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Abstract 

Sports officials around the world are facing societal challenges due to the unfair nature 
of fraudulent practices performed by unscrupulous athletes. Recently, sample swapping 
has been raised as a potential practice where some athletes exchange their doped sample 
with a clean one to evade a positive test. The current detection method for such cases 
includes laboratory testing like DNA analysis. However, these methods are costly and 
time-consuming, which goes beyond the budgetary limits of anti-doping organisations. 
Therefore, there is a need to explore alternative methods to improve decision-making. We 
presented a data analytical methodology that supports anti-doping decision-makers on 
the task of athlete disambiguation. Our proposed model helps identify the swapped 
sample, which outperforms the current state-of-the-art method and different baseline 
models. The evaluation on real-world sample swapping cases shows promising results 
that help advance the research on the application of data analytics in the context of anti-
doping analysis.  

Keywords:  Data Analytics, Fraud Detection, Doping, Sample Swapping,  
Machine Learning, Sports 
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Introduction 

Large sports events, such as the Olympic Games or FIFA World Championship, attract the attention of 
billions of people. Illegal performance enhancement by herbs and other substances can be rooted back into 
the Olympic Games of Ancient Greece. In recent times, the case of Lance Armstrong disclosed massive 
doping in cycling but also unleashed investigations in other sports. Consequently, the World Anti-Doping 
Agency (WADA) was founded with the goal of identification and prosecution of athletes found guilty of 
taking illegal substances, called doping. It was agreed that the whole process should be based on scientific 
methods that should guarantee objective decision-making. Anti-doping analytics mainly use methods 
inherited from Biology and Biochemistry by analysing urine and blood samples taken from athletes during 
competition and beyond. The success of machine learning technologies posed the question of applicability 
for doping analytics, which was investigated by a few studies (Sottas et al., 2006). Decision-making on 
doping lacks confidence in ground truth but instead uses evidence-based truth qualified by domain experts. 
Therefore, it is necessary that doping analytical procedures are strictly enforced during taking the sample 
and processing samples in certified doping laboratories. Any breach in procedure compromises the whole 
anti-doping framework. During the Olympic Winter Games at Sochi, a subsequent report found that at least 
two female ice hockey players’ samples were swapped with a urine sample containing male DNA, and others 
were found guilty of tampering with the original samples (McLaren, 2016). Urine swapping is the act of 
exchanging urine with another individual’s or the athlete’s stored clean urine to evade a positive test 
(WADA, 2020). More than 1000 athletes across 30 sports were involved in large-scale sample swapping at 
Sochi 2014. It was a massive program of cheating and cover-ups that has been running on an unprecedented 
scale since 2011 and will increase in future events (McLaren, 2016). This simple but new form of doping 
became a threat for the whole anti-doping decision-making organisation. No known statistical method 
existed so far, and experts doubted that machine learning could do any better.  

As described in WADA's Technical Document TD2021EAAS (WADA, 2021), the testing laboratory follows 
a standardised procedure to quantify the steroid profile markers. First, the Initial Testing Procedure (ITP) 
is conducted to estimate the steroid profile of the sample. ITP includes the quantification of the 
concentration of each biomarker by using Gas Chromatography combined with Mass Spectrometry (GC-
MSn) (Mareck et al., 2008). The testing laboratory updates the report of the analysed sample to the Anti-
Doping Administration & Management System (ADAMS) (WADA, 2021). In ADAMS, the Adaptive Model 
based on the Bayesian approach (Sottas et al., 2006) flags profiles for closer examination if one or several 
specific biomarkers of doping vary beyond its personalised thresholds. These values of these biomarkers 
could vary beyond its personalised thresholds due to many reasons e.g., due to the intake of doping 
substance, intake of medication, high altitude training or even sample swapping. Therefore, the subsequent 
Confirmation Procedure (CP) is performed, including analytical methods like GC-MSn validation analysis 
and further Gas Chromatography/Combustion /Isotope Ratio Mass Spectrometry (GC/C/IRMS) (Becchi et 
al., 1994) to investigate the reason behind the unusual values of the biomarkers. In the suspicious case of 
sample swapping, after experts review the DNA analysis is conducted by following the relevant technical 
document TD2021APMU and TD2021 EAAS (WADA, 2021).  

However, there are some challenges associated with the current detection methods. Firstly, DNA analysis 
is not only a time-consuming procedure but also an expensive method to be conducted on all the suspicious 
samples. Usually, during large sports events like Olympics Games, there are several thousands of samples 
collected and analysed during the event. However, several hundreds of them are even flagged as suspicious 
sample swapping case by the Adaptive Model. Conducting DNA analysis on all these samples requires more 
resources like time and money, which is beyond the budgetary limits and capabilities of anti-doping 
organisations and associated laboratories. Secondly, the Adaptive Model is a significant element in the 
current procedure of finding suspicious samples. The Bayesian approach (Sottas et al., 2006) is used to 
determine the personalised threshold for each biomarker which is used to compare the new samples. These 
thresholds correspond to a critical range defined by a given specificity assuming a normal physiological 
condition. Since these thresholds are calculated from the prior distribution based on the reference 
population, it is effective in flagging the suspicious sample due to the intake of a doping substance, i.e. 
steroid doping but not effective in finding the sample swapping. Therefore, a new approach is required for 
a better interpretation of sample swapping, which is time and cost-effective. 

In the recent past, the data-driven approach has shown several promising applications in healthcare as well 
as forensic science (Sidey-Gibbons and Sidey-Gibbons, 2019; Carriquiry et al., 2019). Therefore, it gives a 
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motivation to explore the data analytical approach that includes not only statistical methods but also 
machine learning algorithms. This leads us to ask a question, 'Can machine learning help in anti-doping 
analysis for sample swapping?' To answer this question, it is first important to understand how data-driven 
methodology can help to improve the anti-doping analysis. Moreover, decisions in anti-doping analysis 
require a high level of accountability and transparency. An inaccurate decision can lead to several 
consequences not only for an athlete but also for the nation. Therefore, explanations for the predictions 
from machine learning algorithms are thus needed to justify their reliability, which requires greater 
interpretability. So, the main contribution of this study is to perform data analytical research for sample 
swapping problem and focus on the interpretability aspect. In this paper, we proposed a methodology 
consisting of a step-by-step process based on data-driven analysis that helps to solve the above-mentioned 
problems with the current detection method. We performed the data analytics to find the insights from the 
data and proposed a model which is not only effective in flagging the sample swapping cases but also helps 
in visualising the closeness of different samples in the steroid profile of the athlete. In the end, we compared 
the performance of our model with different baseline models and discussed the results. 

Related Work 

Detection of sample swapping cases has an analogy with the fraud detection problem in forensic science, 
where fraud refers to any intentionally deceptive action designed to obtain unlawful gain. 

Fraud detection 

The fraud can be of various types such as transaction fraud, security fraud, insurance fraud etc. There has 
been a lot of research work done in this domain using a data-driven approach. Pumsirirat and Yan (2018) 
used deep learning algorithms like deep Autoencoder and restricted Boltzmann machine to detect 
anomalous credit card transactions which show deviation from normal patterns. The other algorithms like 
Convolutional Neural Networks are used by Munir et al. (2019) to analyse fraud detection as an anomaly 
detection problem. Recently, attention models have received a lot of attention in the fraud detection context 
(Frabmacher et al., 2021).  Moreover, several works also attempt to interpret the decision-making of models 
for fraud detection using explainable AI approaches (Psychoula et al., 2021). Table 1 shows the overview of 
some recent research work on fraud detection in different domains focusing on machine learning and 
interpretability aspects. 

Literature Domain Lab
els 

Data Fraud Statistical 
Analysis 

Machine 
Learning 

Interpre
tability 

Kaiafas et al. (2019) Telecom S RW Voice calls x x  

Nguyen et al. (2019) Security U P Network  x x 

Massi et al. (2020) Healthcare U RW Diagnosis x x  

Li et al. (2020) Banking S RW Money 
Laundering 

 x x 

Troncoso et al. (2020) Crime S RW Criminal 
network 

x x  

Zheng et al. (2021) Banking S P Credit card  x x 

Farbmacher et al. 
(2021) 

Healthcare S P Insurance  x x 

Psychoula et al. (2021) Banking U,S P Credit card  x x 

Chang et al. (2022) Finance S P User info  x  

Óskarsdóttir et al. 
(2022) 

Automobile S P Insurance  x  

Our contribution Sports U RW Sample 
swapping 

x x x 



 Uncovering Fraudulent Behaviour in Sports 
  

 Forty-Third International Conference on Information Systems, Copenhagen 2022
 4 

Table 1. Literature review on the fraud detection in different domain. 

S: supervised; U: unsupervised; P: public dataset; RW: real-world dataset 

Fraud detection in anti-doping analytics 

Some work has been done in anti-doping analytics using a data-driven approach to uncover fraud activities. 
Doping activities can be classified into blood doping, steroid doping and sample swapping. Most of the data-
driven research done until now mainly focuses on blood doping and steroid doping. For example, Rahman 
et al. (2022) used different machine learning algorithms to detect the presence of doping substance 
erythropoietin in athletes' blood samples. Kelly et al. (2019) applied different machine learning algorithms 
with resampling techniques to find athletes at the highest risk of doping based on their performance data. 
Montagna and Hopker (2018) used a bayesian approach for the detection of blood doping by using the 
interindividual performance data. These studies mainly focused on blood doping. On the other hand, 
literature on steroid doping includes Renterghem et al. (2013), who used Support Vector Machine on the 
athlete's steroid profile to find how much a profile deviates from the normal population profiles. Wilkes et 
al. (2018) used machine learning algorithms such as Random Forest and XGBoost to predict abnormalities 
in steroid profiles. Alladio et al. (2016) used a statistical method like Hotelling's T2 test and Principal 
Component Analysis to detect anomalous steroid profile. All these works consider reference population data 
to define a normal profile and use different algorithms to find the deviation of anomalous steroid profile. 
However, this method cannot be used to detect sample swapping where only the samples collected from the 
same athlete should be considered for defining the normal profile. Therefore, there is a need to explore 
data-driven methods for the sample swapping problem. However, these studies show that the data 
analytical approach, especially machine learning is not a new concept in anti-doping control and has been 
in place to answer several research questions in anti-doping analysis. 

However, there is no study performed so far on addressing the problem of sample swapping using a data-
driven approach. The current state-of-the-art method (SoTA) for finding the sample swapping is still the 
Bayesian method of the Adaptive Model, followed by laboratory testing (Sottas et al., 2006). Once triggered 
by the Adaptive Model, the confirmation tests like IRMS tests or subsequent DNA analysis of the athlete 
are performed to verify whether the sample is from the same athlete or is substituted by the athlete (Piper 
et al., 2021; Thevis et al., 2012; Thevis et al., 2006). However, these laboratory-based approaches are too 
expensive and cannot be implemented on all the athletes' samples during large athletic events like Olympic 
Games. Moreover, it is also a time-consuming process due to the fact that conducting each confirmation 
test requires a significant amount of time and resources. This is the reason why in most cases, unscrupulous 
athletes are caught after several months of the athletic event. This shows why there is a need to explore a 
new and more efficient method in this direction. 

Our model provides a solution to this problem by creating a profile of an athlete based on their samples. In 
this profile, we can visualise the relatedness of all the samples of the athlete and track the changes when a 
new sample is added to find the sample swapping case. This method is very cost-effective and detects sample 
swapping in real-time. Therefore, our model can help the decision makers to flag the sample swapping cases 
during the athletic event and explain their decisions. In this way, it will reduce the number of laboratory-
based testing needed and hence, cost and time beneficial. 

Methodology 

The proposed methodology used in conducting our analysis is based on the suggestion by Shmueli and 
Koppius (2011). It consists of a set of components forming a pipeline. Statistical and machine learning 
analysis are the main form of study in this research. In this section, we give a general overview of the 
pipeline and explain each component in detail. Fig. 1. shows the schematic representation of our pipeline 
and its components. 

Goal Definition 

The goal of this study is to develop a model that can detect the sample swapping activity performed by the 
athlete. In other words, a model that can tell whether the steroid profile of the urine sample is from the 
same athlete who gave the sample or not. In addition, the model should trigger whether a new steroid profile 
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matches with the steroid profile of previous samples of the athlete collected over time. So, a visualisation 
tool or a quantification measure is needed that can show the relatedness among the steroid profiles of the 
same athlete. Therefore, a comprehensive analysis of steroid profiles has to be conducted to understand the 
underlying principles of different biomarkers. 

 

Figure 1.  Graphical representation of the methodology and its components.  

 

Data Collection 

Sport federations and anti-doping agencies across the world conduct doping tests throughout the year at 
various national and international athletic events. This presents large scale historical data for each 
individual athlete. The data is extracted from the ADAMS database, that consists of the real-world athlete 
data collected from 1 September 2018 until 31 March 2021. This data contains 254,478 urine samples 
corresponding to 65,039 athletes where each athlete could have between 2-20 samples in their profile. Table 
2 shows the summary of the number of samples belonging to male and female athletes. For each athlete, we 
extracted only the raw steroid profile values, the gender, the competition type whether tested during 
competition (INC) or out of competition (OOC), the specific gravity of the sample (SG) and an anonymised 
athlete ID into an anonymised dataset in accordance with the WADA International Standard for the 
Protection of Privacy and Personal Information (ISPPPI) (WADA, 2021). 

 Profiles Samples 

Male athletes 52,152 166,237 

Female athletes 12,887 88,241 

Total 65,039 254,478 

Table 2. No. of samples and the profiles belonging to male and female athletes in the data. 

 

The steroid profile of the urine samples consists of a set of biomarkers called steroid parameters that show 
significant changes in the administration of steroids. These parameters are Androsterone (A), 
Etiocholanolone (Etio), Epitestosterone (E), Testosterone (T), 5𝛼-androstane-3𝛼,17𝛽-diol (5aAdiol), 5𝛽-
androstane-3𝛼,17𝛽-diol (5bAdiol) and their ratios T/E, A/Etio, A/T, 5aAdiol/5bAdiol, 5aAdiol/E as 
described in TD2021EAAS (WADA, 2021). 
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Data Preparation 

Missing values 

In the data, we found that there are some samples contained missing values marked with '0' for all the 
parameters, which could mainly be due to some error in extracting the data from the ADAMS database. 
However, it could also be possible that the test result was not reported/updated in the ADAMS due to 
analytical issues by the testing laboratory. Since we are interested in finding the similarity among the 
samples in the longitudinal profile of the athlete, imputing the values from the complete dataset (i.e., using 
the samples from other profiles/athletes) will not be a possible solution as it introduces bias in the profile. 
Therefore, we removed all the samples with missing values. Fig. 2 shows the data distribution of raw data 
and data statistics after removing the samples containing the missing values for male and female athletes. 

Reference ranges, LOQ and LOD 

The values for each steroid parameter should lie within a certain range, but we observed some exclusively 
high values of certain parameters in few samples. Therefore, we compared these values with the maximum 
value of that parameter from Renterghem et al. (2010) and removed all the samples containing off-values. 

Limit of Quantification (LOQ) refers to when the laboratory cannot quantify the concentration of the steroid 
parameter by GC-MSn, and therefore, is reported as '-1', whereas Limit of Detection (LOD) refers to when 
the chromatography peak signal of the parameter cannot be detected (i.e., is below the detection capability 
of the assay) and reported as '-2'. We replaced these values with the lowest concentration values that can be 
measured with uncertainty not greater than 30%, as mentioned in Technical Document TD2021EAAS 
(WADA, 2021). 

 

Figure 2.  Distribution of no. of samples in the profile per athlete for male (left) and 
female (right) athletes. Raw data (blue) represents the original dataset and processed 

data (orange) represents the data after removing the samples containing missing values. 

Correction due to urinary concentration 

Not all the collected samples have the same concentration since some are more diluted than others. To 
compare the measured concentrations between different samples, the urinary concentrations need to be 
normalised using the urinary density. The concentration value of Testosterone parameter of all the samples 
was corrected to a specific gravity of 1.020 as given by TD2021DL (WADA, 2021): 

𝑇 =
1.020 − 1

𝑆𝐺 − 1
× 𝑇𝑟𝑎𝑤 

where 𝑇𝑟𝑎𝑤 represents the concentration value before the correction is applied and 𝑆𝐺 represents the 
specific gravity of the sample. Similarly, the correction for A, Etio, E, 5aAdiol and 5bAdiol was also applied. 
The steroid ratios are unaffected by the urinary specific gravity. 
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Descriptive Analysis 

The distribution of all the steroid parameters of the samples was tested by using the 2-sample Kolmogorov-
Smirnov test (K-S test) (Dimitrova et al., 2020). It is a standard test for deciding whether the two 
distributions are consistent with each other. We performed the K-S test between the distribution of samples 
collected during the competition and out of the competition for both male and female athletes. The p-value 
for each steroid parameter shows that there is a significant influence on the steroid profile of the samples 
due to the testing during the competition. In a recent laboratory study, Piper et al. (2021) also found that 
there is a confounding factor due to the physical and mental stress on athletes, which causes a significant 
amount of elevated values in the profile. Our statistical results show a similar change and thus are consistent 
with their findings. 

Fig. 3 shows the statistical distribution of testosterone parameter for male and female athletes. We can 
observe that the testosterone values are more sparse for male athletes than female athletes. Due to which, 
there is less inter-individual variance among female samples. Moreover, we found that there is a linear 
correlation between the steroid parameters. The parameters A, Etio, E, T, 5aAdiol and 5bAdiol represent 
the concentration values of different steroids in the steroid metabolism pathway. The concentration value 
of one steroid affects the other parameters, as described in Piper et al., (2021). In addition, there is a linear 
relationship between these 6 parameters and 5 ratio parameters. For example, T is directly proportional to 
T/E parameter. Therefore, we observed a collinearity among the steroid parameters. We have statistically 
described the distributions of the steroid parameters using mean, median, first (IQ1 = 0.25), and third (IQ3 
= 0.75) quartile. Fig. 4 and Fig. 5 show the detailed descriptive statistics of the steroid parameters of male 
and female athletes, respectively. 

 

Figure 3.  Distribution of Testosterone parameter between male and female athletes (left) 
and between INC and OOC samples of male athletes (right). 

Proposed Model 

Data visualisation is an important concept in the data-driven approach (Vellido et al., 2011). It helps to 
explore data structure, detect outliers, identify trends/patterns or even interpret the result to gain 
information. Therefore, it is important to visualise the steroid samples in either two- or three-dimensional 
space. However, since the steroid profile consists of 11 parameters representing different biomarkers, the 
elevated values of any of these biomarkers can significantly impact the other biomarkers. Therefore, the 
steroid profile should be visualised in a space that takes into account all the parameters at the same time. 
For example, let us consider a three-dimensional space spanned by any three arbitrary chosen parameters. 
We will require a total of 165 different spaces to completely visualise a steroid profile to view all the aspects. 
Fig. 6 shows an example of the longitudinal steroid profile of an athlete with a testing sample in 8 different 
spaces (out of 165 spaces) spanned by three different arbitrary chosen steroid parameters. Based on these 
plots, it is difficult to state whether the testing sample belongs to the same athlete profile or from another 
athlete since there is no evidence of which space should be considered for decision making. Therefore, there 
is a need to find a visualisation aid that incorporates the behaviour of all the parameters together. 
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Figure 4.  Descriptive statistics of steroid parameters for in-competition and out-
competition samples for male athletes including the p-value from the K-S test. 

 

 

Figure 5.  Descriptive statistics of steroid parameters for in-competition and out-
competition samples for female athletes including the p-value from the K-S test. 

 

 

Figure 6.  Longitudinal steroid profile of the same athlete in 8 different three-dimensional 
space span by any 3 arbitrary chosen steroid parameters. 
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We propose a model called Digital Athlete Passport (DAP), which is an effective approach for understanding 
the relatedness among the steroid profiles and provides a complete visualisation concept for steroid 
profiles. DAP consists of Principal Component Analysis and the concept of centroid to illustrate the 
similarity between the steroid samples of the athlete. We used these techniques instead of other methods 
because of the following reasons: 1) Since there is a linear relationship between the steroid parameters, PCA 
helps to reduce correlated parameters to a smaller set of mutually-independent components that explain a 
large percentage of the covariance in the original steroid parameter space. Other dimension reduction 
algorithms, like autoencoders, require a large training dataset. Since each athlete's longitudinal profile 
consists of 2-20 samples, it is not a good choice. 2) Moreover, PCA with the centroid approach also helps to 
solve the visualisation problem by mapping the steroid sample from a multi-dimensional space to three-
dimensional space and tracking the changes in the overall profile of the athlete when a new sample is added. 

Principal Component Analysis 

Principal Component Analysis (PCA) is an unsupervised learning technique (Lever et al., 2017) that projects 
the data into a new space spanned by a set of basis vectors such that the maximum amount of information 
is preserved in a lower number of basis vectors of the new space. The data is projected on these basis vectors 
called principal components, which are orthogonal unit vectors that maximise the variance in the data. 

The weights of each principal component represented by 𝑤(𝑘) is calculated by the following expression: 

𝑤(𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥 {
𝑤𝑇𝑋(𝑘)𝑇𝑋(𝑘)𝑤

𝑤𝑇𝑤
} 

where 𝑘 = {1,2,3} and 𝑋 refers to the data. The transformed data 𝑋′ can be obtained by: 

𝑋′ ∈ 𝑥𝑖
′(𝑘) = 𝑥𝑖 . 𝑤(𝑘) 

The data is transformed in such a way that it contains the maximum variance in the first component, the 
second maximum variance in the second component and so on. In our model, we used PCA to transform 
the steroid profile (consists of 11 parameters) into a set of 3 principal components. 

Centroid 

The concept of Centroid/Center-of-Mass (CoM) is common in classical mechanics (Kleppner et al., 1973) 
which has a useful application in many domain. It refers to a unique point in the space where the weighted 
relative position of the distributed points sums to zero. This means if we have different points spanned in 
the space, CoM represents the approximate center of all these points and can be calculated by the following 
expression. 

𝑥𝐶𝑜𝑀
′ (𝑘) =

1

𝑁
∑ 𝑥𝑖

′(𝑘)

𝑁

𝑖=1

       𝑘 = 1, 2, 3 

where 𝑥𝐶𝑜𝑀
′ (𝑘) represents the centroid of all the transformed samples in the longitudinal profile with 𝑘 

representing the three principal components of the transformed sample and 𝑁 represents the number of 
steroid samples in the longitudinal profile. 

Whenever a new steroid sample of the athlete is added, it is important to measure the relatedness of this 
sample with respect to the previous samples. We can solve this problem by tracking the position of the CoM. 
If the position of the new steroid sample is distant from the previous samples, then it will cause a large 
deviation in the position of the CoM or vice versa. So, the variation in the position of CoM could be a useful 
measure to monitor the consistency among steroid samples in the longitudinal profile. 

Implementation 

In the Digital Athlete Passport, we take the longitudinal profile of the athlete which consists of all the 
samples and the testing sample (TS), which needs to be checked for sample swapping: 

• Step 1: Since we are interested in visualising the longitudinal profile of the athlete in three-dimensional 
space, we need to calculate three principal components of each of the steroid samples. Therefore, we 
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require at least three samples in the profile. So in this analysis we considered the longitudinal profiles 
which consists of atleast 3 samples. The PCA is performed on the first three steroid samples of the 
athlete's longitudinal profile after randomising the order of the samples to remove any kind of bias. The 
calculated weights for each principal component are then used to transform the next steroid sample in 
the profile. 

• Step 2: The CoM point is calculated based on the transformed samples by the principal components. 
This process is iterated until all the samples of the profile are considered, including the testing sample. 
This excludes the collinearity between the original parameters and hence provide better values.  

• Step 3: We plot the three components of all the transformed samples in a three-dimensional space 
since it captures most of the variance of the athlete's longitudinal profile. 

Fig. 7 shows a randomly selected athlete's longitudinal profile in three arbitrary chosen steroid parameter 
space (SPS) and the transformed samples (after applying the DAP algorithm) in the principal component 
space (PCS). CoM point (in black) shows the arithmetic centre of all the transformed samples. The position 
of the testing sample (in orange) with respect to the CoM and other samples shows the likelihood whether 
the testing sample belongs to the same athlete profile. In this case, we can observe in PCS that the testing 
sample does not belong to the same athlete profile, which was not evident in SPS. The pseudocode of the 
detailed DAP algorithm is shown in Fig. 8. 

 

Figure 7.  Athlete’s longitudinal profile in steroid parameter (SPS) (left) and the 
transformed profile in principal component space (PCS) (right) after applying the DAP 

algorithm. 

Consecutive distance 

It is important to understand the change in the characteristics of the athlete's longitudinal profile when a 
new steroid sample is collected and added to the profile. In DAP, this can be done by tracking the position 
of the CoM whenever a new steroid sample is added. The intuition behind this is that the more alike the 
new sample is from the previous samples, the more the CoM will deviate. Therefore, we also calculate the 
consecutive distances between the position of CoM on the addition of each sample, as shown in Fig. 8b. We 
use Euclidean geometry for the distance computation using the following expression:  

𝑑𝑖 = √∑(𝑥𝐶𝑜𝑀
𝑖 (𝑘) − 𝑥𝐶𝑜𝑀

𝑖−1 (𝑘))
2

3

𝑘=1

 

where 𝑑𝑖 represents the distance shifted by CoM when the 𝑖𝑡ℎ sample is added to the profile, and 𝑘 
represents the three components of the CoM in PCS. 

Cumulative distance 

We also calculate the total distance deviated by CoM after all the samples are added to the profile, as shown 
in Fig. 8c. This helps to keep track of how much the characteristic of the profile gets impacted on the 



 Uncovering Fraudulent Behaviour in Sports 
  

 Forty-Third International Conference on Information Systems, Copenhagen 2022
 11 

addition of a new sample. We observed that as soon as we have more samples in the longitudinal profile, 
there is less impact on the position of CoM and 𝑑𝑖 starts decreasing unless there is a suspicious sample from 
a different athlete. In such a case, we can observe a sudden spike in the plot. The cumulative distance is 
calculated by the following expression: 

𝐷𝑖 = ∑ 𝑑𝑚

𝑖

𝑚=3

 

where 𝐷𝑖  represents the cumulative distance until 𝑖𝑡ℎ sample is added. Since we start with the first three 
samples for calculating the CoM, therefore 𝑚 starts with 3. This is because we need the three components 
of the transformed sample for the DAP algorithm. 

 

Figure 8.  Pseudocode of Digital Athlete Passport algorithm. 

Contribution of each steroid parameter 

It is important to understand the contribution of steroid parameters to each principal component. This 
helps to determine the importance of the steroid parameter for decision-making. Therefore, we calculated 
the feature importance of each steroid parameter for the athlete's longitudinal profile in PCS. The 
importance of each feature can be reflected by the magnitude of the corresponding absolute values in the 
eigenvectors of 𝑋𝑇𝑋, i.e. the larger the absolute values, the more feature contributes to that principal 
component. In DAP, we calculate it for each longitudinal profile separately, as shown in Fig. 8d.  

Variance captured by each component 

Each principal component captures a certain amount of variance in the longitudinal profile data. We 
calculated the proportion of total variance captured by the three principal components, as shown in Fig. 8e. 

Evaluation 

Our model provides a visualisation aid to understand the similarity of the samples. Thus, the primary way 
to evaluate whether a sample belongs to the same athlete can be done by domain experts (human 
evaluation) after the application of the DAP algorithm on the longitudinal profile of the athlete. 
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However, we also proposed an additional evaluation metric to quantify the sample swapping using DAP 
algorithm. Let us consider the distance between the CoM and each sample of the longitudinal profile (in 
DAP) to be 𝑑1, 𝑑2, and so on, and the distance between CoM and testing sample be 𝑑𝑇𝑆. We calculate the 
mean (𝜇𝑑) and standard deviation (𝜎𝑑) of all the distances. The idea is to compare 𝑑𝑇𝑆 with the distribution 
of 𝑑 to classify the testing sample as an outlier by the following expression: 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {
𝑆𝑤𝑎𝑝,       𝑑𝑇𝑆 > 𝜇𝑑 + 3𝜎𝑑

𝑁𝑜𝑡 𝑠𝑤𝑎𝑝,       𝑑𝑇𝑆 ≤ 𝜇𝑑 + 3𝜎𝑑
 

The decision rule of 3𝜎𝑑 is chosen after performing the sensitivity analysis on the training dataset. We 
divided the complete dataset into training set (80%) and testing set (20%) as shown in Table 3. In both the 
dataset, we randomly selected 50% of profiles and manually swapped the last sample with a sample from a 
different athlete and labelled them as swapped profiles (class 1). The other 50% of the profiles were labelled 
as clean profiles (class 0). This is performed to create a scenario of swapped and clean case for the 
classification. We performed the sensitivity analysis on the decision rule to understand the impact on 
different evaluation metrics. Table 4 shows the performance results of our model on training dataset when 
different values like 1𝜎𝑑 , 1.5𝜎𝑑 , 2𝜎𝑑 , 3𝜎𝑑 and 4𝜎𝑑 are chosen for the decision rule. 

 Male Female 

 Profiles Samples Profiles Samples 

Training 33,618 128,807 12,572 67,498 

Testing 8,405 32,342 3,144 16,762 

Total 42,023 161,149 15,716 84,260 

Table 3. Data statistics of training and testing set. 

 

 Metrics 𝜇𝑑 + 1𝜎𝑑 𝜇𝑑 + 1.5𝜎𝑑 𝜇𝑑 + 2𝜎𝑑 𝜇𝑑 + 3𝜎𝑑 𝜇𝑑 + 4𝜎𝑑 

 

Male 
athletes 

Accuracy 0.78 0.78 0.79 0.83 0.75 

Sensitivity 0.82 0.75 0.72 0.72 0.56 

Specificity 0.75 0.87 0.85 0.89 0.94 

 

Female 
athletes 

Accuracy 0.72 0.73 0.72 0.74 0.67 

Sensitivity 0.71 0.63 0.62 0.61 0.40 

Specificity 0.74 0.81 0.84 0.88 0.93 

Table 4. Sensitivity analysis on the decision rule showing different evaluation 
metrics. 

 

For example, we created a scenario of a sample swapping case where a longitudinal profile of an athlete is 
arbitrarily chosen, and a testing sample (selected from another athlete's profile) is added to the longitudinal 
profile. The DAP algorithm is applied on this longitudinal profile, and Fig. 9 shows the complete result from 
the DAP algorithm, including the plots showing the consecutive distance, cumulative distance, contribution 
from each steroid parameter and variance covered by each principal component. The 3D plot shows that 
the position of the testing sample is far from the CoM and other samples of the athlete. Thus, the expert can 
easily understand that the testing sample is suspicious. Moreover, the sudden spike in the consecutive 
distance (and cumulative) covered by CoM when the testing sample is added triggers that the sample does 
not belong to this athlete's profile. The values for the proposed evaluation metric 𝑑𝑇𝑆 = 39.3, 𝜇𝑑 = 8.8 and 
𝜎𝑑 = 4.5 also suggest that it is a swapped case. In practice, the test sample usually appear in the end i.e., the 
last sample of the profile. In this example, we showed how our model works independent of the position of 
the testing sample i.e., the sample order does not matter. 
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Figure 9.  Fully-functional view of the Digital Athlete Passport on arbitrary chosen 
athlete’s longitudinal profile. a) transformed samples in PCS, b) consecutive distance, c) 

cumulative distance, d) contribution of each steroid parameter and e) proportion of 
variance captured by each component. 

 

Baseline Models 

We selected a set of baseline models which are used to compare the performance of our proposed model. 
These models are trained and optimised on the training dataset. The models include Logistic Regression 
(LR) (Peng et al., 2002), Support Vector Machine (SVM) (Hearst et al., 1998), Random Forest (RF) 
(Breiman, 2001), Gradient Boosting (XGB) (Chen and Guestrin, 2016) and Bayesian Method of Adaptive 
Model (SoTA) (Sottas et al., 2006). Table 5 shows the different hyperparameters values selected to train 
each model. These values are considered after performing the optimisation step. 

Model Parameter value 

Logistic Regression (LR) max iter = 100 

penalty = 12 

Support Vector Machine  

(SVM) 

degree = 3 

kernel = rbf 

max iter = -1 

Random Forest  

(RF) 

min samples split = 2 

n estimator = 100 

bootstrap = True 

criterion = gini 

Gradient Boosting (XGB) max depth = 5 

objective = binary logistic 

n estimators = 10 

alpha = 10 

learning rate = 0.1 

Bayesian Method (SoTA) specificity threshold = 99.9% 

Table 5. Hyperparameter values of different baseline models used for training. 
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Results 

We performed the evaluation of our model in two phases, first on the longitudinal profiles of the athletes 
from testing dataset, which we manually swapped to create a sample swapping scenario and the second on 
the real-world swapping cases, which were confirmed by subsequent DNA analysis. 

Evaluation phase I 

In the first phase, we selected all the longitudinal profiles in the testing data. For half of these profiles, we 
chose the testing sample from the same athlete's profile, and for the other half, we chose the testing sample 
from another athlete's profile. In this way, we manually created a scenario of a sample swapping case where 
some of the longitudinal profiles consist of testing samples from different athletes. Finally, we applied the 
DAP algorithm as well as all the trained baseline models. The results are summarised in Table 6. 

The result shows that our proposed model could be able to differentiate the swapped profiles from the clean 
athlete's profiles based on our proposed decision rule. Our model achieves an accuracy of 81% on the 
longitudinal profiles of male athletes. However, we observed slightly less performance on the profiles of the 
female athletes. As explained in Fig. 3, this is because the female athletes' samples have less inter-individual 
variance than the male athletes. The results show that the ensemble method like gradient boosting 
algorithm shows comparable performance to our proposed model in terms of accuracy and specificity. Since 
the prevalence of sample swapping cases in very less (<1%) in real-life scenario, high specificity values are 
important to minimize false positive cases (cost factor). Overall, the proposed model shows better 
performance than the current state-of-the-art method (Bayesian approach) as well as all the baseline 
models in terms of different evaluation metrics. 

 Metrics LR SVM RF XGB SoTA DAP 

 

Male 
athletes 

Accuracy 0.75 0.73 0.78 0.80 0.76 0.81 

Sensitivity 0.00 0.38 0.25 0.61 0.73 0.75 

Specificity 0.89 0.88 0.92 0.93 0.82 0.92 

 

Female 
athletes 

Accuracy 0.68 0.71 0.75 0.76 0.71 0.77 

Sensitivity 0.00 0.26 0.08 0.48 0.38 0.61 

Specificity 0.84 0.82 0.88 0.90 0.85 0.89 

Table 6. Results of our proposed model compared to different baseline models and SoTA 
method. 

 

Evaluation phase II 

In the second evaluation, we validated our model on two real sample swapping cases, confirmed by 
subsequent DNA analysis by one of the WADA's accredited laboratories. These longitudinal profiles contain 
more than one samples which were not from the same athlete. The DAP algorithm triggered both the 
longitudinal profiles successfully and detected them as a sample swapping case, as shown in Table 7. In 
addition, our model was also applied on the longitudinal profiles that were confirmed positive steroid 
doping cases (i.e. administration of exogenous steroids) by the laboratory. Again, the model could able to 
flag these longitudinal profiles as suspicious profiles. The reason we have only two confirmed sample 
swapping cases for the evaluation shows that, in reality, we have a very less prevalence of the sample 
swapping cases. Therefore, it is an important and difficult task to identify such cases in anti-doping analysis. 
These evaluations conclude that our method shows promising results and could potentially improve the 
current method of detecting sample swapping cases. 
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Cases Number of profiles 
confirmed by laboratory 

% of profiles flagged by 
SoTA method 

% of profiles flagged by 
our model 

Sample swapping 2 100% 100% 

Steroid doping 5 100% 100% 

Normal profiles 23 78% 82% 

Table 7. Results of our proposed model on DNA proven profiles compared to SoTA 
method. 

 

Conclusion and Outlook   

The objective of this analysis was to address a research question on whether a data-driven approach can 
contribute to identifying fraudulent behaviour in sports especially manipulation of samples by the athletes 
to evade positive doping results. In other words, can machine learning be a helpful approach to identify 
sample swapping and hence improve the current decision making by solving the problems associated with 
the current state-of-the-art methods? Indeed, sample swapping has not often been addressed in the design 
of a data-driven approach. However, several studies have discussed the application of machine learning 
especially supervised learning algorithms in anti-doping analysis like blood/steroid doping. These studies 
are often conducted with the help of the data gathered in the clinical trials on individual populations. In our 
study, we analysed the anonymized real-world data of elite athletes to understand the problem of sample 
swapping. We proposed a step-by-step process from collecting data to finding the insights of the data to 
conduct our analysis. 

We proposed the model which provides a visualisation aid for the longitudinal steroid profile of the athletes 
for finding suspicious samples. The model is based on an unsupervised learning algorithm that does not 
depend on the prior distribution of the steroid samples of the athlete unlike the Bayesian approach. Since 
the elevated values in different biomarkers give an indication of the suspicious sample, the model 
transforms the steroid markers into a space where most of the variance is covered and also helps to track 
the change of the overall profile of the athlete when a new sample is added. Therefore, experts can easily 
analyse the longitudinal profile of the athlete in DAP and can decide whether to conduct further 
investigations on the athlete. The application of the proposed model on the steroid profiles of the athletes 
offers better decision making compared to the SoTA as well as it gives time and cost benefits by a significant 
amount. Furthermore, the DAP not only triggers the suspicious sample but also helps to explain why the 
sample is triggered as a suspicious sample. This shows a potential application of DAP as an extension to the 
current Adaptive Model used by WADA. Therefore, it gives a possible solution to address the statistical and 
explainability challenges encountered by using the current approach of steroid passport interpretation.  

Limitations and Future Work 

In this section, we describe the weakness of our model and the possibility of improving it in future research. 
1) DAP model requires at least 3 samples in the longitudinal profile of the athlete to detect sample swapping. 
Therefore, the model cannot be applied to the longitudinal profile of new athletes who had just started their 
sports career. In such a scenario, a generative algorithm can be integrated into the model to overcome this 
problem. 2) Since our model leverages the information about variance of the samples for decision making, 
there is no distinction between the sample triggered by DAP being an actual sample swapping case or could 
be even steroid doping case like administration of exogenous steroids. Therefore, the model shows potential 
for further investigation by extending its application not only to flag the suspicious sample but also to be 
able to distinguish between sample swapping and steroid doping. Therefore, in future, we will analyse more 
longitudinal profiles in DAP which were confirmed positive with steroid doping or sample swapping by 
DNA analysis. 3) Moreover, based on the results of evaluation phase I, it is evident that there is room for 
improving the decision rule of the model. Therefore, a proper formulation of the decision rule needs to be 
investigated to further improve the performance of the model. 4) In future, we plan to perform empirical 
studies with experts to understand how the DAP model can help the decision makers to detect sample 
swapping during sports events.  
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