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Abstract: Flavonoids are a group of naturally occurring polyphenolic secondary metabolites which
have been reported to demonstrate a wide range of pharmacological properties, most importantly, an-
tidiabetic and anti-inflammatory effects. The relationship between hyperglycaemia and inflammation
and vascular complications in diabetes is now well established. Flavonoids possessing antidiabetic
properties may alleviate inflammation by reducing hyperglycaemia through different mechanisms of
action. It has been suggested that the flavonoids’ biochemical properties are structure-dependent;
however, they are yet to be thoroughly grasped. Hence, the main aim of this review is to under-
stand the antidiabetic and anti-inflammatory properties of various structurally diverse flavonoids
and to identify key positions responsible for the effects, their correlation, and the effect of different
substitutions on both antidiabetic and anti-inflammatory properties. The general requirement of
flavonoids for exerting both anti-inflammatory and antidiabetic effects is found to be the presence
of a C2–C3 double bond (C-ring) and hydroxyl groups at the C3’, C4’, C5, and C7 positions of both
rings A and B of a flavonoid skeleton. Furthermore, it has been demonstrated that substitution at the
C3 position of a C-ring decreases the anti-inflammatory action of flavonoids while enhancing their
antidiabetic activity. Correlation is discussed at length to support flavonoids possessing essential
pharmacophores to demonstrate equipotent effects. The consideration of these structural features may
play an important role in synthesizing better flavonoid-based drugs possessing dual antidiabetic and
anti-inflammatory effects. A meta-analysis further established the role of flavonoids as antidiabetic
and anti-inflammatory agents.
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1. Introduction

Flavonoids are a type of plant secondary metabolite with a polyphenolic structure,
and they are one of the most common families of natural products (NPs) [1,2]. Flavonoids
exist naturally as aglycones, glycosides, and methylated derivatives, which are abundant
in fruits, vegetables, and some beverages [1,2]. All flavonoids have fifteen carbon atoms in
their fundamental nucleus C6–C3–C6 structure, with several chemical groups substituted.
Flavonoids are categorized into chalcones, flavanones, flavanonols, flavones, flavanols,
isoflavones, flavan-3-ols (catechins), and anthocyanidins based on their chemical structures,
as illustrated in Figure 1. Flavonoids are a large family of NPs that have long been recog-
nized as an essential component in a wide range of nutraceutical, pharmacological, medical,
and cosmetic uses [1–4]. They are also vital substances with various health-promoting
advantages for various disorders, including anticancer, antioxidant, anti-infective, antitoxic,
hepatoprotective, anti-inflammatory, antidiabetic, and antiviral properties [3–9]. However,
the anti-inflammatory and antidiabetic properties of flavonoids will be highlighted in
this review, as the link between diabetes and inflammation has garnered interest among
researchers [10,11].
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Diabetes is one of the chronic diseases that can lead to death, and it was the seventh-
highest cause of death in the United States in 2017 based on 83,564 death certificates [12].
According to WHO figures, diabetes was the direct cause of 1.5 million fatalities in 2019 [13].
Diabetes is a complicated metabolic illness that affects the body’s glucose levels. It arises
when the pancreas produces insufficient insulin or when the body cannot efficiently use
the insulin produced [10,13]. Hyperglycaemia, or elevated blood sugar, is a frequent com-
plication of untreated diabetes and can cause catastrophic damage to various physiological
systems, including the retina, kidneys, nerves, heart, and blood vessels [10,13]. Numer-
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ous concepts and hypotheses have been presented to elucidate the mechanisms typically
involved in the pathophysiology of diabetes. One of the well-established views is that
inflammation has a role in the development of diabetes [10,14]. In type 1 diabetes (T1D), the
pancreas cannot produce enough insulin due to pancreatic beta-cell death. There are several
inflammatory mediators involved during cell death, such as T-cell effectors directed against
a variety of beta-cell autoantigens and related peptide epitopes; immune B cells undergo
some modifications during illness progression; macrophages are essential mediators of
islet inflammation by reactive oxygen species because of their direct toxicity to beta cells;
dendritic cells, natural killer cells, and natural killer T cells may play a function in this
pathophysiology process [10]. On the other hand, numerous cellular stressors that lead to
inflammation are being hypothesised, which lead to insulin disorder and sensitivity in type
2 diabetes (T2D). The stressors include oxidative stress, reticular endoplasm stress, pan-
creas amyloid deposition, muscle, liver, and pancreatic ectopic deposition, gut microbiota,
lipotoxicity, and glucotoxicity [10,15].

The rising significance of inflammation in T1D and T2D has increased interest in
targeting inflammation to enhance disease prevention and treatment. Timely, encouraging
preliminary results are shown in the clinical studies employing both T1D and T2D anti-
inflammatory therapy, such as monoclonal antibodies and IL-1 antagonists, IKKbeta-NF-
kappaB inhibitors (salsalate), and tumour necrosis factor (TNF) inhibitors, and supported
the inflammation role in this context [10,15]. As previously discussed, flavonoids are
one of the NPs that have been reported to exert both antidiabetic and anti-inflammatory
effects. Based on several studies, flavonoids with antidiabetic characteristics can reduce
inflammation via several pathways. The studies reported that apart from their antidiabetic
effects, flavonoids such as quercetin, rutin, kaempferol, fisetin, morin, and luteolin also
lower reactive oxygen species, proinflammatory signalling, oxidative stress [16–18], and
lipotoxicity, which lead to improvement in inflammatory status [19–24]. It has been claimed
that the biochemical features of flavonoids are structurally dependent but are not yet fully
understood. As a result, the primary goal of this review is to identify critical locations
responsible for the antidiabetic and anti-inflammatory activities of numerous structurally
diverse flavonoids, their correlation, and the influence of alternative substitutions on the
same properties.

Distinguished scientific databases and search engines, namely, Google Scholar, Springer
Link, Science Direct, Scopus, Wiley Online Library, PubMed, and Web of Science were
thoroughly considered to find the relevant references and literature to complete this re-
view. Additionally, the refereed non-indexed journals were also taken into consideration
to collect all key information and to make certain that no well-documented information
was left out. In this regard, a total of 102 articles from 2000 to 2022 focusing on diabetes,
inflammation, polyphenolic compounds, flavonoids, the in vitro antidiabetic effects of
flavonoids, the in vivo antidiabetic effects of flavonoids, the in vitro anti-inflammatory ef-
fects of flavonoids, the in vivo anti-inflammatory effects of flavonoids, the structure–activity
relationship study of flavonoids for in vitro antidiabetic effects, the structure–activity rela-
tionship study of flavonoids for in vivo antidiabetic effects, the structure–activity relation-
ship study of flavonoids for in vitro anti-inflammatory effects, and the structure–activity
relationship study of flavonoids for in vivo anti-inflammatory effects, which were identified
as keywords. After thorough study and investigations of all searched articles, 67 research
manuscripts were finally selected to gather all the required information.

2. Anti-Inflammatory Activity of Flavonoids

Flavonoids have been reported to exert anti-inflammatory activity through different
ways. Mutoh et al. evaluated the inhibitory activity of twelve different flavonoids on
the transcription of the cyclooxygenase-2 (COX-2) gene in a human colon cancer cell line,
namely DLD-1 cells [25]. The flavonoids included quercetin (1), rhamnetin (2), genistein (3),
eriodyctiol (4), luteolin (5), kaempferol (6), fisetin (7), phloretin (8), catechin (9), epicatechin
(10), epigallocatechin (11), and myricetin (12). It was discovered that 1 was the most
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potent COX-2 transcription suppressor, whereas 9 and 10 had the least inhibitory action.
Briefly, 1 belongs to the flavonol class, and 10 belongs to the flavan-3-ol class; however,
the presence of C2–C3 bond unsaturation and the oxygenation at C4 in 1 is thought
to be responsible for its suppressing capabilities. It was also reported that the C2–C3
double bond of the C-ring, as can be seen in 4 and 5, caused a minute effect on COX-
2 transcriptional activity. Next, all tested flavonoids with a 4-oxo group were potent
suppressors of COX-2 transcriptional activity, except 12, which concluded that oxygen
at C4 is critical for bioactivity. It was also corroborated by the fact that the compounds
without oxygen at C4, such as 9, 10, and 11, showed either minimum or no inhibitory effect.
Subsequently, it was discovered that the number of hydroxyl groups on the B-ring may
be substantial in COX-2 transcriptional activity. It was supported by the findings which
stated that compounds containing hydroxyl groups at C3′ and C4′, such as 4, 7, 5, 1, and 2,
can significantly suppress COX-2 transcription. Meanwhile, compounds that bear three
hydroxyl groups on the B-ring such as 11 and 12 had an absence of inhibitory activity. The
free 7-hydroxyl group with low electron density in the A-ring was a significant structural
feature for the suppression of COX-2 transcriptional activity. The authors concluded that the
presence of a 4-oxo group in the C-ring, a 3′,4′-dihydroxy (catechol/1,2-dihydroxybenzene
moiety) structure in the B-ring, and a low electron density in the 7-oxygen group in the
A-ring are required for exerting anti-inflammatory activity via the suppression of COX-2
transcriptional activity, as shown in Figure 2.
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inhibition [25].

Next, flavonoids have also been reported to exert their anti-inflammatory activity
through lipoxygenase (LOX) enzyme inhibition. Redrejo-Rodriguez et al. studied the
inhibitory activity of LOX enzymes of four different flavonoids, namely, quercetin (1),
luteolin (5), catechin (9), and taxifolin (13) [26]. It has been proposed that the flavonoids’
planar structure has a significant role in determining their inhibitory capacity. Additionally,
it was also reported that the polar nature of flavonoid molecules did not prevent them from
interacting with the LOX catalytic centre. Moreover, it was discovered that flavonoids’ LOX
inhibitory effect is attributable to the C2–C3 double bond in the C-ring and the hydroxyl
group at C-3′ and C-4′ in the B-ring. On the other hand, the presence of hydroxyl groups at
C3 of the C-ring reduces the inhibitory activity.

Ribeiro et al. conducted a systemic investigation on the inhibition of the generation of
leukotriene B4 (LTB4) and neutrophils by synthetic and natural flavonoids [27]. Figure 3
depicts the chemical structure of flavonoids that prevent the production of LTB4. In
descending order of potency, the most active compounds were discovered to be luteolin
(5), 3′,4′-dihydroxyflavone (14d), 3′,4′,7-trihydroxyflavone (16d), 3′,4′,5-trihydroxyflavone
(15d), and quercetin (1). As reported by the authors, all the above-mentioned compounds
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contained catechol moiety in the B-ring, which may be responsible for the inhibitory activity.
It was also reported that the number of hydroxyl groups in the A-ring did not appear to be
a factor for the inhibition. However, the presence of a hydroxyl group at the C3 of the C-17c
ring significantly reduced the LTB4 inhibitory activity, which was proved by compound
1 which exerted 2.5 times less potent inhibition than 5. Next, 5 was shown to be more
effective than 1, possibly due to the latter’s high hydroxyl group count, which reduces
hydrophobicity and inhibits flavonoid intercalation in the hydrophobic cavity that serves
as the enzyme’s active site access channel. After that, the C2–C3 double bond appeared to
be important for the inhibition as the tested flavanones had lower potency compared to
flavones and flavonols. Cases 1 and 5 were reported to exhibit higher inhibition than non-
planar compounds, 13. Therefore, it can be said that planarity may influence flavonoids’
ability to interact with LOX enzymes. Notably, in order to demonstrate LTB4 enzyme
inhibition, the structure–activity relationship study signalled the catechol group in the
B-ring, the number and position of hydroxyl groups, the double bond between C2 and C3,
and planarity appear to influence the inhibitory activity.
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Additionally, using linoleic acid as a substrate, Sadik et al. studied the anti-inflammatory
effects of 18 flavonoids on rabbit reticulocytes and soybean 15-LOX [28]. Firstly, it was
discovered that the phenolic hydroxyl groups were not required for the inhibition. The
hydroxyl group at C3 was found to be non-essential for inhibition, as evidenced by the
luteolin’s (5) greater effectiveness than the quercetin (1). Apart from that, the presence
of catechol moiety in the A-ring or B-ring can increase the inhibitory action. Following
that, sugar moiety can significantly reduce the inhibition as it can decrease flavonoids’
hydrophobicity, which leads to a decrease in affinity towards LOX’s active site. The absence
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of the C2–C3 double bond of the C-ring appeared to decrease the inhibitory action as
depicted by naringenin (18), hesperidin (19), epicatechin (10), and taxifolin (13). On the
other hand, 1 that bears the C2–C3 double bond was reported to be more potent than
the abovementioned flavonoids. The authors discussed that the C2–C3 double bond is
significant as it completes a conjugated binding system that extends through all three
rings and the carbonyl group of the C-ring, thereby stabilising the complexes or radical
intermediates generated by flavonoids.

Similarly, Loke et al. compared the activity of quercetin (1) and its primary metabolites
in suppressing inflammatory eicosanoid production from human leukocytes, demonstrat-
ing the role of metabolic transformation on flavonoid bioactivities [29]. Figure 4 shows 1
and its metabolites used in the test. Briefly, 1 potently inhibited LTB4 synthesis in leuko-
cytes, and its activity was found to depend on the specific structural properties, specifically
the C2–C3 double bond in the C-ring. It is a structural necessity for 1 to inhibit LTB4 since
its absence eliminated the inhibitory activity. Furthermore, conjugation at the 3′-OH of 1
such as 3′-O-methylquercetin (20) and quercetin-3′-O-sulfate (21) decreased LTB4 inhibition
by up to half, and glucuronidation at the 3-OH such as quercetin-3-O-glucuronide (22) and
3′-O-methylquercetin-3-O-glucuronide (23) also greatly diminished the LTB4 inhibitory
action. Interestingly, the 3′-OH of the B-ring was more important in inhibiting LTB4 than the
3-OH of the C-ring. This was demonstrated when 1 was compared to structural analogues
such as luteolin (5) and kaempferol (6) since the structural analogues exhibited a drop-in
activity compared to 1 due to the absence of 3-OH in the C-ring (as seen in compound 5)
and 3′-OH in the B-ring (as shown in compound 6).
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leukocytes [29].

Odontuya et al. studied the SAR for the anti-inflammatory effect of flavonoids that
were isolated from several plants [30]. There were five flavonoids that had been studied.
Firstly, luteolin (5), cynaroside (24), and cesioside (25) were isolated from H. corniculata.
Then, isoorientin (26) was obtained from G. tenella and G. azurea, as well as stereolensin
(27) from P. rotundifolia and P. incarnata. The structures of these flavonoids are shown in
Figure 5. All these phenolic compounds were tested against the synthesis of LTB4 and
thromboxane B2 (TXB2). The results reported that 5 had the highest inhibition on both
LTB4 and TXB2 synthesis compared to other compounds. Then, it was followed by 24 and
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25, with moderate inhibition on both syntheses. Meanwhile, 26 and 27 selectively showed
good TXB2 inhibition. From the bioactivity studies, a structural activity relationship was
summarized. For the non-selective inhibition of TXB2 and LTB4 synthesis, the authors
discussed that in the A-ring, the presence of hydroxyl group at C7 and meta hydroxyls
at C5 and C7 were important. In addition, the presence of ortho hydroxyl groups at C3′

and C4′ on B-ring also plays an important role in the inhibition. It was proved that the
absence of these three characteristics will decrease the inhibition as demonstrated in 24
and 25. For selective TXB2 synthesis inhibition, the structures of 26 and 27 were studied. It
was reported that the direct attachment of the sugar moieties to OH- or carbon at C6 of the
A-ring while retaining flavone basic hydroxyl groups will improve the inhibition against
TXB2 synthesis.
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Figure 5. Flavonoids studied for their anti-inflammatory effect [30].

Li et al. evaluated a diverse array of flavonoids 38 in number for their anti-inflammation
potential through their COX-2 mRNA inhibition [31]. Then, a quantitative structure–activity
relationship (QSAR) model was conducted to summarize the structural characteristics of
flavonoids that were responsible for exerting good COX-2 mRNA inhibition. The results
showed that the methoxy group at C4′ may increase the inhibition activity. In addition,
the substitution of glucopyrasonyl at C8 instead of C6 can increase the COX-2 mRNA
inhibition. It was proved that C-glycosylated luteolin (5) and apigenin (17c) showed greater
inhibition compared to their isomers. In contrast, sugar substitutions and the -OH group
at C3 caused lower COX-2 mRNA inhibition. Similarly, the C2–C3 double bond was also
responsible for the decrease in inhibition.

Wu et al. isolated three flavonoids from a famous traditional Chinese medicinal
plant, Murraya paniculata (L.) Jack (Rutaceae) [32]. Then, the isolated phenolic compounds
(Figure 6) were subjected to anti-inflammatory effect evaluation on the murine macrophage
cell line and gastric epithelial cell (GES-1). The results reported that all compounds exerted
anti-inflammatory effects. Based on the results, the authors summarized three structural
characteristics that can improve anti-inflammatory effects. Firstly, methylation at the A-ring
may influence the positive impact of the anti-inflammation of flavonoids. In contrast, the
substitution of the methoxy group with other groups in the B-ring and the hydroxyl group
in the A-ring will reduce anti-inflammatory activity. The influence of the hydroxyl group
in the A-ring on reducing the activity can be seen in compound 30 as it had the weakest
activity among the three compounds.
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Bello et al. examined three flavonoids isolated from Vitex grandifolia which is tradition-
ally used by the Yoruba community in southwest Nigeria to treat various disorders [33]. The
flavonoids were identified as isoorientin (26), orientin (31), and isovitexin (32) (Figure 7).
The anti-inflammatory activity of the compounds was evaluated by using two different
assays, viz., nuclear factor kappa B (NF-κB) inhibition and inducible nitric oxide synthase
(iNOS) inhibition. The results showed that all compounds exerted good inhibition against
NF-κB, with IC50 values of 8.9, 12, and 18 µg/mL for 26, 31, and 32, respectively. On
the other hand, only 32 exhibited moderate activity for iNOS inhibition with an IC50 of
21 µg/mL. Meanwhile, the other two compounds, viz., 26 and 31, showed poor iNOS inhi-
bition (IC50 = 48 and 54 µg/mL, respectively). The authors discussed the structure–activity
relationship of these three flavonoids. Firstly, the C2–C3 double bond might influence the
anti-inflammatory activity of flavonoids. Next, the -OH groups at C3′ and C4′, as shown in
26 and 31, can increase the anti-inflammatory activity. In addition, the presence of sugar
moiety in the A-ring compared to the B- and C-rings will lead to better anti-inflammatory
activity.
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López-Posadas et al. studied 14 flavonoids’ anti-inflammatory effects on rat spleno-
cytes and carried out their structure–activity relationship [34]. Five different in vitro assays,
viz., iNOS inhibition, COX-2 inhibition, the inhibition of cytokine secretion, antiprolifera-
tive activity on splenocytes, and the reduction in splenocytes’ viability were conducted to
understand the anti-inflammatory effect of these flavonoids. Firstly, for iNOS inhibition,
apigenin (17c), luteolin (5), and quercetin (1) portrayed complete inhibition; meanwhile,
diosmetin (17f) and chrysin (17a) showed weak inhibition. On the other hand, hesperidin
(19), kaempferol (6), genistein (3), and daidzein (33) were reported to be completely inac-
tive against iNOS. For COX-2 inhibition, only 17c and 17f exerted inhibition. The authors
discussed the structural requirements needed for both iNOS and COX-2 inhibition. It was
highlighted that the presence of hydroxyl groups at the C2′ and C4′ of the B-ring may
influence both activities. In contrast, methoxy and hydroxyl groups at C3 can reduce the
iNOS inhibition. Secondly, for the inhibition of cytokine production such as TNF-α, IFN-γ,
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and IL-2, it was reported that all tested flavonoids showed good and effective inhibition.
The authors summarized five structural requirements for the inhibition of cytokine pro-
duction. The C2–C3 double bond, C4′ hydroxyl group, C3′ hydroxyl group, the absence
of the C3 hydroxyl group, and the C5 hydroxyl group favoured the cytokine production
inhibition. Moreover, the introduction of sugar moiety at C3 needs to be avoided as it
causes a complete reduction in inhibition. Thirdly, similarly, all flavonoids showed excellent
antiproliferative activity on both unstimulated splenocytes and concanavalin A-treated
cells. It was also mentioned that about an average of 40% of splenocytes were reduced after
the addition of the selected flavonoids. The C2–C3 double bond and the B-ring hydroxyl
groups, particularly the C5 hydroxyl group, were reported to be important to these antipro-
liferative activities. Lastly, the reduction in splenocytes’ viability was also assessed. It was
discussed that the 1, 17c, 5, and 3 displayed stronger activity compared to other flavonoids.
The authors mentioned that the C3′ and C4′ hydroxyl groups can increase the activity of
the reduction in splenocytes’ viability.

Comalada et al. evaluated the effect of naturally occurring flavonoids viz. kaempferol
(6), quercetin (1), apigenin (17c), chrysin (17a), diosmetin (17f), luteolin (5), daidzein (33),
genistein (3), and hesperidin (19) on the macrophages derived from the bone marrow of
mice [35]. The anti-inflammatory action on the macrophages and the structural activity
analysis were conducted through three in vitro tests. Firstly, the antiproliferation effect
on the macrophage colony-stimulating factor (M-CSF) was studied. The results showed
that flavones (17f and 5) and flavonols (6 and 1) exhibited the significant inhibition of
M-CSF–macrophage proliferation. Meanwhile, isoflavones and flavanones displayed weak
antiproliferative activity. Therefore, it can be concluded that the iso-position of the B-
ring and the absence of the C2–C3 double bond can lead to lower antiproliferative activity.
Secondly, the effect of flavonoids on the inhibition of TNF-α was conducted. It was reported
that 5, 1, and 3 exerted good TNF-α inhibition. The authors discussed that the C3′ and C4′

hydroxyl groups as in luteolin and 1 favoured the inhibition. In addition, the one hydroxyl
group as in 3 can also lead to better TNF-α inhibition. The author stressed that the absence
of hydroxyl groups in the B-ring was detrimental and led to the negative results of TNF-α
inhibition. Thirdly, iNOS inhibition showed that 1, 17c, 5, and 17f were able to inhibit
iNOS and nitric oxide (NO) at low concentrations. The authors mentioned that the B-ring
position, the C2–C3 double bond, and the hydroxyl group will influence the inhibition.
Lastly, the authors suggested that 5 and 1 are the best naturally occurring flavonoids as
anti-inflammatory agents due to the abovementioned characteristics.

Takano-Ishikawa et al. compared the structure–activity relationship of inhibition
on lipopolysaccharide-induced prostaglandin E2 (PGE2) production in rat peritoneal
macrophages between flavonoids subclasses [36]. There were 39 flavonoids studied, which
were divided into five subclasses, namely flavones, flavonols, flavanones, isoflavones, and
flavan-3-ols. It was reported that flavones, flavonols, flavanones, and isoflavones showed
good inhibition of PGE2 production. In contrast, flavan-3-ol displayed weak inhibition. The
C2–C3 double bond and 4-oxo of C-ring were discussed to be the important characteristics
of a good inhibitor. In addition, the authors stressed that the absence of the C2–C3 double
bond will lead to a loss of inhibition activities. When the tested flavonoids were compared,
it was reported that the hydroxyl groups at the C5 and C7 positions led to a lower IC50
value, indicating better inhibition compared to the compounds without OH groups at
C5 and C7. Similarly, in isoflavones alone, the hydroxyl group at C5 was reported to
show better activity compared to compounds without the -OH residue at C5. Meanwhile,
in flavones and flavonols, the absence of hydroxyl groups in the B-ring showed better
inhibition compared to compounds that had OH groups such as at C3′ and C4′.

Kim et al. evaluated the effect of naturally occurring flavonoids on NO production in
the macrophage cell line [37]. Among the 26 tested flavonoids, apigenin (17c) and luteolin
(5) showed good inhibition with IC50 values of 23 and 27 µM, respectively. Meanwhile,
naringenin (18) and apiin (34) showed the weakest inhibition with IC50 values up to 100 µM.
The authors proposed that the C2–C3 double bond and the 5,7-dihydroxy groups at the



Int. J. Mol. Sci. 2022, 23, 12605 10 of 35

A-ring favoured the inhibition of NO production. In addition, methoxy groups at C8 of
the A-ring and the 4′ or 3′,4′-vicinal substitutions at the B-ring may also lead to better
inhibition. In contrast, the 3-OH at the C-ring showed weaker activity which can be seen
in flavonol derivatives such as flavonol, galangin (35), and quercetin (1). As mentioned
before, 18, a flavanone derivative, showed the weakest activity. Hence, it can be concluded
that the C2–C3 double bond and the planar ring are important structural requirements to
exhibit good inhibition of NO production.

An et al. synthesized several flavone derivatives and evaluated their anti-inflammatory
action via NO inhibition [38]. As depicted in Figure 8, the synthetic pathway was started
with the reaction between chromanones and pinacol boronic esters. The final compounds
were 36a–y, and their chemical structures are demonstrated in Figure 8. It was reported
that 36g which contained hydroxyl groups at C3′ and C4′ of the B-ring showed maximum
inhibitory action compared to other synthesized compounds. Therefore, the authors
concluded that the catechol group may be responsible for NO inhibition. The statement
was also supported by the fact that 36e with a hydroxyl group at C4′ exerted better NO
inhibition than 36f with methoxy groups at C3′ and C4′. Halogenation at C4′ as shown in
36i, 36j, and 36k either slightly lowered or showed no increase in the NO inhibitory action.
Similarly, the authors reported that trimethylsilyl (TMS), alkyl, or aryl substituents at the
C4′ position did not increase the inhibition action. Pivaloyloxy group at C7 of the A-ring
and the hydroxyl groups at C5 and C7 as shown in 36v–y exhibited moderate inhibitory
action but still showed lower activity than 36g, which possesses hydroxyl groups at the C3′

and C4′ positions.
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Liu et al. isolated several flavonoids from Artocarpus heterophyllus and tested their NO
inhibitory activities [39]. The chemical structures of the isolated compounds are shown in
Figure 9. The authors reported that compounds 39 and 40 exhibited significant inhibitory
action compared to other isolated compounds. On the other hand, 38 and 41 were among
the compounds that showed the weakest activities. Therefore, the authors concluded that
the presence of hydroxyl groups at C5 and C7 of the A-ring, as well as at C4′ of the B-ring,
were assumed to influence the flavonoids’ NO inhibitory activities.



Int. J. Mol. Sci. 2022, 23, 12605 11 of 35Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 35 
 

 

O

OH

O

37
38

O

O

O

O

OH
O

39

O

OH

OOH

OH

OH

40

O

OH

OOH

OH

41

O

OO

O

O

O

 

Figure 9. Chemical structure of isolated flavonoids from A. heterophyllus [39]. 

Zhang et al. investigated the inhibition of IL-8 released by lipopolysaccharide-stim-

ulated bronchial epithelial cells by 17 flavonoids [40]. It was found that apigenin (17c) and 

luteolin (5) exerted the most significant inhibition compared to other flavonoids. Both 

compounds contained hydroxyl groups at the C5 and C7 positions of the A-ring, the C2–

C3 double bond, and oxygenation at C4 of C-ring. Therefore, it can be said that these 

structural features are important in the inhibitory activity. It was also discovered that chal-

cones with a broken C-ring, such as phloretin (8), exhibited equal efficacy to 17c, indicat-

ing that the co-planar structure was not required or essential for inhibition. Pelargonidin 

(42), on the other hand, demonstrated poorer inhibition than 17c and 8 in the absence of a 

C2–C3 double bond but with a closed C-ring, indicating that the C2–C3 double bond is a 

significant structural characteristic. Flavans, (+)-catechin (9), and (−)-epicatechin (10) with 

no C2–C3 double bond also had lower activity. After that, daidzein (33) and genistein (3) 

with the absence of hydroxyl groups at the C5 and C7 positions, respectively, had weak 

inhibition of LPS-induced IL-8 release. Therefore, the findings support the statement that 

the hydroxyl groups at the C5 and C7 positions of the A-ring are important for inhibitory 

action. Next, the authors mentioned that the hydroxyl group at the C3 position of the C-

ring, as can be seen in naringenin (18), can improve inhibitory action.  

Ueda et al. evaluated the inhibition of flavonoids against TNF-α production and dis-

cussed the related structural features that are responsible for inhibition [41]. For an in vitro 

study, it was found that apigenin (17c), luteolin (5), quercetin (1), and myricetin (12) in-

hibited LPS-induced TNF-α that had been produced from a macrophage. Therefore, the 

authors hypothesized that the presence of hydroxyl groups at the C5 and C7 positions of 

the A-ring, as well as at the C4′ position of the B-ring, seemed to be important features. 

Moreover, galangin (35) and chrysin (17a) exhibited weaker and an absence of inhibitory 

activities, respectively, when compared. Therefore, it can be suggested that an absence of 

the hydroxyl group at C4′ of the B-ring can reverse or reduce the bioactivity. Following 

that, for in vivo assay, the tested flavonoids were orally supplied to mice. It was reported 

that 5 and 17c decreased serum TNF-α production after oral administration. The presence 

of hydroxyl groups at the C4′ (B-ring), C5, and C7 (A-ring) positions seemed to be im-

portant for oral inhibition, as both 5 and 17c contained these features. Furthermore, as 5 

exhibits stronger inhibition, the hydroxyl group at the C3′ position of the B-ring may be 

responsible for the greater inhibition observed with 5.  

Figure 9. Chemical structure of isolated flavonoids from A. heterophyllus [39].

Zhang et al. investigated the inhibition of IL-8 released by lipopolysaccharide-
stimulated bronchial epithelial cells by 17 flavonoids [40]. It was found that apigenin
(17c) and luteolin (5) exerted the most significant inhibition compared to other flavonoids.
Both compounds contained hydroxyl groups at the C5 and C7 positions of the A-ring,
the C2–C3 double bond, and oxygenation at C4 of C-ring. Therefore, it can be said that
these structural features are important in the inhibitory activity. It was also discovered that
chalcones with a broken C-ring, such as phloretin (8), exhibited equal efficacy to 17c, indi-
cating that the co-planar structure was not required or essential for inhibition. Pelargonidin
(42), on the other hand, demonstrated poorer inhibition than 17c and 8 in the absence of a
C2–C3 double bond but with a closed C-ring, indicating that the C2–C3 double bond is a
significant structural characteristic. Flavans, (+)-catechin (9), and (−)-epicatechin (10) with
no C2–C3 double bond also had lower activity. After that, daidzein (33) and genistein (3)
with the absence of hydroxyl groups at the C5 and C7 positions, respectively, had weak
inhibition of LPS-induced IL-8 release. Therefore, the findings support the statement that
the hydroxyl groups at the C5 and C7 positions of the A-ring are important for inhibitory
action. Next, the authors mentioned that the hydroxyl group at the C3 position of the
C-ring, as can be seen in naringenin (18), can improve inhibitory action.

Ueda et al. evaluated the inhibition of flavonoids against TNF-α production and
discussed the related structural features that are responsible for inhibition [41]. For an
in vitro study, it was found that apigenin (17c), luteolin (5), quercetin (1), and myricetin
(12) inhibited LPS-induced TNF-α that had been produced from a macrophage. Therefore,
the authors hypothesized that the presence of hydroxyl groups at the C5 and C7 positions
of the A-ring, as well as at the C4′ position of the B-ring, seemed to be important features.
Moreover, galangin (35) and chrysin (17a) exhibited weaker and an absence of inhibitory
activities, respectively, when compared. Therefore, it can be suggested that an absence of
the hydroxyl group at C4′ of the B-ring can reverse or reduce the bioactivity. Following that,
for in vivo assay, the tested flavonoids were orally supplied to mice. It was reported that
5 and 17c decreased serum TNF-α production after oral administration. The presence of
hydroxyl groups at the C4′ (B-ring), C5, and C7 (A-ring) positions seemed to be important
for oral inhibition, as both 5 and 17c contained these features. Furthermore, as 5 exhibits
stronger inhibition, the hydroxyl group at the C3′ position of the B-ring may be responsible
for the greater inhibition observed with 5.

Jiang et al. synthesized 19 flavanonols and evaluated their NO inhibitory action in
RAW macrophage 264.7 cells, as well as discussed the structural activity relationship [42].
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The synthesized compounds are shown in Figure 10. It was reported that 17e with dihy-
droxy groups at C2′ and C3′ exerted the maximum NO inhibition when compared to other
synthesized compounds. Briefly, 43a, 43b, and 43g that contained one hydroxyl group
either at C2′ or C3′ also exhibited significant inhibition, albeit weaker than 43e. Therefore,
it was proved that hydroxyl groups at C2′ and C3′ are important structural requirements
for NO inhibition. The fact was further corroborated when the methylation of C2′-OH,
C3′-OH, or both C2′ and C3′-OH, as can be seen in 43j, 43k, and 43n, respectively, caused
inactivity. It was also reported that substitution at the C4′ position, as seen in 43c, 43f, and
43h, can lead to weaker inhibitory action.
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Figure 10. Chemical structures of new flavanonol derivatives [42].

Culenova et al. isolated several prenylated flavonoids from the root bark of Morus alba
L. (Moraceae), commonly known as mulberry. The isolated prenylated flavonoids, namely,
kuwanon C (43s), kuwanon T (43t), sanggenon H (43u), morusin (43v), morusinol (43w),
cyclomorusin (43x), kuwanon S (43y), kuwanon E (43z), and kuwanon U (43za) (Figure 11)
were evaluated for their in vitro anti-inflammatory ability to inhibit cyclooxygenase 2
(COX-2). Of the prenylated flavonoids tested in this study, kuwanon E showed the most
potent inhibitory effect. The replacement of the hydroxyl group at C-4′ by a methoxyl
in the compound kuwanon U diminished the in vitro inhibitory activity against COX-2,
confirming the importance of a polar functional group at this position. Kuwanon E showed
significantly better inhibitory activity than kuwanon C (p < 0.01), morusinol (p < 0.01), and
cyclomorusin (p < 0.05). It was revealed that flavonoids with an isoprenyl group at C-3
(including 43s) were weak COX-2 inhibitors with less activity than the reference inhibitor,
i.e., indomethacin. The results also showed that, in comparison to 43s, modifications of the
isoprenyl moieties at C-3 and C-8 in 43w did not significantly influence the activity [43].
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Lin et al. further evaluated the anti-inflammatory and antioxidative activities of mul-
berry (M. alba L.) leaf flavonoids. Initially, different ethanol concentration (30%, 50%, and
75%)-based extracts were prepared to obtain flavonoid-rich extracts. These extracts inhib-
ited the production of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide
synthase (iNOS), cyclooxygenase-2 (COX-2), and inflammatory cytokines in lipopolysac-
charide (LPS)-induced RAW 264.7 cells. All extracts increased the antioxidative capacity
by decreasing the reactive oxygen species (ROS) production and the scavenging of 2,2-
diphenyl-1-picrylhydrazyl (DPPH) free radicals and improving the metal ion chelating
activity and reducing power. The results revealed that the extract prepared using 30%
ethanol exhibited the best anti-inflammatory and antioxidative activities. The LC-MS
analysis revealed the presence of 24 different flavonoids in the resultant extracts. Finally, a
nontargeted metabolomic analysis confirmed that quercetin (1), kaempferol (6), and their
derivatives in 30% ethanol extract were more abundant than the other two extracts and
may be the main flavonoids involved in anti-inflammatory and antioxidative effects. Fur-
thermore, 30% ethanol extract of mulberry leaf was also evaluated for the pharmacological
activities in dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mice. The same
extract alleviated the clinical symptoms, reduced the secretion of inflammatory cytokines,
and inhibited the activation of the inflammatory pathway in DSS-induced colitis mice [44].

Another interesting structure–activity relationship-based study was conducted by
Wang et al. to uncover the anti-inflammatory potential of flavones. They investigated
and summarized commonly applied in vitro, in vivo, and clinical models in testing the
anti-inflammatory activity of flavones. They systematically mapped the anti-inflammatory
structure–activity relationship of flavones and performed the cross-comparisons of that
with flavanones, flavanols, and isoflavones. They found out that the hydroxyl groups (-OH)
are indispensable for the anti-inflammatory function of flavones, and -OH at the C-5 and
C-4′ positions were found to enhance, while -OH at the C-6, C-7, C-8, and C-3′ positions
was found to diminish their activity. Moreover, the C2–C3 single bond and -OH at the
C-3 and B-ring positions weakened flavone aglycones’ activity. It was also discovered that
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most of the flavone aglycones showed activity through the NF-κB, MAPK, and JNK-STAT
pathways, and their possible cell binding targets were found to be kinase, aryl hydrocarbon
receptor (AhR), G-protein coupled receptors, and estrogen receptors [45].

3. Antidiabetic Activity of Flavonoids

Flavonoids have been reported to demonstrate antidiabetic effects through various
molecular mechanisms of action. Kato et al. investigated the structural requirements of
flavonoids with glycogen phosphorylase inhibitory activity. Glycogen phosphorylase is
one of the enzymes that catalyse the breakdown of glycogen into glucose in the liver, and
its inhibition has been shown to modulate the glucose level associated with T2D [46]. The
researchers discovered a flavone called quercetagetin (3,3′,4′,5,6,7-hexahydroxyflavone (44),
which bears hydroxyl groups at six different positions to be the most efficient of all the
flavonoid compounds examined. The positions include C3 of the C-ring, C3′ and C4′ of
the B-ring as well as C5, C6, and C7 of the A-ring. After that, it was summarized that the
presence of hydroxyl groups at C3′ and C4′ in the B-ring and the C2–C3 double bond were
found to be critical variables for inhibition, as is illustrated in Figure 12.
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Matsuda et al. studied the aldose reductase inhibitory action of flavonoids and the
structure–activity relationship [47]. Aldose reductase is a central enzyme in the polyol
pathway that has been shown to catalyze glucose reduction to sorbitol, which has been
linked to a diabetic impact. There are several important structural features that have been
discussed by the authors. Firstly, it was found that flavones with no hydroxyl group at
position C5 of the A-ring had equivalent bioactivity when compared to chrysin (17a) that is
bearing C5-OH. It was hypothesized that the hydroxyl group at C5 may not be essential
for inhibition against aldose reductase. Then, it was reported that diosmetin 7-O-β-D-
glucopyranoside (45) had weaker inhibition compared to diosmetin (17f). Therefore, it
can be assumed that 7-O-glucosyl moiety can lead to a reduction in inhibitory action. The
presence of the hydroxyl group at C3 was shown to reduce inhibition, which is supported
by the fact that 3-O-methyl or 3-O-monosaccharide derivatives are better inhibitors than the
comparable free flavonols at the C3 position. Next, apigenin (17c) inhibited more effectively
than kaempferol (6), implying that the presence of the 3-OH group is not essential for the
higher inhibition. Lastly, the authors mentioned that flavonoids with catechol moiety at the
B-ring (hydroxyl groups at C3′ and C4′) demonstrated better inhibition than flavonoids
with pyrogallol moiety (hydroxyl groups at C3′, C4′, and C5′ positions).

Matsuda et al. [48] further investigated the structural requirements of flavonoids for
the suppression of advanced glycation end-products (AGEs) production. AGEs are one of
the consequences of persistent hyperglycaemia, a condition that diabetic individuals endure.
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It was proposed that increasing the number of hydroxyl groups at C3′ and C4′ of the B-ring,
as well as the C5 and C7 locations of the A-ring, can increase flavones’ inhibition against
AGE production. Following that, the methylation or glycosylation (i.e., the introduction of
sugar moiety) of the hydroxyl group at C3′ or C4′ can reduce the inhibitory action of AGE
production. It was also shown that the direct attachment of a sugar moiety to the OH group
of the C7 position at the A-ring of flavones and isoflavones decreased inhibitory action.
However, the methylation of the flavonols hydroxyl group at C3 of the C-ring appeared to
boost activity.

Next, Matsuda et al. investigated the effect of 44 flavonoids on the adipogenesis of 3T3-
L1 adipocyte cells [49]. The structural analysis that had been summarized by the authors
reported that most flavonoids bearing hydroxyl groups lacked the effect of promoting
the accumulation of triglyceride (TG), which acts as a marker of adipogenesis. However,
flavonols with methoxy groups exerted a stronger escalation of TG concentration, especially
those with a methoxy group at the C3 position. Flavonol’s methoxy group at the B-ring
was also found essential for increasing TG.

Jung et al. investigated a prenylated flavonol called sophoflavescenol (46) (Figure 13)
for its antidiabetic potential [50]. Briefly, 46 was extracted from a Northeast Asian perennial
shrub called Sophora flavescens Ait. This study experimented with the inhibition of 46
against rat lens aldose reductase (RLAR), human recombinant aldose reductase (HRAR),
and advanced glycation end products (AGE). For RLAR inhibition, 46 showed a significant
IC50 value (0.30 µM) when compared to the control, epalrestat (0.07 µM). For HRAR
inhibition, 46 also showed a remarkable IC50 value (0.17 µM) compared to the control,
epalrestat (IC50 0.15 µM). Meanwhile, for AGE inhibition, 46 portrayed a stronger inhibition
with a lower IC50 value (17.89 µg/mL) when compared to the control, aminoguanine (IC50
81.05 µg/mL). The authors discussed that there are three important structural characteristics
that contributed to the remarkable RLAR, HRAR, and AGE inhibitions. Firstly, flavonols
with a prenyl group at the C8 position and C3′,4′-dihydroxyl groups lead to more potent
inhibition. Next, the presence of the methoxy group at C-5 also caused stronger inhibition.
Lastly, the essential structural characteristic that contributed to the strong inhibition is the
presence of the hydroxyl group at the C-4′ position.
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Yang et al. reported the identification of 30 different phenolic compounds from the
rhizomes of Potentilla anserina L. [51]. All compounds were tested for their α-glucosidase
inhibitory effect by using acarbose as a positive control. As it is well known, inhibiting
α-glucosidase is critical in the management of T2D because α-glucosidase catalyses the
hydrolysis of starch to simple sugar. All compounds that have been discussed here are
displayed in Figure 14. It was reported that several prominent structural characteristics
play an important role in stronger inhibition. Firstly, the dimerization of flavonoids was
found to be responsible for stronger inhibition. It was proved that compounds 47 and
50–54 belong to the biflavonoid category and portrayed remarkable IC50 values, which
ranged from 2.57 to 8.96 µM. Next, the substitution of the gallolyl moiety instead of the
glucose moiety at C-2” can significantly improve the inhibition activity. It can be seen in
compound 49 with the gallolyl moiety at C-2” (IC50 = 1.05 µM) compared to compounds 48
with the glucose moiety and 1 (82.47 and 75.80 µM). The presence of a hydroxyl group in
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the B-ring was discovered to be essential, as evidenced by compound 55′s weak inhibition
(IC50 = 155.57 µM).
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Hmidene et al. studied the effect of five simple flavonols 56a–e and glucuronirated
flavonols 56f–i from Tamarix gallica on α-glucosidase inhibitory activity [52]. The acarbose
was used as a positive control. The chemical structures of all the compounds tested are
elucidated in Figure 15. It was reported that all nine compounds showed a dose-dependent
inhibition and portrayed higher inhibition compared to acarbose. Based on compounds 56a
and 56e, it was suggested that the hydroxyl group at C3′ with glucuronic acid and methyl
ester was responsible for α-glucosidase inhibition.
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Figure 15. The structures of flavonoids isolated from T. gallica [52].

Da Silva et al. investigated the in vivo antidiabetic activity of kaempferol derivatives
that were isolated from Sedum dendroideum leaf extract [53]. There were five derivatives
tested in streptozotocin-induced diabetic mice for acute hypoglycaemic activity. The
compounds tested are shown in Figure 16. It was reported that rhamnosyl units at positions
3 and 7 were responsible for the hypoglycaemic activity. In other words, a rhamnosyl unit
at position C3 is important as it is present in kaempferitrin (57) but not in 58 and 59, and
the results showed 57 had higher hypoglycaemic activity compared to 58 and 50. Next,
to test the importance of the rhamnosyl unit at C7, 60 (with rhamnosyl unit at C7) and 61
(without rhamnosyl unit at C7) were tested. The results supported that a rhamnosyl unit
at C7 is important as 60 exhibited hypoglycaemic activity after 120 min, but 61 showed
activity after 60 min and lost activity at 120 min.
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Figure 16. The structures of flavonoids isolated from S. dendroideum [53].

Proença et al. evaluated the series of 40 flavonoids for an in vitro α-glucosidase
inhibition. The compounds were grouped into five groups [54]. After testing all the
compounds’ α-glucosidase inhibitory activity against acarbose, the authors created a
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pattern of structural characteristics that were responsible for the activity. The pattern
was created based on the most active compounds with IC50 values of 7.6 ± 0.4 µM and
15 ± 3 µM. Based on Figure 17, the presence of hydroxyl groups at the C5 and C7 or C8
positions of the A-ring is important. Next, the hydroxyl groups at C3′ and C4′ of the B-ring
were also important for the inhibition. Then, in the C-ring, the C2–C3 double bond and
the hydroxyl group at C3 were important. Furthermore, the authors mentioned that the
position and amount of hydroxyl groups were the determinants for the α-glucosidase
inhibition of flavonoids.
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Figure 17. The SAR of flavonoids for α-glucosidase inhibition activity [54].

Similarly, Proença et al. studied the same series of 40 flavonoids. However, the bioac-
tivity tested was slightly different, in which inhibition against pancreatic α-amylase was
evaluated [55]. Like α-glucosidase inhibition, α-amylase inhibition is also considered one
of the T2D management, as it catalyses the hydrolysis of starch to simple sugar. Acarbose
was also used in this study as a positive control. It was revealed that the compound with
the most effective inhibition was 62 (3-chloro-3′,4′,5,7-tetrahydroxyflavone) with an IC50
value of 44 ± 3 µM. Then, based on this most-active compound, an activity pattern was
created by the authors. Based on Figure 18, it was found that the presence of a Cl atom at C3
and the C2–C3 double bond of the C-ring was important for strong inhibition. Furthermore,
the presence of hydroxyl groups at C5 and C7 of the A-ring, as well as C3′ and C4′ of the
B-ring was also responsible for α-amylase inhibition. In addition, the authors discussed
that the position and nature of substituents were also the determinants for the α-amylase
inhibition of flavonoids.
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Next, Jia et al. studied several dietary flavonoids for their α-glucosidase inhibitory
and insulin-sensitizing potentials [56]. For α-glucosidase inhibition, 27 dietary flavonoids
were tested against a positive control, acarbose. The results revealed that three compounds
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demonstrated remarkable inhibition based on the IC50 value. The values reported were
myricetin (12) (IC50 = 11.63± 0.36 µM) > apigenin-7-O-glucoside (63) (IC50 = 22.80± 0.24 µM)
> fisetin (7) (IC50 = 46.39 ± 0.34 µM). Then, by using the 3D-quantitative structure-activity
relationship model, structural characteristics that were needed for good inhibition were
summarized. There are four important characteristics that can be seen in Figure 19. Firstly,
an electron-donating group and hydrogen bond acceptor groups at C4′ of the B-ring can
improve the inhibition. In the same B-ring, bulky, minor, electron-withdrawing groups
and hydrogen bond donors were favoured at the meta-position. Next, minor and electron-
donating groups, as well as hydrogen bond donor groups, were favoured at C3 of the
C-ring. After that, at C7 of the A-ring, bulky and hydrogen acceptor groups were favoured.
Then, for insulin sensitization activity, all compounds were tested by using molecular
docking and in vitro evaluation with insulin-resistant HepG2 cells. The results showed
five flavonoids that exerted good insulin sensitization activity which were baicalein (64),
isorhamnetin-3-O-rutinoside (65), 63, kaempferol-7-O-β-glucoside (66), and cyanidin-3-O-
glucoside (67). There was no structural analysis conducted on these five flavonoids for
insulin sensitization. However, from both studies, the authors concluded that compound
63 can be used in diabetes management in the future as it exerted excellent activity in both
α-glucosidase inhibition and insulin sensitization.
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Potipiranun et al. isolated several flavonoids to test their activities on antidiabetic
complication (AGE inhibition) and α-glucosidase inhibition [57]. Three flavanones, two
chalcones, and two dihydrochalcones were isolated from Boesenbergia rotunda, which is
known as fingerroot. Based on Figure 20, flavanones consist of pinocembrin (68), pinos-
trobin (69), and alpinetin (70). Meanwhile, chalcones are cardamomin (71) and boesenber-
gin B (72), whereas dihydrochalcones are panduratin A (73) and isopanduratin (74). For
the evaluation of AGE inhibition, two methods were conducted, namely AGE inhibition
assay and methylglyoxal (MG) trapping activity. MG is a known precursor of glycation.
It was reported that most compounds showed greater AGE inhibition than the control,
aminoguanidine. Then, for MG trapping activity, all compounds showed comparable
activities compared to aminoguanidine. Briefly, 68 was the most active compound for MG
trapping activity, with an EC50 value of 63.22 ± 10.12 µM. By using the structure of 68 and
other compounds, the SAR of flavonoids on the MG trapping activity was summarized.
Firstly, hydroxy groups can improve the inhibition, while methoxy and geranyl groups
can reduce the inhibition. Next, the presence of a methoxy group at the C7 position of
dihydrochalcone can improve the activity compared to methoxy groups at the C5 position.
After that, for α-glucosidase inhibition, only bioactivity studies were conducted, while no
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SAR was conducted. It was reported that 68 also demonstrated an inhibitory effect against
α-glucosidase.
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Figure 20. The structures of flavonoids isolated from B. rotunda [57].

Xiao et al. reviewed an α-glucosidase inhibitory effect of dietary flavonoids and
summarized important structural characteristics that were responsible for the inhibition [58].
The summary of the characteristics that influenced the inhibition is illustrated in Figure 21.
Based on Figure 21, the presence of hydroxyl groups at C6 of the A-ring and C3′ and C5′

of the B-ring can increase the activity of flavonoids on α-glucosidase inhibition. Next, the
galloylation of the hydroxyl group of C3 of the C-ring can also influence the inhibition.
In contrast, the hydrogenation of C2=C3 of the C-ring, as well as the attachment of sugar
moiety to the hydroxyl groups of C3 of the C-ring and C7 of the A-ring, would decrease
the inhibitory activity.
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Mahapatra et al. reviewed all SAR studies that were related to the antidiabetic activities
of chalcones from 1977 to 2014 [59]. Then, the authors narrowed down the activities into
four different effects, namely, the protein tyrosine phosphatase 1B (PTP1B) inhibitory effect,
the α-glucosidase inhibitory effect, the aldose reductase (ALR) inhibitory effect, and the
peroxisome proliferator-activated receptor (PPAR) gamma-activating effect. The role of
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α-glucosidase and ALR was discussed previously. Meanwhile, PTP1B is a prime enzyme
responsible for insulin receptor desensitization, and the activation of PPAR gamma plays a
critical role in glucose homeostasis by regulating cellular differentiation and development,
and the metabolism of carbs, lipids, and proteins [60,61]. All structural characteristics
that influenced the bioactivities have been summarized and illustrated. Firstly, based on
Figure 22, there are several characteristics that influenced the PTP1B inhibition of chalcones.
The hydroxyl groups, electron-withdrawing groups, methylation at C3′, and the hydroxyl
groups at C2′ and C4′ of the A-ring can improve the inhibition. Meanwhile, electron-
donating groups; methyl groups substitution with the -OH of C4; allyloxyl groups at the
-O of C4; demethylation at C3 and C4; and allyl group at C5 of the B-ring may increase the
inhibition. After that, for α-glucosidase inhibition, based on Figure 23, hydroxyl groups
and sulphonamide groups at C3′ or C4′ of the A-ring can lead to better inhibition. Next,
for ALR inhibition, four structural characteristics that were found to be important for
ALR inhibition can be seen in Figure 24. The aromatic ring for both the A and B-rings,
unsaturation at Cα and Cβ, and hydroxyl groups at C2′ and C4′ of the A-ring are essential.
Meanwhile, the introduction of a thioglycolic group at the A-ring will increase the ALR
inhibition. Lastly, for PPAR-gamma activation, the methoxy group at C4 of the B-ring, as
well as hydroxyl groups at C4′ and C5′ of the A-ring, will increase the activation (Figure 25).
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Du et al. synthesized several flavonoid derivatives to be tested as PPAR-γ agonists [62].
The synthesized flavonoids are shown in Figure 26. It was discovered that 75c–d and 76b
(EC50 = 3.30, 13.61 and 3.55 µM, respectively) exerted higher activity compared to the
control, bavachinin (EC50 = 18.74 µM). Then, the authors reported that removing the
C7-methoxy group which can be seen in 75a or removing the C6-isopentenyl chain and
then replacing it with a geranyl chain (as can be seen in 75e) can reduce the PPAR-γ
activation. In contrast, the replacement of isopentenyl with isopentyl at C6 of the A-ring
(75d) can improve the activity. The presence of an electron-donating group (75b) or electron-
withdrawing group (75c) at C3′ was found to increase the PPAR-γ activation. Moreover, it
was found that the activity was reduced by oxidising the C-ring of flavanone 75b to flavone
75a. Interestingly, oxidising the C-ring of flavanone 75d to produce flavone 76b boosted
PPAR-γ activation.
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Figure 26. The chemical structures of studied flavonoids for PPAR-γ activation [62].

Gao et al. synthesized several flavone derivatives and investigated the effect of the
A-ring hydroxyl groups on α-glucosidase inhibition [63]. The flavones that were discussed
are shown in Figure 27. It was reported that 77a with trihydroxyl groups was the most
potent inhibitor, with an IC50 value of 45 µM. Then, it was found that compounds 77b–j in
which there was an absence of any hydroxyl group at C5, C6, and C7 showed either weaker
inhibition or inactivity. Most importantly, 77g without C6-OH showed no inhibition, which
led the authors to conclude that C6-OH is essential for inhibitory action. Next, 77t was
also shown to exert weaker inhibition when the hydroxyl group was added to position
C8, despite having three hydroxyl groups pattern at C5, C6, and C7. Following that, the
inclusion of an electron-withdrawing or electron-donating group at C8, as can be seen
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in 77n–q and 77s–u, resulted in either inactivity or became weak in terms of inhibition,
despite the fact that 77r lost a little amount of activity. Compound 77v that contained bulky
piperidino-methyl group at C8 was also found inactive. Hence, the researchers speculated
that 77r’s less bulky fluorine at C8 was responsible for its moderate activity compared to
others. It can be concluded that C6-OH and substitution at C8 can influence the inhibition.
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Figure 27. The chemical structures of synthesized flavone derivatives that were investigated for
α-glucosidase inhibition [63].

Sarian et al. isolated several flavonoids from the Tetracera indica (Houtt. ex Christm.
and Panz.) Merr. (Dilleniaceae) and Tetracera scandens (Linn.) Merr. (Dilleniaceae) leaf
extracts and then evaluated their antidiabetic effects via α-glucosidase and dipeptidyl pepti-
dase IV (DPP-4) inhibition assays [64–67] (Table 1). The role of α-glucosidase is as discussed
previously; meanwhile, the DPP-4 enzyme is involved in the breakdown of incretins such
as glucagon-like peptide-1 (GLP-1), then inhibiting it and consequently lengthening the
half-life of GLP-1, thereby extending the half-life of insulin. For α-glucosidase inhibition,
the authors revealed that quercetin (1) possessing a catechol moiety showed the highest
inhibition compared to other isolated compounds. Isoscutellarein (78) and kaempferol
(6) with C4-OH showed weaker inhibition compared to 1. Therefore, the catechol group,
in which the hydroxyl groups at C3′ and C4′ of the B-ring, were thought to be crucial in
α-glucosidase inhibition. Next, for DPP-4 inhibitory action, 1, 78, hypoletin (79), and 6
showed remarkable inhibition. The presence of hydroxyl groups can be considered to affect
the inhibitory effect of DPP-4. The absence of a C2–C3 double bond and a 4-oxo group can
further reduce the inhibition of α-glucosidase and DPP-4, according to the results of the
study.
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Table 1. In vitro anti-inflammatory and antidiabetic activities of flavonoids.

Anti-Inflammatory Activities

References Flavonoids Assay Negative
Control

Activity of
Flavonoids

Std
Dev

Positive
Control

Std
Dev

[25]

Quercetin (1)

Suppressive
action on the

transcriptional
activity of the
COX-2 gene in
human colon
cancer DLD-1

cells
Reporter gene

assay

N/A

IC50 10.5 µM 0.7

N/A N/A

Rhamnetin (2) IC50 18.6 µM 2.1

Genistein (3) IC50 20.7 µM 1.4

Eriodyctiol (4) IC50 22.0 µM 0.2

Luteolin (5) IC50 22.0 µM 0.4

Kaempferol (6) IC50 39.3 µM 2.1

Fisetin (7) IC50 47.9 µM 2.9

Phloretin (8) IC50 52.5 µM 3.4

Catechin (9) IC50
415.3 µM 25.4

Epicatechin (10) IC50
415.3 µM 17.0

Epigallocatechin (11) IC50
>500 µM -

Myricetin (12) IC50
>500 µM -

[27]

5
Inhibition of the

generation of
leukotriene B4

(LTB4) by human
neutrophils

N/A

IC50 1.6 µM 0.3

Nordihydroguaiaretic
acid (NDGA), IC50

56.6 µM
2.5

3′,4′-dihydroxy flavone (14d) IC50 1.7 µM 0.1

3′,4′,7-trihydroxy flavone (16d) IC50 2.0 µM 0.7

3′,4′,5-trihydroxy flavone (15d) IC50 2.9 µM 0.8

1 IC50 4.0 µM 1.2

[28]

1

Inhibition on
rabbit

reticulocyte
15-LOX-1

N/A

IC50 4.0 µM N/A

N/A N/A

5 IC50 0.6 µM N/A

Naringenin (18) IC50 250 µM N/A

Hesperidin (19) IC50 90 µM N/A

10 IC50 60 µM N/A

Taxifolin (13) IC50 25 µM N/A

1

Inhibition on
soybean LOX L-1 N/A

IC50 4.5 µM N/A

N/A N/A
5 IC50 3.0 µM N/A

13 IC50
1000 µM N/A

[29]

1 Inhibitory effect
on LTB4

production
N/A

IC50 2.0 µM N/A

N/A N/A3′-O-methylquercetin (20) IC50 2.0 µM N/A

Quercetin-3′-O-sulfate (21) IC50 2.0 µM N/A

[32]

28 Anti-
inflammatory

effect on murine
macrophage cell
line and gastric
epithelial cell

(GES-1)

N/A

IC50
53.40 µM

N/A N/A N/A29 IC50
120.98 µM

30 IC50
10.73 µM
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Table 1. Cont.

Anti-Inflammatory Activities

References Flavonoids Assay Negative
Control

Activity of
Flavonoids

Std
Dev

Positive
Control

Std
Dev

[33]

Isoorientin (26)

Nuclear factor
kappa B (NF-κB)

inhibition
N/A

IC50
8.9 µg/mL N/A

Parthenolide, IC50
0.9 µg/mL N/AOrientin (31) IC50

12.0 µg/mL N/A

Isovitexin (32) IC50
18.0 µg/mL N/A

26

Inducible nitric
oxide synthase

(iNOS) inhibition

IC50
48.0 µg/mL N/A

Parthenolide, IC50
0.18 µg/mL N/A31 IC50

54.0 µg/mL N/A

32 IC50
21.0 µg/mL N/A

[37]

Apigenin (17c)

Inhibition of NO
production

7-
Nitroindazole,

IC50 >
100 µM

IC50 23 µM N/A

2-amino-5,6-dihydro-6-
methyl-4H-1,3-thiazine
Hydrochloride (AMT),

IC50 0.09 µM

N/A

5 IC50 27 µM N/A

18 IC50
>100 µM N/A

Apiin (34) IC50
>100 µM N/A

Galangin (35) IC50
>100 µM N/A

1 IC50 107 µM N/A

[39]

37

Inhibition of NO
production N/A

IC50
19.87 µM 0.21

Hydrocortisone, IC50
3.83 µM 0.12

38 IC50
15.69 µM 0.16

39 IC50 9.19 µM 0.07

40 IC50
10.32 µM 0.08

41 IC50
18.43 µM 0.19

Antidiabetic activities

References Flavonoids Assay Negativecontrol Activity of
flavonoids

Std
Dev

Positive
control

Std
Dev

[46]

Quercetagetin
(3,3′,4′,5,6,7-

Hexahydroxyflavone
[44])

Glycogen phosphorylase
inhibition N/A IC50 9.7 µM N/A N/A N/A

[47]

Chrysin (17a)

Rat lens aldose reductase (RLAR)
inhibition

N/A

IC50 8.5 µM N/A

N/A N/A

Diosmetin
7-O-β-D-

glucopyranoside
(45)

IC50 23.0 µM N/A

Diosmetin (17f) IC50 8.5 µM N/A

17c IC50 2.2 µM N/A

6 IC50 10.0 µM N/A

[50] Sophoflavescenol
(46)

Rat lens aldose reductase (RLAR)
inhibition N/A IC50 0.30 µM 0.06 Epalrestat, IC50

0.07 µM 0.00

Human recombinant aldose
reductase (HRAR) inhibition N/A IC50 0.17 µM 0.03 Epalrestat, IC50

0.15 µM 0.01

Advanced glycation end products
(AGE) inhibitory activity N/A IC50

17.89 µM 1.44 Aminoguanidine, IC50
81.05 µM 0.35
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Table 1. Cont.

Anti-Inflammatory Activities

References Flavonoids Assay Negative
Control

Activity of
Flavonoids

Std
Dev

Positive
Control

Std
Dev

[51]

47

α-glucosidase inhibition N/A

IC50 8.96 µM 0.90

Acarbose, IC50
28.06 µM 0.82

48 IC50
82.47 µM 0.22

1 IC50
75.80 µM 0.81

49 IC50 1.05 µM 0.03

50 IC50 3.76 µM 0.17

51 IC50 2.57 µM 0.25

52 IC50 3.02 µM 0.54

53 IC50 2.99 µM 0.86

54 IC50 3.22 µM 0.01

55 IC50
155.57 µM 1.27

[55] 62 Pancreatic α-amylase inhibition N/A IC50 44 µM 3.0 Acarbose, IC50 1.3 µM 0.2

[57]

12

α-Glucosidase inhibition N/A

IC50
11.63 µM 0.36

Acarbose, IC50 0.59 µM 0.14
Apigenin-7-O-

glucoside
(63)

IC50
22.80 µM 0.24

7 IC50
46.39 µM 0.34

Pinocembrin (68) α-Glucosidase inhibition (Sucrase
activity) N/A IC50 0.39 µM 0.02

Acarbose N/A

Pinocembrin (68) α-Glucosidase inhibition (Maltase
activity) N/A IC50 0.35 µM 0.021

[62]

75a

PPAR-γ agonism N/A

EC50
47.07 µM N/A

Bavachinin, EC50
18.74 µM N/A

75b EC50
11.25 µM N/A

75c EC50
3.30 µM N/A

75d EC50
13.61 µM N/A

75e EC50
114.33 µM N/A

75f Inactive N/A

76a EC50
42.53 µM N/A

76b EC50
3.55 µM N/A

[63]

77a

α-Glucosidase inhibition N/A

IC50 45 µM N/A

N/A N/A
77r IC50 86 µM N/A

77t IC50 960 µM N/A

77u IC50
1000 µM N/A
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Table 1. Cont.

Anti-Inflammatory Activities

References Flavonoids Assay Negative
Control

Activity of
Flavonoids

Std
Dev

Positive
Control

Std
Dev

[64]

1

α-Glucosidase inhibition

IC50
4.92 µg/mL 7.06

Quercetin
(commercial), IC50

4.30 µg/mL
1.06

Isoscutellarein
(78)

IC50
7.15 µg/mL 0.96

6 IC50
12.19 µg/mL 4.63

Hypoletin (79) IC50
48.42 µg/mL 9.71

1

DPP-4 inhibition

IC50
21.75 µg/mL 5.81

Sitagliptin, IC50
24.51 µg/mL 1.01

78 IC50
22.32 µg/mL 1.52

6 IC50
45.93 µg/mL 8.61

79 IC50
34.89 µg/mL 7.44

In Figure 28a,b, the meta-analysis for anti-inflammatory and antidiabetic assays activi-
ties is shown based on the data given in Table 1. Due to incomplete data, only two studies
from the inhibition of the NO production assay and three studies from the inhibition of
the α-glucosidase of flavonoids were included in the meta-analysis, as summarized in
Figure 28a,b, respectively.
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Figure 28. (a) Forest plot from meta-analysis of antidiabetic (inhibition of α-glucosidase) activity.
(b) Forest plot from meta-analysis of anti-inflammatory (inhibition of NO production) activity.

Figure 28a shows the meta-analysis using a fixed effect model. It has revealed that the
flavonoids, particularly those containing substitutions at positions 5, 3′, and 4′, showed a
notable α-glucosidase inhibitory effect (MRAW = 1.1046 (95% CI: 0.1065–2.1027) overall. A
total of k = 17 studies were included in the analysis. The observed standardized mean differ-
ences ranged from−37.1429 to 140.5504, with the majority of estimates being positive (59%).
Therefore, the average outcome differed significantly from zero (z = 2.1690, p = 0.0301).
According to the Q-test, the true outcomes appear to be heterogeneous (Q (16) = 168.4474,
p < 0.0001, I2 = 90.5015%).

Figure 28b shows the meta-analysis using a fixed effect model. It revealed that the
flavonoids possessing substitutions at the 5, 3′, and 4′ positions of the A-ring and the B-ring,
respectively, showed a notable inhibition of NO production activity (MRAW = −4.9200
(95% CI: −5.6975 to −4.1424). A total of k = 30 studies were included in the analysis. The
observed standardized mean differences ranged from−13.8567 to 74.8310, with the majority
of estimates being negative (80%). Therefore, the average outcome differed significantly
from zero (z = −12.4014, p < 0.0001). According to the Q-test, the true outcomes appear to
be heterogeneous (Q (29) = 155.3766, p < 0.0001, I2 = 81.3357%).

In contrast, the inhibition of the generation of leukotriene B4 (LTB4) by human neu-
trophils, nuclear factor kappa B (NF-κB) inhibition, the inhibition of the generation of
leukotriene B4 (LTB4) by human neutrophils, pancreatic α-amylase inhibitory activity, rat
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lens aldose reductase (RLAR) inhibitory activity, human recombinant aldose reductase
(HRAR) inhibitory activity, the advanced glycation end products (AGE) inhibitory activity
assay, and the DPP-4 enzyme inhibitory assay were performed as only one study; therefore,
a heterogenic analysis was not possible.

4. Analysis of the SAR of Flavonoids as Anti-Inflammatory and Antidiabetic Agents

As earlier described, inflammation is strongly associated with diabetic pathogenesis
in both T1D and T2D. As a result, an antidiabetic drug possessing anti-inflammatory capa-
bilities has the great potential to be a promising treatment for both T1D and T2D ailments.
Flavonoids have been identified as one of several therapeutic therapies for diabetes mellitus
due to their remarkable dual antidiabetic and anti-inflammatory capabilities.

According to the findings in this review (Table 2, Figure 29), hydroxyl groups at the
C5 and C7 positions in the A-ring, as well as hydroxyl groups at the B-ring, especially C3′

and C4′, seem to be crucial for flavonoids to exert anti-inflammatory effects via a variety of
mechanisms, including the inhibition of COX-2, LOX, LTB4, iNOS, NO, TNF-α, PGE2, and
IL-8. Moreover, the C2–C3 double bond and C=O at C4 in the C-ring are also found to be
important for the anti-inflammatory action of flavonoids. The inclusion of a sugar moiety
and hydroxyl group, particularly at the C3 position of the flavonoids skeleton, on the other
hand, can reduce anti-inflammatory activity.
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Figure 29. The SAR of flavonoids as anti-inflammatory agent.

Similarly, according to Table 2 and Figure 30, numerous studies have been reported to
demonstrate that hydroxyl groups at the C3′, C4′, C5, C6, and C7 positions are required
for flavonoids to exhibit antidiabetic activity such as against glycogen phosphorylase,
aldose reductase, AGE, and α-glucosidase. It has also been discovered that glycosyl and
geranyl moieties instead of the hydroxyl group at C7 can reduce flavonoids’ antidiabetic
effect. The presence of the C2–C3 double bond has also been observed to be critical for
flavonoids’ antidiabetic activity. Furthermore, multiple investigations further reported
that the substitution of hydroxyl groups at C3 with several functional group moieties
such as methoxy, sugar-like rhamnose, galloyl group, and chlorine atom can increase the
antidiabetic activity of flavonoids.
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Table 2. Important structural characteristics of different classes of flavonoids as anti-inflammatory and
antidiabetic activities. The up arrow means increasement and the down arrow means decreasement
of the activity.

Anti-Inflammatory Activity of Flavonoids

References
A-Ring B-Ring C-Ring

C5 C6 C7 C8 C2′ C3′ C4′ C5′ C2 C3 C4

[25] OH ↑ OH ↑ OH ↑ OH ↑ C2=C3 ↑ C=O ↑

[26] OH ↑ OH ↑ C2=C3 ↑ OH ↓

[27] OH ↑ OH ↑ C2=C3 ↑ OH ↓

[28] Catechol moiety ↑ Catechol moiety ↑ C2=C3 ↑ C=O ↑

[29] Conjugation
of OH ↓ C2=C3 ↑ Glucuronidation

of OH ↓

[30] OH ↑
Glycosylation
of OH or C

↑
OH ↑ OH ↑ OH ↑

[31] Glucopyranosyl
↑ OMe ↑ C2=C3 ↓

OH and
sugar

moiety ↓

[32] Methylation ↑
OH ↓

[33] Glycosylation ↑ OH ↑ OH ↑ C2=C3 ↑

[34] OH ↑ OH ↑ OH ↑ OH ↑ OH ↑ C2=C3 ↑ Sugar
moiety ↓

[35] OH ↑ OH ↑ C2=C3 ↑

[36] OH ↑ OH ↑ C2=C3 ↑ C=O ↑

[37] OH ↑ OH ↑ OMe ↑ OH ↑ OH ↑ C2=C3 ↑ OH ↓

[38] OH ↑ OH ↑

[39] OH ↑ OH ↑ OH ↑

[40] OH ↑ OH ↑ C2=C3 ↑ OH ↑ C=O ↑

[41] OH ↑ OH ↑ OH ↑ OH ↑

[42]
OH ↑

Conjugation
of OH ↓

OH ↑
Conjugation

of OH ↓

Substitution
↓

Antidiabetic activity of flavonoids

References
A-Ring B-Ring C-Ring

C5 C6 C7 C8 C2′ C3′ C4′ C5′ C2 C3 C4

[46] OH ↑ OH ↑ C2=C3 ↑

[47]
Sugar
moiety
↓

OH ↑ OH ↑ OH ↓

[48] OH ↑

OH ↑
Glycosylation
of OH
↓

OH ↑
Conjugation

of OH ↓

OH ↑
Conjugation
of OH ↓

Methylation
of OH ↑

[49] OMe ↑

[50] OMe ↑ Prenyl
group ↑ OH ↑ OH ↑

[51]
Gallolyl
moiety ↑

OH ↑
OH ↑ OH ↑ OH ↑
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Table 2. Cont.

Anti-Inflammatory Activity of Flavonoids

References
A-Ring B-Ring C-Ring

C5 C6 C7 C8 C2′ C3′ C4′ C5′ C2 C3 C4

[52] OH ↑

[53]
Rhamnosyl
moiety
↑

Rhamnosyl
moiety ↑

[54] OH ↑ OH ↑ OH ↑ OH ↑ OH ↑ C2=C3 ↑ OH ↑

[55] OH ↑ OH ↑ OH ↑ OH ↑ C2=C3 ↑ Cl ↑

[56]

Bulky
group
and H
bond
accep-

tor
↑

Minor
group
and

EDG ↑

[57] OH ↑

[58] OH ↑
Glycosylation
of OH
↓

OH ↑ OH ↑ C2=C3 ↑

Galloylation
of OH ↑
Glycosylation
of OH ↓

[59] OH ↑ OH ↑ OH ↑ OMe ↑

[62] Isopentyl
moiety ↑

Geranyl
moiety
↓

EDG or
EWG ↑

[63] OH ↑ OH ↑ OH ↑ OH ↓
F ↑

[64] OH ↑ OH ↑ C2=C3 ↑ C=O ↑
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Figure 30. The SAR of flavonoids as an antidiabetic agent.

Figure 31 illustrates the effect of flavonoids and their structure-activity relationship
with antidiabetic and anti-inflammatory activities [9,11,14–23]. As a result, based on
Figures 29 and 30, flavonoids benefit from the presence of the C2–C3 double bond and the
hydroxyl groups of the C3′, C4′, C5, and C7 positions due to their overlapping significant
structural features for the manifestation of both anti-inflammatory and antidiabetic effects
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(Figure 31). However, it was discovered that substituting several moieties at C3 can lower
the anti-inflammatory activity of flavonoids, whereas it can increase their antidiabetic
activity (Table 2). Hence, the suitable bio-isosteres at the C3 position of the flavonoid
scaffold possessing both antidiabetic and anti-inflammatory properties may help to discover
potent therapeutic agents to treat both ailments efficaciously.
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Figure 31. The SAR of flavonoids as dual action via anti-inflammatory and antidiabetic effects.
Flavonoids have been reported to reduce diabetes complications, improve insulin secretion and
pancreatic β cell mass, reduce β cell apoptosis, hepatic glucose output, insulin resistance, and
circulating fatty acids, and downregulate ROS and inflammation markers such as IL-β and IL-6,
Tnf-α, COX-2, and i-NOS.

5. Conclusions

Flavonoids are one of the major secondary metabolites of plants that have been
reported to demonstrate various pharmacological effects including antidiabetic and anti-
inflammatory activities. Since flavonoids comprise the same core scaffold, the functional
variation is largely associated with the presence of different substituent groups in the
different positions of the flavonoid’s skeleton. Flavonoid–protein (viz. enzymes, receptors,
transporters, and transcription factors) interactions are important phenomena dictating the
flavonoids’ beneficial distinct pharmacological properties. The relationship between the
chemical constitution fragment and pharmacological effects has revealed that the presence
of appropriate bio-isosteres as side chains can significantly affect the biological activity of
flavonoids on the same target receptor. Hence, the structure–activity relationship analysis
of flavonoids is important in understanding the dual mechanistic view of flavonoids in
demonstrating the anti-inflammatory and antidiabetic effects. It can be concluded that
for a flavonoid molecule to exert anti-inflammatory and antidiabetic activities together,
the presence of a C2–C3 double bond (C-ring) and hydroxyl groups at positions C3′, C4′

(B-ring), C5, and C7 (A-ring) are essential structural requirements. Substitution at the C3
location, on the other hand, has been shown to lower flavonoids’ anti-inflammatory activity
while increasing their antidiabetic activity. Therefore, the modification of these positions
with the introduction of appropriate bio-isosteres will certainly play an important role in
synthesizing more potent flavonoid-based drugs possessing essential pharmacophores to
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display equipotent antidiabetic and anti-inflammatory effects. Different in vitro assays
using a variety of biological test systems should further be chalked out to confirm these
flavonoids as safe antidiabetic and anti-inflammatory agents and help us understand vari-
ous mechanisms that would equally alleviate hyperglycaemia and inflammation. Moreover,
the knowledge of structure−activity relationships in these assays may further prove to be
helpful in evaluating the potential of the in vivo antidiabetic and anti-inflammatory activi-
ties of flavonoids. A meta-analysis of the context of the antidiabetic and anti-inflammatory
effects of flavonoids further established the role of these polyphenolic compounds as an-
tidiabetic and anti-inflammatory agents. This review provides a theoretical foundation for
the development of high-bioactive and low-toxicity flavonoid-based active pharmaceutical
ingredients to tackle diabetes and inflammation concurrently.
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