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Abstract 

In the era of the experience economy, “customized tours” and “self-guided tours” have 
become mainstream. This paper proposes an end-to-end framework for solving the 
tourist trip design problems (TTDP) using deep reinforcement learning (DRL) and data 
analysis. The proposed approach considers heterogeneous tourist preferences, 
customized requirements, and stochastic traffic times in real applications. With various 
heuristics methods, our approach is scalable without retraining for every new problem 
instance, which can automatically adapt the solution when the problem constraint 
changes slightly. We aim to provide websites or users with software tools that make it 
easier to solve TTDP, promoting the development of smart tourism and customized 
tourism. 

Keywords: Tourist trip design problems, user-generated content, deep reinforcement learning 
 

Introduction 

In the era of the experience economy, tourism has become an indispensable part of leisure life. With the 
popularization of tourism, travelers increasingly prefer “customized tours” and “self-guided tours” to pre-
organized tour routes or standard travel packages (Kotiloglu et al. 2017). But in the face of unfamiliar point-
of-interest (POI, e.g., tourist attraction, hotel, and restaurant) and a complex tourism environment (e.g., 
transportation network, time windows), it is difficult for the traveler to plan a satisfactory tourist trip alone. 
Therefore, travelers will search for various tourist information before planning a tourist trip. Although 
travel websites provide a great deal of available tourist information (e.g., POI introduction, online reviews, 
etc.) to help travelers design their trip routes, this travel information is generally scattered, causing a heavy 
cognitive load. 

To reduce travelers’ cognitive overload, various tourist recommendation systems are produced to solve 
tourist trip design problems (TTDP). However, most recommendation systems present several significant 
challenges. First, the recommended tourist trip only consists of popular attractions, ignoring traveler 
heterogeneous and customization requirements. Heterogeneous refers to the different experience 
preferences among tourists. Such as some travelers prefer natural scenery, while others prefer amusement 
parks. Customization refers to the constraints specified by travelers according to their requirements. Such 
as travelers may have different time budgets for their trip, or they may have flexible starting and ending 
locations or times of the trip. Besides, the route recommended by the existing recommendation system 
ignores the stochastic distance between two points. For example, in real life, the time required between two 
points might be different at different times, depending on traffic conditions. Therefore, the research 
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problem of this paper is how to design a planning method to solve the TTDP problem considering tourist 
heterogeneous preferences, customized requirements, and stochastic traffic times. 

Tourists’ actual and heterogeneous preferences are ignored in most existing TTDP studies. Benchmark 
instances are widely utilized to solve the TTDP problem. While travelers’ preference values for attractions 
are randomly generated in these benchmark instances. Recently, questionnaires have been widely used 
(Zheng et al. 2020) to collect traveler preferences. However, it may be unreasonable because travelers are 
usually unfamiliar with upcoming tourist destinations. UGC is significant for the hospitality and tourism 
industries, where intangible products are hard to evaluate before consumption. Hence travelers tend to rely 
heavily on e-word of mouth to gain sufficient information and have indirect purchasing experiences to 
reduce their perceived uncertainty. UGC offers a powerful instrument for understanding tourist preferences 
(Liu et al. 2017). Existing research has revealed that tourists generally rely on UGCs from the same tourist 
type, and they rarely bother to look at the UGCs provided by other tourist types (Banerjee and Chua 2016). 
Therefore, the tourist preference for attractions selection is influenced heavily by the same tourist type or 
profile (Francesco and Roberta 2019; Wang et al. 2020). In addition, studies found that different types of 
tourists have different behaviors, such as preference, satisfaction, and evaluation patterns (Xu 2019). 
However, the heterogeneous preference of different tourist types for attractions is rarely researched.  

Customized requirements put forward strict performances on planning methods. The TTDP problem is a 
large-scale optimization problem considering different constraints. The exact algorithms for VRP are 
divided into two categories: branch and price (Christofides and Eilon 1969), and dynamic programming 
(Eilon et al. 1974). Exact methods are often not applicable in practice because they cannot solve problems 
of moderate size within a reasonable amount of time (El-Sherbeny 2010). Heuristic methods can relatively 
quickly obtain good feasible solutions without an optimality guarantee (Desaulniers et al. 2014), including 
classical heuristics (Dantzig and Ramser 1959) and meta-heuristic algorithms (Shaw 1998). However, the 
solution quality of the heuristic varies in different problem sizes and heavily depends on the initial solution 
and hyper-parameters of the algorithm. The traditional optimization methods do not scale very well when 
the number of attractions increases and customization requirements (such as different starting and ending 
locations, and time budgets, etc.) diverse, which is challenging to satisfy the real-time calculation demand 
of tourists.  

Subsequently, a deep reinforcement learning (DRL) model is proposed to solve the TTDP. As far as I know, 
Gama and Fernandes (2021) first proposed a reinforcement learning approach to solve the TTDP. Bliek et 
al. (2022) recently developed DRL algorithms to solve stochastic routing problems. However, both ignored 
edge information's influence in representation learning. The edge usually represents the traffic time 
between two locations in the route planning problem, an essential influencing factor. In real situations, 
traffic congestion is an unavoidable problem, especially during rush hours and holidays. A planning model 
that does not consider actual traffic conditions is not available. However, existing DRL models mainly 
extract attraction features as input and ignore the additional information brought by edge features. 

To handle the above challenges and research gaps, this paper proposes an intelligent customization 
framework to solve the TTDP problem considering tourist heterogeneous preferences, customized 
requirements, and stochastic traffic times. First, a heterogeneous preference module is designed to mine 
tourists’ score of attraction from user-generated content. Tourists’ preferences for different attractions can 
be represented as the user’s behavioral intention to experience the attraction. The theory of rational action 
(TRA) (Fishbein and Ajzen 1977) was developed to predict behavioral intentions. Thus, the attractions score 
module considering TRA is designed. Subsequently, a new DRL architecture considering edge information 
is constructed. We not only introduce edge information features into the DRL model but also modify the 
deep learning architecture to make DRL better represent the tourism environment. Finally, three case 
studies are presented to verify the effectiveness of our proposed methods for TTDP. These case studies 
include the actual travel website routes, real travel information obtained based on travelogue, and existing 
data sets. 

Related Work 

In this section, we will review the related literature, specifically on (1) tourist trip design problem, (2) DRL 
algorithm for routing optimization problem, and (3) user-generated content. By comparing with the 
existing literature, we will summarize our main contributions. 
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TTDP-Related Researches 

TTDP is an extension of tourism's orienteering problem (OP). The problem aims to design tour routes for 
travelers according to their preferences and requirements to maximize total score while considering 
numerous constraints (Vansteenwegen and Van Oudheusden 2007; Zheng et al. 2020). TTDP is a 
convenient and cost-effective exploration of a tourist destination for many travelers (Kotiloglu et al. 2017). 
Recently, the study of trip planning and personalized tour guide has attracted significant attention 
(Kotiloglu et al. 2017). Rodriguez et al. (2012) proposed a multiple-criteria decision-making method to 
design a customized trip with many conflicting objectives. To improve the operating efficiency of the 
algorithm with large numbers of attractions, Kotiloglu et al. (2017) proposed a “filer-first, tour-second” 
framework to generate personalized tour recommendations for tourists based on online data sources. They 
first identified a subset of attractions by collaborative filtering method, and then Iterated Tabu Search 
algorithms were introduced to generate tours. In addition, considering that tourism activities are usually 
group-oriented, and the group's preferences may be completely different, Zheng and Liao (2019) proposed 
a colony optimization and evolution algorithm to handle personalized tourism route design for 
heterogeneous tourism groups. However, existing TTDP solution methods almost utilized benchmark 
instances while ignoring the importance of travelers’ preference for attractions. In addition, traditional 
algorithms have poor scalability and need to be retrained on a per-problem. 

DRL Algorithms for Routing Optimization Problems 

DRL is a combination of deep learning (DL) (Law et al. 2019) and reinforcement learning (RL) (Kaelbling 
et al. 1996). DL has a powerful representational ability (Law et al. 2019) to represent the real, complex, and 
dynamic tourism environment. While RL, inspired by behavioral psychology, can be used to simulate the 
human’s ability of goal-oriented self-learning (Shin et al. 2012). 

The first attempt to use a neural network to tackle routing optimization problems is the Hopfield-Network 
(Hopfield and Tank 1985). However, it is trained to solve one instance and has little advantage over 
traditional methods. Based on the sequence-to-sequence model widely used in natural language processing, 
Vinyals et al. (2015) proposed the pointer network (PN) trained with supervised learning for routing 
optimization problems. However, supervised learning depends on optimal solutions such as labels, which 
are hard to obtain for routing optimization problems. To overcome these limitations, Bello et al. (2016) first 
proposed to use DRL to train the PN in an unsupervised manner, which learns from the reward without the 
optimal solution in advance. This opens the way to solving broader routing optimization problems. Nazari 
et al. (Nazari et al. 2018) replaced the LSTM encoder of the PN with a simple graph embedding layer and 
first introduced dynamic elements to the attention mechanism. Recently, inspired by the transformer 
architecture (Vaswani et al. 2017) utilized in natural language processing (NLP), Deudon et al. (2018), Kool 
et al. (2018), Gama and Fernandes (2021) applied the multi-head attention mechanism of the transformer 
to tackle the routing optimization challenge by modifying the encoder of the PN. The original transformer 
was designed for NLP, but different from NLP, edge information is one of the essential elements in routing 
optimization problems. Therefore, the architecture for routing optimization problems that do not leverage 
the edge information may perform poorly when the edge information is essential. 

User-Generated Content 

UGCs have a significant influence on tourist tour route planning. Previous research has revealed that 
tourists’ preferences and behaviors in attraction selection are heavily influenced by tourist types or 
purposes (Francesco and Roberta 2019; Wang et al. 2020). Researchers (Banerjee and Chua ; Wang et al. 
2020) found different types of tourists have different evaluation and satisfaction patterns for the same hotel. 
For example, a minor flaw found by one tourist type may be unacceptable for another type (Banerjee and 
Chua 2016). Xu (2019) proved that the overall satisfaction of hotels varies with the type of tourists. In 
addition, when tourists select attractions, they are more likely to be guided generally by the content from 
the same tourist types (Wang et al. 2020). Banerjee and Chua (2016) found that most tourists only pay 
attention to the ratings of their type of tourists and proved that tourists rarely make an effort to read the 
UGC posted by different types of tourists.  

Although most of the research focuses on the differences of preference of hotel selection, the studies of 
tourist heterogeneity in route design are few. Most recent studies about route design are based on 
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questionnaires (Liao and Zheng 2018; Rodriguez et al. 2012; Zheng et al. 2020; Zheng and Liao 2019). Such 
as, Zheng et al. (2020) collected tourist information through questionnaires and oral interviews in 
situations and airports. Intuitively, we aversion the people chatting us up at the station and airport. And 
tourist are usually unfamiliar with the upcoming tourist destinations, so tourists’ preferences for attractions 
given by questionnaire are biased and unreal. UGCs have a large amount of data and are public and 
generated voluntarily by actual consumers (Raghupathi et al. 2015). This study shed light on the 
heterogeneity preference and satisfaction of tourist types in TTDP based on UGCs. 

An Intelligent Customization Framework for TTDP 

In this section, we first define some preliminaries of TTDP and describe the overall design framework. Then, 
we describe the framework in detail.  

Problem Description 

The TTDP problem can be represented as a given graph 𝐺 = (𝑉, 𝐸), where 𝑉 represents a set of attractions 
and 𝐸 represents the travel time 𝑡𝑖𝑗 between each pair of attractions. 𝑉 is composed of two subsets, which 

are starting and ending locations [𝑣0, 𝑣1], and N attractions [𝑣2, 𝑣3, … , 𝑣𝑁+1]. Each attraction has attribute 
information, which contains the longitude and latitude coordinates of geographical location [𝑙𝑜𝑛𝑔𝑖 , 𝑙𝑎𝑡𝑖], a 
visiting time window [𝑜𝑝𝑒𝑛𝑖 , 𝑐𝑙𝑜𝑠𝑒𝑖] with opening time (the earliest visiting time) and closing time (the 
latest time to end the visit), and visit duration 𝑑𝑖. In addition to attraction’s attribute information, it also 
contains traveler customization and personalization information. Customization information refers 
traveler's initial location 𝑣1 and final location 𝑣2, start time 𝑡𝑠𝑡𝑎𝑟𝑡 and end time 𝑡𝑒𝑛𝑑, and days of travel 𝐷. 
Personalization information refers to the score or reward 𝑟𝑖 that travelers assign to each attraction based on 
their historic preferences. Besides, the time between the two locations is uncertain and stochastic, affected 
by traffic conditions. 

Based on the given information and constraints, the objective of TTDP is to find a multi-day tourist route 
sequence with the maximum sum of scores without repeat visits. To solve this problem, we proposed an 
intelligent customization framework depicted in Figure 1. First, the attractions score module is designed 
based on TRA to obtain tourist heterogeneous preferences. Then a route design module is constructed based 
on the DRL model considering edge information to solve the optimal tour route to account for stochastic 
traffic times.  

 

Figure 1. Intelligent Customization Framework for TTDP 
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Heterogeneous Preference Module 

The purpose of heterogeneous preference module is to obtain tourists’ scores of attraction. Xiang et al. (2017) 
demonstrated that UGC from a single website could not be an abundant source of quality data because 
different websites may possess unique characteristics. Therefore, to improve the generalization of research 
results, this study analyses data of UGC from two popular tourism websites, TripAdvisor.com and Ctrip.com. 
Developing machine learning algorithms, such as text and word frequency analysis, provides powerful tool 
support for preference analysis of different tourist types. Hence, we analyze the heterogeneous preference 
of different tourist types hidden in UGC by machine learning algorithms. 

From a theoretical perspective, TRA is utilized to obtain the heterogeneous preference of attraction. Initially, 
TRA was developed to predict behavioral intentions (Fishbein and Ajzen 1977). It suggests that an 
individual’s behavioral intention depends on their attitude about the behavior and subjective norms. 
Attitude indicates a person’s emotional polarity, positive or negative, toward the behavior (Miller 2005). At 
the same time, subjective norms mean the influence of other people’s opinions on the behavior (Miller 
2005). Simply, the TRA can be expressed as BI = w1 × 𝐴 + 𝑤2 × 𝑆𝑁 (Huang et al. 2017; Rehman et al. 2007). 
Where BI is behavioral intention; A and SN present the attitude and the subjective norms related to 
performing the behavior, respectively; and w1 and 𝑤2 are the weight of AB and SN, which depend on the 
individual. 

In our paper, tourist preference can be represent as the user’s behavioral intention to experience the 
attraction. The emotional score of tourist can be used to measure the attitude, and the frequency of visits 
by all tourist can be used to measure subjective norms (Huang et al. 2017). In the following, we will analyze 
how to obtain the attraction score for different tourist types based on TRA in detail. The traveler types are 
denoted as k=[1,2,3,4]=[couples, families, friends, solo]. 

Attitude: Travel online reviews contain numerical ratings and text comments, both used to express 
tourists’ emotional score with attraction. The number rating represents the overall evaluation of the 
attraction by tourists. While, the review text is the supplement of the number rating, which provides a more 
granular evaluation. The combination of the two will reflect the tourists’ emotion towards the attraction 
more accurately. Therefore, the mean of the numerical rating and text sentiment to represent the user 
emotional score to measure attitude.  

Numerical rating is based on the 5-point rating scale, where 5 represents the highest degree of satisfaction, 
and 1 represents the lowest degree of satisfaction. We first calculate the normalized the number rating. The 
normalized rating for traveler type 𝑘 on the attraction 𝑝𝑖  can be calculated by Eq. (1). 

 

𝑟𝑎𝑡𝑖𝑛𝑔𝑖
∗𝑘 =

𝑟𝑎𝑡𝑖𝑛𝑔𝑖
𝑘 − min

𝑖=ℎ,…,ℎ+𝑛−1
𝑟𝑎𝑡𝑖𝑛𝑔𝑖

𝑘

max
𝑖=ℎ,…,ℎ+𝑛

𝑟𝑎𝑡𝑖𝑛𝑔𝑖
𝑘 − min

𝑖=ℎ,…,ℎ+𝑛−1
𝑟𝑎𝑡𝑖𝑛𝑔𝑖

𝑘  

 (1) 

where 𝑟𝑎𝑡𝑖𝑛𝑔𝑖
𝑘 = ∑ 𝑞𝑖,𝑚

𝑘𝑀
𝑚=1 𝑀⁄ , 𝑞𝑖,𝑚

𝑘  is the rating value for attraction 𝑝𝑖  given by the 𝑚𝑡ℎ traveler of the 𝑘 

traveler type, and 𝑀 is the total number of travelers who post the rating.  

Text sentiment analysis is used to mine process text comments. We store the text comments of travelers 

type 𝑘 on the attraction 𝑝𝑖  in a text document (𝑡𝑥𝑡𝑖
𝑘), and then after text pre-processing (e.g., tokenization 

and elimination of stop words), the module package of SnowNLP in Python is used to calculate sentiment 

value (𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖
𝑘) of traveler type 𝑘 on the attraction 𝑝𝑖. Similar to the Eq. (1), the normalized sentiment 

value (𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖
∗𝑘) also can be calculated.  

Then, the normalized attitude (A𝑖
∗𝑘) of traveler type 𝑘 on the attraction  𝑝𝑖  is calculated by Eq. (2). 

 A𝑖
∗𝑘 = 𝑤1 × 𝑟𝑎𝑡𝑖𝑛𝑔𝑖

∗𝑘 + 𝑤2 × 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖
∗𝑘 (2) 

where 𝑤1, 𝑤2 (𝑤1 + 𝑤2 = 1) are the weights of 𝑟𝑎𝑡𝑖𝑛𝑔𝑖
∗𝑘 and 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖

∗𝑘. Travelers can flexibly assign the 
weights based on their preference and their profile. In general, 𝑤1 = 𝑤2 = 0.5. 

Subjective norms: The subjective norms (𝑆𝑁 𝑖
𝑘) of traveler type 𝑘 on the attraction  𝑝𝑖  is obtained to 

extract the mentioned frequency of attractions from the travelogues using the TF-IDF algorithm. We store 

the travelogues of traveler type 𝑘 in a text document (𝑛𝑜𝑡𝑒𝑖
𝑘), then after text pre-processing, the module 
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package of sklearn in Python is used to calculate the 𝑆𝑁 𝑖
𝑘 assigned to the attraction 𝑝𝑖  by traveler type 𝑘. 

Similar to Eq. (1), the normalized subjective norms (𝑆𝑁 𝑖
∗𝑘) can be calculated.  

Finally, the attraction score 𝑠𝑐𝑜𝑟𝑒𝑖
𝑘 of traveler type 𝑘 on the attraction  𝑝𝑖 will be calculated based on Eq. (3). 

 𝑠𝑐𝑜𝑟𝑒𝑖
𝑘 = 𝜃1 × 𝐴𝑖

∗𝑘 + 𝜃2 × 𝑆𝑁 𝑖
∗𝑘 (3) 

where 𝜃1, 𝜃2 (𝜃1 + 𝜃2 = 1) are the weights of 𝐴𝑖
∗𝑘 and 𝑆𝑁 𝑖

∗𝑘. In general, 𝜃1 = 𝜃2 = 0.5. 

Route Design Module 

This section describes the route design module of TTDP from a DRL perspective. First, the TTDP problem 
is constructed as an MDP formulation. And then, the network structure and training process of DRL will be 
described. 

MDP Formulation 

In solving TTDP, a preceding attraction determines the area to locate its succeeding attraction, and the 
subsequent attraction locating is influenced by the previous attractions. Therefore, the route generation 
process of TTDP can be regarded as a sequential decision on which attraction to select, which can be 
naturally formulated as the form of MDP. 

Let 𝒮  be the state space and 𝒜  be the action space. Each state 𝑠𝑡 ∈ 𝒮  represents the partial route 𝑌𝑡 
constructed at time step t, where 𝑌𝑡 contains all visited attractions until step t, and 𝑌0 refers to an empty set. 
Each action 𝑎𝑡 ∈ 𝒜  represents selecting attraction 𝑝𝑗  at step t, and 𝑎0  refers to the starting location. 

Executing the action 𝑎𝑡 (adds attraction to the end of the partial route 𝑌𝑡), the state transits to the next state 
s𝑡+1 (partial route 𝑌𝑡+1), and receives the reward (score) 𝑟𝑎𝑡

 at the same time. This process continues until 

the ending location is selected to obtain the completed tour route 𝑌𝑇 = [𝑎0, 𝑎1, … , 𝑎𝑇] and the cumulative 
reward 𝑅(𝑌|𝑋) = ∑ 𝑟𝑎𝑡

𝑇
𝑡=1  of tour route 𝑌 under the given a TTDP instance X. 

From a DRL perspective, we assume that the tour route sequence 𝑌𝑇 = [𝑎0, 𝑎1, … , 𝑎𝑇] is generated step by 
step through the interaction between agent and environment. The tourism environment contains TTDP 
instance information X and state 𝑠𝑡 information. Instance information X mainly consists of all attractions 
information (i.e., location, time window, visit duration, and travel time), traveler preference information 
(i.e., the score of attractions), and requirement information (i.e., the starting and ending location and time) 
given by travelers. The state information 𝑠𝑡 is defined as the environment information under the partial 
route 𝑌𝑡+1. The agent, relying on a policy 𝜋𝜃(𝑌|𝑋), seeks to generate a tour route sequence 𝑌 given a TTDP 
instance information X. According to the probability chain rule (Sutskever et al. 2014), the policy 𝜋𝜃(𝑌|𝑋) 
can be factorized as Eq. (4). 

 𝜋𝜃(𝑌|𝑋) =  ∏ 𝜋𝜃(𝑎𝑡|𝑋, 𝑠𝑡  )

𝑇

𝑡=1

 (4) 

where 𝜋𝜃(𝑎𝑡|𝑋, 𝑠𝑡) is a single-step assignment policy parameterized by parameter 𝜃, which is a probability 
distribution over candidate attractions 𝑎𝑡 given a TTDP instance X and the state 𝑠𝑡 information.  

Network Architecture 

Policy 𝜋𝜃(𝑌|𝑋) is the main element of the travel agent with parameters  . We design the policy network as 

an encoder-decoder architecture depicted in Figure 2. The encoder network first takes the instance 
information and environment state as inputs to obtain a representation for each attraction. The decoder 
produces the route sequence 𝑌𝑇 of input attractions step by step. Next, we introduce the proposed encoder 
and decoder details, respectively. 
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Figure 2. An Encoder-Decoder Architecture considering edge features. The right-angle box 
represents the data or vector, the rounded box represents various deep learning layers, and the blue 
represents the innovation of the model in this paper. 

Encoder. The purpose of the encoder is to produce a representation for each attractions given the raw 
features (e.g., location, score, time budget, etc.) of a problem instance. The first layer of the encoder is (1) a 
linear projection layer that projects the raw features into a higher-dimension space. Then (2) an attention 
mechanism is proposed to capture the interaction between arbitrary two attractions for better feature 
extraction. 

(1) In the linear projection layer, we output attraction and edge features' embedding vectors. Like Gama 
and Fernandes (2021), we divide attraction features into static and dynamic groups since some features 
change dynamically during the route generation, such as time budgets. We process the static and dynamic 
features separately before concatenating. Specifically, for step t, we map static features 𝑥𝑖

𝑠, dynamic features 

𝑥𝑖
𝑑,𝑡, and edge features 𝑡𝑖𝑗

𝑡  into d-dimensional hidden features 𝑒𝑖
𝑠, 𝑒𝑖

𝑑,𝑡, and 𝑔𝑖𝑗
𝑡  based on Eq. (5). 

 𝑒𝑖
𝑠 = tanh(𝑊𝑠𝑥𝑖

𝑠 + 𝑏𝑠), 𝑒𝑖
𝑑,𝑡 = tanh(𝑊𝑑𝑥𝑖

𝑑 + 𝑏𝑑), 𝑔𝑖𝑗
𝑡 = tanh(𝑊𝑡𝑡𝑖𝑗

𝑡 + 𝑏𝑡) (5) 

where 𝑊𝑠 ,  𝑊𝑠 ,  𝑊𝑢 , 𝑏𝑠 , 𝑏𝑑  and 𝑏𝑢  are the parameters of the linear projection layers. Then the feature 

embedding 𝑒𝑖
𝑡 = [𝑒𝑖

𝑠, 𝑒𝑖
𝑑,𝑡] of step, t is obtained by concatenating static and dynamic feature embedding. 

Finally, the feature embedding vector [ 𝑒0
𝑡 ,  𝑒1

𝑡 ,…,  𝑒𝐻+𝑁+1
𝑡 ] of the attraction set [𝑣0, … , 𝑣𝐻+𝑁+1]  and edge 

embedding vector 𝑔𝑖𝑗
𝑡  is obtained.  

(2) The attention mechanism layer consists of L stacks of identical layers that include a multi-head attention 
(MHA) mechanism and a feed-forward network (FFN) (Gama and Fernandes 2021), and both are followed 
by a residual-connection and layer normalization (LN), as shown in Eqs. (6)-(7). 

 𝑒̃𝑖
𝑡,ℓ = 𝐿𝑁ℓ(𝑒̂𝑖

𝑡,ℓ + 𝑀𝐻𝐴𝑖
ℓ(𝑒0

𝑡,ℓ−1, … , 𝑒𝐻+𝑁+1
𝑡,ℓ−1 )) (6) 

 𝑒𝑖
𝑡,ℓ = 𝐿𝑁ℓ(𝑒̃𝑖

𝑡,ℓ + 𝐹𝐹𝑁ℓ(𝑒̃𝑖
𝑡,ℓ)) (7) 

where ℓ indicates the index of the identical layer. For the MHA sub-layer, our architecture is extended to 
edge feature representation. To make it easier for readers to understand how to extend edge features in 
MHA, we first introduce the original MHA (the black solid lines in Figure 3) and then further introduce the 
MHA with edge feature (the black dotted lines in Figure 3). To simplify, we use one head of MHA as an 
example to describe in the following. 
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Figure 3. MHA with Edge Feature. The black dotted lines are the difference from the original MHA. 

Original MHA. For a layer ℓ, given the feature embedding vector [𝑒0
𝑡,ℓ, 𝑒1

𝑡,ℓ,…, 𝑒𝐻+𝑁+1
𝑡,ℓ ], the attention score 

𝑎𝑖𝑗
𝑡,ℓ between 𝑒𝑖

𝑡,ℓ and 𝑒𝑗
𝑡,ℓ is obtained based on Eq.(8) through the softmax normalization of the correlation 

scores c_ij^(t,l), which is calculated by scaled dot-product attention. Then the attraction feature 

representation vector 𝑒̂𝑖
𝑡,ℓ+1 is calculated based on Eq. (9) through the weighted sum of the vector 𝑊𝑉

ℓ𝑒𝑗
𝑡,ℓ 

and the attention score 𝑢𝑖𝑗
𝑡,ℓ. 

 𝑢𝑖𝑗
𝑡,ℓ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐𝑖𝑗

𝑡,ℓ), with 𝑐𝑖𝑗
𝑡,ℓ =

𝑊𝑄
ℓ𝑒𝑖

𝑡,ℓ ∙ 𝑊𝐾
ℓ𝑒𝑗

𝑡,ℓ

√𝑑
, ∀𝑖, 𝑗 ∈ [0, … … , 𝐻 + 𝑁 + 1] (8) 

 𝑒̂𝑖
𝑡,ℓ+1 = ∑ 𝑢𝑖𝑗

ℓ 𝑊𝑉
ℓ𝑒𝑗

𝑡,ℓ

𝑗
 (9) 

where √𝑑 is a scaling constant, 𝑊𝑄
ℓ, 𝑊𝐾

ℓ and 𝑊𝑉
ℓ are parameters of the ℓ-th layer, which are usually called a 

query, key, and value.  

Designed MHA with edge feature. The MHA with edge feature is extended to edge feature 
representation better to capture the interaction or correlation of each attractions pair. The basic idea of 
MHA with edge feature is to fuse edge feature embedding 𝑔𝑖𝑗  with the correlation score 𝑐𝑖𝑗  by addition, 

thereby improved attention scores 𝑢𝑖𝑗 . Then, the attraction feature representation 𝑒̂𝑖
𝑡,ℓ+1  and edge 

representation 𝑔̂𝑖𝑗
𝑡,ℓ+1 are formed, see Eqs. (10)-(11). 

 
𝑢𝑖𝑗

𝑡,ℓ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐𝑖𝑗
𝑡,ℓ), with 𝑐𝑖𝑗

𝑡,ℓ = (
𝑊𝑄

ℓ𝑒𝑖
𝑡,ℓ

∙𝑊𝐾
ℓ𝑒𝑗

𝑡,ℓ

√𝑑
) + 𝑊𝐸

ℓ𝑔𝑖𝑗
𝑡,ℓ 

(10) 

 𝑒̂𝑖
𝑡,ℓ+1 = 𝑊𝑒 ∑ 𝑢𝑖𝑗

𝑡,ℓ𝑊𝑉
ℓ𝑒𝑗

𝑡,ℓ
𝑗 + 𝑏𝑒 , 𝑔̂𝑖𝑗

𝑡,ℓ+1 = 𝑊𝑔𝑢𝑖𝑗
𝑡,ℓ+𝑏𝑔 (11) 

where 𝑊𝐸
ℓ𝑒𝑖𝑗

𝑡,ℓ denotes the edge value, 𝑊𝑒 and 𝑊𝑔 are the transformation matrix and 𝑏𝑒 and 𝑏𝑔 are the bias 

vector. Adding edge information into the calculation of attention score can add more spatial information 
for attractions. After the last layer of MHA, the representation vector [𝑒̂0

𝑡, 𝑒̂1
𝑡,…, 𝑒̂𝐻+𝑁+1

𝑡 ] of all attractions 
and the edge representation 𝑢̂𝑖𝑗

𝑡  are output, which are utilized to represent each attraction and as input to a 

decoder.  

Decoder. Decoding happens sequentially. At step t, the decoder outputs the attraction 𝑎𝑡 based on the 
attractions and edge representation vectors outputted by the encoder and the summary information of 
preciously selected attractions. The decoder consists of an (1) LSTM layer and (2) an attention mechanism 

layer. At step t, the LSTM layer is utilized to obtain the summary information ℎ𝑡
𝑑  of preciously selected 

attractions. Then based on an attention mechanism, the probability distribution of the next candidate 
attractions is generated.  
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Training Method of Policy Gradient 

We expect the best policy 𝜋𝜃
∗ (𝑌|𝑋)  can generate the tour route with the maximum score with high 

probability. To find an optimal policy 𝜋𝜃
∗ (𝑌|𝑋), the goal of DRL is to maximize the expected cumulative 

reward 𝔼𝑌~𝜋𝜃
𝑅(𝑌|𝑋) given a problem instan ce X, defined as Eq.(12). 

 𝐽(𝜃|𝑋) = 𝔼𝑌~𝜋𝜃
𝑅(𝑌|𝑋) (12) 

We use the policy gradient method and gradient descent to maximize 𝐽(𝜃). The gradient of Eq. (12) is 
formulated using a well-known REINFORCE algorithm (Williams 1998) with Monte Carlo sampling, as 
shown in Eq. (13). 

 𝛻𝜃𝐽(𝜃|𝑋) ≈
1

𝐵
∑ (𝑅(𝑌𝑖|𝑋𝑖) − 𝑏(𝑋𝑖))

𝐵

𝑖=1
𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑌𝑖|𝑋𝑖) (13) 

where B is the batch size. 𝑏(𝑋) denotes a baseline function, which plays the role of critic and is used to 
reduce training variance. If the actions perform better than the baseline, the policy will increase the 
probability of these actions. In this paper, 𝑏(𝑋) demonstrates the batch average cumulative reward.  

Case studies 

As a demonstration of the proposed tour route designation framework, we focused on Beijing in China. 
Beijing is considered one of China’s top ten tourism cities released by the 2018 Global Tourism Destination 
Marketing Summit and World Culture Tourism Forum (Hou et al. 2019). As China’s capital city, 
government center and business hub, Beijing is the most international and busiest cities in China and has 
the most significant transportation hub and network.  

Heterogeneous Preference Analysis 

Online reviews on TripAdvisor.com and travelogues on Ctrip.com are collected as UGC, used to calculate 
attraction scores. For online review, we first crawled the UGC of attractions from 2010/5/1 to 2020/5/31 of 
the selected 64 attractions. Through data cleansing, i.e., deleting data with missing values, we collected 
63228 reviews from 30928 travelers. For travelogues, we total crawled 9000 travelogues. 

 

Figure 4. Attraction Score for Attractions with respect to the Four Traveler Types 

By processing the UGC on TripAdvisor.com and Ctrip.com, we obtain the normalized score for each 
attraction with respect to the four traveler types, as shown in Figure 4. As shown in Figure 4, for the same 
attraction, the normalized scores of the solo are mostly higher than the other three traveler types. Therefore, 
solo travelers prefer a high-values pattern (Radojevic et al. 2015). While the normalized scores for the same 
attraction of friends and couples are lower due to their low-values pattern. The difference of these scores 
between couples and friends are the smallest. Based on the scores, ID4 (the Palace Museum) is the 
attraction with highest score for four tourist types, which are 1.63 (families), 1.53 (couples), 1.57 (friends), 
and 1.80 (solo). While ID19 (Ming Tombs) is the attraction with lowest score for families and couples, which 
are 0.34 (families) and 0.28 (couples); ID25 (Happy Valley) is the attraction with lowest score (0.19) for 
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friends; and ID63 (Monument to the People’s Heroes) is the attraction with lowest score (0.31) for solo. The 
above phenomenon indicates that the scores are different among different types of travelers and also proves 
that it is necessary to consider heterogeneous tourist types.  

DRL Experimental Design 

The effectiveness of our proposed DRL methods is verified in three instance sets. The first and second 
instance sets are generated based on website routes and travelogue information. While the third instance 
set is existing datasets with optimal solutions. In the following, we will detail how to generate the first and 
the second instance sets. 

Instances Generation 

For instance, it should have attraction attributes (attraction’s ID, locations, sightseeing duration, and time 
window), attraction score, traffic time matrix, travel days, and start and end locations and times. For the 
instance sets of website routes and travelogue, the attraction attributes, traffic time matrix, starting and 
ending locations, and starting time are generated similarly. In contrast, the attraction score, travel day, and 
ending time are generated differently.  

Attraction attributes. Attraction attributes mainly include attraction’s ID, sightseeing duration, and 
time window. For attractions, we select 460 attractions. Subsequently, each attraction’s sightseeing 
duration and time window are crawled from Ctrip.com, Meituan.com, and Baike.baidu.com. attraction’s 
locations (longitude and latitude) are crawled through the API (Application Programming Interface) of 
amap.com.  

Traffic time matrix. Considering the real-time traffic changes, the traffic time matrix is climbed every 
hour from 8. AM to 8. PM. In this study, we consider taxis the only transportation between each pair of 
attractions. In practice, we can easily modify the environment code to add more kinds of transportation 
options. 

Starting and ending locations. Although railway stations, high-speed rail stations, and airports are 
often used as the starting and ending locations of a tour route, we randomly generated the starting and 
ending points within Beijing in consideration of the diverse requirements of travelers. The Starting and 
ending locations IDs are assigned 0 and 1, respectively.  

Starting times. The starting is a random generation from [8. AM, 12.AM]. 

Travel day and ending time. For the instance set of website routes, the travel day and ending time are 
generated based on the website routes and travelogue information, respectively.  

Attraction score. The website routes are the same for any tourist, so their attraction scores are generated 
based on the average score of the four travelers type. The travelogues are divided according to traveler type. 
Thus their attraction scores are developed according to traveler type.  

Training, Validation, and Test Datasets 

For the training dataset, the attraction attributes, start and end locations/times are generated in the same 
way described in Section of Instance Generation. The traffic time matrix is randomly generated between 
the maximum and minimum values of the traffic time between each pair of attractions. The travel day is 
randomly generated between the maximum and minimum values of all travel days. Similarly, attraction 
scores are randomly generated between the maximum and minimum values of four traveler types. The 
validation and test datasets are generated based on Section of Instance Generation. To ensures that the 
three data sets are different, the datasets of training, validation, and test are randomly generated based on 
different random seeds, which are [0, 1000], [1000, 2000], [2000, 3000], respectively.  

Metrics 

To evaluate the performance of our proposed model, the total score of the solution is exploited as the 
evaluation metric, which is widely utilized for TTDP (Divsalar et al. 2013; Divsalar et al. 2014; Gama and 
Fernandes 2021; Zheng et al. 2020). For each generated instance set, the reported score is the mean value 
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of the test sets within that group. Besides, the waste time, average gap, and average time were also selected 
as metrics for different instance sets according to relevant research. A detailed description of these metrics 
is given in the Section of DRL performance evaluation. 

Implementation Detail 

We implement our model in PyTorch and use an Adam optimizer. The setting of hyper-parameters is the 
same of Gama and Fernandes (2021).  

DRL Performance Evaluation 

Compared with the Website Routes instance set 

In this section, we compare our proposed method with the actual routes to verify the practicability of our 
proposed method. Through the Ctrip.com website, two types of actual routes are obtained: popular routes 
(abbreviated to Popular) and free travel products (shortened to Product)1. In total, we climbed 3,074 routes, 
of which the popular routes account for 74, while the free travel products account for 3,000 routes. We 
randomly generated the instance based on the Section of Instance Generation. In addition, since users will 
specify the attractions they must visit, we will randomly select 0%, 25%, and 50% attractions of the natural 
route to form a must-visit list. These attractions in the must-visit list will be planned in the final solution.  

Dataset Must-visit 
Score Wasted time(hour) 

Our Website Our Website 

Popular 

0% 16.06  8.48  1.94  2.64  

25% 15.05  8.48  2.51  2.60  

50% 13.63  8.48  2.28  2.60  

Product 

0% 41.56  20.52   4.68  6.84  

25% 38.22  20.52   5.55  7.10 

50% 33.18  20.52  7.05  7.36  

Table 1. Comparison Results with website routes 

As shown in the Table 1, we compared the total score and wasted time of our proposed method with the 
website routes. The wasted time on website routes refers to waiting for the attractions to open. While the 
wasted time of our proposed method also includes the time that the planning route ends earlier than the 
end time given by the tourists. We can find that our proposed methods' score and wasted time are superior 
to the website routes under the must-visit list of different lengths. As the list length of must-visit increases 
from 0 to 50%, our proposed method performs progressively worse. That’s because user-specified 
attractions can deviate from the user’s starting and ending locations, resulting in suboptimal routes. 
However, even the worst results of our proposed model are better than the website routes. 

Compared with the Travelogue Instance Set 

First, we compare and analyze the travelogue instance set with existing reinforcement learning methods. In 
addition to the reinforcement learning algorithm proposed in this paper, we compared Gama and 
Fernandes (2021) and Bello et al. (2016) on total score metrics. 

As shown in Table 2, these four travelers’ highest and lowest scores are solo (21.30) and couples (16.30), 
respectively, which is consistent with the traveler’s comment pattern, such as solo travelers prefer high- 
couple prefers low-values pattern. In addition, the results, to some extent, prove the effectiveness and 
rationality of the proposed method. The results show that the proposed method can achieve better solutions 
for various traveler types than other baseline methods. 

                                                             
1 https://vacations.ctrip.com/list/freetravel/sc1.html?startcity=1 

https://vacations.ctrip.com/list/freetravel/sc1.html?startcity=1&sv=%E5%8C%97%E4%BA%AC&st=%E5%8C%97%E4%BA%AC
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Traveler type Our  Gama and Fernandes (2021) Bello et al. (2016) 

Families 17.19 16.6 14.36 

Couples 16.30 16.1 14.1 

Friends 17.29 17.2 15.79 

Solo 21.30 19.9 20.54 

Table 2. Comparison Results of TTDP. The values in this table represent scores of the solution. 

Compared with Existing TTDP-HS Datasets 

TTDP-related research scarcely focuses on hotel selection, an essential component of a multi-day trip. 
McKercher et al. (2012) believed that the hotel location significantly impacts the choice of tourist attractions 
and time allocation. Lau and Mckercher (2006) stated that hotel location affects the movement patterns of 
tourists. In turn, tourists’ tour route planning impacts their hotel selection. Zheng et al. (2020) found 
whether the hotel’s location is near the attractions is also an essential factor affecting the hotel selection. It 
is infeasible to design multi-day tour itineraries without considering the hotel selection. However, the 
relationship between hotel selection and trip design renders TTDP-HS more complex than general TTDP. 
In this section, we analyze the proposed method for the TTDP-HS. Based on the existing benchmark 
instances dataset of TTDP-HS, the results of Skewed Variable Neighborhood Search (SVNS) (Divsalar et al. 
2013) and Memetic Algorithm (MA) (Divsalar et al. 2014) are given. As shown in Table 3, the first column 
indicates the number of hotels and trips in each data set. The second column indicates the number of 
instances in each set. Then the third column displayed the maximum number of the total number of feasible 
sequences of hotels (TNFS) in each set. Afterward, the average gaps (Average Gaps) between the results 
obtained by different methods and optimal solutions are presented, that is  

 
𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑚𝑜𝑑𝑒𝑙 𝑟𝑒𝑠𝑢𝑙𝑡

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑟𝑒𝑠𝑢𝑙𝑡
× 100 (14) 

Due to the randomness structure in the MA method, it is applied to each instance three times. The gap 
describes how far the results are far from the optimality, which is the percentage difference between the 
method result and the optimal solution. And the last column shows the average computational time 
(Average Time) spent in solving each instance set by applying different methods. 

Data sets Instances Max TNFS 

Average Gaps (%) Average Time (s) 

MA 
SVNS DRL MA SVNS DRL 

Avg Best 

17 hotel-4 trip 22 4.91× 103 1.92 1.32 2.66 1.04 6.63 4.95 0.6 

17 hotel-5 trip 22 8.35× 104 2.22 1.4 4.42 1.65 5.41 4.2 0.6 

17 hotel-6 trip 22 1.42× 106 2.55 1.39 6.86 1.46 4.78 4.29 0.6 

17 hotel-8 trip 13 4.10× 108 3.66 2.95 15.54 2.78 5.16 53.62 0.6 

17 hotel-10 trip 9 1.19× 1011 5.03 3.78 – 3.72 5.04 – 0.6 

Average 17.6 2.38× 1010 3.08 2.17 7.37 2.13 5.40 16.77 0.6 

Table 3. Comparison Results of TTDP-HS 

As shown in Table 3, our DRL model outperforms the SVNS and MA in average gaps. Although our DRL 
model does not outperform the MA’ best gap on 17 hotel-5 trips and 17 hotel-6 trips, the average results 
achieved by the DRL model are much better than SVNS and MA results. In computation time, the 
computation time of the DRL is always faster than MA. The results show that for instances with a large 
number of TNFS, the performance of DRL proposed in our study is advantageous. Therefore, our proposed 
method can be applied directly by tourism websites to generate tour routes in low latency according to the 
constraints of traveler input. 
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Conclusions 

The TTDP is an essential research topic in tourism management. A customized tour route design algorithm 
helps tourism websites provide high-quality and customized services to improve tourist satisfaction and 
competitiveness. The availability of data on websites offers an unprecedented opportunity to study the 
heterogeneity of tourists in TTDP and explore how to design a more customized, reasonable, and practical 
tour route for tourists. Our research objective was to design a tour route with the highest score for tourists 
while accounting for their heterogeneity and personalized requirement. We proposed a customized route 
design framework –the DRL model– combining big data analysis and artificial intelligence. We performed 
an empirical study to interpret the proposed framework’s practicality and compare it with state-of-the-art 
methods. The comparison results show that the DRL model outperforms all the baseline models in 
designing customized, reasonable tour routes. Significantly, the proposed model can be applied directly by 
tourism websites.  

However, our study still has some limitations. First, although this paper considers heterogeneous 
preferences, it does not realize personalized preferences. Furthermore, the heterogeneous preferences of 
users are not verified by user usage experiments. In addition, DRL can solve more complex objective 
function design problems, but only single objective function problems are analyzed in this paper. Finally, 
the crowding of attractions has become a severe problem restricting the further development of tourism, 
which is not taken into account in this paper. In the future, we will conduct further research to address the 
above limitations. 
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