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Abstract

Modern Artificial Intelligence (AI) models offer high predictive accuracy but often lack
interpretability with respect to reasons for predictions. Explanations for predictions are
usually necessary in making high-stakes clinical decisions. Hence, many Explainable AI
(XAI) techniques have been designed to generate explanations for predictions from black-
box models. However, there are no rigorous metrics to evaluate these explanations, es-
pecially with respect to their usefulness to clinicians. We develop a principled method to
evaluate explanations by drawing on theories from social science and accounting for spe-
cific requirements of the clinical context. As a case study, we use our metric to evaluate
explanations generated by two popular XAI algorithms in the task of predicting the onset
of Alzheimer’s disease using genetic data. Our preliminary findings are promising and
illustrate the versatility and utility of our metric. Our work contributes to the practical
and theoretical development of XAI techniques and Clinical Decision Support Systems.

Keywords: healthcare, clinical decision support systems, explainable artificial intelligence

Introduction

Artifical Intelligence (AI) has reached or surpassed human abilities in many domains such as computer vi-
sion and natural language processing. AI-based predictive models, in particular, deep neural networks, also
have the potential to provide insights for clinical decision-making beyond what humans can do (Greenspan
et al. 2016). However, their practical use in Clinical Decision Support Systems (CDSS) is still limited by
their lack of interpretability with respect to the reasons for predictions (Sutton et al. 2020). It is well known
that such black-box predictions lead to lower user acceptance, as discussed by Gregor and Benbasat (1999),
who argue for the need for explanations in DSS to improve performance and user perception. Further, re-
cent EuropeanGeneral Data Protection Regulation (GDPR) requires organizations using electronic personal
data in DSS to providemeaningful explanations about how an algorithm reaches its final decisions (Kim and
Routledge 2018). Such regulations further emphasize the need for explanations for predictions in CDSS.

To fulfill this need for explanations in AImethods, many Explainable AI (XAI) approaches are being actively
developed (Molnar 2022). These approaches use a variety of different techniques to provide explanations for
black-box models. Many techniques, in different ways, provide scores for each input feature (or variable),
indicating the importance or relevance of the feature for the prediction made on a given subject. These
scores can serve as reasons for the prediction, i.e., the explanation, which, in turn, can be used in subsequent
decision-making. E.g., consider a predictive model that uses an MRI image of the brain as input to predict
the presence of a disease. An XAI algorithm can then be used to indicate, for a specific patient, the voxels in
the MRI that are most relevant for the prediction. This information can be used in a CDSS to highlight the
MRI portions most important for the patient’s prediction to the clinician.

A large number of XAI algorithms have been developed and the number is rapidly increasing with the per-
vasive growth of explainable AI. For example, Hakkoum et al. (2022) review 174 different techniques that
have been used for clinical tasks. Thus, CDSS designers face the problem of choosing the best possible ex-
planation, possibly from different XAI algorithms, for a prediction in a given clinical context. Our aim is
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to develop a metric to evaluate explanations from XAI algorithms. Designers can use such a metric when
designing and implementing a CDSS.

In most previous studies, for clinical contexts, explanations are usually not evaluated in a rigorous manner
(Hakkoum et al. 2022). One of the main reasons for this is the lack of empirical evaluation metrics for the
explanations generated (Miller 2019). Some metrics have been proposed to evaluate the ability of explana-
tions to correctly represent the reason for prediction. These evaluation metrics have been developed with
little involvement and consideration of the end-users of the explanations, who in this case are the clinicians
(Jin et al. 2022). To evaluate the usefulness and usability of the explanations in a CDSS, we need to con-
sider how clinicians understand and use explanations. This calls for an approach that accounts for both the
clinical context and how humans receive and process explanations.

To develop such an approach, we turn to theories of explanation from the social sciences that have studied
how people generate and evaluate explanations in general, i.e., outside the machine learning context. They
provide clear requirements for a good explanation suitably accounting for human information processing
and behavior. In addition, we factor in the unique challenges and requirements of the clinical context. Clini-
cians require explanations using relatively few domain-specific concepts at a granularity that supports their
time-critical decision making. Such explanations are more likely to fit into their existing workflows and
lead to higher adoption of XAI in CDSS (Sutton et al. 2020). From these theory-based and context-specific
requirements, we formalize the specific requirements for a metric and design our evaluation metric.

Our metric has several novel elements in its design. It can evaluate a given explanation from any XAI al-
gorithm that provides feature-based relevance scores. The evaluation is in terms of clinical concepts at a
granularity that may be coarser than the features used by the XAI algorithm. E.g., in the case of disease pre-
diction from MRI images, the decision-making process of clinicians, the users of the predictive algorithm
and its explanations, may be at the level of brain regions (not specific points in the brain given by the voxels).
So, the brain regions may be used as concepts to evaluate the explanations. This facilitates evaluation using
the same concepts that are used by clinicians while making decisions. As suggested by theories for explain-
ability, we use multiple predictive tasks (facts and foils) to evaluate the contrastive nature of explanations,
which are associated with causality. We develop a new scoring method that uses biomedical knowledge
graphs to score an explanation with respect to its predictive value for the considered facts and foils.

As a case study, we use our metric to evaluate explanations generated by two popular and representative
XAI algorithms (LIME and LRP) in the task of predicting the onset of Alzheimer’s disease using genetic
data. Our preliminary findings are promising and illustrate the versatility of our metric with respect to the
XAI algorithms it can evaluate and its utility in clinical contexts. From a design science perspective, Hevner
et al. (2004) highlight the importance of evaluation of a design artifact. The development of standardized
evaluation methodologies allow for analytical evaluation and benchmarking of the design artifacts (in this
case the XAI algorithms) to allow for useful feedback during the iterative design procedure. Thus, evaluation
approaches, such as ours, for comparing explanations have the potential to play a significant role in the
practical and theoretical development of both XAI algorithms and CDSS.

Background

Explainable AI (XAI) Techniques and their Evaluation

Explanations from an XAI algorithm may be characterised by three different criteria (Molnar 2022): (i)
Explanation may be for prediction on a particular instance (local) or for the entire model (global); (ii) Ex-
planation may be obtained by restricting complexity of the machine learning model (intrinsic) or may be
generated using a technique after the model is trained (post-hoc); (iii) The XAI technique may be limited to
a specific model class (model-specific) or can be applied to any model (model-agnostic).

Many XAI techniques have been developed for each of the above categories, with implementations in soft-
ware libraries such as AIX360 (Arya et al. 2019) and innvestigate (Alber et al. 2019). In our case study
presented later to illustrate the use our metric, we evaluate two popular representative techniques: Local
Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al. 2016) and Layer-Wise Relevance Pro-
pogation (LRP) (Bach et al. 2015). LIME is a local, post-hoc, model-agnostic technique that estimates the
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importance of input features for a prediction using a surrogate model. LRP is a local, post-hoc, model-
specific method designed to obtain feature relevance values for predictions from neural networks. Both
LIME and LRP provide relevance scores that indicate how relevant each feature is in predicting the output
for a specific subject/observation.

Chen et al. (2022) categorize the evaluation of explanations based on two aspects, viz., faithfulness of the
explanation to the prediction and usefulness of the explanation to the user. Faithfulness is the ability of the
explanation to correctly represent the reason for prediction, such as explanations addressing how prediction
is affected when features are missing. Usefulness relates to the applicability of explanations in addressing
practical use-cases and in aiding decision-making. Many strategies for evaluating faithfulness have been
proposed, such as those based on similarity and stability; a review can be found in Zhou et al. (2021). These
metrics are useful “sanity checks”, but may not be indicative of usability in real-world applications (Chen
et al. 2022). Thus the importance of the usefulness criterion for explanations has been emphasized.

Usefulness of explanations plays an important role in the design of user-centric systems. Bauer et al. (2021)
discuss the importance of explainability in AI applications and outline potential research avenues for In-
formation Systems researchers, particularly for user-centric model interpretation. Asatiani et al. (2020)
illustrate the need and challenges of explaining the black-box behavior of AI systems through a case study
that highlights legal and ethical implications. They suggest human scrutiny of outputs from AI systems to
provide meaningful explanations. Förster et al. (2020a) conduct a human-based study to evaluate explana-
tions fromXAImethods and derive characteristics of explanations, such as relevance, coherence and length,
that users appreciate. Förster et al. (2020b) design and evaluate a process to calibrate and control the quality
of user-centric XAI systems, which relies on a scalable, quantitative metric to evaluate explanations based
on its characteristics. Many studies evaluate the usability of explanations by conducting user-studies (John-
Mathews 2021). However, such evaluations do not scale well due to their dependence on human observers
for evaluation. Lage et al. (2018) evaluate the usability of explanations in terms of their cognitive load. These
metrics are specific to text or rule-based explanations, which may not necessarily translate to other modali-
ties. Further, all these criteria generally use the input features (as used by the XAI method), which may not
be the most appropriate granularity for evaluating an explanation. To summarize, extant approaches lack
strategies to evaluate usability of explanations in an objective and scalable manner.

Theories for Explainability

Explanation, in general, is a justification or reason for a belief or action or decision; and has been studied
outside the context of machine learning. Miller (2019) consolidates the frameworks of explanations from
social sciences based on a deep understanding of how people define, generate, select, evaluate and present
explanations, and lists four requirements of a good explanation:

• Explanations are contrastive: Explanations do not seek the answer of ‘Why P?’ but rather ‘Why P rather
than Q?’, though Qmay often be implicit in the context. Following Lipton (1990), we refer to P as the fact
and Q as the foil.

• Explanations are selective: People rarely expect a complete explanation consisting of all causes, because
the cognitive load of a complete explanation is too large (Keil 2006).

• Cause rather than probability matters: The most likely explanation is not necessarily the best because
causal reasoning is used to identify if an explanation is satisfactory, not the actual nature of causation
(Hoffman and Klein 2017).

• Explanations are social: There are two processes in an explanation, the cognitive processwhere abductive
inference is used to deduce the explanation for a given case and the social process where the explanation
leads to a transfer of knowledge between the explainer and the explainee.

Many theory-based explanation generation techniques, especially for contrastive and counterfactual expla-
nations, have been designed, as surveyed by Stepin et al. (2021). These explanation generation techniques
are based on theories of what a good explanation ought to be and target a general audience. They do not dis-
cuss criteria for evaluating explanations. The lack of literature on theory-based evaluation of explanations
leads to a gap in evaluating the usability of explanations in clinical settings.
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Explainability in Clinical Contexts

The clinical setting poses unique challenges because the end users of predictive methods and explanations
(clinicians and nurses), through Clinical Decision Support Systems (CDSS) have relatively high domain
knowledge, often have to make time-critical decisions and the decisions have high stakes, i.e. incorrect de-
cisions can have adverse impact on both patient care and operational efficiency of the healthcare provider.
Shortliffe and Sepúlveda (2018) assert that CDSSs should fit into existing workflows, enable time-sensitive
usage and provide domain-aware information in terms of concepts relevant to clinicians. A good explana-
tion can aid clinical decision-making by providing relevant and domain-aware information. To provide such
an explanation in CDSS, designers have to select a suitable XAI algorithm from the many choices available.

As discussed earlier, most extant XAI literature focus on explanations being faithful to the predictionmodel.
The usefulness criterion is important in the clinical context because of the contextual requirements and the
profile of the end users. Chen et al. (2022) suggest developing simulation-based evaluation for evaluating
the usefulness of explanations. However, as highlighted by Jussupow et al. (2021), there is inadequate un-
derstanding of how clinicians use the generated explanations in their decision-making and so, designing
such simulations may be difficult. Previous reviews on XAI in CDSS, e.g., (Lai et al. 2020), highlight that
studies evaluating usefulness did so through experiments, interviews or surveys.

To summarize, there is a lack of evaluation strategies for evaluating the usefulness of explanations, which
requires a theory-based approach to suitably account for human interactionwith the generated explanations.
In CDSS, the end-users, clinicians, have a specific profile with characteristics and requirements that are
different frommany general users. They require explanations in terms of domain-aware concepts at the level
of granularity that aligns with their decision-making. The number of concepts used should be appropriate
to prevent cognitive burden during time-critical decision making. Table 1 compares the most recent and
relevant studies on evaluation of explanations along these dimensions.

Evaluation
(reference)

Faithfulness or
Usefulness

Theory-
based

Domain-
Aware

Explanation
Granularity

ElShawi et al. (2021) Faithfulness N N inputs
Lage et al. (2018) Usefulness Y N words, cognitive chunks
Our Approach Usefulness Y Y domain-based concepts

Table 1. Comparison of our work with recent literature

Our Evaluation Method

Our aim is to develop a method to evaluate explanations from an XAI algorithm used in a CDSS. Adopting
a design science approach (Hevner et al. 2004), we first map the four requirements of a “good explanation”
from Miller (2019) to design choices for our evaluation method, listed below and summarized in Figure 1.

• To evaluate how contrastive the explanation is, we propose to identify the foils for the given prediction
task, where the fact corresponds to the prediction task itself. The requirement is that the relevant features
from the explanation must be more predictive for the fact than for the foil.

• To evaluate selectivity in the concepts, we penalize explanations involving too many concepts.
• To support causal explanations, we restrict our explanations to contrastive explanations, which have been
associated with causality in previous studies (Hoffman and Klein 2017).

• The social aspect of the explanation requires careful consideration for the clinical context. To be rele-
vant to clinicians, the explanation must use “concepts” at the right granularity in the explanation. So, we
score explanations using domain-derived concepts, which in turn are obtained from biomedical Knowl-
edge Graphs (KG). Knowledge graphs are large, heterogeneous graphs with multiple node types repre-
senting clinical concepts (e.g., diseases, drugs) from standardized vocabularies and multiple edge types
(e.g., ‘treats’, ‘predisposes’) representing associations between pairs of clinical concepts. These KGs are
being actively developed by a combination of manual curation and automated methods.

Using these theory-derived design choices, we now develop a scoring method to evaluate explanations. We
consider a CDSS that takes as input x (e.g., data or features corresponding to a patient) and has two outputs:
the prediction y (fromanAImodel) and the explanation of the prediction given by r (fromanXAI technique).
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Contrastive explanation
Selective concepts in 

explanation
Causal explanation

Social process for 
explanation

Foil tasks for a 
prediction task

Using concepts from 
Knowledge Graph

Explanation using 
concepts

Contrastive and 
Local explanation

Penalty for using 
too many concepts

Criteria for good explanations from Miller (2019)

Design choices in our evaluation method

Figure 1. Mapping the Requirements to Design Decisions

We assume feature-based relevance scores as explanation, i.e., r is a k-dimensional vector where the ith

dimension, ri gives the relevance score for the ith feature. As noted previously, the granularity of the features
may not necessarily be the apt granularity for an explanation. In such cases, simple post-processing steps
can be used to pool these relevance scores to the required “concepts”. For example, if we consider a brain
MRI, then the features may be the brain voxels for which the XAI algorithm generates explanations, but
these can be pooled to different brain regions using an atlas. We represent the set of m domain-specific
concepts by c = {c1, · · · , cm}, where m ≤ k (depending on the concepts chosen), and the explanation, at
concept granularity, e = [e1, · · · , em] by an m–dimensional vector, where the ith real-valued explanation
score, ei ∈ [0, 1], gives the (aggregated) relevance score, of concept ci for the prediction task.

We consider the main prediction task as fact and tasks contrastive to the main task as foil tasks. The
explanation needs to be scored such that the relevant features are more predictive of the fact than the foil
tasks. For example, if the task is to predict onset of sepsis for an ICU patient, the foil may be to predict if the
patient will develop anaphylaxis (a common misdiagnosis). Predictions leading to irrelevant explanations,
e.g., reasons for admission to ICU, that may not be useful to clinicians could also be used as foils. The choice
of foil tasks is a design decision that depends on the application and clinical context.

Our method evaluates the following in an input explanation from an XAI algorithm:

• We check if the scores ei in the explanation are only for the relevant concepts ci by checking if
∑m

i=1 ei ≤ 1.
If the explanation does not satisfy this condition, then it may violate the selectivity criterion andmay have
high cognitive burden.

• A limit on the cognitive burdenmay be numerically set by setting themaximumnumber of conceptsmax#c
for which relevance scores are allowable beyond a pre-fixed limit ϵ. These values have to be determined
based on the application and users. Let nc(e) be the number of concepts in a given explanation e for which
relevance scores are greater than ϵ. Then, we check if nc(e) ≤ max#c.

• We check how relevant the explanation is to the fact in comparison to the various foil tasks selected by the
user. Consider any one foil. We define a function f that uses the explanation to determine its predictive
value for a task. We call it Predictive Value of Explanations (PVE) function. Note that the relevance scores
are used here instead of the input feature values. Using f , we can compare the predictive value of e for the
fact as well as for the foil. We define a contrastive score for the explanation CS = f(fact, e)− f(foil, e).
There are multiple ways to design the function f and we describe one based on KGs below.

We first identify nodes, referred to as task-specific nodes in the KG for concepts corresponding to fact and
foil tasks. They are respectively called fact node and foil nodes. For instance, in the sepsis prediction task, in
the KG, wewould choose disease nodes for sepsis (fact) and anaphylaxis (a foil). Let t denote a task-specific
node for either the fact or the foils. Similarly, we identify the nodes in theKG for all the concepts {c1, . . . , cm}.
To determine the strength of association between the concepts and a task, we use a link prediction algorithm
to obtain the prediction probability pi(ci, t) of a link between concept ci and task t. The predictive value of
the explanation with respect to a task may be computed using these concept-specific link predictions. Thus,
we define the PVE function as f(t, e) =

∑m
i=1 eipi(ci, t).

There are various techniques to obtain the link prediction probability pi(ci, t) from a KG. Graph embedding
techniques have produced state-of-the-art results in KG link prediction (Wang et al. 2021) and we use one
such graph embedding method, TransE (Bordes et al. 2013). A graph embedding learns vectorial reprsen-
tations of nodes and edges, which capture global structural and semantic relations in the KG. Each edge in
a KG may be represented by a triplet (h, l, t) where h, t are head and tail nodes (e.g., age and sepsis) and l is
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a relation (e.g., risk factor). The key idea of TransE is that the relationship induced by the edges correspond
to translations in vector space: for an edge (h, l, t) present in the KG, we want vh + vl ∼ vt and for an absent
edge (h, l, t), vh + vl should be far away from vt in the representation vector space. The norm of vh + vl − vt,
indicating the distance between vh + vl and vt, can be used to obtain the link prediction probability.

Case Study: Explanations for Alzheimer’s Disease Prediction

We demonstrate our evaluation method to compare explanations from XAI methods LIME and LRP on the
task of predicting the onset of Alzheimer’s Disease. We use the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset (ADNI 2022) that consists of patients in 3 groups: Cognitively Normal (CN), Mild Cognitive
Impairement (MCI) and Alzheimer’s Disease (AD). The binary classification task is to distinguish between
CN andMCI groups, which may be used in CDSS to predict the onset of Alzheimer’s disease. We use genetic
data as features, that are available as Single Neucleotide Polymorphisms (SNPs), which indicate genetic
variation among patients and are obtained from blood samples. We follow the preprocessing steps outlined
in Qiu et al. (2019). We consider a random 80:20 split of train and test data. Multiple classifiers are trained
on the train set. The performance of the classifiers, in terms of Area under the ROC Curve (AUROC), is
shown in Table 2. The neural network has the best performance; similar results have been reported in
previous studies, e.g., Jo et al. (2022) and Qiu et al. (2019).

Classifier Logistic
Regression

Support Vector
Machine

Decision
Tree

Adaboost Neural
Network

AUROC 0.5139 0.5162 0.5019 0.5690 0.6629
Table 2. Classifier Performance on Predicting Onset of Alzheimer’s Disease

We obtain explanations for the model from LIME and LRP using their implementations from AIX360 and
innvestigate libraries with their default settings. We normalize the outputs using softmax to get relevance
scores between 0 and 1, which sum to 1. Figure 2 (left) shows the relevance scores obtained for the input
features (SNPs) for a particular patient. Since our first check (

∑
i ei ≤ 1) is satisfied for both LIME and LRP,

and we do not have relevant values for ϵ,max#c, we restrict our discussion to the contrastive score.

Concept Identification

SNPs represent single locations in the DNA andmay or may not be part of genes. Genes represent function-
ally important segments of the DNA and their roles in diseases are actively studied. Thus, we choose genes
as the “concepts” with which explanations are presented. Not all SNPs in the data may be mapped to a par-
ticular gene, andmultiple SNPsmay bemapped to the same gene. We use the NCBI Entrez DB API available
through BioPython (Cock et al. 2009) to obtain the mapping from SNPs to genes. We generate gene-level
relevance scores in the explanation by adding the relevance scores for the SNPs which belong to same gene.
We do not consider SNPs that cannot be mapped. Since the chosen concept level for the evaluation is genes,
information not pertaining to any gene is not considered important to understand the prediction. Figure 2
(middle) shows the computed relevance scores for the genes that are used to evaluate the explanations.

Fact and Foil Identification in a Knowledge Graph

We use the “Disease resembles Disease” relation in the Hetionet KG (Himmelstein et al. 2017) to find dis-
eases that are commonly confused with Alzheimer’s Disease during diagnosis. Out of the 3 diseases found,
we choose Parkinson’s disease as a foil as it is also reported in Klatka et al. (1996) as a commonmisdiagnosis.
We use pretrained TransE embeddings for each concept (gene) and each task (fact and foil) from the Drug
Repurposing Knowledge Graph (DRKG) (Ioannidis et al. 2020), which combines multiple biomedical KGs.
We use these embeddings to obtain the link prediction probabilities, which are then used to compute the
contrastive score with respect to the foil.

Evaluating the Explanations

We see in Figure 2 that the explanations from the two techniques are quite different. We get 9 concepts
from LIME and 144 from LRP. Despite these differences, our method can be used to evaluate them. The
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contrastive score for LIME is less than that of LRP indicating that based on our evaluation the explanation
generated by LRP is preferred over LIME for this patient. The contrastive score for LIME is negative in-
dicating that the explanation concepts in LIME are closer to Parkinson’s than to Alzheimer’s Disease. The
zero score for LRP indicates that its explanation may indicate either of the two diseases.

We find literature-based evidence that supports the conclusions drawn using our contrastive score. Muta-
tions in the top scoring genes in LIME (MDGA2, MCTP2, HTR2C) have been associated with Parkinson’s
Disease (Cacabelos 2017; Hendrickx et al. 2021; Latourelle et al. 2009), but we could not find any literature
associating them to Alzheimer’s Disease. Genes BRI3BP and CELSR1 are associated with both Parkinson’s
Disease and Alzheimer’s Disease (Chin et al. 2008; Hu et al. 2017; Jia et al. 2014; Patel et al. 2019). Thus,
the literature suggests that the genes considered to be relevant by LIME are likely more relevant to our foil
task, while the genes highlighted by LRP are equally relevant to both fact and foil tasks.

SNP Relevance (LIME)

kgp11729816_C=2 0. 10000035

rs10086985_A=2 0. 10000033

kgp11313442_T=0 0. 10000029

rs13260210_A=0 0. 09999989

rs6541014_T=0 0. 09999988

kgp22824191_G=0 0. 09999987

rs4966020_G=0 0. 09999987

kgp12268363_T=0 0. 09999986

rs7201067_C=0 0. 09999984

rs1021687_T=0 0. 09999982

Gene Relevance (LIME) e

MDGA2 0. 10000035 e1

CSMD1 0. 10000033 e2

KMO 0. 10000029 e3

TNFRSF8 0. 09999988 e4

HTR2C 0. 09999987 e5

IGF1R 0. 09999987 e6

MCTP2 0. 09999986 e7

CDH13 0. 09999984 e8 

GRM7 0. 09999982 e9

SNP Relevance (LRP)

kgp5828144_T 9.843215e-13

rs7133268_G 9.730556e-10

kgp10421358_A 9.707379e-11

rs17522973_A 9.551628e-12

rs2304195_C 9.410357e-13

kgp4258913_G 9.4041074e-14

kgp758913_A 9.376387e-13

rs2488100_T 9.3113985e-15

rs3006069_C 9.297414e-15

kgp3533779_T 9.273616e-14

Gene Relevance (LRP) e

NSUN2 9.843215e-13 e1

BRI3BP 9.730556e-10 e2

CELSR1 9.707379e-11 e3

PPP4R2 9.4041074e-14 e4

ZNF423 9.376387e-13 e5

PHACTR2 9.3113985e-15 e6

ANKH 9.297414e-15 e7

DISP1 9.273616e-14 e8

C6orf132 9.23371e-14 e9

ZNF354A 8.956648e-19 e10

PVE(fact,e) 752.58

PVE(foil,e) 755.51

ContrastiveScore
(fact,foil)

-2.933

PVE(fact,e) 0.03837

PVE(foil,e) 0.03863

ContrastiveScore
(fact,foil)

-0.00026

Our Evaluation of LIME

Our Evaluation of LRP

Figure 2. Evaluation of Explanations from LIME and LRP using our Contrastive Score

Initial Contributions and Future Work

Our study makes several contributions to the Healthcare IS literature. To our knowledge, we are the first
to develop a principled scoring metric to evaluate explanations that is both grounded in theory of explana-
tions from social science and caters to specific requirements of clinical contexts. With increasing number of
Explainable AI techniques, it becomes important for designers of CDSS to objectively evaluate explanations
for use in clinical contexts and our method presents initial steps towards fulfilling this unmet need. Thus,
our method can play a key role in user-centric design within Healthcare IS research, such as in the process
proposed for XAI systems by Förster et al. (2020b). Our method is generic and can be used to compare
explanations from any XAImethod that provides feature-based relevance scores such as LIME, LRP, SHAP,
Saliency map and others. Our method presents a novel use of knowledge graphs for choosing clinical con-
cepts at the right granularity for clinicians and for evaluating the value of the chosen explanation concepts
for the prediction task.

This work can be extended in many ways. Empirical evaluation of the metric needs to be performed in col-
laboration with clinicians for multiple clinical tasks. In particular, the impact of the use and presentation
of our metric on CDSS usage patterns of clinicians remains to be evaluated. Our concept identification and
scoring method may be developed further by investigating intrinsic design choices for knowledge graph,
graph embeddings and link prediction algorithm used. Clinically meaningful ways to choose internal pa-
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rameters (ϵ,max#c) and foils need to be designed. Other approaches for contrastive scoring without the use
of knowledge graphs and extensions to settings beyond those with relevance scores may also be explored.
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