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Abstract
We propose an adversarial deep learning model for credit risk modeling. We make use
of sophisticated machine learning model’s ability to triangulate (i.e., infer the sensitive
group affiliation by using only permissible features), which is often deemed “troublesome”
in fairmachine learning research, in a positiveway to increase both borrowerwelfare and
lender profits while improving fairness. We train and test our model on a dataset from a
real-worldmicroloan company. Ourmodel significantly outperforms regular deep neural
networks without adversaries and the most popular credit risk model XGBoost, in terms
of both improving borrowers’ welfare and lenders’ profits. Our empirical findings also
suggest that the traditional AUC metric cannot reflect a model’s performance on the bor-
rowers’ welfare and lenders’ profits. Our framework is ready to be customized for other
microloan firms, and can be easily adapted to many other decision-making scenarios.

Keywords: Credit Risk; Microloan; Fintech; Fairness; Adversarial Deep Learning

Introduction

Credit risk modeling is a delicate problemwherein a good solution needs to balance the prediction accuracy,
the lenders’ profit, the borrowers’ welfare, and fairness (Bhat et al., 2019; Fu et al., 2021; Hu et al., 2021;
Kallus et al., 2021). Modern loan companies are not only profit-oriented, but they also care about borrowers’
welfare. On the one hand, to survive and gain a competitive advantage in the increasing competitive micro-
financemarket, companies have incentives to consider a broader set of borrowers, especially to identify low-
risk underrepresented borrowers who are often predicted to be less credit-worthy and left out by traditional
credit risk models (Lu et al., 2021). By doing so, companies can improve borrowers’ welfare and the fairness
in the allocation of financial resources, which in turn contributes to maintaining a healthy and sustainable
business in the long run (Dev, 2006). On the other hand, many modern loan companies emphasize social
responsibility (Campbell, 2007; Fry et al., 1982). They arewilling to pursue financial inclusion to brand their
social value and to maintain a good relationship with governments.1 The advances of artificial intelligence
and machine learning help firms achieve their goals by providing more accurate and fairer algorithms for
credit risk evaluation.

A practice to ensure fairness and equality is to restrict model training from using the protected (sensitive)
features (e.g., gender and race). However, some sophisticatedmachine learningmodels were found to trian-
gulate the effect of the unobserved restricted variables on the outcome by effectively combining the observed

1Financial inclusion aims to make financial services available to vast sections of low-income and groups at affordable costs (Dev,
2006).
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permissible features (e.g., non-sensitive demographics), resulting in larger inequality and lower borrower
welfare (Fuster et al., 2022). Triangulation refers to the problem of machine learning models’ ability to use
permissible features to “de-anonymize” group identities in the data, which results in specific groups being
penalized or rewarded even though variables identifying group membership are excluded from the model
training (Fuster et al., 2022; Pope and Sydnor, 2011). Triangulation arises with two conditions: (a) group
identities are correlated with some permissible features in the dataset, and (b) models are sophisticated
enough to be able to map permissible features to the group identities by effectively combining features.

However, albeit the downside of triangulation, it also theoretically opens up an opportunity to train the
credit risk model adversarially to reduce inequality. That is, we can strategically put more weight on the
triangulation-generated inequality cases to “attack” the credit riskmodel, which in turn, exploits themodel’s
ability to mitigate inequality (Goodfellow et al., 2018; Kurakin et al., 2016; Lahoti et al., 2020). In this vein,
the primary goal of the present paper is to explore: Canwe leveragemachine learning’s triangulation
ability in a goodway to simultaneously increase borrowers’ welfare and lenders’ profits and
improve the fairness in the allocation of financial resources?

In this paper, we focus on the microloan industry wherein service providers offer micro-credit products
to individual borrowers with money of their own or partnered financial institutions. The global microloan
market was reported to be around $156.7 billion in 2020, and it is expected to reach a market size of $304.3
Billion by 2026.2 Microloan managers today tend to reach out to a broader set of borrowers to improve
financial inclusion and stay competitive (Lu et al., 2021). In making loan approval decisions, microloan
companies intend to approve themost credit-worthy borrowers’ applications, and at the same time, attempt
to ensure fairness (Fu et al., 2021). To achieve these objectives, we design a sophisticated credit risk model
to predict borrowers’ default probabilities with permissible features. Specifically, the model parameters are
learned from the training dataset by maximizing the microloan company’s utility, which is a weighted-sum
combination of its economic profits and borrowers’ utility. Borrowers’ utility is determined by the company
in loan approval decisions. Ourmodel ensures fairness bymaximizing the worst-off borrower group’s utility
level. This objective follows the key idea of Max-Min Fairness (Rawls, 2001), which gives priority to the
least well-off group and focuses on maximizing the minimum utility across all groups. Prior literature has
revealed somegood theoretical properties ofMax-MinFairness: Radunovic andLeBoudec, 2007 find amax-
min fair allocation is guaranteed under mild conditions, and it is Pareto optimal. Max-Min Fairness realizes
an efficient and equitable allocation of financial resources in both situations: when an efficient allocation
leads to an equal utility for all groups, and when an efficient allocation results in groups differing in their
utilities (Bertsimas et al., 2011).

A great body of literature has documented the gender bias issue in fintech lending and algorithm credit risk
modeling, where the same-quality but different-gender borrowers would be treated differently (Alesina et
al., 2013; Chen et al., 2017; Chen et al., 2020; Fu et al., 2021; Kelley et al., 2022; Lu et al., 2019). Therefore,
on the borrower side, we attend to the allocation fairness with a special focus of gender. We regard gender
as the sensitive group identity and aim to maximize the worse-off gender (female or male) group’s utility.
On the company side, we aim to increase profits even from the least-exploited group. The “least-exploited”
borrowers refer to the borrowers for whomwe do not fully exploit their potential profits yet under traditional
models. It does not mean that the borrowers are not profitable, but that we do not gain profits from them
under the traditional model decisions. So we want to improve the model’s learning on them. As such, our
objective function is set to maximize the weighted sum of the worse-off group’s utility and the profits from
the least-exploited group.

In addition, although the use of sensitive group information is universally forbidden in credit risk modeling,
other permissible features involved in loan application are found to be able to identify such group attribute
(Fuster et al., 2022; Hu et al., 2021). Therefore, following Lahoti et al., 2020, in our context, we use a
predictor to infer borrowers’ group affiliation. Besides, note that because the borrowers who delay in their
payment but do not default would always be charged extra (substantial) monetary penalties, they may also
generate positive profits for the company; the least-exploited people do not necessarily overlap with the
worst-off people who are historically most unfairly treated in loan approvals (Lu et al., 2021). The direct use

2https://www.prnewswire.com/news-releases/global-microfinance-market-report-2022-the-large-unbanked-population-and-
focus-on-their-financial-inclusion-to-stimulate-microfinance-industry-301511907.html
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of profit as an outcome label for model training is subject to low predictive effectiveness due to larger noises
in delineating profitability (Papouskova and Hajek, 2019). Hence, we introduce an additional predictor to
identify borrowers for whom we have not fully exploited their potential profits to the company.

The “max” component and the “min” component of our objective function form a two-player problem. This
corresponds to the predictor and the adversary in adversarial learning (e.g. Goodfellow et al., 2018; Tu et
al., 2019). Adversarial learning was initially proposed to improve the model performance (e.g., accuracy,
robustness), by introducing an attacker to expose the model to hard cases (Chivukula and Liu, 2018; Good-
fellow et al., 2018; Yuan et al., 2019). Lahoti et al., 2020 applied the adversarial framework to handle the
Max-Min Fairness problem, suggesting that the adversarial framework performs well on income prediction
(Kohavi and Becker, 1996) and law school admission (Wightman, 1998), but not on recidivism prediction
(Angwin et al., 2016). Microloan default prediction has some commonalities with both income prediction
and recidivism prediction. It is unclear how such an adversarial framework performs in the microloan ap-
proval decision-making setting. Our model’s empirical results answer this question.

In this paper, we adapt the min-max fairness adversarial framework (Lahoti et al., 2020) to the microloan
approval decision-making context. We extend the model into the microloan multi-objective setting, where
we incorporate two adversaries at the same time in amulti-task learningway. We aim tomaximize the profits
the company can gain from the least-exploited group, and maximize the welfare of the worst-off group.
We use the adversarial neural network to optimize our objective function. Our training and testing are
based on a dataset from a real-world microloan company. Our empirical results suggest that our proposed
adversarial model canmake use of algorithms’ ability to triangulate, which is often deemed “troublesome” in
fair machine learning research, in a positive way to increase both borrower welfare and lender profits while
improving fairness. Our proposedmodel performs well in increasing borrowers’ welfare and lenders’ profits
and improving the fairness in the allocation of financial resources simultaneously. It significantly surpasses
the currently most popular model for credit risk prediction, XGBoost, in terms of both borrowers’ welfare
and lenders’ profits.

Our work has multi-fold contributions. First, we show that in the microloan approval context, machine
learning models’ ability to triangulate can be used to combat, instead of exacerbating bias. Second, our pro-
posed model solves microloan companies’ multi-objective (i.e., profit and fairness) optimization problem,
and explicitly accounts for the complex relationship between a borrower defaulting or not and the profit/loss
the borrower generates to the firm, which is commonly ignored in existing credit risk modeling literature.
Our proposed model is from the companies’ perspective, aiming to maximize their utility. This guarantees
that they have enough incentive to deploy ourmodel. Third, by adjusting the hyper-parameters in the utility
function, our framework is ready to be customized for heterogeneous microloan companies that differ in
their preferences for profits and social welfare. Our framework can also be easily adapted to many other
scenarios where sensitive features are not allowed to use in the machine learning model.

Data

Context

Our unique datasetwas collected froma leadingAsianmicrofinance platform. Founded in 2011, the platform
offers small loans with an average size of about $450 USD. Loan applicants on the platform mainly use
loans to meet temporary financial needs, including supplemental liquidity for small businesses, education
expenses, irregular shopping, and medical expenses. For a loan application, the applicants need to provide
personal information, including name, gender, age, income, etc. They also provide fine-grained data on user
behavior, including online shopping andmobile phone usage records. Loan terms range from 1 to 8months.
The platform charges an annual interest rate of about 18% (plus or minus 1%, depending on the borrower’s
credit line).

We take advantage of a unique “experimental” operation the platform conducted (for purposes unrelated
to approval decisions) captured in the dataset. During this experiment period, the platform approved all
loan applications without any selection. It enables us to observe the credit behaviors of all applicants on
the platform without any selection issues. This unique dataset ensures that our results are based on the dis-
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tribution of borrower characteristics among all borrowers, rather than just the approved borrowers, whose
distribution is likely skewed and different from that of the entire borrower pool. By leveraging this dataset,
we are able to more accurately evaluate the performance of our model (and alternative models).

Data and Description

Our dataset contains detailed loan records of all the borrowers on the platform between December 2 and
December 22, 2017. There are 12,113 loan applications in total from 11,700 borrowers — 8405 males and
3295 females. The average number (frequency) of loan applications per borrower is 1.03 (= 12,113/11,700).
In our sample, 11,370 (97.17%) borrowers applied only once, the other 330 borrowers applied twice or more.
The average age of borrowers is 25.26, and female borrowers take up 28.11%. The default rate (i.e., the
fraction of borrowers who failed to fully repay their debts within 90 days after the due date) is 63.96%.

For each borrower, the dataset contains their demographic and socioeconomic information, such as gender,
education, monthly income, housing, and disposable personal income per capita (DPI) of their home city.
In addition, we also have their loan information, such as loan amount, loan term, and annual interest rate.
It also has detailed repayment and profit information about these loans. In addition to these traditional fea-
tures, the microloan firm also has digitized user-behavior features. These features include online shopping
activity records from the two largest online shopping platforms in the country (i.e., product name, price,
quantity, product type, order time, and receiver information), and cellphone usage activities records (i.e.,
call history). With easy Internet access, high penetration of mobile phones, as well as the emerging data
tradingmarket, these kinds of nontraditional alternative information have become widely available. Our fo-
cal platform collects this information from borrowers with their consent. Both the online shopping behavior
and the mobile activities records are good indicators of borrowers’ social-economic status and their abilities
to pay back the loans (Blumenstock et al., 2015; Soto et al., 2011, et al.).

Based on the available information, we construct a rich set of borrower features, which can be classified into
four categories:

• Traditional features used for credit risk modeling, including borrowers’ demographic characteristics
and socioeconomic status, loan history, and loan attributes.

• Online shopping activities, including the total number and amount of transactions, and transactions
of types, e.g., durable goods, virtual products, and some special product categories such as alcohol,
book, and medicine.

• Cellphone usage activities, including call-related features such as the frequency and duration of in-
coming and outgoing calls and the number of unique incoming and outgoing contacts.

• Repayment information, including whether a loan defaulted or not and how much profit it brings to
the company (i.e., how much gain or loss a loan brought to the microloan company, including gains
from interests and late-payment penalties and loss from unpaid principals).

Note that, our model’s success depends on the possibility of triangulation (Fuster et al., 2022), namely
whether we can use non-sensitive attributes to infer the sensitive feature (i.e., group affiliation). There-
fore, before building up our model, we calculate the correlations between each permissible feature and the
group affiliation to see the potential of triangulation in our microloan setting. If the permissible features
are not strongly correlated with the protected feature, then the potential of triangulation would be low. Ta-
ble 1 shows the top five features that have the highest correlations with the group affiliation. All the top
five features have correlations over 0.1. The highest correlation reaches 0.3162, which implies the existence
of possible triangulation in our context. Interestingly, all the top five correlated features pertain to online
shopping activities. This is in line with prior literature that females tend to expend more in shopping and
seek for higher diversity than do males (Coley and Burgess, 2003), whereas males spend more money on
game-related products (Wohn, 2014). This further certifies our model’s capacity in the big data era when
the loan companies have access to users’ digital footprint in addition to traditional features.

Triangulation and Inconsistency between Default and Payoff

Next, we provide empirical evidence for the problem of (a) triangulation, and (b) the inconsistency between
default and payoff in traditional credit risk modeling. To this end, we implement two common credit risk
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Variable Correlation
#Order_shopping_durable 0.3162
Diversity_shopping_durable 0.2281
Avg_amount_game card -0.1685
Amount_shopping_durable 0.1659
#Order_medicine 0.1330

Table 1. The top 5 variables highly correlated with gender
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(b) XGBoost

Figure 1. The distribution of the predicted nondefault probabilities by (a) Logit and (b) XG-
Boost (facet by gender and label).

models typically used by both researchers and practitioners, namely the Logit model and XGBoost model.
We examine the distributions of their predicted nondefault probability, the prediction accuracies, and the
resultant profits.

Triangulation

We explore the existence of the triangulation problem by training Logit and XGBoost models using different
sets of features (i.e., traditional features, cellphone usage features, online shopping features). As Table 1
shows, the feature that are highly correlated with gender are mostly shopping-related features. Therefore, it
is expected that compared with traditional features and cellphone usage activity feature, shopping-related
features allow machine learning models to better infer borrower gender and therefore result in larger in-
equality.

Figure 1 shows the distribution of the predicted nondefault probability by Logit (Figure 1a) and XGBoost
(Figure 1b) using different feature sets. We compare these distribution curves across two gender groups.
For both models, when we use the traditional features (grey curve) or the cellphone usage features (blue
curve), the distributions of the predicted nondefault probability of the two genders are relatively close to
each other. In contrast, when we use the online shopping features (orange curve), females’ distribution has
a significant shift to the right compared to males’. This indicates that the online shopping features lead to
larger inequality due to their high correlation with gender. If we further compare the right column panels
across the twomodels, we find that, comparedwith Logit, the distribution based on online shopping features
shifts further right when we use XGBoost, and the difference between the two genders is larger for XGBoost.
This suggests that more complex machine learning models are more capable of triangulation, and could
result in larger inequality.

Inconsistency between Default and Payoff

Traditional credit riskmodels only aim tomaximize the accuracy of default/nondefault prediction. However,
a higher nondefault prediction accuracy does not necessarily mean a higher profit, because the lender may
be able to collect fees from late payments of delinquent loans. We investigate this problem by comparing
the nondefault prediction accuracy and profits between the Logit and XGBoost models with all available
features. We use the most widely used AUC (Area Under The Curve) under the ROC (Receiver Operating
Characteristics) curve as the metric of the model’s nondefault prediction performance. For the profits, we
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Model AUC Profits
Logit 0.7837 41,167.72
XGBoost 0.8503 39,609.42

Table 2. Comparison of the AUCs and Profits

calculate the expected profits based on the predicted probability of nondefault.

Table 2 shows the AUC of the Logit and XGBoost models and the resulting profits. As expected, XGBoost
performs much better than Logit in terms of nondefault prediction, with an AUC of 0.8503 (compared with
Logit AUC 0.7837). However, a larger AUC does not translate to higher profits. The XGBoost model only
achieves a profit of 39,609.42 compared with Logit’s 41,167.72. This is because using nondefault label as the
only optimizing objective element ignores (a) the heterogeneous profits users with different levels of default
risk can bring in, and (b) the fact that sometimes default borrowers can also generate positive profits for the
company.

The findings above confirm the two key problems with traditional credit risk models, which we aim to solve
in this work. Our model uses adversarial learning and joint optimization to handle the triangulation issue
and the inconsistency between default label and profits distribution.

Model

Utility and Objective Function

Consider a microloan company using a credit risk model to decide which applicants to approve. The com-
pany uses amachine learningmodel tomaximize its utility. In addition to the company’s profits, it also cares
about the borrowers’ welfare. Therefore, a microloan company’s utility function is a mixture of the profits
and the borrowers’ welfare. We denote the company’s utility as:

U = wµµ+ wpP (1)

which is a weighted sum of the economic profits P and the borrowers’ utility µ. wp and wµ are their corre-
sponding weights. We denote the credit risk model as:

fθ : X→ Y (2)

which maps the permissible input features X ∈ Rn×d into labels Y ∈ {0, 1}n. n is the number of borrowers,
and d is the dimension of the feature vectors. We denote a borrower i’s feature vector and label it as xi
and yi respectively. yi = 0 indicates a low-quality (default) borrower, yi = 1 indicates a high-quality (non-
default) borrower. In addition, we also observe zi, which is how much the company can earn (or lose if the
value is negative) from granting the loan to borrower i. The credit risk model fθ predicts the probability of
a borrower defaulting on a loan. θ are the model parameters to be learned from the training dataset. Both
P and µ depend on the credit risk model fθ:

P := P (fθ), µ := µ(fθ). (3)

When making the loan approval decisions, the micro-finance company intends to approve loans to the
most credit-worthy borrowers, and at the same time, ensure fairness by maximizing the worst-off borrower
group’s utility level. This fairness notion follows the key idea of Max-Min Fairness (Rawls, 2001), which
gives priority to the least well-off group and focuses on maximizing the minimum utility across all groups.

Therefore, on the borrower side, we focus on borrower gender, and hope the worse-off group’s utility can
be maximized, i.e. max

θ
min
s

wµµs(fθ). Here s ∈ S = {M,F} is the group label, which could be maleM or

female F . On the company side, we hope to gain higher profits even from the borrowers for whom we do
not fully exploit their potential profits under current models, i.e. max

θ
min
s

wpPs(fθ). The objective function

is then
max

θ
min
s

Us(fθ) = max
θ

min
s

[wµµs(fθ) + wpPs(fθ)] (4)
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Although the use of sensitive group information is universally forbidden in credit risk modeling, other per-
missible features involved in loan application are found to be potentially able to identify such group affilia-
tion (Fuster et al., 2022; Hu et al., 2021). Therefore, following Lahoti et al., 2020, in our context, we use a
predictor g to infer borrower gender:

gϕ : X × Y → {M,F} (5)

ϕ are the model parameters to be learned from the dataset. Specifically, gϕ(Xi, Yi) outputs a weight

αi := αi(gϕ) = gϕ(Xi, Yi) (6)

which is proportional to the probability of the borrower i belonging to the worst-off group. By incorporating
gϕ, we reframe the objective function to be

max
θ

min
ϕ

N∑
i=1

αi(gϕ)Ui(fθ) (7)

where αi can be viewed as a weight allocated to data point i in the training. We expect αi to be larger if i
is from the worst-off group, and smaller otherwise. A good property of using a continuous numeric value
αi to indicate group affiliation is that we remove the hard boundary between groups, so that although we
focus more on some groups, we are still improving the utility of all groups. This overcomes the limitation
in Equation (4), which has a hard group boundary and only optimizes a single group. Besides, note that
the least-exploited people do not necessarily overlap with the worst-off people who are historically most
unfairly treated in loan approvals. This is because the delinquent-but-not-in-default borrowers and even
some borrowers in default could generate positive profits for the company as they will be charged interests
and (substantial) monetary penalties for their overdue payments (Lu et al., 2021). Hence, we add an extra
predictor

hφ : X × Y × P → [0, 1] (8)

to assign a large weight
βi := βi(hφ) = hφ(Xi, Yi, Pi) (9)

to borrower iwho brings the lowest profit to the company under the current suboptimal model. Incorporat-
ing hφ further reframes our objective function into

max
θ

min
ϕ,φ

N∑
i=1

wµαi(gϕ)µi(fθ) + wpβi(hφ)Pi(fθ) (10)

In order to fit our objective function into the loss minimization framework of neural networks, we need to
define a loss function. Maximizing the utility is the same as minimizing the additive inverse of the utility.
Therefore, a direct way to do this is to negate Formula (10) into:

L(θ, ϕ, φ) = min
θ

max
ϕ,φ

N∑
i=1

−wµαi(gϕ)µi(fθ)− wpβi(hφ)Pi(fθ) (11)

Although we use the True Positive Rate to measure the borrower welfare/utility, it is not differentiable and
cannot be used to calculate the gradients for backpropagation. To make the loss function differentiable,
we can use the prediction cross-entropy loss LCE(θ) as a proxy of the negative utility loss part. The cross-
entropy loss is defined as −(y log(p) + (1 − y) log(1 − p)), where y ∈ {0, 1} is a binary label and p is the
predicted probability of ŷ = 1. The cross-entropy loss is widely used in machine learning papers to optimize
for better classification performance. We use the cross entropy loss instead of TPR in our loss function. This
is because the cross-entropy loss is differentiable, and directly optimizing the TPR could make the model
blindly approve all users — this reaches the maximum value of TPR, i.e. 1. In our case, we also incorporate
the weight αi assigned to each observation, so our cross-entropy loss LCE(θ) is:

LCE =

N∑
i=1

−αi(gϕ)(yi log(pi(θ)) + (1− yi) log(1− pi(θ))) (12)
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pi(θ) is the predicted probability of i being a non-default borrower. Similarly, the profit loss part can be
denoted as

LP =

N∑
i=1

−βi(hφ)pi(θ)zi (13)

where zi(θ) is how much the company can earn (or lose if the value is negative) from granting the loan to
borrower i, and it is an observed attribute in our dataset.

Therefore, our final loss function is:

L(θ, ϕ, φ) = min
θ

max
ϕ,φ

wµLCE + wpLP (14)

Adversarial Deep Neural Network

The “min” component and the “max” component of our loss function (Equation 14) form a two-player prob-
lem. This corresponds to the predictor and the adversary in adversarial learning (Tu et al., 2019). In this
paper, we adapt themin-max fairness adversarial framework (Lahoti et al., 2020) to themicroloan approval
decision-making context. We introduce an adversarial objective to maximize the profits the company can
gain from the least-exploited group in addition to maximizing the welfare of the worst-off group. We use
the adversarial neural network to optimize our objective function. Figure 2 shows the network architec-
ture. Specifically, fθ is the primary learner module that will be used in predicting test cases, and gϕ and
hφ are two adversaries that help the primary learner module fθ improve its performance on worst-off and
least-exploited borrowers.

Specifically, fθ, gϕ and hφ are all based onmultilayer perceptrons (MLP). Specifically, they are implemented
with fully connected linear layers along with dropout layers to prevent overfitting. For the activation func-
tion, we use Exponential Linear Unit (ELU, Clevert et al., 2015) instead of the traditional Rectified Linear
Unit (ReLU). ELU is continuously differentiable, and it is a strong alternative to ReLU.When the input value
goes from positive to negative, ELU becomes smooth slowly whereas ReLU has a sharp turn at zero.

ELU(x) =

{
x x > 0

ex − 1 x ≤ 0
, ReLU(x) =

{
x x > 0
0 x ≤ 0

(15)

gϕ and hφ are designed to share the same first layer, after which the two different adversaries branch out
into their own sequence of layers. This idea is the same as multi-task learning (Ruder, 2017). gϕ and hφ

are expected to be more or less dependent on each other, because the less-exploited people and the worse-
off people have overlaps with each other. Such a multi-task learning network can take advantage of the
similarities between gϕ and hφ to better learn the shared information.

We train and test our model based on the dataset we get from a real-world microloan company described
in Section . We randomly split the whole dataset into training, validation, and testing datasets. 20% of the
whole dataset is used for testing, 16% of the whole dataset is used for validation, and the rest 64% is for
training.

During the training, we alternatively update the learner network and the adversary network, which is the
same as the training strategy ofGAN (Goodfellow et al., 2014). Specifically, in each epoch, we first do forward
propagation to get the loss, calculate the gradients, and update the adversary network’s parameters; then we
do forward propagation again using the updated adversary, and we calculate the loss and the gradients, but
this time we only update the learner network. We repeat the alternatively updating until convergence. The
adversary network plays a role in guiding the learner to learn its parameters during the training. Therefore,
for testing, we use the learner network only to predict the default probability of each borrower. We replicate
our training and evaluation for 10 different runs with 10 different random seeds, and we report the average
results from these runs.

Results

We conducted several experiments to examine the performance of our model. In Section , we compare the
performance of the models with and without the two adversaries. We use a neural network with only the
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Figure 2. Model Architecture. Dotted arrows indicate value passing without gradients.

Features MLP
MLP+

bias adversary
MLP+

both adversaries
MLP+

payoff adversary
XGBoost

All 0.6694 0.6699 0.6947 0.7261 0.5188
Only Conventional 0.4214 0.4167 0.4526 0.4194 0.4546
Only Cellphone 0.4638 0.5103 0.4229 0.5105 0.4625
Only Shopping 0.6099 0.6520 0.6714 0.8673 0.5352

(a) Female’s True Positive Rates under Different Models and Features

Features MLP
MLP+

bias adversary
MLP+

both adversaries
MLP+

payoff adversary
XGBoost

All 0.6238 0.6256 0.6445 0.6135 0.5187
Only Conventional 0.4386 0.4323 0.4691 0.4441 0.4623
Only Cellphone 0.4826 0.5288 0.4423 0.5416 0.4715
Only Shopping 0.5031 0.5621 0.5648 0.6203 0.4819

(b) Male’s True Positive Rates under Different Models and Features

Table 3. True Positive Rates under Different Models and Features

learner module as our baseline model, i.e. removing both gϕ and hφ. We also compare our model with
the model without the adversary hφ, but with gϕ (this degenerates to the setting in Lahoti et al., 2020). In
addition, we also compare the most widely used XGBoost model (Chen and Guestrin, 2016).

Specifically, we calculate the expected profits of the platform based on the predicted approval or nondefault
probability by the neural networks. We also examine the true positive rate (TPR) of the model prediction as
the metric of the borrow welfare. The TPR value implies the opportunity of qualified individuals to receive
favorable outcomes. For theMax-Min Fairness, we examine the minimum TPR for the two gender groups.
In addition, we also examine another popular fairness notion — equal opportunity. Equal opportunity sug-
gests that qualified individuals from different groups should have equal opportunity to receive favorable
outcomes (Hardt et al., 2016), i.e. different groups should have the same TPR. Therefore, we calculate the
TPR difference/gap between the two gender groups to measure equal opportunity.

The Value of Adversary

Table 3a and Table 3b show the true positive rates of female borrowers and and male borrowers respec-
tively. Compared with the baseline model (vanilla MLPmodel without any adversary), the bias adversary gϕ
can help improve the true positive rate of both gender groups when using only cellphone features (female:
0.4638 → 0.5103; male: 0.4826 → 0.5288) or only shopping features (female: 0.6099 → 0.6520; male:
0.5031 → 0.5621). There is no gain on TPR if we use the bias adversary with only conventional features
(female: 0.4214→ 0.4167; male: 0.4386→ 0.4323). When we use all features, the bias adversary can bring
in a small gain in both gender groups’ TPR (female: 0.6694→ 0.6699; male: 0.6238→ 0.6256).

Whenwe use both the bias adversary and the payoff adversary with all features, we can achieve the bestMax-
Min Fairness, i.e. the group minimum TPR reaches its maximum of 0.6445 (Table 4). Specifically, for the
male group, the TPR increases from62.38% to 64.45%; for the female group, the TRP increases from66.94%
to 69.47%. This result is meaningful – using two adversary modules altogether can improve both gender
groups’ welfare. This empirical result is aligned with the theory that a max-min fair allocation is Pareto
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Features MLP
MLP+

bias adversary
MLP+

both adversaries
MLP+

payoff adversary
XGBoost

All 0.6238 0.6256 0.6445 0.6135 0.5187
Only Conventional 0.4214 0.4167 0.4526 0.4193 0.4546
Only Cellphone 0.4638 0.5103 0.4229 0.5105 0.4625
Only Shopping 0.5031 0.5621 0.5648 0.6203 0.4819

Table 4. True Positive Rates of the Worse-off Gender Group under Different Models and
Features — The larger the value is, the better the Max-min Fairness is.

Features MLP
MLP+

bias adversary
MLP+

both adversaries
MLP+

payoff adversary
XGBoost

All 0.0456 0.0443 0.0501 0.1126 0.0001
Only Conventional -0.0172 -0.0156 -0.0165 -0.0247 -0.0077
Only Cellphone -0.0188 -0.0184 -0.0193 -0.0310 -0.0090
Only Shopping 0.1067 0.0898 0.1065 0.2470 0.0532

Table 5. True Positive Rates Gap between the Two Gender Groups under Different Models
and Features (Female’s TPR - Male’s TPR) — The larger the gap is, the more unfair it is in
terms of Equal Opportunity.

optimal (Radunovic and Le Boudec, 2007). Both groups’ welfare increases, because the two adversaries
assign weights to data points rather than execute a hard boundary to focus on the worse-off group only.
Moreover, our model’s TPR values are significantly higher than those of the most popular credit risk model
XGBoost (the last column in the table).

One interesting pattern to note is that, whennon-conventional features are available (especially the shopping
features), the payoff adversary module is largely inclined to approve female borrowers and boost their TPR.
However, the male borrowers cannot benefit as much as the females. And using the payoff adversary alone
would enlarge the gender gap (Table 5). This is aligned with our exploratory analysis in previous sections.
With all features, using both adversaries can benefit males and females simultaneously, increasing both
gender groups’ TPR.

We look into Table 5 to further examine the effectiveness of our bias adversary. Table 5 shows the TPR gap
between the two gender groups. The gap is calculated as the female group’s TPR minus the male group’s
TPR. This gap reflects the equal opportunity fairness notion. When we use conventional features, the bias
adversary decreases the TPR gap absolute value from 1.72% to 1.56% (decrease by 9.5%). When we use the
shopping features, we expect a larger decrease ifwe successfully leverage the shopping features’ triangulation
ability to help an effective bias adversary. Our empirical results show the bias adversary decreases the TPR
from 10.68% to 8.99% (decrease by 15.8%). This suggests that the bias adversary is effectively leveraging
the triangulation to combat bias and improve welfare. We also note that there are some trade-offs between
the payoff adversary and the equal opportunity fairness. Introducing the payoff adversary could lead to less
equal opportunity. But the gap is not a perfect measure of fairness — we still find that the payoff adversary
can increase both groups’ TPR.

We next compare the microloan company’s expected profits under different credit risk models (Table 6).
We observe that introducing non-conventional features can significantly increase the profits compared with
using conventional features only. For the adversary modules, the profits gain mainly comes from the payoff
adversary. When we use the payoff adversary hφ only, we can achieve the maximum payoff of 106,033.56.
When we have both adversaries gϕ and hφ, the profit is 92,565.51, which is a little lower than the maximum
value, because we need to balance the attention of our model putting on the payoff adversary with the bias
adversary. The increase in the profits by the payoff adversary hφ results from its ability to identify under-
exploited borrowers, especially those who default their loan but still bring positive profits to the company.
Both the baseline model and the model with only gϕ would suggest excluding this kind of borrowers. hφ

tends to approve more of such borrowers. Moreover, we observe that all our neural network based models
achieve much higher profits than the XGBoost model.

In addition to the TPR and the profits metrics we are focusing on in our context, we also examine the Area
Under the Curve (AUC). AUC is the most popular and traditional metric to measure how well a model is
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Features MLP
MLP+

bias adversary
MLP+

both adversaries
MLP+

payoff adversary
XGBoost

All 83209.85 84174.73 92565.51 106033.56 39609.42
Only Conventional 32103.20 28507.92 40631.10 89495.33 21847.65
Only Cellphone 34387.21 31442.46 36252.54 60006.25 20971.64
Only Shopping 51470.56 50904.74 54231.40 72530.74 33768.62

Table 6. Total Profits under Different Models and Features

Features MLP
MLP+

bias adversary
MLP+

both adversaries
MLP+

payoff adversary
XGBoost

All 0.8476 0.8484 0.8481 0.7715 0.8503
Only Conventional 0.7031 0.7010 0.7005 0.6400 0.7038
Only Cellphone 0.7369 0.7337 0.7371 0.6975 0.7244
Only Shopping 0.7781 0.7778 0.7778 0.7418 0.7877

Table 7. AUC of Different Models and Features

fitted. It indicates a classifier’s ability to distinguish between classes. Table 7 shows the AUC of different
models and features. We find that under all different features, the AUCs of our model are close to those
of XGBoost. But as Table 3 and Table 6 show, our model outperforms XGBoost in terms of both the bor-
rowers’ TPR and the company’s profits. This suggests that using the traditional AUC metric to measure the
model performance in credit risk prediction scenarios cannot reflect the model’s ability regarding the wel-
fare/profits of the two sides of the market – the borrowers and the company. This further addresses the
importance of our loss function which explicitly incorporates the profits and welfare.

Interpretability Analyses

Our model by design is interpretable in how it works. It assigns larger weights to these less-exploited data
points andworse-off data points during the training, to encourage the learner to improve its performance on
them. In this section, we further provide empirical insights on the mechanisms why our model can achieve
improvements in the TPR and profit. We first examine the characteristics of borrowers approved by differ-
ent models and different features. Figure 3 shows the distribution of the predicted nondefault probabilities
by different models using different feature sets. When we use all features (Figure 3a), we observe that com-
pared with the baseline MLP model (the grey line), the model with the bias oriented gφ adversary (the blue
line) tends to assign a little larger predicted nondefault probabilities to the high-quality borrowers (non-
default borrowers), but smaller ones to low-quality borrowers (default borrowers). In particular, for the
non-defaulter (the two panels in the right column), our model (the orange curve) shows a relatively large
density of high nondefault probability pi. This suggests that the two adversaries together can improve the
true positive rate by making the model to better identify borrowers of high credit quality, which surpasses
all other three models. We also find that the model with the payoff adversary hφ (the purple line) is good at
identifying low-quality borrowers, which assigns a lower predicted nondefault probability to them (see the
left two panels). This suggests the adversary hφ can efficiently exclude low-quality borrowers.

When we compare the traditional features and the shopping features (Figure 3b v.s. Figure 3c), we find that
our two adversaries can achieve larger gains using the shopping features compared with using the conven-
tional features. The bias adversary (blue curve) and the payoff adversary (purple) shift much right in the
right panels of Figure 3c compared with those in Figure 3b. This suggests shopping features are rather help-
ful for identifying high-quality borrowers. However, using shopping features alone can lead to a quite large
gap between two gender groups. The difference between the top-right panel and the bottom-right panel of
Figure 3c is much larger than that of Figure 3b. These findings are consistent with our previous analysis.

We further analyze the weights assigned to each data point. Figure 4 shows the distribution of these weights
on the training dataset. The baseline MLP model does not do a reweighting, so it does not appear in the
figure. It can be viewed as having the same uniform weight for all points. Compared with the baseline
model, the model with only the bias adversary gφ (the blue line) tends to put more weight on learning the
misclassified data points (the left column panels). And the blue curve in the bottom left panel has a higher
density than that of the top left one. This means the weights assigned to misclassified male borrowers are a
little larger than the misclassified female ones (The TPR gap decreases from 0.0456 to 0.0443 in Table 5).
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(c) Only Shopping Features
Figure 3. The distribution of the predicted nondefault probabilities by different models and
features (facet by gender and label).
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Figure 4. The distribution of the weights assigned to each training data point by different
models and features (facet by correctly classified or not and gender).
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Our model (the orange curve) also tends to make more effort to learn the misclassified points during the
training. But it assigns relatively more weights to misclassified females compared with misclassified males.
This is, again, becausewhether a borrowerwould default or not does not perfectly alignwith howmuch profit
the borrower would bring. The introduction of hφ distracts some attention to focus more on reweighting
based on profits. Figure 5 shows how hφ takes care of the problem. These panels show the relationship
between each data point’s profits (y-axis) and the weights assigned to these data points by the adversary hφ

(x-axis). The two panels in the left column show the default borrowers of both genders. There is an apparent
cluster in the top right corner of the two panels. The cluster indicates we are assigning large weights to the
default borrowers who can bring positive profits. And our model spends more effort in the training process
to better identify these borrowers.

When we compare themodel’s behaviors of using the conventional features (Figure 3b) with using the shop-
ping features (Figure 3c). We find that the conventional features are relatively less efficient in utilizing the
bias adversary’s ability to reweight the training data points. The blue curve in Figure 3b has a big peak at the
left tail of the misclassified borrowers (the left two panels). This means conventional features alone cannot
performwell to put more effort into learning the misclassified points. This is why we do not see a significant
improvement in the TPR in Table 3 (female’s TPR changes from 0.4214 to 0.4167, male’s TPR changes from
0.4386 to 0.4323). But for the shopping features, due to their high correlations with gender identity, the
bias adversary (the blue curve in Figure 3c) efficiently assigns larger weights to misclassified data points of
both genders, and puts a little more emphasis on misclassified males compared with misclassified females.
In Table 3, the bias adversary using shopping features increases the female group’s TPR from 0.6099 to
0.6520, and increases the male group’s TPR from 0.5031 to 0.5621.
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Figure 5. The relationship of each data points’ profits (y-axis) and the weights assigned to
them by the adversary hφ (x-axis) (facet by gender and label).

Conclusion and Future Work

In this paper, we propose an adversarial deep learning model for credit risk modeling, which can make use
of algorithms’ ability to triangulate, which is often deemed “troublesome” in fair machine learning research,
in a positive way to increase both borrower welfare and lender profits while improving fairness. We also
account for microloan companies’ consideration of borrower welfare (in addition to profits) and the imper-
fect matching between a borrower defaulting or not and the profit the borrower brings to the company (e.g.,
defaulters may generate a higher profit due to late payment penalties), which are commonly overlooked in
extant literature. We demonstrate our model’s performance on a real-world microloan dataset, which con-
tains not only traditional features used for credit risk prediction, but also features describing borrowers’
digital footprint. Our empirical results suggest that our proposed model performs well in increasing bor-
rowers’ welfare and lenders’ profits, as well as improving fairness in the allocation of financial resources. It
significantly outperforms the currently most popular credit risk model XGBoost in terms of both borrowers’
welfare and lenders’ profits. We also find that the traditional AUC metric is not a suitable metric for credit
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risk prediction, because it is cannot measure the borrowers’ welfare and lenders’ profits well. Our frame-
work can be readily customized for other microloan companies that differ in their emphases on profits and
social welfare. In addition, ourmodel can also be conveniently adapted tomany other scenarios with similar
restrictions on using sensitive attributes, such as job recruiting, college admission, and so on.

Our paper also has several limitations that could be addressed in future research. First, microloan borrowers
are not always one-time borrowers. Many of them keep coming back to apply for loans repeatedly. Our
model has not accounted for borrowers’ sequential decision-making. Second, we do not impose a budget
constraint – the maximum total amount the company can lend at any given time – because the company
that provided us with the data is a leading microloan company and has enough funds. For smaller size
microloan companies, they may face budget constraints whenmaking loan approval decisions. Third, using
these alternative features may raise some privacy concerns. This could be addressed by the development of
more advanced technologies and better data market mechanism designs. One way we can foresee to achieve
this is that our model can be used along with federated learning (Li et al., 2020) and differential privacy
(Abadi et al., 2016) techniques to protect user privacy and at the same time keep most of the predictive
power of data. Despite these limitations, to our best knowledge, this paper is the first to use an adversarial
deep learningmodel to leverage themodel’s ability of triangulation for credit riskmodeling, which addresses
(1) companies’ trade-off among their own profits, borrowers’ welfare and the fairness in the allocation of
financial resources, and (2) the imperfect match between borrowers’ defaults and the profits/loss they bring
to the company.
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