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Abstract
Extracting typical career paths from large­scale and unstructured talent profiles has re­
cently attracted increasing research attention. However, various challenges arise in effec­
tively analyzing self­reported career records. Inspired by recent advances in neural net­
works and embedding models, we develop a novel career path clustering approach with
twomajor components. First, we formulate an embeddedMarkov framework to learn job
embeddings from longitudinal career records and further use them to compute dynamic
embeddings of career paths. Second, to cope with heterogeneous career path clusters, we
estimate amixture ofMarkovmodels to optimize cluster­wise job embeddingswith a prior
embedded space shared by multiple clusters. We conduct extensive experiments with our
framework to investigate its algorithmic performance and extract meaningful patterns of
career paths in the information technology (IT) industry. The results show that our ap­
proach can naturally discover distinct career path clusters and reveal valuable insights.
Keywords: career path clustering, sequential job embedding, mixture Markov models.

Introduction
The wide adoption of employment-oriented online services such as LinkedIn has enabled novel research
investigations on professional career patterns with rich career data. The research on professional careers
is particularly important for industries where talents change jobs frequently. For instance, an information
technology (IT) professional usually changes job position every one or two years and quickly accumulates
a career path, i.e., a sequence of job positions. There is substantial interest in extracting typical sequential
patterns from a large number of career path records. Such sequential patterns can be used for job recom-
mendation, career planning, and talent management (Joseph et al. 2012).

The problem of career path characterization has been previously studied in the literature. Early studies
adopted the optimal matching analysis (OMA) (Sankoff et al. 2000), a sequence analysis method that could
be applied for career path clustering. The OMA-based methods rely on two steps. In the first step, the
similarity of a sequence pair is assessed by edit distance, i.e., the cost of editing one sequence into another;
In the second step, a clustering algorithm is applied to the similarity/distance matrix to construct sequence
clusters. For instance, Biemann andWolf (2009) applied OMA to the field of top management research and
developed six career patterns of top management team members based on their international experience,
organizational tenure, and professional experience. Further, Biemann et al. (2012) examined which socio-
demographic predictors affect whether or not individuals follow particular career path patterns. In a focused
review on OMA, Dlouhy and Biemann (2015) pointed out that the study on sequences of occupational states
from the longitudinal perspective is important in career research.
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Phase D. Career Path Clusters with Job Embeddings

Figure 1. A conceptual diagram of our career path clustering approach

The emergence of online talent networking platforms, e.g., LinkedIn, has again motivated recent studies
with large-scale and unstructured career path records (Lappas 2020). However, conventional OMA-based
approaches are not applicable to analyze such self-reported data due to several challenges. First, OMA as-
sumes that the elements (e.g., job titles) are equally distinguishable in the sequences. In reality, some job
titles are much more similar to each other than other job titles in our data. Conventional OMA doesn’t in-
corporate weighted distances in estimating the cost to edit one sequence into another. Second, the weighted
distances between sequence elements are not available to extend OMA or apply other sequence analysis
techniques. This problem is particularly challenging in analyzing raw career records where self-reported
job titles on online talent networking platforms are much more complex than those in the aforementioned
focused studies. For instance, our data includes over 48K distinct titles in the IT industry. Third, as dis-
cussed by Lappas (2020), clusters of career paths are naturally fuzzy and cannot be meaningfully simplified
into prototype paths. Therefore, clustering approaches based on the aggregated centroids and producing
hard clustering labels may ignore fine-grained information in the large-scale career path records. Essen-
tially, we need a quantitative measurement that can objectively estimate distances between job titles and
support clustering analysis with a large amount of job sequences.

To address these challenges, in this paper, we develop an approach based on sequential job embedding and
mixtureMarkov models. There are two unique differences in our approach compared with the conventional
OMA-based approaches. First, we use optimization and statistical approaches to learn latent embeddings
of job titles. The latent embeddings can capture both functionality and responsibility relationship (Liu et
al. 2019) among raw job titles by mapping each term in job titles to a Euclidean space where career paths
are modeled with a Markov assumption. Second, we replace conventional cluster centroids with a mixture
of probabilistic models that can effectively cope with the heterogeneous nature of real-world career paths.
Overall, with a mixture of Markov models, our approach can simultaneously address the two daunting chal-
lenges in analyzing large-scale career path records.

We illustrate the procedure of our proposed method for career path characterization and clustering in Fig-
ure 1. In essence, we aim to discover coherent career path clusters, where 1) the clusters are distinctive;
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2) each cluster is followed by many talents along with their career paths; and 3) all clusters taken together
can characterize most talents’ career paths. We start with talents’ employment profiles (Phase A). A typical
employment profile consists of the talent’s past and present job records, each of which usually includes the
employer’s name, a job title, and the corresponding employment period. Given each profile, we chain the
job records chronologically to form a career path (Phase B). Note that the tenure length of each employment
record is reflected in our coding scheme owing to its revelation of job importance in the regarded career. In
Phase C, we employ our proposed Embedded Mixture Markov Models (EMMMs) to simultaneously learn
cluster-wise job embeddings and construct career path clusters. The likelihood of each career path’s associa-
tion with a cluster is computed through the proximity measurement of sequentially-adjacent job titles in the
embedded space. The optimal assignments of career paths are then earned by iteratively picking the clus-
ter with the highest estimated likelihood. Meanwhile, cluster-wise job title/term embeddings are tuned to
reflect career clusters’ idiosyncratic characteristics. Unlike other categorical sequence clustering methods
(e.g., the conventional OMA-based approaches), our embedding-based model can cope with career paths
with sequentially-overlapping job positions (e.g., the fourth talent’s career in our example), which appears
common among the individuals who take concurrent professional roles in their careers. When the model
training process converges or reaches an iteration limit, the resultant cluster-wise likelihoods of career paths
explicitly quantify their soft bondingwith different clusters (PhaseD). The job embeddings learned from our
model reveal implicit connections among different job titles within each cluster.

The rest of our paper is organized as follows. Section Literature Review reviews the related literature, focus-
ing on career pattern mining, career path clustering, and general categorical sequence clustering methods.
Section Data Description and Research Challenges introduces our data sources and summarizes their key
statistics. SectionMethodology elaborates on our method for career path clustering based on sequential job
embedding and mixture Markov models. Section Experimental Analyses and Results applies our method
to investigate typical career path patterns in the IT industry and demonstrates the efficacy of our method.
Finally, Section Conclusion summarizes our paper, highlighting its limitations and areas for future research.

Literature Review
Our work primarily relates to the broad literature of career path studies. Earlier work in this realm utilized
surveys, interviews, and/or narratives to understand careers. Reich and Kaarst-Brown (1999) conducted a
case study with 51 former IT professionals using interviews and surveys to understand their career transi-
tions from IT to non-IT business unit roles. Later, Cohen (2006) reviewed and accredited the storytelling
or narrative methodologies used in career path studies and, using the narratives collected from a group of
research scientists, identified four typical career discourses of scientists. However, the early methods rely
heavily on subjective self-expressions of identity and retrospective sense-making and, unfortunately, have
not been widely adopted in recent career path studies (Vinkenburg and Weber 2012). Instead, researchers
shifted their focus to more analytics-driven strategies. For instance, by targeting similar study subjects as
(Cohen 2006), Agarwal and Ohyama (2013) used multiple regression analysis approaches to understand
the career trajectories of scientists (basic vs. applied science and industry vs. academic paths). They aimed
to understand how the scientists’ different careers, combined with their ability and preferences, affect their
career choices and subsequent earnings evolution.

Among the numerous studies on career paths that have been conducted, the problem of career path clus-
tering has garnered considerable interest from the research community. Given the sequential nature of ca-
reer trajectories, most researchers have relied on sequence analysis and clustering techniques. Abbott and
Hrycak (1990) was one of the initial contributors to this strand. Their paper pioneered the use of the opti-
mal matching algorithm (OMA) to identify prototype careers of German musicians. Later, Blair-Loy (1999)
used the optimal matching techniques and the complete linkage-based clustering method to categorize the
careers of female finance executives into four career types. On the other hand, numerous studies focused on
the careers of senior managers. Biemann and Wolf (2009) employed the optimal matching analysis (OMA)
to generate six career patterns for members of the top management team (TMT) from five nations, taking
into account their international experience, organizational tenure, and professional experience. More re-
cently, Koch et al. (2017) studied the career patterns of Fortune 100 CEOs. Similarly, they used the optimal
matching analysis (OMA) followed by a hierarchical cluster analysis with Ward’s linkage to discover unique
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groupings of CEOs’ career paths and to gain a better understanding of what propelled these individuals to
the top management level. In general, we can see that these approaches cluster career paths in a two-step
manner. The first is to compute pairwise distances between career sequences primarily using the optimal
matching analysis (OMA) method. Then, several clustering techniques are applied to the distance matrix
to group job sequences into disjoint clusters. This two-step approach is often effective, especially when job
titles are of low diversity.

More recently, as the IT industry has grown rapidly, we have witnessed an increasing interest in understand-
ing the career patterns of the IT workforce. By adopting the aforementioned two-step framework, Joseph
et al. (2012) performed an in-depth analysis on characterizing the IT workforce’s careers using the optimal
matching analysis (OMA) approach and a hierarchical agglomerative clustering technique. Their study gives
a detailed picture of IT professionals’ careers and career experiences and, in the meantime, highlights a re-
search difficulty posed by the great heterogeneity of these individuals’ profiles. Similarly, Lappas (2020)
also noted that careers of the IT workforce are more diverse than the traditional view of a dual IT career
path (technical versus managerial) and are growing in heterogeneity due to a volatile environment. To ad-
dress these issues, Lappas (2020) proposed a novel two-step approach to discover the prototype career paths
of the IT workforce. The author first clustered job titles by applying an Agglomerative Clustering (AC) al-
gorithm to job description embeddings learned via the Distributed Memory Model (DMM). Then, several
career prototypes are discovered via a graph-based clique finder algorithm. Note that our study relates to
Lappas (2020)’s work in the following ways. First, our study shares a similar focus on career paths cluster-
ing of the IT workforce. Second, we also employ embedding-based techniques to determine the “similarity”
between job titles. Our method, however, does not require an explicit second phase of sequence clustering;
we learn job term/title embeddings and sequence clusters simultaneously.

Apart from career path studies, our work also contributes to the literature of general categorical sequence
clustering (Aggarwal and Reddy 2013). In comparison to conventional item clustering, the categorical se-
quence clustering problem presents several notable challenges (Aghabozorgi et al. 2015). First, categorical
sequences are often of high dimensionality, which makes data handling rather complicated. Second and
more crucially, computing similarity/distance between categorical sequences is not straightforward as they
are often noisy and with varying length. According to (Bicego et al. 2003), there are three categories of
sequential data clustering methods. The first is proximity­based, which focuses on devising similarity or
distance measures between sequences, followed by a standard clustering method based on the sequence
distances. They are generally labelled as raw-data-based approaches as they typically work directly with raw
sequence data. Owing to this trait, they have to face the challenges such as sensitivity to noise, amplitude
scaling, longitudinal scaling, discontinuities and temporal drifts (Aghabozorgi et al. 2015). The OMA-based
two-step approach outlined above falls into this category. The second category is feature­based, which aims
to extract temporal features from each sequence and then downgrades sequence clustering into a more
manageable item/point clustering problem. Different from proximity­based approaches, feature­based
approaches do not directly work with raw sequences, but their transformed features. Therefore, they are
more computationally efficient and better for large-scale data sets. The final category is the model­based
approaches, which presuppose an analytical model for each cluster and try to determine the optimal set of
such models that best fits the data. Typical models include time series models, spectral models, and finite
state machines, such as hiddenMarkov models (HMM). Despite popularity of model-based approaches due
to the adaptability to a wide range of applications, they may suffer from scalability issues, and performance
deterioration when data and clusters become more complex (Aghabozorgi et al. 2015).

Note that model-based approaches have grown in popularity over the years, with hidden Markov models
(HMMs) garnering the most attention for sequence modeling. An early study by Smyth (1996) viewed se-
quence clustering problem as a generalization of the standard mixture model approach to clustering in fea-
ture space and developed anHMMs-based solution. Likewise, Bicego et al. (2003) also employed the hidden
Markov models (HMMs) to cluster sequence data. They quantified the similarity between sequences as the
proximity of the represented vectors in a new representation space generated usingHMMs. Moreover, Xiong
et al. (2011) proposed a non-HMMs Markov model to approximate the conditional probability distribution
(CPD) model, which was then used to create a novel two-tier Markov model to represent a sequence cluster.
Built upon this model, a divisive hierarchical algorithm was employed to cluster categorical sequences.
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Figure 2. Percentage distribution of talents by industry

Another pertinent study was found at (Chen et al. 2012). Rather than focusing on categorical sequence clus-
tering, the authors attempted to tackle the sequence (playlist) generation problem using a Latent Markov
Embedding (LME) model. In their approach, sequences (playlists) are treated as Markov chains in a la-
tent space, and each element (song) is represented as a point in the same space. Their LME algorithm does
not treat sequence elements as atomic units devoid of metric properties, but rather gives generalized repre-
sentations in a Euclidean space. Notably, this idea of sequence modeling can be adopted for the sequence
clustering problem. Essentially, our proposed solution in this paper extends their idea. When modeling
sequences in our setting, we treat each job term (rather than job title) as a point in the latent space. We
propose that this design better captures the semantic similarity of job titles, especially when they contain
shared and/or similar terms.

To summarize, our approach has the following advantages over previous work when it comes to categori-
cal sequence clustering problems. First, our solution, unlike OMA-based methods, does not require a job
title coding scheme and provides greater flexibility through the transformation of job titles into meaningful
latent representations. Second, our model integrates the process of sequence clustering with the learning
of job term/title embeddings. Our clustering is soft in the sense that no job sequence is hard­assigned but
fuzzily affiliated with clusters to the degree of cluster-wise model likelihoods. Third, with the embedding
technique, our model can handle more sophisticated career path clustering scenarios, such as job sequences
with overlapping employment records. Meanwhile, the resulting job title embeddings that contain rich se-
mantic information are useful for additional research purposes.

Data Description and Research Challenges
Our data are collected from LinkedIn, the world’s largest professional networking platform, which enables
members to create occupational profiles and network with other professionals. As of November 2021, it
had 800 million members from more than 200 countries and territories worldwide1. Our study focuses on
IT-related job trajectories by purposefully limiting the industry keywords to a predefined list as shown in
Figure 2. We find that around 80% of talents are concentrated in these four industry sectors: Information
Technology and Services, Computer Software, Telecommunications, and Internet. To eliminate irregular
profiles, we maintain only employment profiles with a tenure of less than 30 years and an employment
period between 1990 and 2018. As a result, we end up with a data sample of roughly 200K talents.

In our research, we investigate three distinct types of career-related constructs, i.e., job sequence, job title,
and job term. A job sequence is a term that refers to a talent’s career path, which consists of an ordered list
of job titles. A job title is a meaningful phrase that clearly specifies the functionality and responsibility of a
position, for example, ‘software engineer’ and ‘project manager’. And job terms are the words that comprise
a job title. They are classified into two genres (Liu et al. 2019): functionality (FUN) and responsibility

1https://about.linkedin.com/

Forty­Third International Conference on Information Systems, Copenhagen 2022
5



Career Path Clustering via Embedded Mixture Markov Models

RES manager, engineer, senior, analyst, consultant, developer, director, lead, specialist, assistant, technician,
administrator, president, architect, executive, owner, programmer, principal, associate, founder

FUN software, technical, support, business, project, systems, development, network, operations, system, service,
services, technology, product, engineering, marketing, web, customer, team, program

Table 1. Top 20 most frequent terms in RES and FUN

Variable Count Variable Mean Std Min Max

# Talents (career paths) 200,878 Employment year 1990 2018
# Distinct titles 48,359 # Terms per job title 2.47 1.16 1 12
# Distinct terms 825 # Titles per job sequence 5.04 3.58 1 25
# Distinct FUN & RES terms 572 & 253 Tenure length (number of years) 13.15 7.00 1 29

Table 2. Descriptive statistics for our dataset

(RES). For instance, ‘software’ and ‘engineer’ are two terms that refer to the job title ‘software engineer’,
where ‘software’ is a FUN term and ‘engineer’ is a RES term. The job titles of all employment records in our
data sample are quite diverse, with a total of 48K different phrases. These job titles are composed of 825
distinct terms, 572 of which are FUN terms and 253 of which are RES terms. We report the top twenty most
frequently occuring terms in theRES and FUN genres in Table 1. Examples ofRES terms include ‘manager’,
‘engineer’, ‘senior’ and ‘analyst’ while FUN terms include ‘software’, ‘technical’, ‘systems’ and ‘product’.

Table 2 summarizes our data sample’s descriptive statistics in detail. A job title, on average, contains 2.47
terms whereas a job sequence contains 5.04 titles. In Figure 3, we display the percentage distribution of job
sequence length (number of job titles) and discover that the majority of job sequences contain ten or fewer
job titles. Figure 4 illustrates how career tenure is distributed, and we observe that the majority of careers
endure 5 to 15 years. Talents have an average career tenure of 13.15 years. For illustrative purpose, we con-
struct aWordCloud of job titles in Figure 5. Themost frequently used titles are ‘software engineer’, ‘software
developer’, ‘consultant’, and ‘manager’, which aligns with our study’s concentration on the IT industry.

Using the data presented above, we intend to uncover significant career path prototypes using an effective
and adaptable clustering approach. By capturing job title semantics and fine-grained information in raw
career records, our methodology aims to overcome the limits of conventional sequence analysis approaches.
The following section will define our research problem and then delve into the methodological details.

Methodology

Problem Formulation

We consider a set of career path sequences {Sn : n = 1, 2, · · · , N}, where Sn =< sn0 , s
n
1 , s

n
2 , · · · , sn|Sn| > is

the n-th sequence, and sni ∈ S is the i-th job title in the sequence and S is the set of unique job titles from all
career path sequences. Note that the length of each sequence |Sn| varies for difference job sequences. Since
job titles can be collected on a regular basis (e.g., quarterly or yearly), or just when a job change is detected,
the sequence length can reflect the duration of a career or the frequency of job changes, respectively. Given a
large number of such career path sequences, we seek to constructM career path clusters {C1, C2, · · · , CM},
where each cluster can capture similar career path dynamics for a set of talents.

Sequence Clustering with Embedded Markov Models

Our method is designed to construct M clusters of career paths while simultaneously estimates the Em-
bedded Markov Model (EMM) parameters for each cluster. To cluster career paths into M clusters, we
randomly assign all paths to M disjoint subsets as initial clusters and then iterate the following two steps
until convergence:
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Figure 5. AWord Cloud visualization of all job titles in our data sample

Step 1: Estimate the cluster-wise EMMparameters θm for all paths in clusterCm, form = 1, 2, · · · ,M . The
cluster Cm is defined as:

Cm ← {Sn : argmax
m′

Pr(Sn|θm′) = m}. (1)

Step 2: Assign each path Sn to the cluster Cm with the highest likelihood, i.e.:

m← argmax
m′

Pr(Sn|θm′). (2)

For better illustration purpose, Figure 6 provides a holistic view of our methodology. We start by discussing
the Embedded Markov Model and the probabilistic model Pr(Sn|θm) ((A) Transition Probability Compu­
tation in Figure 6). Note that θm represents the parameters of cluster-wise EMM, which is estimated to
maximize the likelihood:

Pr(θm|Cm) ∝ Pr(Cm|θm)Pr(θm), (3)
where

Pr(Cm|θm) =
∏

Sn∈Cm

Pr(Sn|θm). (4)

The parameterization with {θm : m = 1, 2, · · · ,M} and the consequent optimization problem are the pri-
mary challenges in our methodology development.

Modeling career paths and job transitions with the Markov assumption is a natural approach, where the
probability of the career sequenceSn is decomposed into the product of the transitionprobabilities Pr(sni−1 →
sni ):

Pr(Sn|θm) =

|Sn|∏
i=1

Pr(sni−1 → sni |θm). (5)
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Figure 6. An illustrative diagram of our EMMMsmodel

A straightforward next step to estimate transition probabilities is to count transition frequencies between
job titles of each cluster’s career sequences. However, this naive estimation will deem distinct job titles
completely independent. As explained in Section Introduction, there are important semantic links among
complex job titles. To capture these semantic links among job titles, we attempt to learn their embeddings
in a Euclidean metric space. To be specific, we define:

Pr(sni−1 → sni |θm) =
exp

(
−∥vm(sni )− vm(sni−1)∥22

)
Zm(sni−1)

, (6)

where
Zm(sni−1) =

∑
s∈S

exp
(
−∥vm(s)− vm(sni−1)∥22

)
. (7)

By this definition, job title embeddings are the optimal locations of job titles in a Euclidean metric space
such that the probabilistic likelihood of the sequence clusterCm in our data is maximized. Finally, using our
EMM approach, we have:

Pr(Sn|θm) =

|Sn|∏
i=1

exp
(
−∥vm(sni )− vm(sni−1)∥22

)
Zm(sni−1)

1/|Sn|

. (8)

Note that the probability is normalized by the sequence length |Sn|, ensuring that our model will not fa-
vor short sequences. The following subsections further elaborate on the details of the job title embedding
component to address unique challenges of career path clustering tasks.

Embedding of Job Titles via Job Terms

One difficulty in assessing self-reported career profiles is navigating the inherent complexity and ambiguity
in raw job titles. Our EMM architecture utilizes a metric embedding approach to address this difficulty. To
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further reduce themodeling complexity, ourmethod is capable of embedding job titles at the term level. For
instance, given job titles ‘software engineer’ and ‘hardware engineer’, our method learns embeddings of the
terms ‘software’, ‘hardware’, and ‘engineer’. The embedding of a job title is then computed by aggregating the
embeddings of the job title’s terms, e.g., ‘software engineer’ is embedded by aggregating the embeddings of
‘software’ and ‘engineer’. The key idea behind this type of term-level embedding is that ‘engineer’ can share
the samemetric embedding, provided that both job titles indicate semantically similar skills andprofessional
positions. Meanwhile, the embeddings of ‘software’ and ‘hardware’, respectively, capture the distinctions
between the two job positions.

Specifically, we consider each job title sni as a set of terms {w ∈ sni } ((B) Title Embedding Aggregation
in Figure 6). To compute the embedding vm(sni ) of job title sni in cluster m, we learn and aggregate the
term-level embeddings:

vm(sni ) =
1

|sni |
∑
w∈sni

vm(w), (9)

where vm(w) ∈ RD is trainable embedding vector in the EMM learning process andD is the dimensionality
of the metric embedding space.

According to Table 2, using term-level embeddings can reduce the number of trainable embeddings from
48, 359 (distinct titles) to merely 825 (distinct terms), which is a considerable reduction in modeling com-
plexity. In our empirical studies, we will investigate the performance of the term-level embedding approach
from various aspects.

Additionally, our term-level embedding enables us to investigate the responsibility and functionality of pro-
fessionals, which would be impossible with a title-level embedding approach. As we will discuss in Section
Section Experimental Analyses and Results, RES term embeddings computed using our approach can re-
veal prominent semantic meanings in contrast to other contemporary pre-trained model-based word em-
beddings. In a nutshell, job terms with similar responsibilities appear closer in the embedded space.

Shared Embedding for Multiple EMM Clusters

The term-level embeddings θm = {vm(w) : w ∈ W}, whereW is the set of unique job terms, are designed to
capture the job transition probabilities via a Euclideanmetric space for the job sequences in them-th cluster.
On the one hand, the cluster-specific embedding space enables the model to better fit the cluster-level job
transition dynamics. However, on the other hand, the cluster-independent estimates of the embedding
vectors add complexity to the modeling and deteriorate the learning efficiency. To achieve a good balance
between the modeling capacity and complexity, we resort to the intuition of Hierarchical Bayes (Arora et al.
1998). Specifically, we assume that the cluster-level embeddings vm(w) follow a Gaussian distribution with
the global-level embeddings v0(m) as the distribution mean. We thus define ((C) Term Embedding Update
in Figure 6):

vm(w) = v0(w) + δm(w), (10)

where δm(w) is the difference between the term embeddings at the cluster and global levels, respectively.
By assuming δm(w) ∼ N (0, σm), our model penalizes discrepancies in the embeddings of the same term w
across different clusters, essentially allowing the clusters to share information for parameter estimation in
the clustering phase.

Formally, let θ = {θm : m = 1, 2, · · · ,M}, our shared embedding approach adopts the prior distribution of
the embedding vectors where the probability density is:

Pr(θ) ∝
M∏

m=1

exp
(
−∥v0(w)∥

2

2σ2
0

)
· exp

(
−∥δm(w)∥2

2σ2
m

)
, (11)

where the first term assuming v0(w) ∼ N (0, σ0) is used to control the overall modeling complexity, and the
second term assuming δm(w) ∼ N (0, σm) is used to learn shared embeddings for multiple clusters.
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Algorithm 1: Embedded Mixture Markov Models (EMMMs)
Input: The set of sequences {Sn : n = 1, 2, · · · , N}; the number of clustersM ; the embedding

dimensionalityD; the number of iterations T .
Output: Cluster-wise term embeddings θm and probability log-likelihoods Pr(Sn|θm).

1 Determine the initial clusters of all career sequences and randomly initialize v0(w) and
{δm(w) : m = 1, 2, ...,M}, where w ∈ W;

2 for i=1 to T do // T is the number of iterations
3 form=1 toM do //M is the number of clusters
4 if i=1 then
5 Initialize an EMMmodel with v0(w) and vm(w);
6 else
7 Update v′0(w)← v0(w) +

1
M

∑
m δm(w) and δ′m(w)← δm(w)− 1

M

∑
m δm(w);

8 end
9 for e=1 to E do // E is the number of epochs
10 Randomly generate a batch;
11 Compute the embedding of career sequence Sn by aggregating vm(w) = v0(w) + δm(w) for

any job term w in the sequence;
12 Compute the overall loss L(θ, C) according to Equation 12;
13 Optimize v0(w) and δm(w) using backpropagation;
14 end
15 end
16 end
17 Compute Pr(Sn|θm) for each career sequence Sn in any cluster Cm using Equation 8.

Overall Optimization and Implementation Details

With shared embeddings among amixture of EMMclusters, we denote ourmethod asEmbeddedMixture
Markov Models (EMMMs). To estimate the term-level embeddings θ = {θm = {vm(w) : w ∈ W},
m = 1, 2, · · · ,M}, in the EMMMs, we use the Negative Log Likelihood to define the loss function as ((D)
Loss Minimization in Figure 6):

L(θ, C) =−
M∑

m=1

log (Pr(Cm|θm))− log(Pr(θ))

=−
M∑

m=1

∑
Sn∈Cm

log(Pr(Sn|θm))− log(Pr(θ))

=

M∑
m=1

∑
Sn∈Cm

1

|Sn|

|Sn|∑
i=1

(
∥vm(sni )− vm(sni−1)∥22 + log(Zm(sni−1))

)
− log(Pr(θ))

(12)

where we have log(Pr(θ)) = −
(

M
2σ2

0
∥v0(w)∥2 +

∑M
m=1

1
2σ2

m
∥δm(w)∥2

)
according to Equation 11 and after

dropping a constant term. The hyper-parameters in the loss function include the number of clustersM , the
embedding dimensionalityD, and two regularization parameters σ0 and σm.

We provide our algorithm’s pseudocode (Algorithm 1) to optimize the loss function in Equation 12 with
stochastic gradient descent procedures implemented using PyTorch (Paszke et al. 2019) and the Adam opti-
mizer (Kingma and Ba 2015). Following the common practice in using these tools, we employ an automatic
learning rate scheduler and meanwhile tune the weight decay parameter in Adam optimizer to achieve a
similar effect of tuning our hyper-parameters θ0 and θm.

Although the optimization problem in Equation 12 is not convex, it is straightforward to show that Algo-
rithm 1 will converge to a local optima. At each iteration, we first update θ ← θ′ = {θ′m} with a fixed
sequence assignment Cm = {Sn : argmaxm′ Pr(Sn|θm′) = m} and current model parameters θ = {θm},
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wherem = 1, 2, · · · ,M . Note that, given the fixed sequence assignment, our model parameters are learned
using the maximum log-likelihood method. Thus, we have L(θ′, C) ≤ L(θ, C). In the second step, given
the fixed embeddings θ′, each sequence Sn in cluster Cm will be assigned to a new (and possibly different)
cluster Cm′ with the maximal likelihood:

Pr(Sn|θ′m′) ≥ Pr(Sn|θ′m). (13)

Thus, we have:

L(θ′, C ′) =−
M∑

m=1

∑
Sn∈Cm′

log(Pr(Sn|θ′m′))− log(Pr(θ′))

≤−
M∑

m=1

∑
Sn∈Cm

log(Pr(Sn|θ′m))− log(Pr(θ′))

=L(θ′, C) ≤ L(θ, C).

(14)

We will provide more empirical convergence analysis in the next section.

Experimental Analyses and Results
We present our experimental analysis and findings in this section. We validate our method on a represen-
tative sample of real-world IT professionals and discussing numerous noteworthy findings.

Determining the number of clusters. Similar to many other conventional clustering models (e.g.,
K-means), one critical hyper-parameter of our model is the number of clusters. Typically, people use Sil-
houette Coefficient (SC) or Akaike’s Information Criterion (AIC) to find the appropriate number of clusters
(Tan et al. 2016). While the calculation of SC depends on a predefined distance metric (e.g., euclidean dis-
tance), the “distances” of the clusters generated from our model are ill-defined, which unfortunately rules
out SC as a viable choice. Meanwhile, AIC is also unfavorable in our case as the magnitudes of the resulting
log-likelihood are in significantly different scale ofM . We thus propose an AIC-alike criteria, the negative
log-likelihood (NLL) averaged by M , i.e., Averaged NLL = NLL/M . Similar to AIC, this criterion seeks
to balance between the goodness-of-fit and simplicity of the model. The clustering model with the lowest
Averaged NLL is preferred. We display the resultant curve from our model training in Figure 7, in which we
find that the model’s Averaged NLL drops drastically as the number of clusters approachesM = 5 and then
gradually decreases to zero. Following the Elbow method (Thorndike 1953), we setM = 5 as it is the elbow
point which sets apart the diminishing trends of Averaged NLL. Our model is then trained to group career
paths intoM = 5 clusters with five corresponding EMM models. Note that the embedding dimensionality
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Figure 9. Divergence scores from the five­cluster and single­cluster models

is setD = 32. We further show the learning curves of these models in Figure 8. As can be seen, NLLs of all
five EMMmodels decrease efficiently as the iteration step increases.

Divergence of clusters. One significant advantage of our method is the flexibility of job title represen-
tations earned through embedding techniques. Based upon the right assignment of career paths to clusters,
our model tend to bring closer the job titles from the same sequence in the high-dimensional embedded
space. In other words, if our clustering approach is effective, the length (spanning distance) of a career path
in its proper cluster should be shorter in comparison with the length of the same path assigned to a different
cluster. In this regard, we develop the followingmodel evaluationmetric. Based on the clustering results, we
compute job title embeddings in each cluster using Equation 9. Then we employ PCA (Abdi and Williams
2010) dimensionality reduction technique to convert high-dimensional embeddings into two-dimensional
vectors and visualize career paths as trajectories in the embedding space. Next, we compute the “length” of
a job sequence in the two-dimensional plane as the sum of euclidean distances between successive job titles.
The “average length” of job sequences is thus defined as Lm in cluster Cm. On the other hand, for each clus-
ter Cm, we estimate the “dispersion” of job titles on the two-dimensional plane as average distance of each
point (representing a job term) to the cloud center, denoted as Dm. Finally, we define the cluster’s career
path divergence score (CPDm) as the average sequence length normalized by the job title dispersion, i.e.:

CPDm =
Lm

Dm
. (15)

It is worth noting that a lower divergence score suggests more effective clustering process, as the career
paths assigned to each cluster are shorter in the embedded space.

As a benchmark, we construct another model that clusters job sequences into a single cluster Cs and gener-
ates new embeddings for the same job titles. Our objective is to illustrate our clusteringmethod’s superiority
in grouping job sequences into proper clusters when compared to the unclustered (i.e., single-cluster) case.
This can be affirmed by substantially shorter length of job sequences in the two-dimensional plane of our
method’s resultant embedded spaces. Specifically, we calculate the career path divergence score of the same
sequence assignments using the five-cluster embeddings (denoted asCPDm) and the single-cluster embed-
ding (denoted as CPDs

m), respectively. Then, we compare CPDm and CPDs
m for each cluster in Figure 9.

The figure reveals that grouping job sequences into appropriate clusters significantly reduces divergence
scores, demonstrating our model’s effectiveness.

To further illustrate, we select one representative career paths (with a high log-likelihood) from each cluster
andplot their projections on the two-dimensional plane inFigure 10. Eachdot represents a job title projected
onto the plane using PCA. These career paths are depicted on two distinct sets of two-dimensional planes,
corresponding to the results from i) the single-cluster model and ii) the five-cluster model. The top-left
figure illustrates the results of the single-cluster model for the five representative career paths, whereas the
remaining five figures show the disjoint clusters discovered using the five-cluster model. As can be seen,
the connected dots in the first figure are notably more dispersed than those in the other five figures. This
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Figure 10. Visualization of career paths on two­dimensional planes

example demonstrates yet again that our model is capable of learning cluster-wise job title representations
while also generating proper job sequence assignments.

Cluster­wise job title distribution. To better understand the unique characteristics of career paths
inside each cluster, we generate two charts of cluster-wise job titles. To begin, we visualize the majority of
job titles for each cluster usingWord Cloud plots in Figure 11 (in contrast to the holistic view in Figure 5).
Second, we use a heat map to visualize the distributions of starting job titles (the first title in sequence) of
career paths within each cluster in Figure 12. By examining both the word clouds and the heat map, we can
see that Cluster 0 is more focused on job positions like ‘system administrator’ and ‘system engineer’ while
Cluster 1 gathers more ‘consultant’-alike titles. Cluster 3 contains career paths that begin with ‘interns’ and
end with ‘project managers’. Additionally, Cluster 2 & 4 are similar in that the majority of their titles are
‘software engineers’ and/or ‘senior software engineers’, which is foreseeable considering the popularity of
‘software engineers’ in our data. To further examine their distinctions, we construct a Sankey diagram in
Figure 13 to visualize all careers started as ‘software engineer’. We notice that the majority of careers that
begin as software engineer fall into Cluster 2 & 4, which is consistent with the pattern in Figure 12. A deep
dive reveals that Cluster 2 identifies individuals who remain in a regular ‘software engineer’ position for
an extended period of time, whereas Cluster 4 identifies those who receive continuous promotions from
‘software engineer’ to ‘senior software engineer’ or even ‘principal software engineer’. Our method distills
the nuanced distinctions across career paths, even when similar job titles are shared among them.

Job term embeddings. Along with job sequence clustering, our model is expected to produce global-
level job term embeddings v0(w) that contain shared knowledge of job titles among clusters. Here, we inves-
tigate RES job terms in more detail. As common sense, jobs title like ‘intern’ and ‘assistant’ are considered
junior­level positions; ‘associate’ and ‘manager’ are senior­level ones; and ‘CEO’, ‘CFO’, ‘CTO’ and ‘partner’
associate with top(executive)­level positions. The purpose of this investigation is to understand whether job
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Cluster 0 Cluster 1 Cluster 2

Figure 11. Visualization of job sequences by cluster

embeddings learned from our model can disclose implicit knowledge of job hierarchy. We begin by scatter-
ing and labeling several representative job terms according to their PCA-based two-dimensional projections
of v0(w) in Figure 14a. It shows that the top­level terms are centralized in the plot and are surrounded by
the junior­level terms. The distribution of these job terms reveals their hierarchical levels. In comparison,
we use a pre-trained word embedding model glove­wiki­gigaword­50 to produce new embeddings of these
same job terms. This model is based on GloVe (Pennington et al. 2014) and was trained using theWikipedia
2014 + Gigaword 5 dataset with an embedding dimensionality of 502. Similarly, we scatter these job terms
on another two-dimensional plane based on their PCA transformations in Figure 14b. Despite the fact that
several close terms bear similar semantic meanings (e.g., CTO vs. technology), we fail to discern a notable
hierarchical pattern in the distribution of these job terms.

Discussions
Contributions to IS Literature Our study contributes to the IS literature of IT-related career stud-
ies (Joseph et al. 2012; Lappas 2020; Reich and Kaarst-Brown 1999). We advance the study of IT-related
careers by developing a novel career path clustering model, which is a non-trivial improvement over the
case-based studies (Reich and Kaarst-Brown 1999) and conventional sequence similarity-based clustering
methods (Joseph et al. 2012; Lappas 2020). Compared with other methods, our model can better address
the high-heterogeneity issue of self-reported career records and perform career path clustering in a fuzzy
manner. Furthermore, our method is applicable to other important sequence-related IS research, such as
digital trace analysis (Pentland et al. 2021) and business process mining (Breuker et al. 2016).

Our work also fits into the computational design science research (Padmanabhan et al. 2022; Rai 2017). The
computational design science research is concerned with “solving business and societal problems by devel-
oping computational models and algorithms” (Rai 2017). Our study develops a novel sequence clustering
algorithm using sequential embedding and mixture Markov models to address career path clustering prob-
lem. Our contributions are rooted in algorithm-centric advancement and application-oriented solutions.

Methodological Implications for IS The first methodological implication of our study for IS is the
embedding-based design in modeling career paths. This technique stems from the recent advancement of
representation learning methods which are the core of deep learning research (Bengio et al. 2013). The
embedding-based design enables our model to distill nuanced subtleties of job terms/titles which can fur-
ther serve for other research purposes. Our work is another innovative example of this useful technique
applied to IS research problems. Another important implication relates to the use of mixture Markov mod-

2https://nlp.stanford.edu/projects/glove/
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Figure 12. Distribution of starting job titles in different clusters
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Figure 13. Typical career paths started as ‘software engineer’ in different clusters

els for sequence clustering. This method is proved advantageous by generating fuzzy clusters, which can
capture more fine-grained information among different clusters. Our study demonstrates the superiority of
suchmodels and thus opens more doors to the application of probabilistic mixture models for unsupervised
learning problems in IS research.

Limitations and Future Research In the meantime, we are aware of several limitations of our study,
which can serve as a springboard for future research. First, our clusteringmodel, like others, requires several
user-specified inputs. While users are able to determine the number of clusters using the Elbow method,
future research could investigate more automatic and principled choice. Meanwhile, the final clustering
output is dependent on initial clusters, which are best generated using pilot models (e.g., OMA). Second,
our model does not directly incorporate or differentiate between job term genres, i.e., functionality and
responsibility. The development of algorithms for genre-aware career path clustering is an intriguing and
promising area of research. Third, our current method overlooks other job variables when learning career
patterns, such as employers, industry sectors, talents’ demographics, and geographical locations. We be-
lieve that a more in-depth study and understanding of career patterns through the use of heterogeneous
information has notable benefits for both academics and practitioners.
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(a) Using the EMMMs­based embeddings (b) Using the pre­trained embeddings from GloVe

Figure 14. Scatter plots of the RES terms on two­dimensional planes

Conclusion
Career paths clustering plays a vital role in understanding career prototypes and patterns. In this study,
we built an Embedded Mixture Markov Models (EMMMs) to address the unique challenges of career path
clustering and applied our method to large-scale career records of IT professionals. Given a pre-determined
number of clusters, our method attempts to cluster career paths by creating an embeddedMarkovmodel for
each cluster. The optimal assignment of career paths is accomplished by simultaneously learning cluster-
wise embeddings of job terms/titles and optimizing the mixture Markov model’s overall log-likelihood. Ex-
periments on a real-world dataset of extensive career records from Linkedin demonstrated our model’s effi-
cacy and revealed interesting career patterns of the IT workforce. The improved career path clusterings are
valuable for tasks like talent recruiting and career planning. The acquired insights are also useful for educa-
tional institutes to design appropriate training programs and provide people with the skills they require to
successfully navigate through the long and complex career paths.

References
Abbott, A. and Hrycak, A. 1990. “Measuring resemblance in sequence data: An optimal matching analysis

of musicians’ careers”. American journal of sociology (96:1), pp. 144–185.
Abdi, H. and Williams, L. J. 2010. “Principal component analysis”.Wiley interdisciplinary reviews: com­

putational statistics (2:4), pp. 433–459.
Agarwal, R. and Ohyama, A. 2013. “Industry or academia, basic or applied? Career choices and earnings

trajectories of scientists”.Management Science (59:4), pp. 950–970.
Aggarwal, C. and Reddy, C. 2013. Data Clustering: Algorithms and Applications. Chapman & Hall/CRC

Data Mining and Knowledge Discovery Series. Taylor & Francis.
Aghabozorgi, S., Shirkhorshidi, A. S., andWah, T. Y. 2015. “Time-series clustering–a decade review”. Infor­

mation Systems (53), pp. 16–38.
Arora, N., Allenby, G. M., and Ginter, J. L. 1998. “A hierarchical Bayes model of primary and secondary

demand”.Marketing Science (17:1), pp. 29–44.
Bengio, Y., Courville, A., and Vincent, P. 2013. “Representation learning: A review and new perspectives”.

IEEE Transactions on Pattern Analysis and Machine Intelligence (35:8), pp. 1798–1828.

Forty­Third International Conference on Information Systems, Copenhagen 2022
16



Career Path Clustering via Embedded Mixture Markov Models

Bicego, M., Murino, V., and Figueiredo, M. A. 2003. “Similarity-based clustering of sequences using hid-
den Markov models”. In: International Workshop on Machine Learning and Data Mining in Pattern
Recognition. Springer, pp. 86–95.

Biemann, T. andWolf, J. 2009. “Career patterns of topmanagement teammembers in five countries: An op-
timal matching analysis”. The International Journal of Human ResourceManagement (20:5), pp. 975–
991.

Biemann, T., Zacher, H., and Feldman, D. C. 2012. “Career patterns: A twenty-year panel study”. Journal of
Vocational Behavior (81:2), pp. 159–170.

Blair-Loy, M. 1999. “Career patterns of executive women in finance: An optimal matching analysis”. Amer­
ican Journal of Sociology (104:5), pp. 1346–1397.

Breuker, D., Matzner, M., Delfmann, P., and Becker, J. 2016. “Comprehensible predictive models for busi-
ness processes”.MIS Quarterly (40:4), pp. 1009–1034.

Chen, S., Moore, J. L., Turnbull, D., and Joachims, T. 2012. “Playlist prediction via metric embedding”. In:
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 714–722.

Cohen, L. 2006. “Remembrance of things past: Cultural process and practice in the analysis of career sto-
ries”. Journal of Vocational Behavior (69:2), pp. 189–201.

Dlouhy, K. and Biemann, T. 2015. “Optimal matching analysis in career research: A review and some best-
practice recommendations”. Journal of Vocational Behavior (90), pp. 163–173.

Joseph, Boh, Ang, and Slaughter 2012. “The career paths less (or more) traveled: a sequence analysis of it
career histories, mobility patterns, and career success”.MIS Quarterly (36:2), p. 427.

Kingma, D. P. and Ba, J. 2015. “Adam: AMethod for Stochastic Optimization”. In: Proceedings of the Inter­
national Conference on Learning Representations (ICLR).

Koch, M., Forgues, B., and Monties, V. 2017. “The way to the top: Career patterns of Fortune 100 CEOs”.
Human Resource Management (56:2), pp. 267–285.

Lappas, T. 2020. “Mining Career Paths from Large Resume Databases: Evidence from IT Professionals”.
ACM Transactions on Knowledge Discovery from Data (TKDD) (14:3), pp. 1–38.

Liu, J., Guo, C., Ng, Y. C., Wood, K. L., and Lim, K. H. 2019. “IPOD: Corpus of 190, 000 Industrial Occupa-
tions”. CoRR (abs/1910.10495). arXiv: 1910.10495.

Padmanabhan, B., Fang, X., Sahoo, N., and Burton-Jones, A. 2022. “Machine Learning in Information Sys-
tems Research”.MIS Quarterly (46:1), pp. iii–xix.

Paszke, A. et al. 2019. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: Ad­
vances in Neural Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., pp. 8024–8035.

Pennington, J., Socher, R., and Manning, C. D. 2014. “Glove: Global vectors for word representation”. In:
Proceedings of theConference onEmpiricalMethods inNatural LanguageProcessing (EMNLP), pp. 1532–
1543.

Pentland, B. T., Vaast, E., and Wolf, J. R. 2021. “Theorizing Process Dynamics with Directed Graphs: A
Diachronic Analysis of Digital Trace Data”.MIS Quarterly (45:2).

Rai, A. 2017. “Editor’s comments: Diversity of design science research”.MIS quarterly (41:1), pp. iii–xviii.
Reich, B. H. and Kaarst-Brown, M. L. 1999. “Seeding the Line: Understanding the Transition From IT to

Non-IT Careers”.MIS Quarterly (23:3), pp. 337–364.
Sankoff, D., Kruskal, J., and Nerbonne, J. 2000. TimeWarps, String Edits, and Macromolecules: The The­

ory and Practice of Sequence Comparison. The David Hume Series. Cambridge University Press.
Smyth, P. 1996. “Clustering sequences with hidden Markov models”. Advances in Neural Information Pro­

cessing Systems (9).
Tan, P.-N., Steinbach, M., and Kumar, V. 2016. Introduction to data mining. Pearson Education India.
Thorndike, R. L. 1953. “Who belongs in the family”. In: Psychometrika. Citeseer.
Vinkenburg, C. J. and Weber, T. 2012. “Managerial career patterns: A review of the empirical evidence”.

Journal of Vocational Behavior (80:3), pp. 592–607.
Xiong, T., Wang, S., Jiang, Q., and Huang, J. Z. 2011. “A new markov model for clustering categorical se-

quences”. In:Proceedings of the IEEE International Conference onDataMining (ICDM). IEEE, pp. 854–
863.

Forty­Third International Conference on Information Systems, Copenhagen 2022
17


	Career Path Clustering via Sequential Job Embedding and Mixture Markov Models
	Recommended Citation

	tmp.1667595604.pdf.pBVkS

