contexts (e.g., Fiigener et al. 2021), digital markets offer a novel
and peculiar competitive setting where humans and algorithms compete against each other, but can also
gain from mutual cooperation. Hence, our study explores a novel domain of HCI, where the decision to
compete or to cooperate itself presents an endogenous learning challenge to AI and humans. Moreover, our
study addresses highly relevant policy questions with direct implications for IT regulation (De Vaujany et al.
2018). If humans and AI were able to effectively coordinate on high price levels, this could significantly
harm consumers and welfare in digital markets. Thus, our analysis has important ramifications on whether
policy intervention and stricter regulation of AI-driven algorithmic pricing are warranted. Finally, our study
also informs managers about the potential dangers of employing AI-driven pricing algorithms with respect
to compliance and liability in the context of autonomous Al learning agents (Harrington 2018; Mehra 2016).

Background and Hypotheses

This study relates to research on (i) the effects of algorithmic pricing on competition and collusive behavior,
(ii) empirical evidence of algorithmic collusion as identified by field studies and computer simulations and
(iii) human-algorithm interaction in hybrid market settings investigated by experimental studies.

The Impact of Algorithmic Pricing on Competition

Algorithmic pricing has been found to have diverse effects on the competitive process and ensuing market
outcomes. In particular, three pro-competitive effects can be identified based on the extant literature. First,
as algorithms are able to react instantly to changes in the market, price adjustments can be made faster and
more frequently (Calvano et al. 2020b; Chen et al. 2016). Second, the use of pricing algorithms can reduce
firms’ costs, as fewer (human) resources must be allocated to monitor the market as well as to manually
determine and set prices (OECD 2017). Finally, smaller firms, especially online retailers, can benefit from
lower barriers to market entry when algorithmic pricing is available as a service (see, e.g., Amazon Auto-
mate Pricing or SAP Dynamic Pricing) as they can cope with unknown demand structures and competition
dynamics at lower costs (Schwalbe 2018). On the contrary, legal studies and policy reports have raised con-
cerns about the anti-competitive effects of algorithmic pricing. In particular, these studies scrutinize the
risk that algorithmic decision-making may facilitate (tacit) collusion and could thus lead to higher market
prices. In this context, the taxonomy on algorithmic collusion, developed by Ezrachi and Stucke (2017), has
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become popular among competition authorities (Competition and Markets Authority 2021; Monopolkom-
mission 2018; OECD 2017). According to Ezrachi and Stucke, algorithms may facilitate explicit collusion
through enhanced monitoring, control or prediction of explicit agreements among firms. However, they
also highlight the novel challenges raised by autonomous learning algorithms that may be able to tacitly col-
lude without neither an explicit agreement among competitors nor a clear intent to collude. Such implicit
coordination, which is akin to human tacit collusion, is difficult to detect and prosecute as illegal collusive
behavior. It is therefore also viewed by many competition authorities (e.g., the Competition and Markets
Authority (2021) in the UK, the Monopolkommission (2018) in Germany, and the OECD (2017)) as the main
current threat posed by Al-driven pricing algorithms. Thus, in this study, we focus on algorithmic collusion
as tacit collusion and will use both terms interchangeably. Thereby, we follow the definition by Ivaldi et al.
(2003), who established that “tacit collusion need not involve any “collusion” in the legal sense, and in par-
ticular need involve no communication between the parties” (Fn. 2), but rather indicates that market prices
exceed the competitive outcome.

Evidence of Tacit Collusion among AI-driven Pricing Algorithms

Despite the rich literature on algorithmic pricing in general, empirical evidence on the impact of algorith-
mic pricing on competition, in particular on tacit collusion, remains scarce. Among the first studies, Assad
et al. (2020) finds that the adoption of pricing algorithm in local German gasoline markets has facilitated
tacit collusion, especially if algorithms were implemented by all market participants in duopolies. How-
ever, the exact pricing algorithms and their implementation within firms cannot be directly observed by
the authors (Assad et al. 2020). As detection of tacit collusion in field data is notoriously hard, the effects
of algorithmic pricing on competition have so far been mainly studied in computer simulations. Among
the first studies, Waltman and Kaymak (2008) analyze AI-driven pricing algorithms in simulated oligopoly
markets. Although, Waltman and Kaymak find that algorithms are able to earn profits above the theoretical
competitive prediction, it has been questioned whether the observed actions are indeed indicative of collu-
sive behavior or rather the result of algorithms’ failure to learn an optimal strategy (Calvano et al. 2020b).
Therefore, more recent simulation studies (Calvano et al. 2020b; Klein 2021) have focused on the analysis
of strategies learned by Al algorithms in order to verify that outcomes are indeed driven by the algorithms’
ability to tacitly coordinate on high prices. Most notably, Calvano et al. (2020b) show that algorithms can
sustain price levels above the competitive market outcome by learning punishment strategies, which make
it unprofitable for competitors to deviate from a collusive market outcome. These findings indicate that Al
can achieve collusive price levels simply by being instructed to maximize their respective individual profit
and without explicit communication (Calvano et al. 2020a; Calvano et al. 2020b; Klein 2021).

Human-Computer Interaction and Collusion in Hybrid Market Settings

Interaction between humans and algorithms is becoming prevalent in digital markets. For example, accord-
ing to the European Commission (2017), two-thirds of e-commerce vendors now use computer programs to
monitor and adjust prices whereas other vendors rely on manual price setting (see also Assad et al. 2020;
Chen et al. 2016). Although there exists a rich literature on competition among human decision makers
based on economic laboratory experiments (Potters and Suetens 2013), it is an open question whether find-
ings from studies on human-human interaction in oligopoly markets carry over to settings where humans
interact with Al-driven algorithms. First experimental studies to explicitly consider competition in hybrid
market settings include Zhou et al. (2018) as well as Normann and Sternberg (2022), who employ simple
rule-based algorithms that follow a cooperative strategy. Collusive outcomes are found in both studies when
humans compete with algorithms. According to Zhou et al. (2018) collusive outcomes are achieved notice-
able faster compared to human-human experiments. Normann and Sternberg (2022) find that the presence
of a pricing algorithm significantly increases tacit collusion in markets with three competitors, but not in
markets with four competitors. The most closely related study to our analysis is Werner (2022), who inves-
tigates competition between human decision makers and self-learning pricing algorithms in an economic
laboratory experiment. The experimental findings indicate that for duopolies, market prices increase as
more firms delegate pricing decisions to algorithms. Thus, in markets with two competitors, tacit collusion
increases in the number of firms that employ a pricing algorithm.

Forty-Third International Conference on Information Systems, Copenhagen 2022
3



Competition Between Human and Artificial Intelligence

Hypotheses

Based on the findings of collusion among AI-driven pricing algorithms in recent simulation studies (Calvano
et al. 2020b; Klein 2021) and the established evidence on tacit collusion among human decision makers
(Potters and Suetens 2013), we also expect collusion to tacitly arise in hybrid market settings.

Hypothesis 1. Competition between humans and Al leads to collusive market outcomes, i.e., firms can
tacitly coordinate on prices above the competitive outcome.

Moreover, our study compares outcomes in hybrid markets to markets where only humans or only AI-driven
algorithms compete, respectively. With regard to the latter market settings, simulation analyses of compe-
tition among Al-driven pricing algorithms have generally found high levels of tacit collusion (Calvano et al.
2020b; Klein 2021). Experimental analyses of competition among humans have also found significant levels
of tacit collusion, however, with considerably more variance across individual market cohorts and with high
dependence on the underlying market structure and market conditions (Horstmann et al. 2018; Potters and
Suetens 2013). As algorithms can be trained on specific market conditions, we therefore conjecture that,
in general, Al-driven algorithms will achieve a higher level of tacit collusion than humans for static mar-
ket environments. Given the mix of human and algorithmic decision makers in hybrid market settings, we
hypothesize that tacit collusion in these settings will then be on a medium level below collusive outcomes
for algorithmic competition, but above collusive outcomes for human competition. However, there are ad-
ditional behavioral effects and factors that could influence market outcomes for hybrid settings, such as
algorithmic aversion or (missing) human trust in AI (see, e.g., Dietvorst et al. 2015). In consequence, tacit
collusion between humans and Al could also fall below levels of human competition. Ultimately this is an
empirical question, which we explicitly address by testing the following two hypotheses.

Hypothesis 2. Competition between humans and Al yields a level of tacit collusion that is higher than
for competition among humans.

Hypothesis 3. Competition between humans and Al yields a level of tacit collusion that is lower than for
competition among AI-driven algorithms.

Methodology

Economic laboratory experiments are particularly suited to investigate tacit collusion and competitive in-
teractions between human and Al-based decision makers as they allow for maximum experimental control,
thus guaranteeing high internal validity and also allowing the experimenter to exogenously match human
and algorithmic decision makers. In the following, we describe the design, the computerized market envi-
ronment, the reinforcement learning agents, and the procedures of our experimental study.

Experimental Design

To test our hypotheses, we vary the market setting by considering different types of decision makers in a
market (humans and algorithms). To corroborate the robustness of our analyses, we also vary the market size
(two and three firms). This yields a full-factorial 3x2 design with six treatment combinations, as illustrated
by Table 1. The experiment employs a between-subjects design, i.e., each subject participates in exactly
one treatment. This prevents possible carry-over effects and confounding effects of within-subjects designs.
Subjects are aware of the treatment conditions that they are receiving, but they do not know that it is a
treatment nor do they know about the other treatments. Treatments are randomized at the session level.

Human vs. Human | Human vs. Algorithm | Algorithm vs. Algorithm
Duopoly HH-2 HA-2 AA-2
Triopoly HH-3 HA-3 AA-3

Table 1. Overview of the experimental treatments.
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Market Environment

In our experiment, we consider the competition model by Singh and Vives (1984) and its generalization
to more than two firms (Hackner 2000). This allows us to capture price competition with a parsimonious
economic model that generalizes the original model of horizontally differentiated goods by Hotelling (1929).
The competition model by Singh and Vives (1984) has proven to represent a suitable market environment for
several other experimental oligopoly studies that have investigated tacit collusion (Horstmann et al. 2018).
The model considers a market with n € N symmetric firms. Each firm ¢ € {1,...,n} produces and sells a
single good. Marginal costs are assumed to be zero for all goods. Each firm sets the price p; for its good. The
prices of all firms in the market determine the respective quantity ¢; sold per firm. The profit of each firm is
given by 7; = p;q;. For a more detailed description of the competition model see Horstmann et al. (2018).

We consider two equilibrium predictions for the market outcome: (i) the competitive Nash equilibrium of
the one-shot game, which is also the unique subgame perfect Nash equilibrium (SPE) of the finitely re-
peated game; In the Nash equilibrium, firm ¢ maximizes its profit «; with respect to its own price p; taking
into account competitors’ optimal price setting p_;. (ii) the collusive equilibrium, where firms maximize
their joint profit like a hypothetical monopolist. In the collusive equilibrium, all » firms in the market em-
ploy joint profit maximization (JPM), i.e., they maximize ", 7; when choosing their price p;. Joint profit
maximization can be sustained as a SPE if the stage game is assumed to be infinitely repeated.

Based on these two equilibrium concepts, the degree of tacit collusion ¢, can be measured as the relative de-
viation of the average price of all firms in the market p = 1 3" | p; from the Nash equilibrium p"**" towards

~_ . Nash
—P

the collusive equilibrium p’/ M (Engel 2007; Horstmann et al. 2018). Formally this is ¢ = 7tz - FOT

-p
0 < ¢ < 1, the market outcome is considered to be collusive. For ¢ = 0, the average market price cor-
responds to the Nash equilibrium p™V¢*". For ¢ = 1, firms behave like a hypothetical monopolist and the
market is fully collusive. If the degree of tacit collusion ¢ < 0, firms could increase prices and earn a higher

profit in the competitive outcome. For ¢ > 1, firms could increase the joint profit by lowering their prices.
Reinforcement Learning Agents

Depending on the treatment, the role of one or more firms in the experiment may be assumed by an au-
tonomous software agent that implements a pricing algorithm. As we are interested in the idiosyncratic
properties of AI when competing with human decision makers, we follow Calvano et al. (2020b), Klein
(2021), and Werner (2022) in investigating reinforcement learning algorithms instead of rule-based pricing
algorithms. Reinforcement learning is particularly suited for our experimental analysis, because the algo-
rithm independently learns a strategy to maximize its received rewards, thus avoiding the need for training
data (Sutton and Barto 2018). Reinforcement learning consists of an agent that continually interacts with
its environment, which encompasses everything outside the agent. The agent learns through experience and
chooses its action a; based on the perceived current state of the environment s;. After the agent has selected
an action at step ¢, the environment proceeds to the new state s;; and returns a reward m;,; (Sutton and
Barto 2018). In our experiment, the action space is defined by integer prices to be chosen by firm i in the
market, i.e., the price interval [0, 100]. The state is determined by the action(s) of firm #’s competitor(s) in
the previous period. The reward obtained in period ¢ is given by firm 7’s profit 7; in the previous period.

Following Calvano et al. (2020b), Klein (2021), and Werner (2022), we employ Q-learning as a specific
reinforcement learning algorithm. Q-learning has emerged as a popular algorithm for simulations and ex-
periments in the literature, as it is widely used in practice and represents a particularly simple machine
learning algorithm that requires to determine only few parameters ex ante (Calvano et al. 2020b). As with
any reinforcement learning algorithm, Q-learning consists of two distinct interacting modules: a learning
module and an action selection module (Klein 2021). The learning module is based on the agent’s objec-
tive to maximize the sum of discounted future expected rewards which can be formally expressed by the
Q-function

Q(s,a4) = B | + Jr(?eaj(Q(st+1,a)\st,at . )
As both the action space A and the state space S are finite, the Q-function can be denoted as a A x .S matrix.

Forty-Third International Conference on Information Systems, Copenhagen 2022
5



Competition Between Human and Artificial Intelligence

In order to determine an optimal strategy, the Q-learning agent has to iteratively update the cells of this Q-
matrix for each state-action combination (Werner 2022). The values of the Q-matrix are updated as follows:

(1 —a)Q4(s,a) + a(m + 5H1631§Qt(5t+1, a)) ifs=s Na=a,

Qi+1(s,a) = { (2)

Q+(s,a) otherwise.

The discount factor § € [0, 1) denotes the time preference of the agent, while the learning rate « € (0, 1] deter-
mines how newly experienced rewards and states are weighted against past experiences, i.e., past Q-values
(Waltman and Kaymak 2008). For the action selection, the algorithm faces a trade-off between exploration

and exploitation. In our experiment, we use the widely used e-greedy method to deal with this trade-off in
a simple manner (Sutton and Barto 2018). Formally, the action selection method is given by:

a~U{A} with probability e,
.= (3)

arg max Q¢(s¢,a) with probability 1 — €.
ac

For exploration, an action from the action space A is chosen randomly with probability ¢; € [0,1]. The
random action is thereby chosen from a discrete uniform distribution over the action space 4, i.e.,a ~ U {A}.
For exploitation, the greedy action with the highest expected reward is selected with probability 1 — ¢; (cf.
Calvano et al. 2020b; Klein 2021). This action selection method ensures that, in expectation, the agent
incrementally updates the value of every state-action combination (Klein 2021).

For the experimental sessions, Q-learning agents were trained via self-play in ex-ante simulation runs in the
same market environment as in the experiment. To select the most profitable agent for the experiment, the
learning rate o and the discount factor § were systematically varied with ten runs per parameter constella-
tion and each run consisting of 50 million periods. Trained Q-learning agents exhibit reward-punishment
strategies indicative of collusive behavior after converging to a steady-state (cf. Calvano et al. 2020b; Klein
2021). During the experiment, a Q-learning agent autonomously sets prices p; in each period ¢ and receives
a reward, i.e., its profit 7;. Agents continue to learn during the experiment according to the updating rule
given by (2), thereby adjusting its pricing strategy to the behavior of its competitor(s). However, the explo-
ration parameter in (3) is set to zero, i.e., ¢, = 0V¢, such that agents abstain from choosing random actions,
which could irritate human competitors and introduce noisy behavior.

Experimental Procedures

The experiment was programmed in Java using the experimental software framework Brownie (Hariharan
et al. 2017). Moreover, the implementation of the market environment by Horstmann et al. (2016), which
supports immediate market interactions, is used. The study was approved by the German Association for
Experimental Research. All subjects are fully informed about the procedure of a session before the start of
the experiment.

Upon arriving at the laboratory, subjects are randomly assigned to a seat where they can neither see nor
communicate with any other participant in the experiment. After all participants have been seated, the in-
structions for the experiment are handed out and then read aloud. Before the experiment, each participant
must complete a computerized comprehension test that verifies whether subjects have fully understood the
instructions. After all subjects have successfully completed the comprehension test, the experiment starts
automatically. Before the payoff-relevant competition phase starts, subjects can make themselves familiar
with the user interface and set prices in a test environment. The competition phase, which lasts exactly 30
minutes, starts when all participants have set an initial action in the test environment. In the competition
phase, subjects set their actions in real-time and without interruptions. To this end, input and output vari-
ables are updated every 500ms, which is perceived as real-time by human participants. The user interface
displays current prices, quantities, and profits numerically as well as historic prices, quantities, and profits of
all firms graphically. After the end of the competition phase, subjects answer a short questionnaire on their
pricing strategy and how they perceived the behavior of their competitor(s). At the end of the experiment,
subjects receive a monetary payoff that is given by their firm’s profit accumulated over the entire competition
phase. Subjects are paid in private such that other participants cannot learn about their performance.
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Preliminary Results

In the following, we present preliminary results for the first experimental sessions that have been conducted
between December 2021 and March 2022 with students from the University of Passau. In total, 23 partic-
ipants took part in three sessions that all employed price competition in a duopoly market. The sessions
lasted about one hour. On average, subjects earned 15.69 EUR. In the analysis, we focus on treatment dif-
ferences with respect to the degree of tacit collusion. In all treatments, the independent observation is at the
market level, as competitors’ actions depend on each other and are correlated over periods. Table 2 reports
the average degree of tacit collusion ¢ per treatment together with its standard deviation o.

Treatment | Subjects | Observations ¢ (o)

HH-2 14 7 0.62 (0.18)

HA-2 9 9 0.34 (0.17)

AA-2 - 1 1.00 (0.00)

AA-3 - 1 1.12 (0.00)

Table 2. Average degrees of tacit collusion across treatments.

Figure 1 visualizes average degrees of tacit collusion over the duration of the experiment across treatments
with two firms. Across all treatments, prices exceed the competitive price level, as indicated by positive
average degrees of tacit collusion in Table 2, which are significantly different from zero based on one sample
t-tests (p < 0.05). In Figure 1, this is most clearly seen for later periods after about one third of the entire
time horizon (i.e., after ten minutes). For treatments with human market participants, tacit collusion is
significantly higher when only humans compete (¢ ; = 0.62) than when humans compete with algorithms
(¢4 = 0.34) based on a two-sample t-test (p < 0.1). Thus, replacing one of the human competitors with an
Al-driven pricing algorithm reduces the degree of tacit collusion. However, in both treatments with human
participation, the degree of tacit collusion is significantly below the fully collusive outcome that is achieved
when Al-driven algorithms compete with themselves (two-sample t-test, p < 0.1).

= m
=% 075 I'reatment
3
o= - -
£33 050 HH-2
T *= AA-2
Q'S ozs - HA-2

0 10 20 30
Time (in minutes)

Figure 1. Average degrees of tacit collusion over time across treatments.

Based on these preliminary findings, one can conjecture that the use of Al-driven pricing algorithms facil-
itates tacit collusion compared to human decision makers, but only if algorithms solely compete with each
other. When human decision makers are involved, tacit collusion decreases. Yet, the lowest degree of tacit
collusion arises for hybrid market settings where humans and AI compete.

Discussion

The preliminary results would confirm Hypothesis 1 and Hypothesis 3, but reject Hypothesis 2. The lat-
ter finding would run against the hypothesized notion of a linear relationship between the degree of tacit
collusion and the number of pricing algorithms in a market. The finding of a non-monotonic relationship
would also be in contrast to results of previous experimental studies (Normann and Sternberg 2022; Werner
2022). In general, a lower degree of tacit collusion in hybrid market settings could be explained by (i) a lower
intention of humans to collude with Al, (ii) a lower ability of humans to collude with Al, or (iii) both. With
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respect to (i), algorithm aversion (Dietvorst et al. 2015) may lead to a lower willingness of humans to co-
operate with Al and could thus explain a lower intention to collude in hybrid market settings. Responses
to the questionnaire provide some anecdotal evidence for this explanatory approach. For example, some
subjects stated that their ultimate goal was to outperform their algorithmic counterpart, which indicates a
different goal function than in markets with only human competitors. With respect to (ii), humans and Al
may follow fundamentally different strategies and behavioral rationales to achieve cooperation in compet-
itive settings, which could possibly explain a lower ability to collude with Al. For example, some subjects
stated that they perceived the behavior of the algorithm as rather noisy and non-transparent. This points
to a failure of coordination, despite the intention to collude. In any case, further data collection is required
before more conclusive statements can be drawn. This holds for the quantitative analysis of the degree of
tacit collusion as well as the qualitative assessment of potential explanations based on subjects’ intention
and ability to collude.

Conclusion

This study is among the first to investigate digital market settings where artificial and human intelligence
compete, which have so far received only little attention by IS and HCI research. To investigate market
outcomes and tacit collusion among humans and Al, we design and conduct an oligopoly experiment in
near real-time. We compare market outcomes in these hybrid markets to market settings where only hu-
mans or only algorithms compete. The preliminary findings demonstrate that our computerized market
environment is well-suited to investigate the presented research questions. The findings also provide first
indications that tacit coordination can emerge among humans and AI. However, more data collection (that
is currently ongoing) is required before more definite conclusions can be drawn. To this end, our study also
establishes a building block for future IS research on algorithmic collusion in hybrid markets that may eval-
uate the impact of additional factors such as market size, firm size, or product type. Such investigations will
have important implications for policymakers with respect to IT and Al regulation as well as managers with
respect to potential compliance and liability issues in the context of Al-driven algorithmic pricing. Besides
general limitations of laboratory experiments with regard to external validity, the choice and training of
the algorithm used in our experiment imposes potential limitations on the generalizability of our findings.
Therefore, we plan to corroborate the robustness of our findings by also considering alternative training
methods for Al-based pricing algorithms, such as online training or training on human data. A further lim-
itation is the applicability to other market types (e.g., financial markets), which may incorporate different
market mechanisms. Yet, the investigation of other market types with their corresponding dynamics is still
open for future research.
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