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Abstract

The emerging telehealth platforms connect patients with physicians using telecommu-
nication technologies and are transforming the traditional healthcare delivery process.
Meanwhile, patient care journeys spreading across online and offline health service chan-
nels call for new research methodologies. Using a dataset from a telehealth platform,
we develop a novel Poisson-factor-marked Hawkes process to model such a journey and
quantify the mutual-modulating effects of various patient activities. Our estimation re-
sults demonstrate the disparate impacts of the patient’s health conditions and physician
characteristics on choosing care channels. Taking advantage of the self-generation prop-
erty of our model, we simulate policy and strategic interventions, which highlights the
practical value of the proposed model and offers implications for better patient routing
and service design for telehealth platforms.

Keywords: Multichannel healthcare, correlated Poisson factor analysis, generative model

Introduction

Facilitated by the emerging telehealth platforms, patients are provided with an online channel to connect
with healthcare practitioners and to quickly access consultation, primary care, and specialty care services.
As defined by HRSA (2020), telehealth (or telemedicine) “takes advantage of electronic information and
telecommunication technologies to support long-distance clinical health care, patient andprofessional health-
related education, public health, andhealth administration.” TheCOVID-19pandemic has forced the health-
care industry to leap into the digital future, significantly influencing the healthcare delivery process. An
emerging “Digital-First” health care approach flips the traditional in-person-centric healthcare deliverymodel
into one that prioritizes digital engagement and underscores the need for telehealth (Gartner 2020). The
global telehealth market is projected to grow from 90 billion in 2021 to 636 billion in 2028 with a dramatic
increase in the adoption rate (Fortune Business Insights 2021).

Telehealth transforms traditional healthcare delivery by introducing an additional online channel for quick
and low-cost healthcare delivery (Bestsennyy et al. 2021). The accessibility and convenience of telemedicine
have demonstrated the potential for more cost-effective medical services (Zeltzer et al. 2021). To advance
the knowledge of how patients choose between the traditional offline channel and the emerging online tele-
health channel, andmore importantly, its implication on the patient health outcome, we propose amodeling
framework with considerable latitude in temporal dimensions and details of each medical care interaction.

Firstly, a patient’s health condition evolves over time and is affected by all the previous health-related inter-
ventions. Ignoring the patient journeymay result in biased estimates or important factors being overlooked.
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Figure 1. An Example Patient Journey

This gap motivates us to model a patient journey as a point process. Specifically, we see the journey of a pa-
tient as a collection of events (points) falling in the time space. Figure 1 shows an example patient journey in
our study where two types of events are accounted for: online consultations (through a telehealth platform)
and offline office visits. The patient first consults a doctor online at time t1, and then makes an office visit
appointment at time t2 afterward. As the patient monitors her condition, she decides to go with the online
channel for the follow-up visit, which occurs at t3. Note that, the online visit at time t3 can be driven by both
the online visit at t1 and the offline visit at t2. Solely focusing on the office visit and estimating its impact on
the online visit at t3 may give rise to bias from overlooking the impact of the first online communication.

To properly model the patient journey, the effects of events within and across both channels are captured.
Specifically, self- (or mutual-) exciting effect represents the positive impact of past events on the same (or
a different) type of future events whose arrivals are thus accelerated. Moreover, previous events can also
inhibit future ones. For instance, a telehealth visit about a chronic disease can substitute for future tradi-
tional clinical visits (Ayabakan et al. 2020). Similarly, an office visit with proper diagnosis and treatment
can cure the patient, making future medical visits unnecessary. Thus, it is also critical to capture the self-
and mutual-inhibiting effects across both channels. In particular, the self- (or mutual-) inhibiting effect is
the negative impact of past events on the same (or a different) type of future events whose arrivals are thus
decelerated. We collectively refer to the self-exciting and inhibiting effect as a self-modulating effect, and
the mutual-exciting and inhibiting effect as amutual-modulating effect.

The patient journey with telehealth is also characterized by the content of consulting conversations and
physician characteristics. During consultations, patients describe their symptoms and concerns. Subse-
quently, physicians providemedical advice based on their clinical experience. Moreover, it has been reported
that physician seniority can be correlated with inappropriate diagnosis (Young et al. 2020). This effect of
physician seniority is further modulated by cultural factors, which also affect patients’ trust in physicians’
advice (Ju, Zhang, et al. 2020). Since medical service is a typical example of credence goods (Dulleck and
Kerschbamer 2006), as suggested by the signaling theory (Spence 1978), the content of the dialogues and
the physician experience can potentially signal the quality of the service. Thus, the rich details of patient-
physician interactions are incorporated into the proposed model to understand its influence on patients’
decisions on further medical care and the dynamics of patient conditions.

To this end, we propose Poisson-factor-marked Hawkes process to accommodate all the aforementioned
modeling features. In particular, both self- and mutual- modulating effects between patients’ online con-
sultation and offline appointment behaviors are considered. In addition, we highlight the importance of
capturing physician characteristics and conversation content for online encounters. The proposed model
is applied to a dataset shared by an online telehealth service platform operating in China, which includes
information of medical care processes related to gynecology and obstetrics. The dataset has several advan-
tages. Firstly, the complete journey of patients who consult physicians online via the platform and make
office-visit appointments to see a physician offline is recorded. Moreover, the consultation service takes the
format of secure messaging through the platform, and the content of the conversation is included in the
data. To model the patient journey, we use a correlated Poisson factor model to extract information from
the consultation content, and a logistic model for the choice of the physician class in consultations. Utilizing
both information, wemodel patient activity streams by amutually modulating marked Hawkes process. We
refer to the whole procedure as a Poisson-factor-marked Hawkes Process.
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The proposed model offers a better characterization of the patient journey across both channels, as its pre-
diction power outperforms several benchmark counting processes. The estimation results show that two
factors can best describe the content of conversations: one represents non-urgent medical needs, and the
other represents more urgent medical conditions that may require further attention. Based on this finding,
the severity of patients is approximated by theweights on each factor which is input into the physician choice
model and the Hawkes process. The Hawkes process estimations demonstrate themodulation impact of pa-
tient’s condition severity and physician seniority. After a consultation about urgent concerns, patients tend
to see a doctor offline instead of online. In addition, consulting a junior physician leads to a higher probabil-
ity of future consultation and substitutes for a future appointment. However, consulting a senior physician
reverses the effect. These results serve as a starting point for further quantifying the marginal effects and
simulating various policy and strategic interventions.

Apart from improving the understanding of patient journeys, the proposed model has the important ad-
vantage of fully depicting the data-generating process. This property allows for broader model applications
based on predictions and simulations. We showcase one model application to understand the impact of dif-
ferent initial encounters. In particular, we impose various initial events (consulting different doctors with
various severity levels of health conditions or making an appointment) and simulate patient journeys after
that. The simulation result further confirms our previous findings and points out the importance of proper
patient routing in the utilization of different channels.

In summary, this paper makes three contributions. First, we bring in a Poisson-factor-marked Hawkes pro-
cess to model patient-physician interactions through telehealth and offline channels and offer new insights
about the modulating roles of physician characteristics and consultation content. This extends the litera-
ture on telemedicine. Second, the proposedmodel has several strengths. We introduce a correlation Poisson
factor model to capture the association between patients’ questions and physicians’ responses. Besides, we
allow for both exciting and inhibiting effects under the framework of the mutual-modulating Hawkes pro-
cess. This contributes to the methodologies in the Bayesian probabilistic topic models and the applications
of the Hawkes process. Third, taking advantage of the generative property of the proposed model, we utilize
the model to simulate policy interventions. These applications provide practitioners with implications for
better patient routing and service design for telehealth platforms.

Literature Review and Contribution

Three strands of literature relate to our work. First, burgeoning empirical research has studied the impact
of telemedicine on channel utilization, costs, and healthcare outcomes. Second, extensive work develops
Bayesian topic models or applies them to different domains. Third, a growing number of studies in the
business-related fields use a Hawkes process to model disparate mutual effects. We discuss each in turn.

First, our paper contributes to the growing literature on telemedicine. An important consideration when in-
vestigating the impact of telemedicine is its impact on the utilization of other channels, including office visits
and telephone contacts. Depending on the research contexts and research methodologies, previous studies
draw various mixed conclusions. From the practitioner side, the survey has indicated a significant variation
regarding telehealth adoption, with most physicians either with an adoption rate below 10% or above 90%
(AMA 2022). While on the patient side, such a disparity also exists. Examining the telehealth procedures
through videoconferencing, Ayabakan et al. (2020) document a complementary effect in inpatient settings
for non-chronic patients; however, they also show a significant reduction in outpatient visits after a tele-
health visit. Looking into videoconferencing as well, Shah et al. (2018) show that this form of virtual visit
reduces in-person visits in accountable care organizations. Another widely adopted form of telehealth is
secure messaging that is similar to the online consultation service provided by the telehealth platform we
study. This service is also known as e-visits and is defined as “non-face-to-face patient-initiated communica-
tions through an online patient portal” (CMS 2020). Green et al. (2013) argue that e-visits have the potential
to resolve the surging demand for physician services. Supporting this argument, Zhou et al. (2007) find a
negative correlation between access to secure messaging and primary care office visits. However, North
et al. (2014) document null effects. Conversely, Bavafa et al. (2018) discover that e-visits increase office
visits, as the telehealth channel serves as a gateway to future offline visits. Most existing papers along this
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line study the context of primary care where patients have a long-term established relationship with their
primary care physicians. However, the telehealth platform we study is a marketplace for patients to choose
any physicians, which introduces heterogeneity among physician choices. Secondly, on top of examining
the effect of the “last event” on an upcoming one, we study the dynamics of patient journeys and account for
individual health conditions by the innovative modeling framework we construct.

Second, our work contributes to methodology in Bayesian probabilistic topic models. Probabilistic topic
models, especially latent Dirichlet allocation (LDA) (Blei et al. 2003), have enjoyed tremendous success
in various applications in management science (Bao and Datta 2014; Bellstam et al. 2021; Brandt et al.
2021; Lee et al. 2020; Pu et al. 2020). These models unveil common latent topics among a collection of
documents and interpret semantic concepts of the topics by representative words. In particular, LDA finds
the proportion of a document that originates froma topic. With the sumof the proportions equal to one, LDA
does not capture the absolute relevance of documents to topics and is problematic if applied to our context.
Specifically, a dialogue between a patient and a physicianwith high degrees of relevance to every topic cannot
be distinguished by LDA from those with low degrees, and consequently, the information extracted cannot
reflect how detailed the patient’s questions are or how well the questions are addressed by the physician. To
overcome this obstacle, substantive extensions have been made, such as the Gamma-Poisson model (Canny
2004) and the more general Poisson factor analysis (Zhou et al. 2012). However, all these approaches fail to
model topic correlations among documents that are indispensable in our application since questions from
a patient and answers from a physician are highly correlated. Therefore, we propose a correlated Poisson
factor model to jointly analyze the consultation questions and answers. Moreover, we propose a variational
inference algorithm that admits big data analysis and topic extraction from unseen consultations.

Third, our study extends applications of Hawkes processes to understanding both excitation and inhibition
between the two healthcare channels, and our proposed model allows prediction and simulation of future
events. The Hawkes process is originally used to study the arrival patterns of earthquakes (Hawkes 1971)
and has been applied to many fields in natural, biomedical, and social sciences (Jankowiak and Gomez-
Rodriguez 2017; Okawa et al. 2021; Reynaud-Bouret and Schbath 2010; Yang and Zha 2013) where the
event arrival has a clustering pattern. Among research in management science, Xu et al. (2014) introduce
the Hawkes process to studying exciting effects of multiple types of online advertisements on purchase con-
version. Using Hawkes processes for self- and mutual-excitation, Daw et al. (2021) model service times in
contact centers, andMukherjee et al. (2022) investigate auto recall clustering. These studies assume homo-
geneity of events and do not account for the effects of specific event characteristics on the size of excitation.
To relax this homogeneity assumption, one can involve event features in a Hawkes process as covariates.
For example, Yoo et al. (2019) study content diffusion on Twitter and use counts of followers as covariates.
Aggarwal et al. (2021) use a Hawkes process to understand idea generation with problems and ideas as co-
variates. However, these approaches do not account for the generating process of covariates and thus cannot
be used to study the marginal effects of a preceding event or to simulate event streams with potential inter-
ventions. In stark contrast, our proposed Poisson-factor-marked Hawkes process is a generative model and
admits both prediction and simulation of future events such that one can easily study the impact of an inter-
vention on the event distributions. Specifically, wemodel the time and type (consultation or appointment) of
a patient activity by a Hawkes process, the content of consultation by Poisson factors, and a patient’s choice
of the physician class in consultation by logistic regression. Moreover, our model allows both excitation and
inhibition among events whereas all the aforementioned studies only model exciting effects.

Research Context and Data

The research context is a large online healthcare service platform operating through a mobile app in China.
Founded in 2015, the platform operates in more than 70 cities in 17 provinces by 2019, with the majority in
East and South China. The app is free for patients to register for seeking services. All licensed physicians
are free to register and provide services through the platform. In China, almost all physicians are affiliated
to hospitals or clinics. Thus, to further induce more providers onboard, the platform has partnered with
hospitals in various provinces and cities. By 2018, the platform has collaborated with around 500 hospitals.
More than 50,000 healthcare service providers have registered on the platform, serving nearly 10 million
registered users. The healthcare system inChina does not currently have a gatekeeping system. Unlike in the
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5% quantile 25% quantile median 75% quantile 95% quantile

Age 21 26 30 34 47
# Consultations 1 1 1 2 6
# Appointments 1 2 4 8 20
Time interval (days) 0.19 2.98 10.28 29.30 124.83

Table 1. Summary of Patient Age, Events per Patient, and Time Intervals

U.S., patients in China can choose any types of physicians, including primary care physicians and specialists,
to make appointments without referral. This also applies to the services provided on the platform.

The platform provides several online health-related services. The main services are online consultation and
offline appointment. For the consultation service, a user can chat with a doctor of his or her choice through
the platform. Doctors set their service prices and duration, which can last for one or more days. During the
service period, a user and a doctor can exchange text messages, photos, and voice messages with each other.
The content of their conversations can only be viewed by them but not by others. The platform charges a
commission from doctors’ consultation service. Note that, physicians will not make a formal clinical diag-
nosis and are not allowed to prescribe medications. Instead, during the conversations, physicians generally
discuss potential causes of users’ conditions, provide certain guidance on seeking further medical care, and
answer other health-related questions. For the appointment service, users can make offline office visit ap-
pointments with doctors through the platform. The appointment schedules and fees are set by hospitals
with which doctors are affiliated. The platform charges no fee for such a service.

The dataset shared by the platform include the activity streams from users in six cities of one province in
South China, between March 2016 (when the platform started to operate in the focal province) and April
2019. For each user, we observe their gender, age, and registration time. The activity stream of a user in-
clude purchases of consultation and appointment services. For the consultation service, the dataset includes
the time of purchase, the text content of the conversation, the provider information, and the fee. For ap-
pointments, we know the time a user makes an appointment and information of the provider. For all the
providers, we observe their affiliations (hospitals), specialties (represented by the medical departments in
the hospitals), and ranks. In Chinese healthcare system, there are four ranks for physicians, which depend
on physicians’ educational background, level of scholarship, and years of experience. Physicians of the top-
two ranks are often called “experts” in China, with whom the appointment and othermedical fees are higher.
We refer to these physicians as senior physicians and the others as junior physicians.

In this study, we focus on 8,260 users from one city, who have interacted both online and offline with physi-
cians from the department of gynecology and obstetrics. The app we collaborate with was the most popular
telehealth platform in the focal city during our study period. It partners with most public primary hospitals
and Obstetrics & Gynecology-specialized hospitals. The firm also gives the highest priority to developing
services related to Obstetrics & Gynecology (OB/GYN). As a result, OB/GYN represents the most popular
specialty on the platform. The dataset we use contains 52,125 appointments and 17,238 consultationswhere
13,221 consultations are provided by senior physicians and 4,017 by junior physicians. In Table 1, we sum-
marize the patients’ age at registration, the numbers of consultations and appointments for each patient,
and the time interval between two events. The time intervals have a median value of 10.28 days and can be
as large as over four months, likely suggesting a clustering pattern of the patient activities on the platform.
In other words, a patient’s consultations and appointments tend to concentrate in a relatively short period of
time followed by a long period of inactivity. The potential event clustering is statistically testable by checking
an optimal number of clusters. We conduct K-means clustering (other clustering methods also apply) for
each of the 6,890 patients who have at least three activities (consultations and/or appointments) and use
the gap statistic (Tibshirani et al. 2001) to determine the number of clusters. As a result, 5,085 patients have
more than one cluster, which demonstrates the clustering pattern of patients’ activities.

Poisson-Factor-Marked Hawkes Process

We propose a Poisson-factor-marked Hawkes Process to investigate patient journey dynamics. Specifically,
we use a correlated Poisson factor analysis to extract information from the consultation content and accom-
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modate correlation between questions and answers in a consultation. Furthermore, we use a logistic model
for the choice of the physician class in consultation service. Lastly, we utilize the extracted information from
consultations and the choices of the physician class as marks in a mutually modulating Hawkes process to
model patient activity streamswith a noticeable clustering pattern. The three components complete the data
generating process of patient journeys.

Patient activities (consulting a physician and making an appointment) on the platform are patient-initiated
events. We let (ti, κi) denote the i-th event in temporal order with the event type κi occurring to a patient
at time ti. With i = 1, 2, . . ., the patient’s actions over time compose an event stream {(ti, κi)}i where 0 ≤
t1 < . . . < ti < ti+1 < . . . and κi ∈ {1, 2, . . . ,K}. In our empirical setting, each patient has K = 2
types of events: consulting a physician (κi = 1) and making an appointment (κi = 2). A consultation
is characterized by the dialogue between the patient and the physician, i.e., the patient’s questions and the
physician’s answers. Specifically, the consultation dialogue of event i is represented by theword count vector
y
(Q)
i = (y

(Q)
i1 , . . . , y

(Q)
iVQ

) of the questions and y
(A)
i = (y

(A)
i1 , . . . , y

(A)
iVA

) of the answers where VQ = 97 and
VA = 141 are the numbers of all keywords in questions and answers, respectively. It is not necessary that
all the keywords appear in each consultation; we have y(Q)

iv = 0 or y(A)
iv = 0 or if keyword v of questions or

answers does not appear in event i.

Correlated Poisson Factor Analysis of Consultations

We propose a correlated Poisson factor model to extract information from consultation and use variational
inference for an easy factor score estimation of unseen consultations. Suppose an event i of consultation
has the count vectors y

(Q)
i of the patient questions and y

(A)
i of the physicians’ answers. With S being a

prespecified number of factors (topics) in the dialogue, we assume that the word counts y(Q)
i and y

(A)
i are

generated by the following Poisson factor model:

y
(Q)
iv ∼ Poisson(

∑S

s=1
z
(Q)
is ϕ(Q)

sv ), v = 1, . . . , VQ, y
(A)
iv ∼ Poisson(

∑S

s=1
z
(A)
is ϕ(A)

sv ), v = 1, . . . , VA,

ϕ(Q)
sv > 0,

∑VQ

v=1
ϕ(Q)
sv = 1, v = 1, . . . , VQ, ϕ(A)

sv > 0,
∑VA

v=1
ϕ(A)
sv = 1, v = 1, . . . , VA, for s = 1, 2, . . . , S,

z
(Q)
is > 0, z

(A)
is > 0 for s = 1, 2, . . . , S, (z

(Q)
i1 , z

(Q)
i2 , . . . , z

(Q)
iS , z

(A)
i1 , z

(A)
i2 , . . . , z

(A)
iS ) ∼ log-Normal(µ,Σ). (1)

Defining ϕ(Q)
s := (ϕ

(Q)
s1 , ϕ

(Q)
s1 , . . . , ϕ

(Q)
sVQ

) and ϕ(A)
s := (ϕ

(A)
s1 , ϕ

(A)
s1 , . . . , ϕ

(A)
sVA

), ϕ(Q)
s and ϕ(A)

s are the factor

loading vector of y(Q)
i and y

(A)
i ; with the sum-to-one constraint on the factor loading vectors, each element

ϕ
(Q)
sv (or ϕ(A)

sv ) is between 0 and 1 and represents the relative importance of word v in factor s of the questions
(or answers). Consequently, each factor s can be interpreted by looking at the loading vectorsϕ(Q)

s andϕ(A)
s ,

where representative words v of factor s in questions (or answers) have large weights ϕ(Q)
sv (or ϕ(A)

sv ). Note
that ϕ(Q)

s and ϕ(A)
s are global parameters that remain unchanged across consultations.

Writing z
(Q)
i := (z

(Q)
i1 , z

(Q)
i2 , . . . , z

(Q)
iS ) and z

(A)
i := (z

(A)
i1 , z

(A)
i2 , . . . , z

(A)
iS ), z(Q)

i and z
(A)
i are the factor score

vector of the questions and the answers, respectively, in the consultation of event i, and each element z(Q)
is

(or z(A)
is ) characterizes the relevance of the consultation to factor s of the questions (or answers). The fac-

tor scores z(Q)
i and z

(A)
i depend on specific information of event i of consultation. We further assume the

factor scores of questions and answers follow a multivariate log-normal distribution with mean vector µ
and covariance matrix Σ (or equivalently (log z(Q)

i1 , . . . , log z(Q)
iS , log z(A)

i1 , . . . , log z(A)
iS ) ∼ Normal(µ,Σ)) to

accommodate the correlation of factors within and between questions and answers in a consultation.

We use the correlated Poisson factor analysis for its easy interpretation and generation of the factor scores
that can be used to model and simulate the occurrences of patients activities. Other generative language
models with an easy interpretation may also apply. We estimate the Poisson factor model by variational
inference with different numbers of factors S, evaluate the log-likelihood, and use the Bayesian information
criterion (BIC) to determine S (as shown in Table 2, shortly). Finally, we set the number of factors S = 2
and interpret the two factors as different types of need for medical service. In fact, as shown in the estima-
tion section, we conclude that factor s = 1 represents the routine/wellness health-related questions from
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patients, while factor s = 2 characterizes relatively urgent inquiries. In the remainder of this section, we
present the rest of the model by letting S = 2.

Choice of Physician Class for Consultation

A patient chooses between junior and senior physicians if she has decided to request an online consultation.
Let wi = 0 or 1 denote that the patient consults a junior or a senior physician in event i of consultation. The
choice wi may depend on the patient’s health condition at that moment, which is self-evaluated and hardly
known by healthcare providers before the service. To circumvent the difficulty in assessing the patient’s
condition, we find an approximation using the correlated Poisson factor analysis. Specifically, a positive
valued factor score z(Q)

is quantifies to what degree a patient’s question in consultation i is related to factor

s; a larger value of z(Q)
is implies that the questions are more specifically asked with respect to factor s. With

factor s = 1 representing routine healthcare demands and factor s = 2 urgent inquiries, z
(Q)
i2

z
(Q)
i1 +z

(Q)
i2

is between

0 and 1 and can be used as a proxy of the patient’s health condition. In consequence, we model the choice
of the physician class wi by a logistic regression

log
p(wi = 1)

1− p(wi = 1)
= γ

(n)
0 + γ1

z
(Q)
i2

z
(Q)
i1 + z

(Q)
i2

(2)

where γ(n)0 ∼ Normal(µγ0
, σ2

γ0
) is a random intercept quantifying patient n’s baseline preference when

choosing the physician class and γ1 is a fixed slope that does not differ among patients.

The formulation of (2) evaluates the impact of urgency/health condition on the choice of the physician class.

The prediction of wi by
z
(Q)
i2

z
(Q)
i1 +z

(Q)
i2

seems to contradict the temporal order of patient actions, as the factor

scores z(Q)
i1 and z(Q)

i2 are inferred from the questions after wi is determined. In fact, z
(Q)
i2

z
(Q)
i1 +z

(Q)
i2

as an approxi-

mation of the health condition is used as a “pivot quantity” that is unaffected by consultation. In otherwords,
the questions have been already in themind of the patient and her degree of urgency/health condition evokes
the demand of consulting a junior or senior physician.

We particularly focus on the choice between junior and senior physicians for the online consultation service
for the following reasons. First, we take the platform’s perspective and aim to understand patient journeys
to facilitate better service design and patient routing. Specifically, taking advantage of the self-generation
property of the proposed model, we study by simulation how an arbitrary event affects a patient’s future
behaviors. Second, the rich text data from the consultation service allows a higher flexibility in modeling
patient’s online activity stream in detail. Lacking such granular data for offline interactions between patients
and doctors or offline medical records, we do not model choices of the physician classes in offline visits.
Hereby, we have defined the generating processes of marks, including the Poisson factors of dialogues and
the choices of the physician class in consultations. Next we utilize the marks of past events to model arrivals
of future ones by defining intensity functions of a mutually modulating marked Hawkes process.

Marked Hawkes Process for Mutual Modulation

To account for the effects of a patient’s past actions on future ones, we define the patient’s event history
H(t−) = {(ti, κi) | i : ti < t} that includes the time and type of an event up to but not including time t.
Analogously,M(t−) := {(wi, z

(Q)
i , z

(A)
i ) | i : ti < t, κi = 1} denotes the set of marks before time t, including

the patient’s choice of the physician class and factor scores of dialogues in consultations. Given H(t−) and
M(t−), we formulate a marked Hawkes process by intensity functions λk at time t with k = 1 and 2 for
consultation and making an appointment, respectively. Concretely, the probability of an event of type k
occurring in an infinitesimal time interval [t, t+dt) is equal to λk(t |H(t−),M(t−))dt. Note that λk depends
on the entire history of past events, including the inter-events time intervals, time elapsed since the previous
event, and the marks related to previous events.

We use a softplus function F(x) = log(1 + ecx)/c with c = 10 as a smooth approximation of max(0, x).
Suppose there are N patients. Given patient n’s event history H(t−) and marks M(t−) before time t, her
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intensity of consultation (k = 1) or making an appointment (k = 2) at time t, λk(t |H(t−),M(t−)), is

λk(t |H(t−),M(t−)) =F
(
α
(n)
k +

∑
i:ti<t,κi=1

ψk1(t, ti, wi, z
(Q)
i , z

(A)
i ) +

∑
i:ti<t,κi=2

ψk2(t, ti)
)
,

ψk1(t, ti, wi, z
(Q)
i , z

(A)
i ) =

(
βk10 + βk11wi + βk12(z

(Q)
i1 + z

(Q)
i2 ) + βk13

z
(Q)
i2

z
(Q)
i1 + z

(Q)
i2

+

(βk14 + βk15wi)(z
(A)
i1 + z

(A)
i2 ) + (βk16 + βk17wi)

z
(A)
i2

z
(A)
i1 + z

(A)
i2

)
e−ηk1(t−ti),

ψk2(t, ti) =βk20e
−ηk2(t−ti), (3)

whereα(n)
k is patientn’s randombaseline intensity of anupcoming event of type k = 1 or 2 and independently

follows log-Normal(mk, σ
2
k) for each patient n = 1, 2, . . . , N . ψk1(t, ti, wi, z

(Q)
i , z

(A)
i ) quantifies the decaying

impact of a past consultation at time ti on a potentially upcoming event of type k at time t and it depends on

the content of the consultation that is reflected by z(Q)
i1 +z

(Q)
i2 , z

(Q)
i2

z
(Q)
i1 +z

(Q)
i2

, z(A)
i1 +z

(A)
i2 , and z

(A)
i2

z
(A)
i1 +z

(A)
i2

. Specifically,

z
(Q)
i1 + z

(Q)
i2 > 0 is the total relevance of the patient’s questions to routine and urgent healthcare demands

and thus interpreted as how detailed the questions are in the consultation. Analogously, z(A)
i1 + z

(A)
i2 > 0 is

interpreted as how specifically the physician has addressed the patient’s concern. Simply, z(Q)
i1 + z

(Q)
i2 and

z
(A)
i1 + z

(A)
i2 characterize the length of the questions and answers. As explained, z

(Q)
i2

z
(Q)
i1 +z

(Q)
i2

between 0 and

1 approximates the patient’s health condition and a larger value indicates a worse condition. z
(A)
i2

z
(A)
i1 +z

(A)
i2

is

the proportion of the physician’s answers/advice on the urgent inquiries of the patient and thus can reflect
how the patient’s health condition is evaluated by the physician; a larger value may indicate a more severe
condition from the physician’s perspective. The coefficients βk1h ∈ R, h = 0, 1, . . . , 7, quantify the effects of
the information in the past event i of consultation on the instantaneous probability of an upcoming event
of type k, and these effects exponentially decay over time with a decay rate ηk1 > 0. In addition, ψk2(t, ti)
is the decaying impact of a past appointment at time ti on an upcoming event of type k at time t with an
instantaneous effect βk20 ∈ R and a decay rate ηk2 > 0. The softplus function F guarantees a positive value
of the intensity functions (Mei and Eisner 2017). To be estimated are global parameters β’s, η’s,mk and σ2

k,

k = 1, 2 that are unchanged among patients. The random baseline intensities {α(n)
k }n,k are also estimable

when necessary, such as in individual-level studies.

Model Estimation

The logistic model for the choice of the physician class as in equation (2) is estimated by the maximizing
the likelihood and is omitted in our paper. In this section, we briefly discuss the inference of the correlated
Poisson factor model and the marked Hawkes process with technical details omitted due to the page limit.
Concretely, we use variational inference to estimate the Poisson factor model by maximizing the evidence
lower bound

maxE

[
log

p1(µ)p2(Σ)
∏

i:κi=1 pϕ(y
(Q)
i ,y

(A)
i | z(Q)

i , z
(A)
i )p(z

(Q)
i , z

(A)
i |µ,Σ)

q1(µ)q2(Σ)
∏

i:κi=1 q(z
(Q)
i , z

(A)
i |y(Q)

i ,y
(A)
i )

]
(4)

with each component formulated by

pϕ(y
(Q)
i ,y

(A)
i | z(Q)

i , z
(A)
i ) =

(∏VQ

v=1
Poisson(y(Q)

iv ;

S∑
s=1

z
(Q)
is ϕ(Q)

sv )
)(∏VA

v=1
Poisson(y(A)

iv ;

S∑
s=1

z
(A)
is ϕ(A)

sv )
)
,

p(z
(Q)
i , z

(A)
i |µ,Σ) = log-Normal([z(Q)

i , z
(A)
i ];µ,Σ),

q(z
(Q)
i , z

(A)
i |y(Q)

i ,y
(A)
i ) = log-Normal

(
z
(Q)
i ;µQ(y

(Q)
i ),diag(σQ(y

(Q)
i )2)

)
×

log-Normal
(
z
(A)
i ;µA(y

(A)
i ),diag(σA(y

(A)
i )2)

)
where µQ, σQ, µA, and σA are feed-forward neural networks that take inputs of length VQ or VA and output
an S-dimensional real vector. Moreover, p1(µ) and p2(Σ) are standard multivariate normal priors on µ and
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S = 1 S = 2 S = 3 S = 4

log-likelihood −8.12× 104 −7.45× 104 −7.28× 104 −7.15× 104

BIC 3.63× 107 3.59× 107 3.67× 107 3.74× 107

Table 2. Log-likelihood and BIC for the Correlated Poisson
Factor Model with Different S

the Cholesky factor ofΣ, and q1(µ) and q2(Σ) are their Gaussian variational distributions whose means and
covariances are to be estimated. The expectation in (4) is taken with respect to µ ∼ q1(µ), Σ ∼ q2(Σ), and
(z

(Q)
i , z

(A)
i ) ∼ q(z

(Q)
i , z

(A)
i |y(Q)

i ,y
(A)
i ) and evaluated by reparameterization (Blei et al. 2017; Kingma and

Welling 2014). The evidence lower bound ismaximized by (stochastic) gradient descentwith respect toϕ(Q)
s ,

ϕ(A)
s , the parameters of neural networks µQ, µA, σQ, and σA, and the means and covariances of Gaussian

distributions q1(µ) and q2(Σ). Note that q(z(Q)
i , z

(A)
i |y(Q)

i ,y
(A)
i ) approximates the joint posterior of z(Q)

i

and z
(A)
i . In stark contrast to Bayesian inference based on MCMC that is used for inference of LDA (Blei

et al. 2003) and the Poisson factor model (Zhou et al. 2012) that does not account for document correlation,
the closed-form expression of q(z(Q)

i , z
(A)
i |y(Q)

i ,y
(A)
i ) allows predictions of z(Q)

i and z
(A)
i of an unseen con-

sultation i with no need to re-run the inference algorithm. This is imperative in big data applications where
training a model is computationally expensive.

We find the parameters β’s and η’s in the marked Hawkes process (3) by maximizing log-likelihoods. Sup-
pose we observe a patient’s activities between time 0 and T . The log-likelihood of the patient’s event times
and types given the marksM(T ) is

ℓ(H(T ) |M(T )) =
∑

i:ti≤T

logλκi
(ti |H(ti−),M(ti−))−

∫ T

0

λ(t |H(t−),M(t−))dt (5)

where λ(t |H(t−),M(t−)) = λ1(t |H(t−),M(t−)) + λ2(t |H(t−),M(t−)) represents the intensity of ei-
ther a consultation or an appointment made at time t. We estimate parameters of the Hawkes process by
maximizing the summation of log-likelihoods of all patients after marginalizing out the random baselines
{α(n)

1 , α
(n)
2 }n by Monte Carlo integration with reparameterization of log-normal distributions. All the op-

timization is implemented in PyTorch (Paszke et al. 2017) and starts from different random values of the
parameters; we report results based on the parameter estimates that deliver the largest likelihood among
candidate solutions. Nonparametric bootstrapping is used for uncertainty quantification of β’s and η’s in
the intensity functions.

Results

We are interested in quantifying the effect of a patient seeking online/offline medical service on such deci-
sions in the future. On top of that, we want to understand how physician seniority and the content of con-
versations affect a user’s choice between the two channels of healthcare. Moreover, we compare different
benchmark models with the proposed Poisson-factor-marked Hawkes process to demonstrate the critical
roles of each model component.

Estimation of the Correlated Poisson Factor Analysis

We first present the estimation of the correlated Poisson factor model for consultation conversations. We
evaluate the log-likelihood and use the Bayesian information criterion (BIC) to determine the number of
factors S. As shown in Table 2, the log-likelihood remarkably decreases as the number of factors increases
from one to two, and slightly goes down when S gets bigger. When S = 2, BIC achieves a minimum value
among the models compared. Eventually, We set the number of factors S = 2 and report the keywords in
each factor of the questions and answers and their weights {ϕ(Q)

sv }s,v and {ϕ(A)
sv }s,v in Table 3. For brevity,

we only show the keywords whose weights are greater than 1%, and these keywords account for 69% ormore
of the information conveyed by the corresponding factors.

The top five keywords are baby, breastfeeding, medication, now, and have a look/wait for factor s = 1
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Question factor s = 1 Question factor s = 2 Answer factor s = 1 Answer factor s = 2

Keyword v Weight ϕ(Q)
sv Keyword v Weight ϕ(Q)

sv Keyword v Weight ϕ(A)
sv Keyword v Weight ϕ(A)

sv

baby 0.1472 examination 0.1406 medication 0.0840 examination 0.1420
breastfeeding 0.0692 hospital 0.0622 baby 0.0802 menstruation 0.0457
medication 0.0570 appointment 0.0514 have a look/wait 0.0460 hospital 0.0445
now 0.0532 menstruation 0.0504 breastfeeding 0.0391 pregnant 0.0374
have a look/wait 0.0505 right now 0.0445 infect 0.0309 uterus 0.0345
cough 0.0291 medication 0.0345 comfortable 0.0274 abdomen 0.0325
poop 0.0287 pregnant 0.0339 perhaps 0.0260 medication 0.0324
cold 0.0250 result 0.0336 examination 0.0226 appointment 0.0287
severe 0.0243 surgery 0.0280 poop 0.0219 surgery 0.0271
yesterday 0.0236 normal 0.0240 cold 0.0216 bleeding 0.0256
comfortable 0.0213 problem 0.0231 hospital 0.0213 vaginal 0.0253
hospital 0.0204 vaginal 0.0213 oral 0.0199 perhaps 0.0237
examination 0.0204 bleeding 0.0209 problem 0.0196 normal 0.0236
particles 0.0199 treat 0.0182 allergy 0.0194 now 0.0199
before 0.0197 influence 0.0181 virus 0.0190 treat 0.0195
abdomen 0.0196 perhaps 0.0175 treat 0.0188 have a look/wait 0.0188
allergy 0.0192 uterus 0.0173 normal 0.0165 problem 0.0167
normal 0.0186 tomorrow 0.0172 particles 0.0160 result 0.0162
fever 0.0178 severe 0.0166 now 0.0157 comfortable 0.0161
diarrhea 0.0170 before 0.0155 replenish 0.0156 ovary 0.0145
influence 0.0169 baby 0.0153 appointment 0.0155 abortion 0.0131
sleep 0.0168 comfortable 0.0151 fever 0.0150 influence 0.0121
probiotics 0.0154 have a look/wait 0.0135 mental state 0.0144 tomorrow 0.0109
snot 0.0143 abortion 0.0127 probiotics 0.0141 baby 0.0104
problem 0.0128 yesterday 0.0120 severe 0.0137
tomorrow 0.0126 ovary 0.0111 symptom 0.0136
perhaps 0.0123 progesterone 0.0107 influence 0.0134
natural delivery 0.0110 abdomen 0.0103 cough 0.0128
oral 0.0108 skin 0.0128
infect 0.0104 pregnant 0.0106

Total weights 83.5% 78.9% 71.7% 69.1%

Table 3. Top Keywords andWeights for Questions and Answers in Consultation

of questions and examination, hospital, appointment, menstruation, and right now for factor s = 2 of
questions. It is reasonable to conclude that factor s = 1 corresponds to patients’ daily/routine needs of
healthcare while factor s = 2 represents urgent inquiries or demands of urgent care1. Furthermore, the
top five keywords are medication, baby, have a look/wait, breastfeeding, and infect, and for factor s = 1
of answers and examination, menstruation, hospital, pregnant, , and uterus for factor s = 2 of answers.
Therefore, factors s = 1 and 2 represent physicians’ answers/advice addressing the corresponding factors
of patients’ questions.

With factor scores z(Q)
is and z(A)

is , s = 1, 2, quantifying the degrees of how relevant the consultation i is to

factor s of questions and answers, the previous claims can be justified: z(Q)
i1 +z

(Q)
i2 and z(A)

i1 +z
(A)
i2 , indicating

the length of the questions and answers, are interpreted as how specifically the questions are asked and

addressed in the consultation, z
(Q)
i2

z
(Q)
i1 +z

(Q)
i2

can serve as a good approximation of the patient’s health condition,

and z
(A)
i2

z
(A)
i1 +z

(A)
i2

, the proportion of the physician’s answers/advice on the urgent inquiries can represent the

patient’s health condition that is evaluated by the physician.

Estimation Results of the Choice Model for Physician Class

We report the estimation of the choice model of the physician class in Table 4. The significantly negative γ1
implies that patients are more likely to consult a senior physician if their condition is less urgent. A number
of factors may help explain this finding. As documented by Bavafa et al. (2018), the online channel can be
a gateway for patients to seek further offline medical care. Moreover, price-sensitive users on the platform
aremore likely to consult a junior physician since they do not expect a significant difference in the responses

1Urgent care is referred to as the medical care provided for illnesses or injuries which require prompt attention, but are not life-
threatening. It should not be confused with emergent care, as urgent care are typically not of such seriousness as to require the services
of an emergency room.
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Random intercept mean (µγ0) variance (σ2
γ0
) Slope Estimate Standard error

2.069 3.561 Urgency (γ1) -0.178* 0.086

Table 4. Model Estimation for the Choice of Physician Class in Consultation2

Parameter Estimate Standard error Parameter Estimate Standard error

Intercept (β110) 0.489* 0.093 Answer length (β114) -0.003 0.004
Senior (β111) -0.147* 0.054 Answer length× Senior (β115) 0.003 0.004
Question length (β112) 0.007* 0.002 Answer urgency (β116) -0.089* 0.042
Question urgency (β113) -0.116* 0.042 Answer urgency× Senior (β117) -0.199* 0.079

Table 5. Effects of a Consultation on a Future Consultation

Parameter Estimate Standard error Parameter Estimate Standard error

Intercept (β210) -0.106* 0.040 Answer length (β214) -0.002 0.002
Senior (β211) 0.120* 0.039 Answer length× Senior (β215) 0.000 0.003
Question length (β212) 0.005* 0.002 Answer urgency (β216) 0.060* 0.027
Question urgency (β213) 0.084* 0.040 Answer urgency× Senior (β217) 0.004 0.048

Table 6. Effects of a Consultation on a Future Appointment

from two classes of physicians. Meanwhile, patients who expect to resolve their minor and routine medical
concerns online are more quality-sensitive; they may be willing to pay a higher price for consulting a senior
physician online. Since fully explaining this phenomenon requires more granular data and it is not themain
focus of the current study, we leave it for future empirical research. We also estimate γ(n)0 for each patient n
use these values to predict their probabilities of choosing a junior or a senior physician.

Estimation Results of the Marked Hawkes Process

We report in Tables 5 to 7 the coefficients β’s in the intensity functions of the marked Hawkes process. The
self-modulating coefficient, β110, describes the instantaneous effect of a consultation with a junior physi-
cian on the intensity of a future consultation, which is modulated by the patient health condition and the
information conveyed during the conversation. The incremental effect of consulting a senior physician is
captured by the parameter β111. The significantly positive estimate of β110 indicates that the probability of
a patient choosing the consultation service will be increased due to his/her past experience with this on-
line service. However, this effect is less prominent if a previous consultation was with a senior physician in
the presence of the negative β111. In contrast, Table 6 demonstrates an opposite effect on future appoint-
ments. The mutual-modulating coefficient, β210, describes the instantaneous effect of a consultation with a
junior physician on the intensity of a future appointment. The negative β210 implies that consulting a junior
physician inhibits future appointment. But, β211 (and β210 + β211) is estimated to be positive, showing that
a consultation with a senior physician is more likely to induce future appointments. These results suggest
that consulting a junior physician leads to a higher probability of a follow-up consultation instead of an ap-
pointment, while consulting a senior physician reverse the effect. This finding also implies the potential of
routing patients to different ranks of physicians to regulate the patient traffic. We further explore this aspect
through a series of simulation studies, shortly.

We further discuss the impact of the content of consulting conversations on future behaviors. Based on the
estimates in Table 5 and 6, longer and more specific questions lead to a higher probability of seeking both
online and offline medical cares (β112 > 0 and β212 > 0). However, the urgency of a patient’s condition
(inferred from the questions) has differing impact on which channel to seek further cares. After consulting
on an urgent condition, a patient prefers to see a doctor offline (β213 > 0), instead of online (β113 < 0). The
effects of physicians’ answers are similar: if physicians indicate the urgency of conditions, a patient tend to
see a doctor offline (β216 > 0), instead of online (β116 < 0). In addition, the effect on the online channel will
be more pronounced if the response is from a senior physician (β117 < 0).

2The star symbol * indicates that the 95% confidence interval excludes 0. Standard errors are reported in parentheses. The same
notation is also used in Tables 4 to 7.
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Parameter Estimate Standard error Parameter Estimate Standard error

Effect on consultation (β120) 0.0685* 0.002 Effect on appointment (β220) 0.1318* 0.002

Table 7. Effects of an Appointment on a Future Consultation or Appointment

k
ηkk′

mk σ2
k

k′ = 1 k′ = 2

1 3.484 3.088 -1.306 4.948
2 4.164 2.301 -0.033 1.529

Table 8. Decay Rate ηkk′ and Log-normal Meanmk and
Variance σ2

k of Baseline Intensities

We show in Table 7 the estimated effects of an appointment on future consultations and appointments. The
impacts on both channels are significantly positive (β120 > 0 and β220 > 0), suggesting a user’s continuous
needs formedical service. This finding is consistentwith our empirical context. Sincewe focus on gynecology
and obstetrics related health services, there is a significant portion of pregnant women and women who are
in perinatal period among users. These users indeed require frequent medical visits. Additionally, Table 8
reports the decay rates ηkk′ . The effect of a past consultation on future consultations exponentially decays
at rate η11, which is smaller than η21, the decay rate of the effect of a past consultation on appointments.
This finding demonstrates that the self-modulating effect of consultation is more lasting. We can reach a
similar conclusion for the effect of an appointment by comparing the decay rates ηk2’s, where η12 > η22. It
is also reported in Table 8 the log-normal mean and variance for the random baseline intensities among all
patients. With m2

1 < m2
2 and σ

2
1 > σ2

2 , the average baseline intensities of consulting online is smaller than
that of in-person visit, but is of higher heterogeneity among patients.

Prediction andModel Comparison

We showcase the prediction power of the proposed Poisson-factor-marked Hawkes process compared to
some benchmark counting processes and highlight the importance of the marks (content of consultation
and choices of the physician class) and mutual modulation. To measure the performance of a model for
multiple types of events in temporal order, a common way is to use Brier score (BS) that quantifies the
accuracy of cumulative incidence function (CIF) estimations (Zhang and Zhou 2018). Specifically,

CIFk(i, t) = P (ti ≤ t, κi = k)

is the probability that event i is of type k and happens by time t (Crowder 2001; Fine and Gray 1999;
Kalbfleisch and Prentice 2011). Brier score (Gerds et al. 2008; Steyerberg et al. 2010) represents the av-
erage squared errors between the observed event status and its estimated CIF and is defined as

BSk(t) =
1

I

∑I

i=1
[1(ti ≤ t, κi = k)− CIFk(i, t)]

2
,

where the indicator function 1(.) is equal to 1 if the condition (ti ≤ t, κi = k) holds and equal to 0 otherwise.
Smaller Brier scores indicate better model fit or prediction.

To illustrate the prediction accuracy and the importance of each component of our model, we compare with
four benchmark models: 1) a Poisson process, 2) an unmarked Hawkes process (HP), 3) a marked Hawkes
process (MHP)without using content of consultations (the factor scores of the questions and anwers), and 4)
a marked Hawkes process that does include the phisician class and its interaction with the factor scores. To
be specific, the Poisson process 1) assumes a constant intensity ofmaking a consultation and an appointment
so that a patient’s future activities are independent of her history. The unmarkedHawkes process 2) includes
fixed mutually modulating effects between a consultation and making an appointment, but does not utilize
the information of the consultation. Furthermore, the marked Hawkes processes 3) and 4) intentionally
overlook some of the information of consultations, respectively.

We use the events of all patients in their first 150 days to train the model and those afterwards for testing.
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Consultation (k = 1) Appointment (k = 2)

Model ∆t = 3 days 6 days 9 days 3 days 6 days 9 days

1) Poisson process 0.071 0.100 0.118 0.224 0.281 0.317
2) Unmarked HP 0.062 0.085 0.101 0.148 0.232 0.299
3) MHP: no Q&A 0.060 0.083 0.099 0.145 0.230 0.300
4) MHP: no physician class 0.058 0.078 0.092 0.141 0.221 0.279
5) Proposed model 0.056 0.077 0.091 0.137 0.211 0.268

Table 9. Model Comparison in Brier Score

The training data contain 57.8% of all the events. For each event i in the testing data, we find the Brier score

[1(ti ≤ ti−1 +∆t, κi = k)− CIFk(i, ti−1 +∆t |H(ti−1))]
2
, (6)

and report in Table 9 the scores averaging over all the testing events for k = 1, 2 and ∆t equal to 3 days, 6
days, and 9 days, respectively. We find that the proposed model outperforms all the benchmarks in predict-
ing probabilities of upcoming events in different time spans. The superior prediction accuracy demonstrates
the value of accounting for the exciting or inhibiting interactions among events and the information of con-
sultation. Note that Brier scores of the marked Hawkes process measures not only the accuracy of event
prediction, but also accounting for how far we look forward into the future, namely ∆t in (6) which is arbi-
trary in the testing stage. In comparison, though classification models, like logistic and probit regressions,
are also able to predict future event probabilities, without modeling event times as dependent variables they
have to aggregate information in a prespecified time span in which training and prediction are restricted.

Model Application

Wehave shown the effects of past consultation dialogues and choices of the physician class on the intensities
(instantaneous probabilities) of a patient’s future behaviors. However, the marginal effects in the longer
term cannot be fully quantified by the coefficients β’s and η’s. In this section, we utilize the self-generative
property of the proposed model to explain how patients’ prior activities change their future behaviors.

We have estimated β’s that represent the instantaneous effects of consulting physicians of different classes
or visiting a physician offline. To better quantify such effects in the longer term and route patients accord-
ingly, we impose an initial event, namely event 0, and simulate patient activity streams afterwards. We aim
to investigate how the physician class and the patient’s health condition in the consultation of event 0 af-
fect the distribution of future events in terms of the next-fifteen-day event probabilities and event counts.
Specifically, for each patient, we impose an event 0 of type κ0 = 1 (consultation) at t0 = 0 and set w0 equal
to 0 and 1, respectively, representing consulting a junior and senior physician. We fix the question factor
scores z(Q)

01 , z(Q)
02 of event 0 such that z(Q)

01 + z
(Q)
02 = 3.93, which is the median value of z(Q)

01 + z
(Q)
02 among

all consultations estimated by the correlation Poisson factor model. Furthermore, we set z(Q)
02 /(z

(Q)
01 + z

(Q)
02 )

equal to 0.1 and 0.9, respectively, to represent a routine and emergent inquiry in the initial consultation.

Leveraging the correlated Poisson factor analysis, we simulate z
(A)
0 = (z

(A)
01 , z

(A)
02 ), the factor scores of the

physician’s answer given on z
(Q)
0 = (z

(Q)
01 , z

(Q)
02 ), µ, andΣ by

z
(A)
i |µ,Σ, z(Q)

i ∼ log-Normal(µ2 +Σ21Σ
−1
11 (log z

(Q)
i − µ1),Σ22 −Σ21Σ

−1
11 Σ12), (7)

whereµ1 andµ2 of dimension S andΣ11,Σ12,Σ22, andΣ21 of dimension S×S are block vectors ormatrices
of µ andΣ such that

µ = (µ1,µ2), Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

By now, we have characterized event 0, including the time, type, and mark values. The following events
i = 1, 2, . . . are simulated by the marked Hawkes process characterized by (3) where marks are generated by
(1) and (2).

We simulate such event streams with an arbitrary event 0 for 10,000 patients and report in Table 10 the
empirical probability that at least one consultation or appointment occurs in the first fifteen days, denoted
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Event 0 z
(Q)
02

z
(Q)
01 +z

(Q)
02

Consultation Appointment
Appointment rate

p(N1(15) ≥ 1) EN1(15) p(N2(15) ≥ 1) EN2(15)

None NA 0.265 0.977 0.426 1.275 0.566
Consultation (junior) 0.1 0.353 1.159 (+) 0.395 1.152 (−) 0.499 (−)
Consultation (junior) 0.9 0.315 1.039 (+) 0.429 1.270 (−) 0.550 (−)
Consultation (senior) 0.1 0.302 0.983 (+) 0.435 1.254 (−) 0.561 (−)
Consultation (senior) 0.9 0.255 0.857 (−) 0.453 1.359 (+) 0.613 (+)

Real data NA NA 1.045 NA 1.342 0.562

Table 10. Probabilities and Average Numbers of Consultations and Appointments in
15 Days

by p(Nk(15) ≥ 1), k = 1, 2, as well as the expected number of the two types of events, denoted by ENk(15).
Also reported is the appointment rate that is equal to EN2(15)/(EN1(15) + EN2(15)). We do not count the
arbitrary initial event when calculating such measures. In addition, a cold-starting stream with no event at
time 0 is simulated as a benchmark, and the corresponding statistics are given in row 1 of the table. For
simulated event streams reported in row 2 to 5, we indicate in parenthesis the change in direction compared
to the cold start. We also calculate the fifteen-day average number of consultations and appointments per
patient in the original data and report them in the last row of the table.

Compared to a cold start, if consulting a junior physician during the initial encounter, the direction of its
effect does not vary across different patient condition severities. Specifically, consulting a junior physician
raises the number and probability of an upcoming consultation, but drops those of an upcoming appoint-
ment in the next fifteen days, regardless of the severity of the conditions. However, consulting a senior
physician demonstrates a separating effect. That is, senior physicians are more likely to direct patients
with severe conditions to offline appointments instead of online services, while doing the opposite to pa-
tients with minor conditions. Taken all together, compared to a cold start, the proportion of appointments
in patients’ event streams decreases by 0.6-6.7% when the initial encounter happens online with a junior
physician. In contrast, the appointment rate increases by 4.7% if initially consulting with a senior physician
for a severe health issue, while it decreases by 0.5% if it is for a minor issue. Additionally, in the real data,
the average number of consultations and appointments in fifteen days is 1.045 and 1.342, respectively, and
the appointment proportion is 0.562. These recovered data statistics by our simulation demonstrate that
our Poisson-factor-marked Hawkes process has well approximated the ground true generating process of
the patients’ activities.

Since we have controlled the severity of the initial health encounter in the simulation, the difference across
the two types of physicians stated above can be mainly attributed to behavioral factors. The heterogeneity
can possibly be explained by the disparate incentives that two types of physicians have – junior physicians
have a stronger incentive to induce patients to use the online telehealth platform. The offline healthcare
market in China has been experiencing the long-standing issue of “the inverted-pyramid of demand” where
the majority of patients who experience minor health issues flood into top-level hospitals to see experienced
and renowned physicians, creating a significant congestion and a severe resource misallocation (Deng et al.
2021). Thus, junior physicians with fewer demands offline are more willing to be active on the telehealth
platform to make extra income. However, senior physicians do not have such an incentive, and thus, are
more likely to provide medical advice based on the severity of conditions.

Telemedicine platforms have been introduced as a substitute channel for unnecessary offline visits. With
the emerging “Digital-First” health care approach, National Health Service (NHS) England harnesses it to
cut health inequalities (NHS England 2020), which has been realized by telehealth platforms like Babylon
(UK). Our simulation studies have pointed out the importance of guidelines and the corresponding training
for physicians who practice online. Although there may be certain differences in diagnosis between two
classes of physicians, such a systematic disparity should be less likely to happen if clear telehealth practice
guides are provided and the incentive among the platform, different types of physicians and other parties is
properly aligned.
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Conclusion

Patients often resolve health-related concerns through a journey ofmultiple contactswith healthcare providers.
With telehealth technologies’ wide-spreading, patients are offered an additional online channel to interact
with physicians. Quantifying such journeys is a challenging but critical question to understand patient be-
havior better and improve the design of patient routing strategies with telehealth platforms. We address this
challenge by proposing a novel model of Poisson-factor-marked Hawkes process, which captures the mod-
ulating effects across services of both channels and the impacts of physician characteristics and the content
of patient-physician online conversations. We demonstrate several interesting findings. Physician seniority
and patient urgency (inferred from the consultation content) have differing effects on future encounters. Pa-
tients are more likely to follow up through the telehealth platform when interacting online previously with a
junior physician. On the contrary, senior physicians more often direct patients to online channels for future
care. On top of that, to be expected, patients whose conversations cover more urgent concerns prefer office
visits.

We highlight the prediction power of the proposedmodel and the contributions to the Bayesian probabilistic
topic models and the applications of Hawkes process. Our model introduces topic correlations between
patients’ questions and the corresponding responses from physicians. Based on this correlated Poisson
factor analysis, we identify two factors, representing different types of demands for the online health service.
We further incorporate the weights on these factors in the Hawkes process, which allows for both exciting
and inhibiting effects across online and offline medical encounters. These components jointly capture the
data generation process of patients’ activity streams, including the activity times and types, and dialogues
during consultations.

Our model also has important applications and offers several practical implications. Employing the self-
generating property of the proposed model, we simulate the care journeys by imposing different initial en-
counters. Further underlining the estimation results, simulation studies show a0.6-6.7%drop in the portion
of office appointments in the next-fifteen-day window after patient consulting a junior physician, compared
to a cold start; however, the portion will be increased mildly if this initial online contact is with a senior
doctor for a severe health issue while be decreased if it is for a minor issue. Contributing to the current
discussions on the “Digital-First” health care approach, we showcase the importance of routing patients to
the correct type of providers and guiding physicians with precise standards. We also propose various other
applications and simulation scenarios. For instance, we illustrate an application scenario for AI-assisted
telehealth decision-making, which can help a platform prioritize demands based on the predicted probabil-
ity of patients’ activity in the near future and better allocation health resources.

The proposed model can be extended and augmented in different ways. First, the focal study focuses on
online interactions from the telehealth platform’s perspective. Future research could apply the same frame-
work and incorporate various factors related to offline health encounters. Second, instead of focusing on
one medical specialty for the outpatient setting, research can also be done by modeling the activity streams
of patients across different medical departments for inpatient and outpatient care. Third, expanding the op-
tions of two classes of doctors, a potential avenue for future research is tomodel the choice of each individual
physician. This model can be applied to recommendation systems to optimize the patient experience.
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