
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Masters Engineering

2021

Image Transmission over Resource-constrained Low-Power Radio Image Transmission over Resource-constrained Low-Power Radio

Networks Networks

Paschal O'Connor
Technological University Dublin, paschal.oconnor@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/engmas

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
O'Connor, P. (2021). Image Transmission over Resource-constrained Low-Power Radio Networks.
Technological University Dublin. DOI: 10.21427/5V31-YQ88

This Theses, Masters is brought to you for free and open
access by the Engineering at ARROW@TU Dublin. It has
been accepted for inclusion in Masters by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engmas
https://arrow.tudublin.ie/engthe
https://arrow.tudublin.ie/engmas?utm_source=arrow.tudublin.ie%2Fengmas%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=arrow.tudublin.ie%2Fengmas%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Image Transmission over Resource-constrained

Low-Power Radio Networks

Paschal O’Connor

Supervised by:

Mr John Dalton; Prof. Max Ammann; Mr Joseph Kellegher

Thesis presented for the degree of

Master of Philosophy

School of Electrical and Electronic Engineering

TU Dublin

Ireland

2021

ABSTRACT

The transmission of large amounts of data over resource -constrained radio

frequency (RF) networks is impacted by regulatory constraints and can affect

reliability due to channel congestion. These barriers limit the use case to

specific applications. This research extends the use case scenario to include

the transmission of digital images over such networks which to date has not

been widely documented. To achieve this, the overall data volume needs to

be reduced to manageable limits. Drawing on previous theoretical work this

research explored, developed and implemented novel image compression

techniques suitable for use in resource-constrained RF networks.

A compression technique was developed which allows variable compression

ratios to be selected dependent on the specific use case. This was implemented

in an end-to-end low-power radio network operating in license-free spectrum

using a customised radio frequency testbed. The robust compression scheme

which was developed here enabled out -of-sequence packet reception, further

increasing the reliability of the transmission.

To allow detailed viewing of a region of interest (ROI) within a large format

image (quarter video graphics array) to be transmitted, a novel algorithm was

designed and implemented. This enabled the transmission of a region of

interest (ROI) in an uncompressed format as a stand-alone image portion, or

in combination with a fully compressed image. Significantly, this yielded

flexibility in the quantity of data to be transmitted which could increase the

lifespan of battery powered devices. A further development allowed direct

manipulation of individual image pixels. This permitted additional data, such

as battery voltage level to be directly embedded in the transmitted image data.

An advantage of this innovative method was that it did not incur any extra

overhead in data volume requirements.

The embodied system developed is an agnostic image compression algorithm

and is suitable for use with resource-constrained devices and networks.

Results showed that high compression ratios (70%) with good peak signal -to-

noise ratio (PSNR) of approximately 36dB was achievable for a complete end-

to-end transmission system.

DECLARATION

I certify that this thesis which I now submit for examination for the award of

Master of Philosophy, is entirely my own work and has not been taken from

the work of others, save and to the extent that such work has been cited and

acknowledged within the text of my work.

 This thesis was prepared according to the regulations for postgraduate study

by research of Technological University Dubl in and has not been submitted

in whole or in part for another award in any other third level institution.

The work reported on in this thesis conforms to the principles and

requirements of the TU Dublin guidelines for ethics in research.

Signature __________________________________ Date _______________

Candidate: Paschal O’Connor

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and thanks to my project

supervisor and co-supervisors Mr. John Dalton, Prof. Max Ammann and Mr.

Joseph Kellegher for their advice and guidance during the course of this

project. I would like to thank all the staff in the postgraduate research office

for their professionalism and kind support throughout this process.

I would also like to thank my wife Maeve and family for their support and

patience over the course of this project.

1

Table of Contents

Table of Contents…………………………………………………………………1

List of Figures…………………………………………………………………….4

List of Tables……………………………………………….…………………….5

List of Equations………………………………………………………………….6

List of Abbreviations ... 7

CHAPTER 1 INTRODUCTION 9

1.1 Problem Definition ..11

1.2 Solution approach ...12

1.3 Thesis Outline ..13

2 CHAPTER 2 LITERATURE REVIEW14

2.1 Current State of the Art in IoT networks 14

2.1.1 LPWAN ..14

2.1.2 CIoT ...15

2.1.3 NB-IoT ...15

2.1.4 CAT-M1 ...16

2.2 LoRa™ ...18

2.3 ESP-NOW ..19

2.4 DASH7 ...20

2.5 Image Compression ...21

2

3 CHAPTER 3 RF TECHNICAL REVIEW27

3.1 Channel Capacity ..29

3.2 Modulation Techniques ...32

3.3 Link Budget Analysis ..40

3.4 RF Security ..46

3.5 Chapter Summary ..47

4 CHAPTER 4 SYSTEM TESTBED DESIGN49

4.1 Hardware ..49

4.2 Firmware Development Environment ...55

4.3 Software ...58

4.4 Chapter Summary ..60

5 CHAPTER 5 SYSTEM IMPLEMENTATION62

5.1 WLAN implementation ..63

5.2 Image Transmission ..78

5.3 Image compression ..86

5.4 Chapter Summary .. 103

6 CHAPTER 6 DISCUSSION AND CONCLUSIONS .. 105

6.1 Conclusion ... 107

6.2 Future work .. 107

References .. 110

Appendix .. 117

3

List of Figures

Figure 1:Probability of BER ..32

Figure 2:PRN ...34

Figure 3:Up Chirp ..36

Figure 4:Down Chirp ..37

Figure 5:FSK [30] ..38

Figure 6:Link Budget ..41

Figure 7: Network Topologies ...50

Figure 8:System Topography ...50

Figure 9:End Device (Server) ..51

Figure 10:Gateway Hardware (Client) ...52

Figure 11:Test Bed Hardware ...53

Figure 12:ESPCAM ...53

Figure 13:SDR ..55

Figure 14:FTDI Connection ..56

Figure 15:Wireshark packet capture ..58

Figure 16:TEST BED Layout ...59

Figure 17:Camera Testing Hardware ...64

Figure 18:128x128 Image..64

Figure 19:Mesh Network Configuration ...67

Figure 20:Mesh connection sequence ...67

Figure 21:CSS->FSK Flowchart ..69

Figure 22: ESPNow Schema. ...70

Figure 23:Serial to TCP Bridge ...75

4

Figure 24:Raw image example ...85

Figure 25:Brightness Distribution ...85

Figure 26: Raw Image 2 ..86

Figure 27:Brightness distribution Image 2 ...86

Figure 28:Raw & Compressed Image ...92

Figure 29:Raw & Compressed (QHigh) ..94

Figure 30:Image Array..95

Figure 31:Grid Overlay ..96

Figure 32: ROI Value calculation. ...97

Figure 33:ROI uncompressed .. 100

Figure 34:Image Overlay .. 101

5

List of Tables

Table 1: CIoT LPWLAN Summary _________________________________ 17

Table 2: Outline Specification for image compression ________________ 22

Table 3: Regulatory Restrictions __________________________________ 28

Table 4: Bandwidth Requirements _________________________________ 33

Table 5: FSK Modulation index ___________________________________ 39

Table 6: Use Case Range Requirements. ____________________________ 45

Table 7: Hardware Requirements _________________________________ 51

Table 8: FTDI to ESP32 Connection _______________________________ 57

Table 9: ESPNow Role __ 72

Table 10: Vendor-specific action frame ____________________________ 78

Table 11:Vendor Specific Content _________________________________ 78

Table 12: Packet Structure ______________________________________ 79

Table 13:Frame I.D Specifics ____________________________________ 79

Table 14:Remapping Example ____________________________________ 88

Table 15: Mapping Table __ 88

Table 16:Remapped value + Frequency of occurrence. ________________ 89

Table 17: PSNR QMed __ 93

Table 18: PSNR QHigh ___ 94

Table 19:ROI Worked example. ___________________________________ 98

Table 20: ROI Parameter selection ________________________________ 99

Table 21:Quantitative results ___________________________________ 104

6

List of Equations

Equation 1:PSNR __ 23

Equation 2:MSE ___ 23

Equation 3:Duty Cycle Estimation ________________________________ 29

Equation 4:Maximum Data Rate __________________________________ 29

Equation 5:RMS Noise __ 30

Equation 6:Noise Power___ 30

Equation 7:Input/Output Noise Power _____________________________ 31

Equation 8:Noise Power in dB ____________________________________ 31

Equation 9:Noise Calculation ____________________________________ 31

Equation 10:SNR __ 32

Equation 11:Process Gain _______________________________________ 34

Equation 12:Spread Spectrum Bandwidth ___________________________ 35

Equation 13:Linear Swept Signal _________________________________ 37

Equation 14: Modulation Index ___________________________________ 38

Equation 15: Link Budget Calculation _____________________________ 41

Equation 16:Free Space Losses ___________________________________ 42

Equation 17: No. of uncompressed Packets _________________________ 80

Equation 18: Compression Ratio __________________________________ 93

Equation 19:ROI Top left-hand index ______________________________ 98

Equation 20:ROI Bottom right-hand index __________________________ 98

7

List of Abbreviations .

Abbreviation Definition

3GPP Third generation Partnership Project

4G Fourth generation

AFA Adaptive Frequency Agility

AIoT Artificial Intelligence of Things

API Application Program Interface

AWGN Additive White Gaussian Noise

BER Bit Error Rate

CAT-M1 Category Machine

CIoT Cellular Internet of Things

CSS Chirp Spread Spectrum

D7A Dash 7 alliance

dB Decibel

DPSK Differential Phase Shift Keying

DQPSK Differential Quadrature Phase Shift Keying

DSSS Direct Sequence Spread Spectrum

eNB e Node B

ETSI

European Telecommunications Standards

Institute

FSK Frequency Shift Keying

FTDI Future technology Devices International

GFSK Gaussian Frequency Shift Keying

GPRS General Packet Radio System

ICT Information And Communications Technology

IDE Integrated Development Environment

IoT Internet of Things

ISI Inter Symbol Interference

ISM Industrial Scientific and Medical

JPEG Joint Photographic Experts Group

LBT Listen Before Talk

LE Low Energy

LoRa Long Range

LPWAN Low Power Wireless Area network

LR Long Range

LTE Long Term Evolution

LTE-M Long term Evolution Machine

MAC Medium Access Control

8

Mbps Mega-bits per second

MCU Microcontroller unit

MSE Mean Squared Error

MSK Minimum Shift Keying

NB-IoT Narrow Band Internet of Things

NSO National Standards Organisations

OSI Open System Interconnection Model

OTS Off-The-Shelf

PN9 Pseudorandom Number 9 bit

PRB Physical Resource Block

PRN Pseudo Random Number

PSNR Peak Signal to Noise Ratio

QoS Quality of Service

QVGA Quarter Video Graphics Array

RF Radio Frequency

RLE Run Length Encoding

ROI Region of Interest

SF Spreading Factor

SoCs System on Chips

SPI Serial Peripheral Interface

SRD Short Range Device

TCP/IP

Transmission Control protocol / Internet

Protocol

ToA Time On Air

UART Universal Asynchronous Receiver Transmitter

UE User end-device

UHF Ultra-High Frequency

Wh Watt Hour

9

CHAPTER 1 INTRODUCTION

This thesis explored the specific use case of extending the normal types of

data transmission in internet-of-things (IoT) type networks to include still

image transmission over private IoT type networks. Image data requires a

larger bandwidth or longer time-on-air to transmit relative to e.g.,

temperature or location data. A means to reduce this data volume by

compression, and a means to select a portion of an image for transmission has

been developed for use across diverse RF low power wide area networks

(LPWAN).

Typical transmission data payload requirements for IoT type devices vary

from 10 -100 bytes of data with a frequency of transmission of 1-24 times

/Day. These figures will vary with the use case , but because of the low

transmission rate requirements, battery powered devices are normally used.

Information transmitted typically includes temperature/humidity, switch

status, presence detection and location of device. This low volume data is

suited to transmission over private IoT type networks operating in the

industrial scientific and medical (ISM) frequency bands within the constraints

imposed by country regulators. This research has expanded the use case

scenarios for low-power WLAN such as, situational awareness, agriculture

growth monitoring, forest fire detection, bridge crack monitoring, bacte rial

growth monitoring etc. An end-to-end RF network capable of transmitting

still black & white images over a long-range using off-the-shelf (OTS)

10

components was implemented. The developed system allows viewing of the

reconstructed image on a remotely connected TCP/IP device normally a PC.

The growth of IoT type communications systems is based on the expected

transmission of small amounts of data by many interconnected devices. For

RF type systems, as opposed to hardwired type networks such as IEEE 802.3

or Ethernet, Modbus etc., additional constraints are imposed on the reliability

and defined response times required in defined use cases e.g., mission critical

systems often found in industrial applications. The management of multiple

users over an RF network requires a well thought out medium access control

(MAC) layer to ensure each device can remain connected and be allowed

transmit data in a controlled and fair way. If the RF system is operating in an

ISM frequency band, this imposes further constraints on transmission power

allowable and time-on-air (TOA) constraints. Despite these challenges, the

implementation of an RF sensor type network has huge financial savings in

terms of wiring costs, network expansion and flexibility of design. The

availability of remote information from hard-to-reach areas makes these types

of systems attractive relative to hardwired systems. The implementation of an

RF sensor network requires detailed knowledge of the environment in which

it is expected to operate and the gap between what is expected and what can

be achieved needs to be defined at the outset. There have been several

attempts by various groups to ‘standardise’ a communication type network

suitable for most applications (within the IoT type defini tion); one such

network is LoRaWAN® which allows large numbers of devices to be

connected via public or private networks. The limitation of these public type

11

networks is the restricted amount of data transmission allowed and the fair

access policy which is enforced. This has the net effect of further limiting the

amount and frequency of data transmissions. Other such public networks

include SigFox® which severely limit the amount and frequency of data

transmission for each end device, and this has been eliminated for

consideration for this use case.

1.1 Problem Definition

This research addressed the problem associated with transmission of large

amounts of data (image) over RF networks designed for low-data volume

transmission. Image transmission over resource-constrained RF systems

present unique challenges in terms of available bandwidth, regulatory

constraints, and available power supply. LPWAN operating in the ISM radio

frequency bands impose further difficulties regarding channel availability and

usage and can be regarded as hostile environments for ensuring reliability of

transmission and guaranteed quality of service (QoS). These systems operate

in ‘Lossy’ environments and some loss of data is expected , further

complicating the reliable reception of large amounts of data such as image

transmission. Battery powered devices used in typical IoT systems operate on

resource constrained hardware and typically transmit low data volumes

periodically in quantities of no more than 250 bytes per transmission. A black

and white image of standard size (QVGA) will contain 76800 bytes of

information and transmission of this large amount of data will be impacted

by power availability and hence battery lifetime. A variable means to

12

compress this data (High, Medium, and Low) and preserve acceptable image

quality has been proposed and implemented taking two different private

LPWAN system configurations into consideration, a system capable of

reception up to a range of at least 100m and one capable of reception up to

5km i.e., greater range capability than existing standard Wi-Fi or Bluetooth

systems. To assess the suitability of various network types a review of

fundamental RF modulation methods was undertaken. These were considered

in the context of suitable low-cost, off-the-shelf (OTS) modules to construct

an RF system capable of meeting the requirements of this use-case.

1.2 Solution approach

To explore this specific use case a low power wireless network was

implemented using OTS modules which served as a test bed platform for the

development and testing of an image transmission system. The developed

image compression and manipulation algorithm is suitable for use across

multiple IoT type RF networks. Emphasis was placed on simple algorithm

design with acceptable performance and low memory footprint. Suitability for

use at the physical layer is a primary consideration. The system topology

selected was a star type network consisting of end-devices (with camera)

wirelessly connecting to a central client transceiver. This was connected via

TCP/IP to a remote monitoring system. A program was implemented to allow

reconstruction and decompression of the received data for viewing/storage of

the image received.

13

1.3 Thesis Outline

Chapter 2 provides a review of the relevant published work around image

transmission over resource-constrained WLAN. Cellular internet of things

(CIoT) and private/public RF networks operating in the IoT space are

compared and evaluated here.

Chapter3 assesses the technical capability of three modulation schemes w.r.t

bandwidth, bitrate, and the effect of noise in designing an RF network. A link

budget analysis is carried out on each modulation type to assess its suitability

for use within this use case definition.

Chapter 4 describes the rationale and design choices made in the development

of a system testbed. The choice of hardware and software used during this

research is described here.

Chapter 5 details the design and implementation of a suitable RF network.

This describes the data compression algorithm, its development and

implementation. An end-to-end system operational test is described in detail.

The final chapter, Chapter 6, discusses the rationale for the methodology,

draws conclusions from the findings and outlines directions for future work.

14

2 CHAPTER 2 LITERATURE REVIEW

The use of low-power WLAN for image transmission (excluding video

transmission) was the focus of this research. To assess the suitability of an

RF system for this use case it was necessary to evaluate the physical

capabilities of various modulation schemes. The impact on bandwidth, duty-

cycle, expected communication range, and suitability for use in resource-

constrained devices such as low-power micro-controllers was explored.

Several dominant RF systems in current use are evaluated in this section.

Standard image compression techniques are also discussed and assessed for

suitability within the confines of this use case.

2.1 Current State of the Art in IoT networks

A wide range of RF low power network topologies exist, broadly divided into

two categories, CIoT and Private/Public IoT systems operating in the ISM

bands. Systems operating in the private domain tend to use proprietary

protocols but not exclusively e.g., D7A [1].

2.1.1 LPWAN

For the sake of a comprehensive assessment, CIoT systems will be described,

but focus will be placed on systems operating in the ISM bands allowing for

unknowns regarding cost, local technical support, availability of hardware

and purchase quantities, all required to operate within the cellular network

structure.

15

2.1.2 CIoT

Traditional cellular options such as 4G and long-term evolution (LTE)

networks are designed to offer high speed connectivity where power

consumption is not considered a priority. In response to the expected growth

rate of connected devices which typically transmit a small amount of data

periodically, CIoT providers have responded with several options to enable

low-power, long-range applications connect via the cellular network which

are third generation partnership project (3GPP) [2] 5G standardised

technologies.

2.1.3 NB-IoT

Completion of narrow band internet of things (NB-IoT) standardisation was

achieved in 2016 in release 13 (LTE Advanced Pro) by 3GPP. Release 14

enhanced the specifications LTE Cat-NB2. NB-IoT can be deployed ‘in-band’

utilising resource blocks within a normal LTE carrier or used within the

unused resource blocks within an LTE carrier’s guard-band. It may also be

deployed in standalone mode for use in dedicated spectrum [3]. In standalone

deployment, NB-IoT can occupy one global system for communication (GSM)

channel (200Khz) and is intended for GSM channel refarming using existing

infrastructure. When used in guard-band, or in-band, it will use one or more

physical resource blocks (PRB) of LTE (180Khz). Ratasuk et al. [4] reported

that a latency target of < 10 seconds for exception reports is achieved with a

link budget for stand-alone scenario of 164dB and application layer data rate

of 2.73 kbps in the downlink, and 0.31 kbps in the uplink. NB-IoT is designed

to support massive numbers of low-throughput devices with a target of 20dB

16

extended coverage compared to legacy GPRS devices allowing

communication with hard-to-reach devices e.g., underground car parks. To

achieve a battery lifespan of more than 10 years, a data packet size of 200

bytes and a once-a-day transmission constraint is imposed [4]. Sun, Rongrong

et al ., present a specific framework for the use of NB-IoT in unlicensed bands

with similar results [5]; for this specific use case NB-IoT will not be

considered.

2.1.4 CAT-M1

The second LPWA technology specified in 3GPP as a 5G technology is LTE-

M designed to support the Internet of Things. Rel-13 specifications were

completed in 2016 with further enhancements in Rel-14 and Rel-15. To meet

the 5G requirements, 3dB power spectral density boosting is used in the

downlink with the addition of 4 receive antennas required at the e-nodeB

(eNB) [6]. Category-M1 (CAT-M1) has an RF bandwidth of 1.4MHz and a

maximum transport block size of 1000 bits typically operating in half -duplex

mode with the ability to support massive number of devices wi th a 10-year

battery life (capacity of 5 Wh) and < 10 second latency [6]. In 3GPP Rel-14

major enhancements were introduced (CAT-M2) supporting 5-MHz

bandwidth and further improvements to CAT-M1 with the ability to support

applications such as video and voice. Using an uplink report of size 200 bytes,

the UE wakes up from power save mode and transmits an uplink report once

per day and returns to power save mode, an estimated 7.6 years of battery life

was reported [6]. Actual data transmission impacts on battery life determined

by data size and frequency of transmission. A peak data rate of 1Mbps is

achievable and can operate in full or half-duplex mode and can only operate

17

in-band. CAT-M technologies have not been considered for this use case as

Network operators in Ireland have not deployed CAT-M as of this time.

Table 1 shows a summary of current 5G WLAN offerings [7].

Table 1: CIoT LPWLAN Summary

Private/Public ISM IoT

Given the need for remote access to data whether Industrial, commercial, or

domestic, a move to RF type systems has obvious benefits including cost

savings and scalability. The elimination of wiring allows rapid deployment

of sensor/actuator nodes but introduces issues regarding reaction time,

security, and remote power requirements if powered by battery. Maintenance

and remote diagnostics capability are part of a successful RF network

deployment if costly ‘truck’ rollouts are to be avoided. Additionally, bi-

directional communications are desirable to enable re-designation of end-user

device functionality, and to avail of latest firmware updates. This embedded

functionality has associated costs in terms of available power budget , channel

congestion while conforming to local regulatory restrictions. Operating in the

ISM frequency bands where no license is required constitutes a noisy

environment compared to operating in licensed bands . License holders are

able to control their RF channel to a much greater degree and can offer a

18

defined QoS. Several RF Network configurations which have gained traction

in recent years have been evaluated in the context of suitability for this

particular use case i.e., the transmission of still images over medium and long

range (100m – 5000m) in an urban environment.

2.2 LoRa™

Semtech is a leading supplier of high performance analog and mixed -signal

semiconductors who manufacture a long range, low power integrated circuit

suitable for use in ISM RF bands from low kHz up to 2.4GHz (LoRa™). A

range of transceivers, receivers and transmit ters are manufactured enabling

low-power, long-range connectivity of sensors. A proprietary modulation

scheme is used, chirp spread spectrum (CSS), based on spread spectrum

technologies and FSK at the physical layer. The LoRa Alliance® [8] has

developed a MAC layer open standard protocol (LoRaWAN®), enabling the

exchange and control of multiple sensor data. There are many LoRaWAN®

networks deployed throughout the world which allow large scale deployment

of sensor networks in the private and public domains where UE devices meet

the low data volume requirement. The LoRaWAN® MAC layer allows bi -

directional communication with duty-cycle restrictions in compliance with

regulatory authorities’ requirements. This restricts the TOA of each

transmitter, hence limiting the effectiveness of bi-directional

communications. As each base-station can also be a transmitter, normally

connected to hundreds of end-devices, duty-cycle limits can quickly be

exceeded in this situation. Strict limitations and ‘fair usage’ schemes are

normally employed by service providers [9] further reducing the available

TOA for each transmitter. LoRa™ network topology is a star type, each user

19

end device (UE) is connected to a central gateway which generally has some

form of internet connectivity e.g., Wi-Fi, Lte, Ethernet. Long range is

achieved because of the claimed 157dB Link-Budget availability and a

payload size of 255 Octets. The physical parameters satisfy some of the

requirements for this use case.

2.3 ESP-NOW

Espressif Systems is a public multinational, fabless semiconductor company

established in 2008 focused on developing cutting-edge Wi-Fi and Bluetooth,

low-power artificial intelligence internet of things (AIoT) solutions. The

ESP32 Series SoCs includes a 32-bit MCU and 2.4GHz Wi-Fi and

Bluetooth/Bluetooth LE communications capability with a sleep current of

less than 5µA, making it suitable for battery -powered applications [10]. ESP-

NOW is a communications protocol developed by Espressif based on IEEE

802.11-2012 standard action vendor frame for information technology [11].

This enables multiple devices to communicate with one another without using

Wi-Fi in the 2.4Ghz ISM band. An initial pairing of devices is needed prior

to communication, after which secure, and peer-to-peer communication can

continue without handshaking. This allows fast transfer of data at a rate of 1-

2Mbps for up to 20 devices un-encrypted or 10 devices encrypted per network

[12]. A payload of 250 bytes can be carried using direct sequence spread

spectrum (DSSS) and uses baseband modulation of differential binary phase

shift keying (DBPSK) and differential quadrature shift keying (DQPSK) to

provide the 1Mbps and 2Mbps data rates respectively [13]. During the hand-

shaking mode of system initialisation, if the long-range mode (LR) is enabled

on Tx. and Rx. a bit rate of 125kbps is negotiated if 802.11B mode fails. Each

20

device can operate as a local device or as a peer and can be assigned different

roles, a controller, slave, or combination of both. A network can operate as a

simple two-device network (peer-to-peer) or in multi-peer to station (STA)

mode. There are no duty-cycle restrictions applicable to this ISM band [14].

2.4 DASH7

The DASH7 Alliance was formed to foster the existence and further

development of the DASH7 protocol specification (based on ISO 1800-7). It

is an open standard for bi-directional sub-GHz medium range wireless

communication for ultra-low-power sensor-actuator applications using

private networks [1]. The specification includes OSI layers 1-7, PHYSICAL

layer to APPLICATION layer, and is regarded as a mid-range (up to 500m)

communications network. The communications protocol is described as a

BLAST type:

Bursty: Data transfer is abrupt and does not include streaming content such

as video, audio, or other isochronous forms of data.

 Light: Packet sizes are limited to 256 bytes.

 Asynchronous: D7A method of communication is by request -response, which

requires no periodic network "hand-shaking" or synchronization between

devices.

 Stealth: D7A does not use discovery beacons, end nodes can choose to

respond only to pre-approved devices.

 Transitional: A D7A system of devices is inherently mobile or transitional.

Unlike other wireless technologies D7A is upload -centric, not download-

21

centric. Devices do not need to be managed extensively by fixed

infrastructure (i.e. base stations) to respond only to pre-approved devices.

There are three data rates available, 9.6kb/s, 55.55 kb/s and 166.667 kb/s

using GFSK modulation and can operate in ISM bands 433.060 – 434.785

MHz, 863.000 – 870.000 MHz and 902.000 – 928.000 MHz using 1/2

convolutional code or 1/1 PN9, p8 [15].

2.5 Image Compression

Most image compression algorithms are based on generic standards which are

suitable for video transmission of data such as JPEG or its derivatives. For

the transmission of still images over lossy RF networks where the end-device

is resource-constrained, and the transmission of still images is only required,

the algorithm overhead can be onerous. The selection, or development of a

suitable, yet simple and adaptable algorithm for this particula r use case

involves a trade-off between acceptable receive image quality and power

consumption, while working within the constraints of RF Regulatory bodies.

Usual compression schemes such as JPEG are not suitable for use in

bandlimited networks where data payload size is limited to 255 bytes (in these

types of WLAN). The transmission of image data over IoT type RF networks

adds considerable burden to resource-constrained devices where memory and

power requirements are limited compared to ‘normal’ transmission media

such as Wi-Fi or Cellular networks. The impact of on-air time for battery

driven devices, typically micro-controller platforms, has a considerable effect

on the expected lifetime of a battery. One way to minimise this time is to

22

reduce the amount of data to be transmitted i.e., data compression. The

implementation of a data compression algorithm suitable for use in lossy RF

networks is one objective of this use case. An outline target specification for

this application is shown in Table 2.

Table 2: Outline Specification for image compression

1 Suitable for use

across resource-

constrained devices:

8-bit µC e.g., AVR

16-bit µC e.g., MSP

32-bit µC e.g., ESP32

Low-complexity Algorithm

2 Low memory

footprint

<16k Ram, <32k Rom

3 No Hardware

floating-point

calculation needed.

Software floating point or Integer only.

Energy Efficient computation.

4 Suitable for use in

RF lossy networks

Packet size of ≤ 256Bytes, out of sequence

reception tolerant.

5 Packet loss tolerant Display of received packets, full image not

required.

6 Suitable for image

quality of QVGA

b&w

Must be capable of compressing 320*240

bytes, 8-bit greyscale

7 Region of Interest

Selectable

Transmission of high-Quality region of

interest, for slower connections. Means a

reduction in data to transmit.

8 Direct Pixel

manipulation.

Embedding of information directly within the

image or raw data manipulation.

23

There are several standard compression mechanisms in use for image

transmission and can be divided into lossless or lossy types. If using a lossy

type of compression, one measure of visual quality is the PSNR for a given

compression ratio. To achieve visually lossless condition means more than

40dB reconstruction image quality.

PSNR of a transmitted image can be calculated as shown in Equation 1.

Equation 1:PSNR

𝑃𝑆𝑁𝑅 = 10log10

𝑆2

𝑀𝑆𝐸

Image quality is assessed quantitatively and is based on the difference

between the pixels of the reconstructed image after transmission and the

original image. For an 8-bit image, 𝑆 is 255 and 𝑀𝑆𝐸 is the mean squared

error, which is the average of the squared difference in the intensity of the

pixels in the original image and the output image. It can be calculated as

shown in Equation 2.

Equation 2:MSE

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=1

𝑚−1

𝑖=0

Where 𝑚 and 𝑛 are the respective length and width of the image matrix in

pixels 𝐼(𝑖, 𝑗) and 𝐾(𝑖, 𝑗) are functions describing the intensity of individual

pixels in the transmitted and received image, respectively. In 2016, C. Pham

[16] proposed a remote visual surveillance system using LoRa® physical

layer which transmits a compressed 128x128 8-bit grayscale image with

variable quality factor selection. A limitation factor on achievable range is

TOA which is constrained by duty-cycle restrictions imposed by ETSI and for

24

433MHz is 10% (360 sec) as shown in Table 3. C.Pham [16] has tabulated the

TOA for various BW and spreading factors (SF); for payload size of 255

bytes, it ranges from 0.1009 to 9.15 seconds. For a raw uncompressed image

size of 160x120 pixels (ROI for this use case), it takes (19200/255) *0.6333

= 47.68 sec using LoRa mode 7. Compressing the data image improves on this

figure and hence battery life of the end device. In this instance, a compression

scheme tolerant to packet loss is used based on [17] which improves on the

energy consumption involved in popular algorithms such as JPEG, JPEG2000

or SPHIT. It operates on 8x8 pixel blocks using an optimised block

interleaving method, and the image matrix must have the same number of

rows and columns. The image is transmitted in blocks of 250 bytes which

allows for out-of-sequence reconstruction and is tolerant of packet loss. The

computational energy cost is well documented in [17] for this JPEG-like lossy

compression scheme. For this use case, with respect to Table 2 we can satisfy

requirements 1 – 5.

Leila Makkaoui et al. [17] propose a fast zonal discrete cosine transform

(DCT) based image compression algorithm allowing for t rade-off between

energy consumption and image fidelity. Using the DCT energy compaction

property allows the elimination of high frequency coefficients, hence

reducing the number of DCT coefficients to be computed and thus improving

energy consumption. Results were simulated based on a MSP430 16-bit

microcontroller and an 802.15-compliant CC24020 radio transceiver. Their

proposed compression scheme claims improvement of 14% and 18% of energy

consumption compared to classical JPEG compression in the transmiss ion of

25

an 128x128 pixels image. For this use case, with respect to Table 2, we can

satisfy requirements 1-5.

Mookeun Ji (et al.) [18] proposed a scheme which breaks an image into small

grid patches and only transmits the area of the image which has been deemed

to have changed. Suitable for slowly changing scenes such as crop

monitoring, an initial full image is sent as reference , and afterwards, only

grid patches which have changed are sent. Each 160x160 pixel image is

divided into 256 grid patches, each grid consisting of 100 bytes. Transmission

of a formatted packet containing x2 patches , plus overhead, is 203 bytes in

size. Transmission of the initial reference image took 127.5 seconds which

appears to exceed ETSI regulations regarding duty-cycle time limitations. The

end-device hardware used could not regarded as a low-power device i.e.

Raspberry Pi 3 Model B + Arduino Uno + LoRa transceiver. Whilst showing

promise for bandwidth-limited RF systems, the use case application is

restrictive. For this use case, with respect to Table 2, we can satisfy

requirements 1,2,3,4,7.

Rafeeq AL-HASHEMI et al. [19] proposes a semi-lossless image compression

technique using run-length-encoding (RLE). A raw (uncompressed) image of

arbitrary size is obtained, and colours are mapped to a vector of values 0 –

255, where each vector element represents a pixel value. The higher frequency

values, represented by the lower 4-bits of each decimal value, is discarded

and replaced by a value between 0-15. The lower nibble (4-bits) is replaced

with a value which indicates the consecutive number of similar colours (upper

nibble) after which run-length-encoding is performed on the image vector.

The new byte now represents the pixel colour and frequency of occurrence.

26

The image vector length is reduced thus compressing the data package. This

method is computationally simple and can be achieved using a very small

algorithm footprint. Compression ratios of between 66.4% and 58.21% have

been achieved with typical values for the PSNR of approx. 30dB. Acceptable

values for wireless transmission quality loss are considered to be 20 dB to

25dB p.12 [19]. For this use case, with respect to Table 2, we can satisfy

requirements 1-6.

27

3 CHAPTER 3 RF TECHNICAL REVIEW

A review of channel capacity estimation and the effects of noise, modulation

type, and bitrate is described in this section. Ease of implementation, cost,

and availability of suitable of-the-shelf components in discussed. In the

context of assessing the suitability of the chosen private network schemes

(ESPNOW, CSS, FSK) for this use case, an evaluation of the suitability of

each modulation type is considered.

ETSI

The European Telecommunications Standards Institute produces globally

applicable standards for information and communication technologies (ICT).

Specifically, they produce harmonised standards including standards related

to the use of European frequency bands which are of interest in the context

of this thesis. The ultra-high frequency (UHF) band covering a frequency

range of 300 MHz to 3 GHz is of particular interest within the designated ISM

range, exact frequencies allowable for use with short range devices (SRD) are

published [20]. ETSI works closely with national standards organisations

(NSO) in each European country. In Ireland it is the Commission for

Communications Regulation (ComReg) which publishes documentation

pertaining to interface requirements for SRD [21] which define transmission

power level restrictions, duty-cycle restrictions, and any other mitigation

requirements necessary to allow compliant use of equipment within the

country.

28

For this use case, of particular interest are the allowed transmit power levels

and duty-cycle restrictions in Table 3.

Table 3: Regulatory Restrictions

Frequency Band

MHz

Maximum Permitted

Radiated Power /

Field Strength

Mitigation

Requirements

433.05 – 434.79 10 mW ERP Duty cycle: ≤ 10%

868.0 – 868.6 25 mW ERP Duty cycle: ≤ 1%, or

LBT + AFA

2400 – 2483.5 25 mW EIRP None

A duty-cycle restriction of 1% means a maximum on-air time of 36 Seconds

in one hour. Depending on the amount of data to transmit , this will influence

the frequency of transmission allowed for each end -device and base-station if

used as a transmitter. Duty-cycle restrictions can be ignored if other

mechanisms are implemented (within certain frequency bands) to mitigate the

overuse of channel resources, such as listen-before-talk (LBT) and adaptive-

frequency-agility (AFA).

• LBT – Before a device transmits it senses a channel to determine if

there is activity by measuring the received signal strength (RSSI) for

at least 5 msec, if the RSSI is below a set threshold the device can

transmit on that channel, if not then a delay of at least 5 m sec is

implemented and the process is repeated. After a device has transmitted

it will not transmit again on the same channel until an off time of 100

msec. has been observed. A further restriction of 100 seconds of

transmission within one hour also applies on a spectrum of 200 kHz

29

within a European context. For equipment with LBT a duty-cycle

restriction does not apply p31 [14].

• AFA – Using at least two channels allows more transmission time

within a one-hour period, the more channels used the greater the

transmission time allowed. An effective duty-cycle calculation based

on the number of channels available can be calculated as follows:

Equation 3:Duty Cycle Estimation

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ∗ 100)/3600

For example, using 5 channels results in an effective duty cycle of 0.138 %.

3.1 Channel Capacity

A channel can be described as the physical link between two transceivers, in

this instance it is the link over an air interface. Claude Shannon [22]

determined the limits of communication channels with additive white

gaussian noise (AWGN). For a bandlimited channel, the maximum possible

data rate that can be achieved on a given channel of bandwidth B is shown in

Equation 4.

Equation 4:Maximum Data Rate

𝑅 = 𝐵 log2(1 + 𝑆/𝑁)𝑏𝑝𝑠

R = channel capacity (bits/s)

B = channel bandwidth (Hz)

S = signal strength (watts)

N = noise power (watts)

30

For all communication systems, channel noise is tied to bandwidth and all

objects which have heat emit RF energy in the form of random (Gaussian)

noise. Thermal noise can be characterised as frequency independent, noise,

i.e., white noise. If the noise power in the system is greater than the power of

the desired signal, then we will not be able to observe the desired signal ,

therefore, noise reduction in an RF system should be maximised. An example

of a noise source is a resistor of value R in an environment with temperature

T. Because the resistor charges are thermally excited, it is possible to measure

a voltage across it . Since thermal noise is a type of white noise, the mean

voltage is 0, however the root mean square value (rms) is non-zero and is

given by Equation 5.

Equation 5:RMS Noise

𝑉𝑛 = √4𝑘𝑇𝐵𝑅

In a system with a resistor acting as a noise source with impedance R, the

available noise power Pn delivered to a matched load can be derived with

elementary circuit theory as in Equation 6. [23]

Equation 6:Noise Power

𝑃𝑛 = (
𝑣𝑛

2
)

2 1

𝑅
=

𝑉𝑛
2

4𝑅
= 𝑘𝑇𝐵

To characterise the noise in a system, a noise figure is used which is the

measurement of degradation in signal -to-noise ratio (SNR), from a point to

another in a system. For example, input and output as defined in Equation 7.

31

Equation 7:Input/Output Noise Power

𝐹 =
𝑆1∕𝑁1

𝑆2∕𝑁2
 expressed in decibels as

Equation 8:Noise Power in dB

𝐹(𝑑𝐵) = 10 log10(𝐹)

 To calculate the amount of emitted noise radiation:

Equation 9:Noise Calculation

𝑁 = 𝑘𝑇𝐵

N = noise power (watts)

K = Boltzmann’s constant (1.38 x 10 -23 J/K)

T = system temperature, usually assumed to be 290K

B = channel bandwidth (Hz)

The calculated maximum channel bitrate is a theoretical limit and cannot be

reached in practice but can be approached as link level design techniques

improve. To analyse the expected performance of a given system this is often

applied at the beginning any waveform and link budget analysis. It gives an

estimation of the upper bound on the data rate achievable for a certain

bandwidth and SNR. Channel impairments occur due to channel variations

such as non-white noise and inter-symbol interference (ISI). Determining the

capacity limits of time-varying wireless channels with multipath fading and

shadowing is challenging. This is determined by the channel rate of change

and the ability to track the channel variations [24]. It is clear from Equation

4, that to achieve a given performance level (as defined by bit error rate BER),

RF power and bandwidth can be traded.

32

3.2 Modulation Techniques

The method by which analogue or digital information is converted to RF

signals suitable for transmission is a key element for consideration in system

design. The method chosen determines system bandwidth, power efficiency ,

sensitivity, and complexity [25]. Figure 1 summarises the theoretical BER for

various linear modulations. [26]

Figure 1:Probability of BER

𝐸𝑏

𝑁𝑜
 is a measure of required energy per bit relative to the noise power and is

independent of system data-rate.

 To convert to SNR, the system bandwidth must be considered.

Equation 10:SNR

𝑆𝑁𝑅 = (
𝐸𝑏

𝑁𝑜
) ∗ (

𝑅

𝐵𝑡
)

33

𝐸𝑏 = Energy required per bit of information

𝑁𝑜 = Thermal noise in 1Hz of bandwidth

𝑅 = System data-rate

𝐵𝑡 = System bandwidth

For a given BER, the more complex the modulation scheme the more

energy/bit or reduction in noise level is required to achieve comparable

performance levels with respect to less complex modulation schemes.

Bandwidth requirements for various modulation methods are shown in Table

4.

Table 4: Bandwidth Requirements

MODULATION METHOD TYPICAL BANDWIDTH

(NULL – TO – NULL)

QPSK, DQPSK 1.0 x Bit Rate

MSK 1.5 x Bit Rate

BPSK, DBPSK, OFSK 2.0 x Bit Rate

DSSS

Direct sequence spread spectrum technique is one of a range of techniques in

which the transmitted signal is spread over a wide frequency band , larger than

necessary to transmit the information being sent . For example, a baseband

signal (say a voice signal) with a bandwidth of only a few kilohertz is

distributed over a band which may be several megahertz wide. This is

achieved by modulating the signal to be sent with a wideband encoding

(chips) signal as shown in Figure 2 [25]

34

Figure 2:PRN

The pseudo random code (PRN) is a repeatable code and has predictable

statistical qualities allowing recovery of the transmitted signal at the

receiving end using cross correlation techniques. This allows the transmission

of multiple signals using the same frequency and at the same time. Because

the wideband signal spectra are generated by code modulation, the power

transmitted is low in any narrow region relative to conventional signals. In

these types of signals, all the transmitted power is concentrated within a band

of frequencies relative to the baseband information bandwidth [27]. The de-

spreading of the wideband signal at the receiver end results in a quantity

called “process gain”.

In spread spectrum systems, the process gain available may be estimated by

the rule of thumb: [27] Equation 11.

Equation 11:Process Gain

𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑔𝑎𝑖𝑛 = 𝐺𝑝 =
𝐵𝑊𝑅𝐹

𝑅𝑖𝑛𝑓𝑜

35

𝐵𝑊𝑅𝐹 = Bandwidth of the transmitted spread spectrum signal .

𝑅𝑖𝑛𝑓𝑜 = Data rate in the baseband information channel.

Using Equation 10 and changing bases we can see that.

𝑅

𝐵
= 1.44 log𝑒 (1 +

𝑆

𝑁
)

For small
𝑆

𝑁
 , (<0.1),

𝑅

𝐵
= 1.44

𝑆

𝑁

From this equation we find that,

𝑁

𝑆
=

1.44𝐵

𝑅
≈

𝐵

𝑅
 , and

Equation 12:Spread Spectrum Bandwidth

𝐵 =
𝑁𝑅

𝑆

This shows that for any given noise-to-signal ratio, we can have a low

information error rate by increasing the bandwidth used to transfer the

information. For example, if we want the system to operate in a link where

the interfering noise is 30 times greater than the signal strength and our

information rate is 1Mbps, then we need a bandwidth of:

𝐵 =
30 𝑥 106

1.44
= 20.833 𝑋 106𝐻𝑧

36

CSS

A type of spread spectrum technology used by LoRa™ is a pulsed FM

(CHIRP) type system called Chirp Spread Spectrum (CSS). Because a wider

bandwidth is used other than the minimum required, processing gain

(Equation 11) can be achieved. This modulation type is used in RADAR type

applications and has recently been used in communications systems [28].

Chirp transmissions are characterised by pulsed RF signals whose frequency

varies in some known way during transmission. In this instance, the frequency

of the base chirps increases linearly (up chirp) Figure 3 [29] from an initial

value 𝑓0 = −𝐵𝑊/2 to a final value 𝑓1 = 𝐵𝑊/2. In the LoRa™ embodiment,

the modulator is also arranged to synthesise and insert in the signal conjugate

chirps. These chirps are the complex-conjugate of the base unmodulated chirp

and can be regarded as down-chirps Figure 4 [29],in which the frequency falls

from a value of 𝑓0 = +𝐵𝑊/2 to 𝑓1 = −𝐵𝑊/2.

Figure 3:Up Chirp

37

Figure 4:Down Chirp

Whatever sweep pattern is used to transmit requires an equivalent receive

filter to be built. The input to the chirp filter using a linearly swept signal is

shown in Equation 13.

Letting 𝜇 =
𝑑𝜔

𝑑𝑡
 for the frequency sweep rate, we see that

𝐹(𝑡) = 𝑓1 + 𝜇𝑡

Equation 13:Linear Swept Signal

= 𝐴 cos (𝜔1𝑡 + 𝜇𝑡)

The filter at the heart of a chirp receiver is a storage and summing device that

accumulates the energy received over an interval , assembles it, and releases

it in one coherent burst [27]. Given the added circuit complexity required to

implement a spread spectrum type network, the benefits include: [27]

1. Selective addressing capability.

2. Code division multiplexing is possible for multiple access.

3. Low-density power spectra for signal hiding

4. Message screening from eavesdroppers.

38

5. High-resolution ranging

6. Interference rejection.

In this use case, the added range achieved for a given transmit power satisfies

one of the use case requirements.

FSK

Frequency shift keying (FSK) as specified by the DASH7 Alliance for the

physical interface, is a modulation method where digital information is

transmitted through the discrete frequency change of a carrier wave Figure 5.

A defining parameter for FSK is the modulation index Equation 14.

Equation 14: Modulation Index

𝑚 =
𝑓2 − 𝑓1

𝑅

Where 𝑓2 and 𝑓1 are the high and low frequencies on both sides of the carrier

frequency and 𝑅 is the maximum data rate.

Figure 5:FSK [30]

39

Abrupt changes in data levels are discontinuities in a continuous signal and

manifest as a widening of the spectrum larger than 𝑓2 − 𝑓1. To reduce this

effect a gaussian filter can be applied in the data line before the FSK

modulator in the transmitter. This type of FSK is called GFSK. The gaussian

filter has the effect of limiting the rise time of the data signal and is

characterised by the product of its bandwidth B at -3dB point times the bit

period T, that is, BT. By adjusting the modulation index m and BT, it is

possible to control the radiated spectrum within a defined span for a specified

data rate. For a coherent detector (when there is phase synchronisation

between transmitter and receiver), improved spectral efficiency is achieved

when the mark and space frequencies are orthogonal to each other i.e., when

m = 0.5. This implies that the difference between mark and space frequencies

is one-half of the data rate and is called minimum shift keying (MSK). The

form used in D7A is 2-(G) FSK with three different modulation indices

specified for various data rates as shown in Table 5. [15]

Table 5: FSK Modulation index

Channel

Class

Channel

Spacing

(MHz)

Modulation Symbol

Rate

(kbps)

Modulation

Index

Symbol 0

kHz

Symbol 1

kHz

Lo-Rate 0.025 2-(G)FSK 9.6 1 F (B, I)

-4800

F (B, I)

 + 4800

Normal 0.200 2-(G)FSK 55.555 1.8 F (B, I)

-50.000

F (B, I)

+50.000

Hi-Rate 0.200 2-(G)FSK 166.667 0.5 F (B, I)

-41.667

F (B, I)

+41.667

40

FSK is a low complexity type modulation scheme enabling robust

communication systems to be developed using low-cost hardware. The

Semtech™ range of transceiver ICs (SX127x) can also operate in FSK mode

making them suitable for dual use i.e., CSS or FSK; hence satisfying some of

the parameters for this use case.

3.3 Link Budget Analysis

One of the first actions taken by an RF engineer in designing a radio system

suitable for a particular application is an analysis of the environment in which

the system will operate. This includes the desired data-rate, the acceptable

error-rate, and the expected channel losses. The data-rate expected will be

determined by the type of information needed to be delivered and the use case

will place an upper bound on this requirement. For example, the transmission

of large amounts of data, such a video, have different requirements compared

with the transmission of a few bytes of information per hour. The limitations

imposed by the selection of frequency band will also influence usable

bandwidth and hence data-rate to be expected. These limitations also have an

impact on power consumption of end devices. A link budget calculation

allows us to estimate the reliability of a system with given assumptions. A

link budget accounts for all the power gains and losses that a communication

signal experiences within a telecommunication system.

41

 It accounts for signal attenuation due to propagation, antenna and cable gains

and losses as shown in Figure 6. [31].

Figure 6:Link Budget

A link budget can be calculated as shown in Equation 15

Equation 15: Link Budget Calculation

Free space loss can be calculated for each frequency of interest propagating

through air as shown in Equation 16. This is the Friis [32] transmission

equation for free space propagation.

42

Equation 16:Free Space Losses

𝐿𝐹𝑆 = 20 log10(𝑑) + 20 log10(𝑓) + 20 log10 (
4𝜋

𝑐
) − 𝐺𝑇𝑥 − 𝐺𝑅𝑥

Where -

d = Distance between the antennas.

f = Frequency

G (Tx) = The Gain of the Transmitting Antenna.

G (Rx) = The Gain of the Receiving Antenna.

c = Speed of light in vacuum (Meters per Second)

Calculating for this use case, where communication is required to over a distance of 100

to 5000m, we can define the required receiver sensitivity necessary for a given BER and

assess the expected reliability of the network design.

 2.4GHz (ESPNOW)

Assuming 0dBi gain for both transmit and receive antennas and 100m between

transmitter and receiver with 0dB losses in connecting cables.

Free space losses:

𝐿𝐹𝑆 = 20 log10(100) + 20 log10(2.4𝑥 109) + 20 log10 (
4𝜋

𝑐
) − 0 − 0

𝐿𝐹𝑆 = 40 + 187.6 − 147.55

𝐿𝐹𝑆 = 80.04dB

Power at the receiver:

𝑃𝑅𝑥 = 𝑃𝑇𝑥 + 𝐺𝑅𝑥 − 𝐿𝑇𝑥 − 𝐿𝐹𝑆 − 𝐿𝑀 + 𝐺𝑅𝑥 − 𝐿𝑅𝑥

43

𝑃𝑅𝑥 = 14 + 0 − 0 − 80.04 − 0 + 0 − 0

𝑃𝑅𝑥 = −66𝑑𝐵𝑚

If we include a further loss due to fade margin, cable losses etc. of 30dB, the

required power at the receiver is -96dBm. The system sensitivity of a properly

matched ESP32 operating in 802.11B 1Mbps mode is: -97 dBm [33]. So, our

design parameter for range using ESPNOW is easily met . When initial

communications are established, a common bitrate is negotiated [34] and will

default to 1Mbps unless LR (Long Range) mode is enabled on the ESP32, and

other bitrates fail to be negotiated. A link is established with a physical

throughput of 125 kbps and an improved sensitivity of -105 dBm [33]. This

is a proprietary communications mode and is applicable to Espressif™ only,

a link range of 1km is claimed when using this mode due to a 4 dB gain in

sensitivity.

433MHz (DASH7)

D7A defines several Sub-GHz ISM bands for use with this protocol [15].

Using 433 MHz band and assuming 100m between transmitter and receiver

and no additional loss, the free space line of sight loss is :

𝐿𝐹𝑆 = 20 log10(100) + 20 log10(433𝑥 106) + 20 log10 (
4𝜋

𝑐
) − 0 − 0

𝐿𝐹𝑆 = 40 + 172.7 − 147.55

𝐿𝐹𝑆 = 65.15dB

If a 3dB increase in power gives a doubling of range, we get a X5 times

reduction in propagation loss using 433MHz band. Because D7A is

44

manufacturer agnostic for the physical layer, a typical sensitivity of -104

dBm, as a function of data rate (9.6 kbaud), with 20kHz frequency separation

and BER = 10 -3, can be expected [35]. This is equivalent to the Lo-Rate

channel class specified by D7A. The power expected at the receiver is :

𝑃𝑅𝑥 = 𝑃𝑇𝑥 + 𝐺𝑅𝑥 − 𝐿𝑇𝑥 − 𝐿𝐹𝑆 − 𝐿𝑀 + 𝐺𝑅𝑥 − 𝐿𝑅𝑥

𝑃𝑅𝑥 = −51.5𝑑𝐵𝑚

Including additional loss of 30 dB for cable loss, fade margin etc. we can

expect:

𝑃𝑅𝑥 = −81.5𝑑𝐵𝑚

Increasing the distance between Tx and Rx to 2000m, we get a receiver power

of 𝑃𝑅𝑥 = −107𝑑𝐵𝑚 which is outside the stated sensitivity for the given

parameters, so an expected range of 1000m – 1500m should be achievable.

868 MHz (LoRa®)

Using CSS as a modulation scheme allows robust and long-range

communications systems to be realised and has been used in military and

space communications systems for decades. The recent availability of low-

cost hardware to implement this type of modulation scheme allows

commercial development suitable for IoT type systems. The trade-off is the

reduced data-rate achievable for the longest range possible. For this use case,

the ISM frequency band selected is 868MHz with an allowable transmit power

of +14dBm and a maximum achievable link budget of 157dB [36]. If we

define the distance between the transmitter and receiver as 5000m, with no

additional loss, we can calculate the expected receive power at the receiver :

45

𝐿𝐹𝑆 = 20 log10(5000) + 20 log10(868𝑥 106) + 20 log10 (
4𝜋

𝑐
) − 0 − 0

𝐿𝐹𝑆 = 73.97 + 178.77 − 147.55

𝐿𝐹𝑆 = 105.19dB

Power at the receiver is

𝑃𝑅𝑥 = 𝑃𝑇𝑥 + 𝐺𝑅𝑥 − 𝐿𝑇𝑥 − 𝐿𝐹𝑆 − 𝐿𝑀 + 𝐺𝑅𝑥 − 𝐿𝑅𝑥

𝑃𝑅𝑥 = −91.19𝑑𝐵𝑚

If we include an additional 30dB of loss due to cable loss, link margin etc.

𝑃𝑅𝑥 = −121.19𝑑𝐵𝑚

This received power is well within the maximum link budget allowable and

so the range requirement for this use case is satisfied.

In summary see Table 6.

Table 6: Use Case Range Requirements.

Modulation type DSSS(ESPNOW®) FSK(D7A®) CSS(LoRa®) Range

Requirement

Satisfied?

Range ≤1000m ≤1200m ≤ 5000m ✓

Tx Power 14dBm 10dBm 14dBm ✓

ISM Band 2400MHz 433MHz 868MHz ✓

The other requirements necessary to achieve a reliable communications

network such as collision avoidance and mitigation, error correction and

security, bi-directionality, Fresnel zone radius and network topology all have

an impact on the performance of a particular system architecture. Although

the physical link-budget analysis has been assessed for several modulation

schemes, the expected reliability and quality of a communications link will

46

be affected by other influences mentioned and should be allowed for in

designing a system for a given expected reliability and quality of service.

3.4 RF Security

Secure transmission of data in any RF network is a broad topic and will be

discussed here in the context of the three types of modulation schemes

previously discussed and their inherent security capability.

ESPNOW

This is a fast connectionless communication technology using cipher block

changing message authentication code protocol (CCMP) as the encryption

method. This is designed for wireless LAN products and is an amendment to

the original IEE802.11 standard. This provides data confidentiality,

authentication and access control in conjunction with layer management. Two

key types are used, private master key (PMK) and local master key (LMK).

The PMK is used to encrypt the LMK with AES128 type encryption . The LMK

of the paired device is used to encrypt the action frames with the CCMP

method.

LoRa

Because LoRa defines the physical layer only , there are no inherent security

capabilities defined within the device. Security is dealt with at the upper OSI

layers where encryption and authentication are managed e.g., LoRaWAN.

DASH7

Of the three network types discussed, DASH7 is the only completely defined

OSI stack consisting of a wireless air interface and system stack. Apart from

47

the channel coding techniques used at the physical layer (PN9,1/2

convolutional coding) network security (authentication and encryption) is

defined at the network layer (NWL3) and the application layer programming

interface (ALP) layers 6&7. The payload of D7ANP frames can be encrypted

and authenticated using one of seven different methods as outline in the D7A

specification V1.2, Table 7.4.1.1. D7ANP accepts only frames encrypted

and/or authenticated in one of the active network layer security (NLS)

methods defined in the device capacity file. D7A default permissions depend

on where the interface ALP commands originate from. User permissions are

granted to devices connected via a wired interface. Over-the-air commands

have guest permissions, and the device application has root permission.

3.5 Chapter Summary

A review of currently available RF solutions operating in the IoT (Internet of

Things) space was undertaken here. A focus was placed on private/public IoT

type networks, although a review of CIoT network offerings was included for

completeness. The decision to focus on private/public networks was made

based on the availability of OTS hardware and product support. CIoT

offerings are included as part of the 5G improvements as specified by 3GPP

group and include NB-IoT and M1. Currently, only NB-IoT is available in

Ireland. To develop a compression algorithm suitable for u se across multiple

RF platforms a specification was produced shown in Table 2. The range

specification was set to a maximum reception range of 5km, and range

calculations were assessed for three different RF network types using

48

different modulation schemes. The same device should be capable of using

any of these schemes with the appropriate hardware attached. The three

modulation schemes assessed were FSK (DASH7), CSS(LoRa) and

DSSS(ESP-NOW). The commonality across these three schemes is the

maximum payload size of 255Bytes/transmission. Each scheme can have

different transmission bitrates and were evaluated for suitability regarding

range capability and hence time-on-air which effects power consumption. A

brief discussion on security within the RF space was included confined to the

inherent capabilities of each type of RF network explored.

49

4 CHAPTER 4 SYSTEM TESTBED DESIGN

The system needed to prove the validity of the developed image compression

and RF transmission technique consists of three main elements.

• Hardware

• Firmware

• Software

4.1 Hardware

There is limited information available on the transmission of still images

using OTS components in RF bandlimited systems. One such implementation,

which develops a system from ‘scratch’ uses low-power 8-bit Arduino type

microcontrollers which is connected via a serial link to a camera and

Semtech® transceiver [16]. This was the only complete end-to-end system

found which addressed the regulatory constraints imposed and used LoRa®

physical layer in CSS mode. A more flexible platform was needed which

allowed the possibility of using all three communication types (ESPNOW,

D7A, LoRa) on the one platform. An initial network topography was chosen

for simplicity of implementation, performance diagnoses and power

consumption. A mesh type network was considered using D7A but was found

difficult to test and implement for this use case.

50

A star type network was eventually chosen for the same reasons, with the

ability to tailor the modulation type to achieve the use case requirements as

shown in Figure 7.

Figure 7: Network Topologies

The topography of the system is shown in Error! Reference source not f

ound..

The microcontroller platform selected (ESP32 DevKit_V4) by Espressif™

systems satisfied the testbed requirements for the end-node device and

gateway device listed in Table 7.

End Devices

(Server)

Gateway(CLIENT)

TCP/IP
Web

LoRa

D7A

ESPNOW

Figure 8:System Topography

51

Table 7: Hardware Requirements

Connectivity UART SPI 802.11 Bluetooth D I/O A I/O

ESP32 Devkit ✓ ✓ ✓ ✓ ✓ ✓

This configuration of the end-node device and gateway shown below in Figure

9 allowed connection of a LoRa® transceiver via a serial peripheral interface

(SPI) and a camera, via a universal asynchronous receiver transmitter

(UART). This arrangement allowed selection of the preferred modulation

type. The camera selected for this configuration was uCam-II (hardware

rev.1.0) by 4D Systems which allowed serial connectivity and access to raw

image data if required. The LoRa® transceiver used is an RFM95 module by

Adafruit Industries connected via SPI.

Figure 9:End Device (Server)

uCAM-II

52

The end-device (Client) configuration in Figure 9 allowed selection of the

modulation scheme (FSK, CSS,802.11) for various use cases. The Gateway

configuration is shown here in Figure 10. Connectivity is achieved via USB

from the development PC.

Figure 10:Gateway Hardware (Client)

 The hardware chosen for development of the image compression scheme

differed slightly because of an issue with unreliable communication

synchronisation action on the uCam-II which caused unnecessary

development delays [37]. This issue appears to have been addressed in later

hardware revisions of the camera. The chosen version of the test bed platform

used a different ESP32 platform for end-devices and 802.11(ESP NOW)

53

modulation scheme is chosen for algorithm development purposes. The

testbed setup for the development work is shown in Figure 11.

The micro-controller module chosen for the end-device (Server) is a variant

of the ESP32 as shown in Figure 12.

Figure 12:ESPCAM

End Device (Server) Gateway (Client)

Figure 11:Test Bed Hardware

54

This device has an OV2640 camera connection port included in a very small

form factor.

The Camera type included with this module has a resolution of UXGA, SVGA

and below, and supports JPEG compression and RAW data modes. A version

of this camera is available as an SPI connected module allowing flexibility in

design for use with different microcontrollers [38].

The Firmware and Software for this project was developed on a desktop PC

running Linux operating system (Ubuntu 18.04.5 LTS). The ESP32 DevKit

devices used for the gateway were connected to the development PC via USB

cable. To allow programming of the end-devices (ESP-32 CAM), a FTDI

device was connected, and a temporary link was placed between pin 10 and

ground for programming. To allow monitoring and debugging of the device,

this link was then removed for normal operation. The FTDI is a high-speed

serial communications device which bridged connectivity between TTL serial

transmissions and USB signals. Because the ESP32 DevKit has on-board USB

connectivity this device was not needed.

SDR (Software Defined Radio)

To enable verification of RF Transmission below 1GHz, a SDR was used to

visualise communications between end-devices and the gateway. The device

used was a NooElec NESDR Mini connected via USB as shown in Figure 13.

This is a modified DVB-T USB dongle tuned for SDR usage within a range

of 25MHz – 1750MHz. The visualisation software used was SDR# (SDR

sharp) running on Windows 10, which allowed a FFT and waterfall display.

Installation instructions can be found here [39].

55

Figure 13:SDR

4.2 Firmware Development Environment

The chosen programming language to develop the necessary firmware was

C++. This was selected because it allows direct access and control of each

micro-controller subcomponent. Direct control of timing elements within the

development of any RF system is necessary to ensure reliability and

repeatability of any developed protocol . A mature eco-system exists for the

development of code for micro-controllers using C++ which facilitated

tweaking of compilation parameters and enabling an efficient code footprint

to be developed. The Integrated development environment (IDE) chosen for

this project was PlatformIO. This permitted cross-platform development of

code using Microsoft Visual Studio Code. Full debugging was enabled with

single-stepping and multiple breakpoints setting. Using an external high

speed serial device, connected to the micro-controller under development

allowed for full hardware and software debugging. Such a device is the

FT2232H Mini Module available from ftdi Ltd. To integrate this device into

PlatformIO, and to get it to communicate correctly proved difficult. Details

of the final connectivity and setup was recorded.

56

FTDI

A drawback of using a high-speed serial device for debugging is the additional

I/O pins required on the device under test (DUT) for connectivity. These

connection pins might be required for other device connectivity such as a

camera, so limited device debugging might only be achievable. Nevertheless,

this is a superb low-cost solution allowing most of the functionality of a full

device emulator. The debugger protocol is built on an industry standard called

JTAG and the Mini Module is supported by OpenOCD [40]. This enables

PlatformIO to communicate with it via a downloadable software driver. Initial

debugging of this system was achieved using such a device and was connected

as shown in Figure 14.

Figure 14:FTDI Connection

57

A full table of connections is found in Table 8

Table 8: FTDI to ESP32 Connection

FT2232H FT2232H ESP32 DevKit JTAG name FT2232H pin

CN2-7 GPIO 13 TCK AD0

CN2-10 GPIO 12 TDI AD1

CN2-9 GPIO15 TDO AD2

CN2-12 GPIO 14 TMS AD3

CN2-1 CN2-11

CN2-3 CN3-12

CN3-1 CN3-3

The ESP32 and the FTDI were connected to the development PC via USB

where dual terminals were opened for debugging and monitoring of the

application under development.

JTAG Driver:

To communicate with the FTDI, some software configuration was necessary

when using Windows. However, all FTDI devices are supported in Ubuntu as

standard. When using Windows, it was necessary to download a virtual COM

port driver (VCP) [41] which caused the USB device to appear as an

additional COM port. It was also necessary to install a USB driver

configuration tool such as ‘Zadig’ [42]. There were also some configuration

settings necessary in PlatformIO project configuration file (platformio.ini).

To use this FTDI required setting the debug tool = minimodule [43]. This

configuration permitted the setting of two hardware breakpoints and multiple

software breakpoints.

58

4.3 Software

The software element of this research consists of the development of several

Java based programs designed to run on a PC under a Linux environment.

These set of programs enabled the remote connectivity of the gateway to be

established using web. Sockets. The protocol used could be either TCP/IP or

UDP on port 3000. Java was chosen because of its ubiquity and ease of

implementation within the Processing [44] programming environment. This

environment allowed easy development of visually orientated applications

and was thus suited to this application . The monitoring of 802.11 traffic was

achieved using WIRESHARK [45] which is a network protocol analyser . A

typical packet capture is shown in Figure 15.

Figure 15:Wireshark packet capture

The final test bed layout is shown in Figure 16.

59

Figure 16:TEST BED Layout

En
d

-D
e

vi
ce

 (
Se

rv
e

r)

W
iF

i

W
iF

i

Es
p

n
o

w
 (

8
0

2
.1

1
)

U
b

u
n

tu

P
la

tf
o

rm
IO

P
ro

ce
ss

in
g

W
in

d
o

w
s

1
0

W

ir
es

h
ar

k
SD

R

SD
R

G
at

e
w

ay
 (

C
lie

n
t)

TE
ST

 B
ED

60

4.4 Chapter Summary

This chapter described in detail the testbed designed to enable end-to-end

testing and evaluation of both RF networks and the image compression

algorithms developed in this research. It included a discussion of three key

components: hardware, integrated development environment and the

software.

The chosen hardware was selected specifically because of the compact

integration of the necessary interfaces required. The hardware

(ESP32/ESP32-CAM) consisted of an integrated camera, Wi-Fi, BLE and

extensive I/O. The processor was a dual core, 32bit device running FreeRTOS

and at low cost. These microcontroller devices were developed by Espressif™

and are the only devices capable of running ESP-NOW protocol. Although

not the most low-power device available, it was selected because of the

availability of on-board resources. This allowed development of suitable

algorithms, and the assessment of resources needed for a basic system design.

The integrated development environment (IDE) selected was suitable for both

Windows and Linux operating systems and used Visual Studio for code

development in C++. This environment allowed software development within

the Arduino framework and was in keeping with a desire to maintain

simplicity and reduce complexity, to enable cross development for lower

power devices such as 8-bit AVR microcontrollers. To ‘visualise’ RF

transmissions in the sub-GHz frequency bands when using LoRa or DASH7,

a software defined radio (SDR) was used with AirSpy software running on a

Linux (UBUNTU) machine. For real -time testing and register watching /

breakpoint setting, a highspeed UART device was connected to the DUT

61

(Device under test) via a JTAG interface. Driver software is freely available

for these devices and integrates with the PlatformIO IDE. Whilst RF networks

are difficult to debug in real -time, the combination of an SDR and Hardware

debugger allow most issues to be detected and resolved. Several testbed

iterations were developed, and the final version is shown in Figure 16. Packet

capture over the air for ESP-NOW was achieved using a freely available

packet analysis software ‘Wireshark’ in association with a Wi-Fi adapter

which is capable of being set to promiscuous mode.

62

5 CHAPTER 5 SYSTEM IMPLEMENTATION

This chapter describes the implementation of a low-power WLAN suitable for

use with a developed image compression algorithm. The chosen RF topology

was a star type network based on an ESP32 type microcontroller platform

which is widely available. The chosen platform allowed the development of

a compression technique suitable for use on a range of micro-controller

platforms. This facilitated easy embedding of the algorithm within an existing

program because of the minimal computational cost and memory

requirements. The test bed used includes the use of ESPCAM (ESP32

Derivative) for the end-device and was chosen for its integrated camera and

WiFi transceiver which required minimum system wiring. The gateway

configuration chosen used two ESP32 DevKits (ESP32 Derivative) but could

be replaced by any capable system which satisfied the requirements, such as

a Raspberry Pi (RPi). I used two ESP32s because it allowed a single use

testbed environment for both the end-device and gateway development

without changing IDE. The selected modulation scheme was DSSS

(ESPNOW) using the embedded WiFi capabilities of the chosen platform.

ESPNOW has been previously described in section 2.3, this section describes

the IDE configuration and firmware development of a working solution for

both the RF network and the image compression algorithm.

63

5.1 WLAN implementation

This research explored various topographical type RF network structures. To

arrive at a suitable network configuration, it was felt that these configurations

should be explored in a practical manner to assess their suitability for the

chosen use case. The two network types selected included an implementation

of an image transmission system developed by C. Pham [16] but ported for

use on an ESP32 type platform. This implementation uses a LoRa® connected

transceiver (Semtech) and operates in the sub1GHz ISM frequency bands. The

other network topology implemented was a mesh type network using the same

LoRA® transceiver as used by C. Pham with the ability to switch between

FSK and CSS type modulation. This implementation allowed a dual data-rate

system to be selected depending on the use case requirements and was

implemented on ESP32 Devkit platform. Both topologies were assessed based

on the RF requirements for this application before a suitable image

compression algorithm was implemented.

Star Topology

To gain experience with using and transmitting image data using resource-

constrained devices, it was decided to implement a suitable existing solution.

A solution developed by C. Pham [16] enabled he transmission of 128x128

byte image (Raw size of 16384bytes) . The image was then compressed using

a modified DCT developed in collaboration with Vincent LECUIRE (CRAN

UMR 7039, Nancy-Universite, France). This method limited the image shape

to the same number of Rows x Columns and did not meet the requirements for

this use case. This method was ported for use on the selected hardware used

64

during this research. The limited image size, lack of ability to select a ROI

and the use of a third-party compression technique restricted the use of this

system for this application. However, the system was successfully

implemented using the hardware shown in Figure 9 for the end-device and

using a RPi as a gateway as shown in Figure 17.

Implementation of this star type communications network highlighted issues

associated with using this revision of the serial connected camera (uCAM-II)

highlighted in 4.1. An example of a captured image using this setup is shown

in Figure 18 using a Quality factor of 10 and is 128x128 bytes in size.

Figure 17:Camera Testing Hardware

Figure 18:128x128 Image

65

Mesh Topology

In the course of this research, mesh topology was implemented and tested to

a limited degree. There is a brief discussion of mesh typology merits and

demerits prior to a description of its implementation in this research. Working

with a mesh type topology allows extended communication range between

end-devices and a gateway, by routing information via a known path or by

automatic route discovery. The information can be transported in a reliable

way where each transmission is acknowledged by the receiver, or

alternatively, in an unacknowledged way. The introduction of new end-

devices can be done automatically allowing a self-healing network to be

deployed, or each device can be introduced to the network in a programmatic

way. The obvious benefits to this type of network include extended range

because of the routing capability of each device , where a transmission is

automatically (or via look-up table) routed to a destination. If the sending

device is not in direct contact with the end device, the transmitted information

is relayed via a device it can communicate with, to the final destination. The

information is thus ‘bounced’ around the network until the delivery of the

information is achieved. Routing information is constantly updated in each

device which allows the introduction or withdrawal of a device f rom the

network and allows for a changing topography within the network. This type

of modular network facilitates RF access to hard-to-reach places where

traditional communication type networks (e.g., Star type) have difficulty in

reaching.

The issues associated with these types of networks make it difficult to

implement if the end-devices are battery powered and large amounts of

66

information are to be transmitted such as image data. Because each device

needs to be awake all the time (in listening mode) to enable them to form part

of the mesh, power supply can be a major issue if these devices are positioned

in a remote area where traditional power sources are absent. The maintenance

and updating of routing tables incurs an overhead which can have a

detrimental effect on data throughput of a system. The re-routing of data,

because of a change in the network topology, or if an end-device ceases to

operate, can cause a ‘flood’ of data within the network especially if the data

is relayed more than once, which is highly likely. Duty-cycle restrictions can

quickly become overwhelmed thus exceeding imposed regulations. The

testing of such systems during development stage is a known issue , mainly

due to the limited physical area within which a network can be deployed.

Automatic routing algorithms are difficult to check in real-world deployment

scenarios and require time to finalise design and gain operational confidence.

These systems are generally simulated to allow routing checks.

Despite these drawbacks, the benefits of a mesh type network were explored

within this research because of the range extension abili ty. The use case

definitions in 1.1, require the ability to transmit Still image data over a large

range (>5km). If this was achievable with a single type of network topology

and meeting the other use case requirements, then a mesh type topography

yields major benefits.

To alleviate the duty-cycle requirements within a mesh type network , this

research explored the development of a network which allows automatic

modulation type selection. This means less time-on-air if a higher throughput

modulation scheme such as FSK is selected. If a device is outside the range

67

Server 2

Client 1

Server 3

Server 1

FSK

capabilities of such a scheme, then automatic selection of CSS type

modulation scheme is adapted. This mesh topology was implemented using

the same hardware as in the test bed as shown in Figure 9 and Figure 10.

Mesh Network Configuration:

This small network consisted of 4 devices interconnected over an RF link as

shown. Server 1 can only access Client 1 via Server 3 and vice-versa. In this

instance the system should automatically choose the modulation type as

shown in Figure 20.

Server 1

Server 2
Server 3

Client 1

Figure 19:Mesh Network Configuration

Figure 20:Mesh connection sequence

68

To implement the system outlined, a firmware library developed by

airspayce.com [39] called RadioHead Packet Radio library for embedded

microprocessors was modified for use with the hardware specified for this use

case. The system firmware was developed within the PlatformIO IDE using

C++ and tested for functionality in both FSK and CSS mode. The decision-

making algorithm to switch between both modulation modes of operation is

shown in Figure 21.

The system was successfully implemented using manual switching between

modulation modes using a fixed packet size of 64bytes. However, on further

analysis it was realised that to remain within the confines of duty-cycle

restrictions, it was necessary to limit the spreading factor of LoRa to SF7 –

SF9. This would reduce the maximum range available and negate the benefits

relative to using FSK, particularly if using large amounts of data (image

Transmission). This is a consequence of the increased overhead associated

with maintaining the integrity of the mesh network. Due to the difficulty in

real world testing of such a system, and because of time constraints, it was

felt that further development was needed to fully evaluate such a concept .

Further investigation would detract from the time needed to develop and

69

implement an image compression algorithm and this avenue of research was

halted.

Figure 21:CSS->FSK Flowchart

start

Default mode = LoRa

Can I connect to any other

end-device using LoRa ?

Send request to other devices to switch to FSK for a defined timeout.

Can I connect to any

other end-device using

FSK?

Send request to connected device to remain in FSK Mode until end of

transmission

Yes

Yes

Yes

No

No

70

Selected Network Topology

A star type network was developed using ESPCAM Platform t o minimise

wiring connectivity issues during development phase , and considering the

issues experienced with the use of uCAM-II camera. Because all the necessary

components were contained within a single module, this enabled robust

hardware development. Connection via a single USB cable allowed the device

to be programmed, debugged, and powered in a simple manner.

The chosen Network protocol selected for development was ESPNOW as

described in 2.3. This schema (Figure 22 enabled connectivity between

devices in multiple ways e.g., many-to-one, one-to-one, or one-to-many.

Although this modulation scheme is based on 802.11, this is a proprietary

protocol and is specific to Espressif™ ESP32 devices. It is a connectionless

type of scheme which allows rapid connection of one device to another which

can have a positive impact on battery life.

ESP-Now

Gateway (Client) End-Device (Server)

Figure 22: ESPNow Schema.

71

Pairing of devices is needed prior to their communication, after pairing is

done, the connection is persistent and no further handshaking is required.

Common elements of programme development will be discussed in the

context of server and client hardware in the following section.

Common Elements:

There are common firmware elements associated with the operation of both

Server and Client hardware platforms. All necessary ESPNOW libraries are

available from Espressif™ and can be freely download into common IDEs

such as Arduino by adding these additional URLs to the board manager within

settings:

https://dl.espressif.com/dl/package_esp32_index.json,
http://arduino.esp8266.com/stable/package_esp8266com_index.json

and then under Tools>Board>Boards Manager search for ESP32 and press install button

when found. This research used PlatformIO (VSCode) as the IDE but using the Arduino

framework.

 The terms master/controller and slave are commonly interchanged with

server and client and in keeping with the nomenclature used by Espressif™,

Controller and slave were used here. There is no concept of this division

within the ESPNOW API as each device can act as controller or slave or both.

The role of devices was defined in the configuration of each device during

setup(), as SoftAP or STA mode can be selected and was selected as shown

in Table 9 [12].

72

Table 9: ESPNow Role

Role IDLE

CONTROLLER

SLAVE

COMBO

The device's role.

IDLE: undefined role

CONTROLLER:

controller SLAVE:

slave COMBO: double

role as controller and

slave

The local device's Role wil l define the

transmitting interface (SoftAP interface

or Station interface) of ESP-NOW.

IDLE: data transmission is not allowed.

CONTROLLER: priori ty i s given to

Station interface

SLAVE: priority is given to SoftAP

interface

COMBO: priority is given to SoftAP

interface

Station interface for Station -only mode

and SoftAP interface for SoftAP-only

mode.

Espressif

The sequence of events needed to initialise and connect devices for both

controller and slave devices are as follows:

1. Initialize the ESP-Now protocol

2. If we are developing a master or a Controller

▪ Add peer (if we are developing a master or Controller)

▪ Define the callback function to know if a message is sent

▪ Send a message

3. If we are developing a slave

▪ Add a callback function to know when a new message is

arriving

To identify each device, use is made of each unit’s MAC address which is

unique to every device.

End-device (Controller) code to establish a basic communications network

was set up as follows:

Several functions were used in this case.

• void InitESPNow()

• void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status)

• void setup()

• void deletePeer()

• bool manageSlave()

73

• void initBroadcastSlave()

• void ScanForSlave()

• void sendData()

• void loop()

On boot-up, void setup() is first called followed by void loop().

1. The mode of the device is set to STA with ‘WiFi.mode(WIFI_STA) ’

because this is a controller device and sends data to a slave device.

2. Disable WiFi because this is ESPNow with WiFi.disconnect();

3. Initialise ESPNow protocol with InitESPNow();

4. Register the function to be called when data is sent with

esp_now_register_send_cb(OnDataSent);

void setup()

{

Serial .begin(115200);

WiFi.mode(WIFI_STA); / /Set device in STA mode to begin with

WiFi.disconnect();

Serial .print("STA MAC: "); Serial .print ln(WiFi.macAddress()); / /

This is the mac address of the Master in Station Mode

InitESPNow(); / / Ini t ESPNow with a fal lback logic

/ / Once ESPNow is successfully Ini t , we wil l register for Send CB to

/ / get the status of Trasnmitted packet

esp_now_register_send_cb(OnDataSent);

74

The void loop() function then runs continuously:

1. Check to see if anyone is listening with ScanForSlave ();

2. Add slave address to peer list if a new device is found and continue.

3. If the device already exists within the peer list, then do something i.e.,

send an image or other data.

4. Wait for 10 sec and repeat (arbitrary).

The slave device consists of two ESP32 Devkits connected via UART to

each other (Figure 23), designated ‘Slave-> Serial’ and ‘Serial->TCP’

void loop() {

 / / In the loop we scan for slave

 ScanForSlave();

 / / If Slave is found, it would be populated in `slave` variable

 / / We wil l check if `slave` is defined and then we proceed further

 i f (slave.channel == CHANNEL) { / / check if slave channel is defined

 / / `slave` is defined

 / / Add slave as peer if i t has not been added already

 bool isPaired = manageSlave();

 i f (isPaired) {

 / / pair success or already paired

 / / DO SOMETHING HERE

 / / wait for 10 seconds to run the logic again

 delay(10000);

 }

 else

 {

 / / slave pair fai led

 Serial .println("Slave pair fai led!");

 }

}

}

75

Figure 23:Serial to TCP Bridge

This configuration separates ESP-Now and normal WiFi. Although each

ESP32 Devkit is Wi-Fi capable, it was not possible to use both modulation

schemes at the same time without resetting the Wi-Fi driver. To solve this

issue, it was decided to separate ESP-Now from Wi-Fi, and relay any data

received by the slave (Slave>Serial1) to a dedicated device which was

connected to a local router (Serial -> TCP). The connection between

devices is over standard serial type port. The serial - > TCP device could

be a more capable platform such as a Raspberry pi which would allow

post-processing to be achieved locally.

Slave Device (Slave->Serial1) code:

Programming steps for a slave device is like that used by the controller.

 Step 1: ESPNow Init on slave.

 Step 2: Update the SSID of slave with a prefix of `slave` .

 Step 3: Set slave in AP mode.

 Step 4: Register the receive callback function and wait for data.

 Step 5: Once data arrives, print it in the serial monitor .

76

Setup() runs once on bootup and then loop() continuously.

Some extra functions used in this instance are:

1. xRingbufferCreate(): this creates a ring buffer (circular buffer) which

is needed to manage data rates.

As before, during setup(), the device is configured as an access point

(configDeviceAP();) ESPNow is initialised, and a call-back function is

registered to handle activity when data is received. A ring buffer is

established (xRingbufferCreate(70000, RINGBUF_TYPE_BYTEBUF) of

type byte, to handle the asynchronous way data is received and transmitted

void setup() {

 Serial .begin(115200);

 Serial2.begin(115200,SERIAL_8N1,16,17); / / connection with socket ESP32 - pin 16 & 17

 / / Set the device as a Stat ion and Soft Access Point simultaneously

 WiFi.mode(WIFI_AP);

 / / configure device AP mode

 configDeviceAP();

 / / Ini t ESPNow with a fal lback logic

 Ini tESPNow();

 esp_now_register_recv_cb(OnDataRecv);

 / /Create ring buffer

 / /RingbufHandle_t buf_handle;

 buf_handle = xRingbufferCreate (70000, RINGBUF_TYPE_BYTEBUF);

 i f (buf_handle == NULL)

 {

 printf("Failed to create ring buffer \n");

 }

}

77

over Serial1 to the Serial->TCP device. The information transmitted over

ESP-Now can arrive more quickly than the program can respond and send

over the physically connected serial port. This results in missing information

and out-of-sequence handling of the complete system if not buffered. This

allows data to be received, processed, and transmitted at two different rates.

The main programme loop():

A portion of the main loop() is shown here. When data is received into the

Ring buffer an event is triggered which reads the data and checks if certain

criteria are met. After data is removed from the buffer,

vRingbufferReturnItem(buf_handle, (void *)item); is called to reset pointers

into the buffer to enable more data to be received. When certain criteria are

met, data are saved to another buffer and then transmitted over the serial

connection to the Serial-> TCP device.

void loop() {

 / /Receive data from byte buffer

 size_t i tem_size ;

 uint8_t *i tem = (uint8_t *)xRingbufferReceiveUpTo(buf_handle, &item_size,

pdMS_TO_TICKS(500),1024);

 / /Check received data

 i f (i tem != NULL)

 {

 i f (!sync)

 {

 for (int i = 0; i < i tem_size; i++)

 {

 / /Serial .print(i tem[i]);

 / /Serial .print(",");

 / /Serial2.write(i tem[i]);

 data[i] = i tem[i]; / / check if first three bytes in correct sequence

 vRingbufferReturnItem(buf_handle, (void *)i tem);

 }

 i = 0;

78

5.2 Image Transmission

To enable the transmission of image data as specified in Table 2 a stepped

approach of transmitting a full uncompressed Image was first explored. The

image was a 320x240 8bit grey scale, giving a total payload size of 76800

bytes. The designed test bed was used with image data captured by the on-

board OV2460 camera. This allowed testing of an end-to-end system

including Camera interface, RF Interface, packetization algorithm and

reconstruction of uncompressed data at the application layer interface. The

packetization of the image data used by the end-device is shown below.

Packetization

The format of the vendor-specific action frame used by ESP-NOW is shown

in Table 10. [46]

Table 10: Vendor-specific action frame

MAC Header Category

Code
 Organization

Identifier
Random

Values
Vendor

Specific

Content

 FCS

24 bytes 1 byte 3 bytes 4 bytes 7-255 bytes 4 bytes

The Field of interest is the Vendor Specific Content shown in Table 11.

Table 11:Vendor Specific Content

Element ID Length Organisation

Identifier

Type Version Body

1 byte 1 byte 3 bytes 1 byte 1 byte 0~250 bytes

Specifically, the field ‘Body’ which contains the payload data is of interest.

This is the location of the packetized data.

79

Because the maximum payload size per transmission was 255 bytes, a means

to split the image data into packets was developed. The format of the packet

contained enough information for the received data to be reconstructed into

the original format regardless of packet reception sequence. This would be

suitable for use on other microcontroller platforms and by other RF protocols

discussed within this research project. The main criteria for cross-platform

usage is the maximum payload size capability of 255 bytes per transmission.

A packet of data was structured; this constituted the ‘Body’ of data within the

vendor specific data field.

The developed packet structure is shown in Table 12.

Table 12: Packet Structure

Frame I.D Frame Start Data

1 Byte 4 Bytes 240 Bytes

Frame I. D - Specifies the type of frame to be transmitted.

Table 13:Frame I.D Specif ics

Value (Decimal) Function

Random 0 -10 (lower nibble)

EXOR with 144 to indicate this is

an uncompressed image.

e.g.

Rnd. 0 0 0 0 1 0 0 0

144 1 0 0 1 0 0 0 0

Result 1 0 0 1 1 0 0 0

A random value between 0 and 10 is

used to indicate that each packet

received within a defined time is

from the same image. i.e. if there are

multiple end-devices, a means to

identify each packet stream is

necessary.

127 Used to indicate end of Image data.

Frame Start -

Specifies the location of the start of each frame. i.e. an

image captured by the on-board camera is stored in a 1-

D Array. To reconstruct the array faithfully, it was

necessary to know the start location of each packet

within the array.

80

Data - Image data was packed in fixed lengths of 240 Bytes.

Synchronisation of the first data packet was achieved by setting the frame I.D

to a randomly generated number between 0 – 10, and Exoring the full byte

with a type identifier , in this instance 144. Setting the next 4 bytes (Frame

Start) of data = 0, the receiver checks for this condition and synchronises with

the transmitter. Subsequent transmissions contained the same I.D and

calculated frame Start values until a decimal value of 127 was identified

within the Frame I.D field Table 13. This signalled the last packet within the

current image data stream. The type of transmitted frame was indicated by

the upper nibble of the I.D. byte. Each transmitted payload packet was 245

bytes in length, allowing a further 10 bytes for future use before the payload

limit was reached.

The number of packets to transmit in non-compressed mode was image

size/Data size, as shown in Equation 17.

Equation 17: No. of uncompressed Packets

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 =
76800

240
= 320

The code to achieve a full end-to-end transmission of a digital image is

included in the appendix along with a detailed explanation of the main

functions used for clarity.

An explanation of the code to achieve synchronisation across the RF network

for image transmission is presented next.

81

The function ‘fullImage()’ developed to achieve this is shown below.

void fullImage(){

 camera_fb_t *fb = esp_camera_fb_get(); / /Snap picture

 i f (fb) {

 srand((unsigned) time(0)); / / generate a random number 1 - 10, to use as frame I.D in payload

 int randomNumber;

 for (int index = 0; index < 1; index++) {

 randomNumber = (rand() % 10) + 1;

 }

 uint16_t num_of_frames = (fb ->len / frame_length);

 / / for QVGA - 320X240 Pixels, using greyscale B&W = 76800 Bytes.

 / / each frame is 240 bytes long.

 / / Number of frames = 76800/240 = 320 frames.

 for (cnt = 0; cnt < num_of_frames+1; cnt++) // frames+1 otherwise only 383 packets sent .

 {

 dataToSend[0] = randomNumber | 144; / / frame I.D., 144 is Raw image indicator

 dataToSend[1] = highByte(cnt); / / frame count number.

 dataToSend[2] = lowByte(cnt);

 dataToSend[3] = 0;

 dataToSend[4] = 0;

 i f(frameEnd >= fb ->len){

 frameEnd = fb ->len;

 frame_length1 = (frameEnd - frameStart);

 }

 else{

 frame_length1 = frame_length;

 }

 while (i < frame_length1)

 {

 dataToSend[i + 5] = fb ->buf[frameStart+i];

 i++; / / number of elements to copy

 }

 i = 0; // reset index for next value of cnt.

 sendData();

 frameStart = frameEnd;

 frameEnd = frameStart + (frame_length1);

 }

 esp_camera_fb_return(fb); / / release camera buffer. DO NOT RELEASE IF MULTIPLE

VARIATIONS ARE TO BE SENT FOR COMPA RISION

 frameStart = 0;

 frameEnd = 240; / /200

 Serial .println("Complete Frame Sent -- ");

 }else{

 Serial .print ln("NO snap taken ?");

 }

 }

82

The type of image to be sent was selected in the main loop().

The Slave-> Serial1 (Figure 23) device is the client side of the ESP-Now

connection. After the device had been configured during setup, the main

loop() ran continuously. Upon reception of data via ESP-Now, a conditional

loop is entered, dependent on the parameters identified in the I.D. f ield of the

payload data. For this condition (uncompressed image), if the number 144 is

identified and the random number is within parameters , then the received data

void loop() {

 / / In the loop we scan for slave

 ScanForSlave();

 / / If Slave is found, it would be populate in `slave` variable

 / / We wil l check if `slave` is defined and then we proceed further

 i f (slave.channel == CHANNEL) { / / check if slave channel is defined

 / / `slave` is defined

 / / Add slave as peer if i t has not been added already

 bool isPaired = manageSlave();

 i f (isPaired) {

 / / pair success or already paired

 ful lImage();

 / /delay(7000);

 / /compress(); / / take photo & compress & send data.

 / /delay(8000);

 / / ROI(); / / Region of Interest - uncompressed & send data

 / / wait for 10 seconds to run the logic again

 delay(10000);

 }

 else

 {

 / / slave pair fai led

 Serial .println("Slave pair fai led!");

 }

}

}

83

is stored in a new array for processing. The raw conditional entered is shown

below.

Once synchronisation was achieved, signalled by sync=true, the rest of the

received data is ‘pulled’ from the ring Buffer until all the expected raw data

is received. A FullImage flag is then set as shown below.

 / / ---

 / / Raw Data condit ional

 / / --- ---------------

 else if ((data[0]& 0xf0) == 144 && (data[0]& 0x0f) <=10) / / is first Byte (I.D) < = 10 ?

and RawImage flag set ?

 {

 / / Get next byte

 j = 0;

 i f (data[1] == 0 && data[2] == 0) / / is 1st ,2nd Byte = 0 ?

 {

 sync = true;

 Raw = true ;

 for (int i = 0; i < i tem_size && j <= 78400; i++) / / Don't know how many Bytes were

buffered so get size.

 {

 Payload[j] = data[i]; / / Store next Byte in correct location in Array.

 j++;

 }

 i = 0;

 }

 }

 i f (sync && !sync1 && !sync2){

 for (i = 0; i < i tem_size ; i++)

 {

 data[i] = i tem[i]; / / Read in buffered data and store in next location in

'Payload' array

 Payload[j] = data[i];

 vRingbufferReturnItem(buf_handle, (void *)i tem);

 j++;

 // i f (data[0] == 127){ / / possibil ity of false trigger ?

 i f (j >= 77600){ / / possibil i ty of false trigger ?

 FullImage = true;

 }

 }

 i = 0;

 }

84

Once FullImage and Raw has tested true then the array (Payload) is written

to the connected ESP32 via Serial1.

The ESP32 Devkit, Serial->TCP device was programmed to connect to a local

Wi-Fi router and is set to run as a TCP/IP connected server over port 3000

with a fixed IP address. When a remote Client connects to this server , any

data received over the Serial port is written to the connected Client . The main

loop() to achieve this is shown below.

Raw image example:

An image size of 320x240, QVGA (Quarter Video Graphics Array) was

transmitted over a basic network previously described using ESP-Now

protocol. The image was in raw format i.e., non-compressed and consisted of

an image vector of length 76800 bytes as shown in Figure 24.

void loop() {

 CheckForConnections();

 i f (RemoteClient)

 {

 while ((capacity = Serial2.available())) {

 i f (capacity > 0)

 {

 for (i = 0; i < capacity; i++)

 {

 data[i] = Serial2.read(); / /

 }

 RemoteClient .write(data,capacity);

 i = 0;

 Frame = true;

 }

 }

 }

}

85

The image is shown full size. A graph of brightness distribution is shown in

Figure 25.

Figure 25:Brightness Distribution

The occurrence of ‘darker’ sections of the image (<127) are dominant except

for a peak in maximum brightness at 255.

0

1000

2000

3000

4000

5000

6000

7000

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

FR
EQ

U
EN

C
Y

E

GREYSCALE VALUE

Image11 Brightness distribution
0 = Darkest, 255 = Brightest

Figure 24:Raw image example

86

A further Image Figure 26 has a different distribution curve.

Figure 27:Brightness distribution Image 2

5.3 Image compression

This research has developed and enhanced a compression algorithm based on

work done by Rafeeq AL-HASHEMI et al. [19]. The technique described is

suited for use in resource-constrained devices as computation requirements

0

1000

2000

3000

4000

5000

6000

7000

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

FR
EQ

U
EN

C
Y

E

GREYSCALE VALUE

Image14 Brightness distribution
0 = Darkest, 255 = Brightest

Figure 26: Raw Image 2

87

are low and allows flexibility in image size and matrix shape to be chosen. It

is described as a semi-lossless compression technique using RLE (Run Length

Encoding) and utilises pixel value rather than bit value. The compression

algorithm described has been enhanced to allow the selection of three quality

factors, QLow, QMed and QHigh. The selected quality factor remaps the

original data from 0-255 values to 8,16 and 32 values as required. Two

compression quality factors were implemented, and results evaluated.

Each pixel is represented by an 8-bit value, which represents the brightness

of each point in the range 0-255. The selected image quality for this research

was based on standard QVGA (320x240) which allowed enough detail to be

observed for this use case. The image taken by the camera on the end-device

was stored in the camera memory as a 1-D array and is 76800 bytes in length.

The raw data was accessible via an index into this array (buffer). This process

can be used on colour images if each colour is first mapped to a vector whose

range varies from 0-255. In this case, we used 8-bit greyscale data.

RLE

Run length encoding is a common technique used to compress data in a

lossless manner. Because a lot of consecutive data elements are the same

value in image data, a sequence of data that represents an image is stored as

a single data value and count, rather than the original data sequence. This

method is particularly suitable for use in greyscale images where the value of

each pixel carries only intensity data. If other types of data were presented

where there are not many runs of similar data, it is possible that this method

could double the size of the original file.

88

The technique used by Rafeeq AL-HASHEMI et al. firstly remaps each pixel

byte value from 0-255 to 128-255. This reduces the pixel intensity range from

256 to 16. The remapping is achieved by resetting the lower 4-bits of each

byte (lower nibble) to zero by logically ANDing the value with 0xf0.

Table 14:Remapping Example

Original

byte value
0 0 0 0 1 0 1 0

Mask 1 1 1 1 0 0 0 0
Resultant 0 0 0 0 0 0 0 0

 For example, the original value is decimal 10, this is remapped to 0. In fact,

values 1-15 will be remapped to 0. This method is implemented for each pixel

value and stored in a new array. The mapping table is shown in Table 15.

Table 15: Mapping Table

Original Value Mapped code

240-255 240

224-239 224

208-223 208

192-207 192

176-191 176

160-175 160

144-159 144

128-143 128

112-127 112

96-111 96

80-95 80

64-79 64

48-63 48

32-47 32

16-31 16

1-15 0

89

Once the original data has been re-mapped, RLE is then used on the remapped

data. The new information, the value and frequency of occurrence, is saved

in a new byte of information. If the remapped decimal data value = 64,

frequency of occurrence after RLE = 8, then the following values apply as

shown in Table 16 .

Table 16:Remapped value + Frequency of occurrence.

Remapped

data.

0 0 1 0 0 0 0 0

Frequency 0 0 0 0 1 0 0 0

New Byte 0 0 1 0 1 0 0 0

If the RLE occurrences exceed the 4-bit limit (15), then the algorithm will

divide this ‘New Byte’ into consecutive pairs that cope with the 4-bit

limitation. Because a packet size limit of 255 bytes exists , it is necessary to

packetize each transmission in a structured format as shown in Table 12.

Because the final length of each compressed image file is unknown until the

last packet is sent (indicated by setting I.D = 127), it is necessary to monitor

the position of each data element within the original uncompressed vector. To

maintain a constant packet payload size during transmission for simplicity

and efficiency, the RLE maintains the location of each last data byte within

the original image vector. This is necessary because RLE is performed on the

re-mapped image file and is normally of different lengths, determined by the

similarity of consecutive bytes for each structured packet . If a standard

number of re-mapped bytes were chosen (say 240), and RLE is performed on

this data, then it is likely that each final data payload size will be less th an

90

240 bytes. To ensure transmission efficiency, a standard payload size of 240

bytes is maintained. If the last packet to be sent is less than 240, then it is

artificially filled to maintain the correct structure. Because the compression

algorithm is a key component of this thesis a detailed explanation of the code

to achieve this is presented next.

91

 void compress(){

 camera_fb_t *fb = esp_camera_fb_get(); / /Snap picture

 i f (fb) {

 fi rst = true; / / fi rst frame indicator

 Serial .print ln("Snap Taken"); / / COMPRESSION AND RLE STARTS HERE.

 srand((unsigned) t ime(0)); / / generate a random number 1 - 10, to use as frame

I.D

 for (int index = 0; index < 1; index++) {

 randomNumber = (rand() % 10) + 1;

 }

 i = 0;

 while (i <= 76800)

 {

 while (j < 240 && i <= 76800)

 {

 i f (Qhigh){ / / i f Qhigh is selected then

 mask = 0xf8; / / map to 32 values

 many = 7;

 }

 else if(QMed){ / / i f QMed is selected then

 mask = 0xf0; / / map to 16 values

 many = 15; }

 k = fb->buf[i] & mask;

 while (k == (fb ->buf[i+1] & mask)&& i <= 76800) / / map to Qhigh, Qmed,Qlow values

 {

 Count++;

 i++; }

 i f (Count <= many && i <= 76800)

 {

 NewArray[j] = k + Count;

 j++;

 i f(Count == 0){

 i++;

 }

 else{

 i++;}

 }

 else if (Count > many && i <= 76800)

 {

 uint8_t Quot = Count / many;

 uint8_t Rem = Count % many;

 while (Quot > 0)

 {

 NewArray[j] = k + many;

 Quot--;

 j++;

 i f(Quot == 0 && Rem >0){

 NewArray[j] = k + Rem;

 j++;

 }

 }

 i++;}

 Count = 1; }

 j = 0;

 p = 0;

 PacketCompressed();

 sendData();}

 }

 i = 0;

 frameStart = 0;

 frameEnd = 240;

 esp_camera_fb_return(fb); / / release camera buffer.}

92

i f (Qhigh){ …… selects the compression ratio, here, image data is re-mapped to

32 values.

i f(QMed){……... selects the compression ratio, here, image data is re-mapped to

16 values.

NewArray[j] …. This is the array containing the re-mapped values.

PacketCompressed(); This formats each packet for transmission.

esp_camera_fb_return(fb); The camera buffer is released here for next image.

An example of transmitted compressed and raw images is shown Figure 28.

Figure 28:Raw & Compressed Image

Debugging information at the client is shown below.

Raw Image Compressed Image

comp11541

Image size = 22295

ID = 0

Start = 0000

loc = 0

I.D = 166loc = 1360

I.D = 6loc = 2647

I.D = 6loc = 3784

I.D = 6loc = 4929

93

Comp11541 is the image reference. The received image size is shown, and

the decoded vector location is shown for each received packet (e.g., loc =

1360) along with the I.D. of the transmission. The location data is extracted

from the transmitted frame structure, i.e., data elements 1 – 4. This

information is used to reconstruct the vector image array data.

If using the quality factor set to QMed (re-mapped to 16 values) a PSNR,

Equation 1, of ~ 36 dB is calculated with a compression ratio of 71%.

Table 17: PSNR QMed

Image (ID) Quality Image

Size

Compression

Ratio

PSNR dB

Raw (9941) 0-255(Full) 76800 1

Compressed(11541) 0-16 (QMed) 22295 70.97 35.96

The compression ratio is computed using Equation 18.

Equation 18: Compression Ratio

𝐶𝑅 = (
𝑥 − 𝑦

𝑥
) ∗ 100

Typical values for PSNR in lossy image and video compression are between

30 and 50 dB, where higher is better. Acceptable values for wireless

transmission quality loss is considered to be about 20 dB to 25 dB.

94

If using the quality factor set to QHigh (re-mapped to 32 values) a PSNR,

Equation 1, of ~ 37.4 dB is calculated with a compression ratio of 64%.

Table 18: PSNR QHigh

Image (ID) Quality Image

Size

Compression

Ratio

PSNR dB

Raw (10021) 0-255(Full) 76800 1

Compressed(17481) 0-32 (QHigh) 27685 63.95 37.4

The compressed image shown in Figure 29, shows artefacts generated by

missing information, highlighted in red. The compression algorithm is robust

to transmission disturbances and allows best effort reconstruction of received

data. It also allows reconstruction due to out of sequence packet reception

because each packet is treated as an independent transmission and includes

array location information.

ROI

The outline specification for image compression in Table 2 calls for the

ability to select a region of interest for transmission. In certain use cases, one

Raw image Compressed image

Figure 29:Raw & Compressed (QHigh)

95

region of an image may be of more importance than the rest , for example,

identification of a car number plate, or sections of a medical image. To

minimise the required bandwidth needed, one technique used was to compress

all the image data except for the region of interest . The selected ROI was then

transmitted alone or combined with a compressed data image. The firmware

routine developed in this research allowed selection of a small region of a

complete image to be transmitted, in either uncompressed or compressed

format. Selection of a small subset of data and compressing it , enabled this

method for use with long range systems (e.g., LoRa) where all resources were

constrained. To select a subset of data, a coordinate system was developed

enabling a part of an overall image to be selected and transmitted.

For this use case, the selected image size was QVGA, which is an image of

size 320x240 bytes using 8-bit grey scale. The camera used for the end-device

stores an image as a 1-D Array (vector) of length 76800 bytes. The image is

represented as shown in Figure 30

Rows

240

0 Columns 320

Array[0]

Array[76800]

Image Array

Figure 30:Image Array

96

Each image is arranged in columns and rows. Row 1 consists of Array [0-319]

data elements, row 2 consists of Array [320-639] and so on. To select a ROI,

a grid size of 80x60 bytes was overlaid on the existing image using a

technique to directly manipulate any pixel within the image data array. A grid

size of 80x60 was chosen but could be any grid size required. This allows an

even division of columns and rows, i.e., 320/4 = 80 and 240/4 = 60. The

chosen grid size will contain 80x60 = 4800 bytes of information. The upper

left-hand corner of a selected grid was selected, and an algorithm was

developed to translate this coordinate into an array for transmission. The ROI

size was chosen to be a multiple of the allowed packet size (i.e., 240) , which

means the total transmission consisted of 20 packets (4800/240). The grid

overlay is represented in Figure 31.

Rows

240

0 Columns 320

Array[0]

Array[76800]

Image Array

0 80

60

Figure 31:Grid Overlay

97

This is an uncompressed image size but could be further reduced in size if the

developed compression algorithm is used. If using a quality factor QMed, the

size could effectively be reduced by 70%, see Table 17. The overall size

would then consist of 6 packets to be transmitted, a large reduction in power

consumption of an end-device could then be realised. For development

purposes, the grid selected is done manually during programming of the end -

device. In this instance, a grid reference of column = 80 and row = 60 is

chosen which determines the upper-left hand corner of the grid. This is now

translated into a specific location within the full image array i.e., an index

into the image vector.

To translate the grid coordinates into vector indices, several variables are first

defined, and then used to calculate the array index defined in Figure 32

H = Horizontal Column number.

V = Vertical Row number.

W = Number of columns in complete image.

L = Number of Rows in complete image.

To calculate the top left -hand corner index, we can use Equation 19.

H, V

ROI

Figure 32: ROI Value calculation.

98

Equation 19:ROI Top left -hand index

ℎ = (𝑉 ∗ 𝑊) + 𝐻

To calculate the bottom right-hand corner index, we can use Equation 20.

Equation 20:ROI Bottom right-hand index

𝑟 = (ℎ + 𝐻) + (𝑉 ∗ 𝑊)

The variable ℎ represents the index into the image array representing the top

left-hand corner of the selected grid .

The variable 𝑟 represents the end location of interest into the image array.

For Example.

Table 19:ROI Worked example.

H = 80 V = 60 W = 320 L = 240

Top left-hand corner:

 ℎ = (𝑉 ∗ 𝑊) + 𝐻

ℎ = (60x320) +80

ℎ = 19280 …………… This is the index into the image buffer array

 representing the ROI grid top left corner.

Bottom right corner:

𝑟 = (ℎ + 𝐻) + (𝑉 ∗ 𝑊)

𝑟 = (19280 + 80) +(60x320)

𝑟 = 38480 ………… This is the index into the image buffer array

 representing the ROI grid bottom right corner.

99

 The selection of a ROI to transmit, is achieved by selecting a combination of

only two variable values (H and V) shown in Table 20.

Table 20: ROI Parameter selection

The code developed to produce the necessary packet structure for

transmission is shown next.

H= 0

V= 0

H= 80

V= 0

H= 160

V= 0

H= 240

V= 0

H= 0

V= 60

H= 80

V= 60

H= 160

V= 60

H= 240

V= 60

H=0

V= 120

H= 80

V= 120

H= 160

V=120

H= 240

V= 120

H= 0

V= 180

H= 80

V= 180

H= 160

V= 180

H= 240

V= 180

void ROI(){

 camera_fb_t *fb = esp_camera_fb_get(); / /Snap picture

 fi rst = true;
 srand((unsigned) t ime(0)); / / generate a random number 1 - 10, to use as

frame I.D in payload

 for (int index = 0; index < 1; index++) {
 randomNumber = (rand() % 10) + 1;

 }

 i f (fb) {
 j = 0;

 h = (V * W) + H;

 r = (h + H) + (V * W);
 frameStart = h;

 while (h < r) / / r

 {
 while (j < 240)

 {

 for (i = h; i < h + 80; i++) / / h+80
 {

 NewArray[j] = fb ->buf[i];

 j++;
 }

 h = h + W; / / update index into array

 }
 j = 0;

 PacketROI() ; / / construct t ransmission packet

 sendData(); / / t ransmit the data.
 }

 / / frameStart = h + j;

 esp_camera_fb_return(fb); / / release camera buffer.

 }
}

100

PacketROI(); is the function required to construct a packet for transmission. To

identify that this is a ROI packet, the upper nibble of the I.D field is set =

96.

An example of a received uncompressed ROI image with uncompressed full

image is shown in Figure 33.

The ROI is shown full size and its location is shown on the full uncompressed

image. This represents a grid reference of H = 80, V = 60.

Pixel writing

The ability to read individual pixel values allows decision-making based on

image content such as intrusion/movement detection and is an area of research

worth exploring further, though not used in intrusion/movement detection in

this use case. The ability to write to specific pixel locations also offers

opportunities for specific use cases and is a specification requirement for this

research as shown in Table 2.

Figure 33:ROI uncompressed

101

To enable direct manipulation of any pixel value, use is made of a graphics

library supplied by Adafruit .com [47]. The Adafruit_GFX library provides a

common syntax and set of graphics functions for most LCD and OLED

displays. It has been adapted here for use with images taken by the OV2640

which is the camera supplied with the ESP32-CAM.

An example of a full-size uncompressed image, and the same image

compressed using QMed with graphics overlay is shown Figure 34.

The compressed image has a 4x4 grid overlay and information relating to

battery voltage level embedded in the image. Regardless of the changing

image, the grid overlay remains in the exact location specified during

programming. This facility could be used for monitoring specific areas of an

image for change. For example, growth rate monitoring of bacteria in a Petrie

dish or change of size of cracks in a structure. The direct manipulation of an

image at transmission time does not add to the overall size of the transmitted

image data. This allows for transmission of extra information wit hout

incurring a data size cost.

Figure 34:Image Overlay

102

The code used to implement this functionality is shown next.

This code is used to initialise the library. The code to enable image overlay

with a grid and battery information as shown in Figure 34. In this instance it

is used within the compress () function but could be applied to any of the

image functions developed during this research.

/ / --

/ / Pixel drawing stuff here.
/ / --

class aFrameBuffer : public Adafruit_GFX {

 public:
 uint8_t *buffer = NULL;

 uint32_t size1;

 int w;
 int h;

 aFrameBuffer(int16_t ww, int16_t hh): Adafruit_GFX(ww,hh){

 w = ww;

 h = hh;

 size1 = h * w;

 }
/ / ------------------------------

/ / where to draw

/ /------------------------------
void setBuffer(uint8_t *b){

 buffer = b;

}

/ / -------------------------------

/ / Drawing a Pixel
/ / -------------------------------

void drawPixel(int16_t x, int16_t y, uint16_t color){

 i f(x<0 | | x>= w | | y<0 | | y>=h)
 return;

 buffer[x + y * w] = color;

}
};

aFrameBuffer OSD(320, 240);

void compress(){

 camera_fb_t *fb = esp_camera_fb_get(); //Snap picture

 i f (fb) {
 / / ------------------ -------------------------------

 / / Write to main camera buffer direct ly

 OSD.setBuffer(fb ->buf);
 OSD.setTextSize(1);

 OSD.setTextColor(BLACK,WHITE);

 for (i = 80; i < 320;i += 80){
 OSD.drawFastVLine(i , 0 , 240, WHITE);

 }

 for (i = 80; i < 240;i+= 80){
 OSD.drawFastHLine(0, i , 320, WHITE);

 }
 OSD.setCursor(20, 220);

 OSD.print("Bat. Voltage = 3.4v");

 / / -------------------- -----------------------------

103

5.4 Chapter Summary

This chapter outlined the development of a suitable data compression

algorithm for use with resource-constrained devices. For testing purposes, a

suitable modulation scheme (ESP-NOW) was chosen. This scheme used a

vendor specific content field within the vendor specific action frame as shown

in Table 10. The data contained within this field is structured in such a way as

to allow packetization of a large amount of data. The packetization structure

developed during this research is outlined in Table 12 and allows for a constant

packet size of 245 bytes per transmission. The final compressed data file can

vary in length and is dependent on the lighting conditions of the image taken

by the camera. The maximum payload size allowed in the three modulation

schemes discussed is 255 bytes. A stepped approach to developing a working

compression scheme was used.

• Design a suitable packetization structure.

• Confirm functionality of end-to-end RF network using an

uncompressed image of size 76800 Bytes (QVGA).

• Design and test a suitable compression algorithm suitable for use with

all three modulation schemes.

• Confirm functionality of complete end-to-end RF system using

compressed data structure.

104

Typical results for compression ratios and PSNR achieved are displayed

below.

Image (ID) Quality Image

Size

Compression

Ratio

PSNR dB

Raw (9941) 0-255(Full) 76800 1

Compressed

(11541)

0-16 (QMed) 22295 70.97 35.96

Raw (10021) 0-255(Full) 76800 1

Compressed

(17481)

0-32 (QHigh) 27685 63.95 37.4

Table 21:Quantitative results

An approximate compression ratio of 71% was achieved with a PSNR of 36

dB using a quality factor set to QMed. This quality factor re -maps the original

data from 0-255 to 0-15 levels of brightness intensity. When QHigh is

selected, the original data is remapped from 0-255 to 0-31 levels of brightness

intensity. The outline specification in Table 2 calls for the ability to select a

region of interest (ROI) and direct manipulation of pixel data capability. This

was demonstrated in section 0 and allowed transmission of smaller amounts

of data of interest and direct manipulation of image data . It was possible to

include extra information within the image data. This ability increase d the

use case scope of the current research. The small firmware footprint incur red

in both the compression algorithm and image manipulation further satisfie d

the outlined specification.

105

6 CHAPTER 6 DISCUSSION AND CONCLUSIONS

This chapter discusses the process of design and implementation of the

complete RF image transmission system and the boundaries which apply for

system operation in detail. It then draws some conclusions from this use case

design and points to possibilities for future work.

The implementation and successful testing of low-power RF networks is

highly dependent on the specific use case. A one size fits all approach will

fail when physical conditions change, and reliable reception of RF data is

required. To design and implement a reliable RF system a detailed knowledge

of the users’ requirements and environment in which it is expected to operate

is critical. In this research the operating range was limited to < 5km for the

transmission of image data, within the constraints imposed by the regulatory

bodies. A large image format (QVGA) was chosen which allowed good

detailed to be discerned. The terrain chosen to operate within is loosely

described as semi-urban, i.e., terrain where there is not a high density of

buildings. The requirement to transmit large amounts of dat a (images) using

IoT type systems contradicts the designed use of these systems . However, for

certain use cases, these systems can be ‘persuaded’ to deliver the required

reliability of service. This research focused on the development of private RF

networks, using off-the- shelf components because of the lack of flexibility

imposed by CIoT systems with respect to data volumes and time constraints.

The hardware chosen for the research allowed the selection of different

modulation schemes for different applications. i.e., higher bandwidth systems

106

(ESP-NOW) for shorter range applications, and lower bandwidth systems

such as DASH7® or LoRa™ for longer range applications. The choice of

scheme was determined by the life-time requirements of a battery powered

end-device and the required image detail needed. A system designed for use

in disaster monitoring applications would have different battery longevity

requirements than a system designed for use in applications , such as crack

monitoring in buildings or bridges. The ability to read individual pixels of an

image taken by the end-device suggests the possibility of further edge-device

processing and reducing the amount of actual data transmitted. For example,

it is entirely feasible to monitor a forest for fire outbreaks by programming

the end-device to recognise a ‘centrum’ of brightness and transmit an alarm

if a fire is detected.

The ability to select a ROI in an image allows detailed image information to

be transmitted with a reduced payload. This might be necessary to maximise

the battery lifetime of an end-device for long range transmission when using

LoRa modulation scheme. At the time of writing this thesis, there has been

no existing work which has used ESP-NOW protocol to transmit a digital

image. The careful design of an image compression technique which has low

cost in terms of required resources, and acceptable results (in terms of PSNR),

has been achieved. The flexibility of use of this technique i.e., ROI selection

which facilitates a large reduction in the amount of data to be transmitted,

makes this technique eminently suitable for use across a variety of RF

WLANs. The techniques developed during this research have advanced the

capabilities of image transmission as they are system independent and can be

used with a variety of system hardware configurations .

107

6.1 Conclusion

The main hypothesis of this research was that low-power resource-

constrained devices are suitable for the transmission of image data over low -

power RF networks for certain use cases. A flexible low-power RF network

was successfully designed. This enabled the choice of modulation scheme to

be selected for a particular use case. Moreover, a successful image

compression algorithm was designed and implemented. Additionally, the

ability to manipulate image data directly has been achieved. This enabled a

ROI to be selected and transmitted with or without additional information

included in the image data. System functionality has been successfully tested

using ‘real’ hardware in an end-to-end configuration.

It can be concluded that given the correct choice of hardware and modulation

scheme that it is feasible to expand the use case for such systems to inc lude

the transmission of digital imagery. Given the regulatory constraints imposed

in each country for ISM bands, the longer the required transmission range,

the less volume of data/unit time can be transmitted. This would limit the

longer transmission range to the choice of either selecting an ROI or smaller

image format.

6.2 Future work

The hardware selected for development during this research was underutilised

for this application. Although not used during this research, the ESP32 is

108

supplied with FreeRTOS (Real Time Operating System) on-board. This can

enable for more robust firmware development . Facial recognition software

also exists on the ESPCAM but was not used during this research. The issue

of power consumption has not been addressed in any detail but should be

addressed to enable full characterisation of the image transmission system,

and hence battery lifetime expectation. A suitable methodology for measuring

power consumption is outlined by Congduc Pham [16] and could be used as a

reference for future work. The ESP32 comes with a ULP (Ultra Low Power)

microprocessor embedded as standard and shows promise for reducing power

consumption to a minimum. However, this microprocessor can only be

programmed using assembly language and minimum information exists

regarding this.

Regarding the RF network, a collision detection and avoidance mechanism

needs to be evaluated in more detail. This would allow for a more granular

knowledge of the expected performance of the network to be gained. Because

each protocol selected and evaluated during this research allowed bi-

directional communication, a future development should explore this

capability and its impact on transmission restrictions and power consumption.

A detailed evaluation of antenna performance and interfacing would allow

real-world testing and analysis of a complete system to be performed. Access

to the correct test equipment is needed and is a requirement if theoretical

evaluations are to be realised.

The software developed during this research for the reconstruction of the

received image data also needs improvement to facilitate a more robust

mechanism to differentiate between multiple incoming images. The current

109

method used to enable the selection of a ROI requires that the necessary

coordinates needed to select a region must be hardcoded into each end device

when the firmware is flashed to the device . This selection procedure could be

enhanced to allow remote selection of a particula r region when bi-directional

communications with each end-device is enabled in future iterations. This

capability will greatly enhance the flexibility of each end-device to minimise

the volume of data to be transmitted and hence will allow tuning of the battery

expected lifespan for standalone powered devices. The current software used

is written in Java and has some limitations and ‘quirkiness’ in use for this

application. A graphical user interface (GUI) written in a different

programming language such as Python using QT or TKinter would further

enhance the system design and user friendliness. The ability to manipulate

raw image data directly allows for the expansion of use cases where

evaluation of pixel brightness could be used for example to control a tracking

mechanism for use in astronomical telescopes. Another possible use would be

for automatic counting of bright patches within an image of interest (medical)

where brightness could indicate abnormal growth. The semi-lossless

compression technique used here is suitable for use where the loss of some

data does not impact on our perception of the final results received and could

be extended for use with the transmission of sound .

110

References

[1] DASH7 Alliance, “DASH7 ALLIANCE,” [Online]. Available: https://dash7-

alliance.org/. [Accessed 24 May 2021].

[2] “3GPP,” [Online]. Available: https://www.3gpp.org/about-3gpp/about-3gpp.

[Accessed 16 May 2021].

[3] Olof Liberg, “3GPP,” 24 October 2017. [Online]. Available:

https://www.3gpp.org/news-events/3gpp-news/1906-c_iot.

[4] B. V. N. M. a. A. G. R. Ratasuk, “NB-IoT system for M2M communication,” in

2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar,

2016.

[5] R. Sun, “Design and performance of unlicensed NB-IoT,” in Proceedings of the

International Symposium on Wireless Communication Systems, 2019.

[6] N. M. D. B. A. G. Rapeepat Ratasuk, “LTE-M Evolution Towards 5G Massive

MTC,” in [1] R. Ratasuk, N. Mangalvedhe, D. Bhatoolaul, and A. Ghosh, “LTE-

M Evolution Towards 5G Massive MTC,” 2017 IEEE Globecom Work. GC

Wkshps 2017 - Proc., vol. 2018-January, pp. 1–6, 2018, doi:

10.1109/GLOCOMW.2017.8269112., 2018.

[7] Qualcomm, July 2018. [Online]. Available:

https://www.qualcomm.com/media/documents/files/whitepaper-leading-the-lte-

111

iot-evolution-to-connect-the-massive-internet-of-things.pdf. [Accessed 4th March

2022].

[8] [Online]. Available: https://lora-alliance.org/. [Accessed 20/5/21 May 2021].

[9] “TheThingsnetwork,” [Online]. Available:

https://www.thethingsnetwork.org/docs/lorawan/. [Accessed 4th March 2022].

[10] ESPRESSIF, “Products>SoCs > all,” [Online]. Available:

https://www.espressif.com/en/products/socs. [Accessed 23 May 2021].

[11] IEEE, “Part 11:Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications,” IEEE Std 802.11-2012 (Revision of IEEE Std

802.11-2007), 2012.

[12] ESPRESSIF, “ESP-NOW User Guide,” ESPRESSIF, 2016.07.

[13] IEEE, “IEEE: Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications,” no. Std 802.11-2012, pp. 1504 - 1535,

2012.

[14] ETSI, “ETSI EN 300 440 v2.2.1(2018-07),” ETSI, 2018.

[15] DASH7 ALLIANCE, “Wireless Sensor and Actuator Network Protocol V1.2,”

DASH7 ALLIANCE, 2018.

[16] C.Pham, “Low-cost, Low-Power and Long-range Image Sensor for Visual

Surveillance,” in Proceedings of the Annual International Conference on Mobile

Computing and Networking, MOBICOM, New York City, 2016.

112

[17] V. J. M. L.Makkaoui, “Fast zonal DCT-based image compression for wireless

camera sensor networks,” in 2010 2nd International Conference on Image

Processing Theory, Tools and Applications, IPTA 2010, 2010.

[18] M. J. J. M. A. Ji, “LoRa-based Visual Monitoring Scheme for Agriculture IoT,”

in SAS 2019 - 2019 IEEE Sensors Applications Symposium, Conference

Proceedings, 2019.

[19] R. A.-D. A. F. F. M. A. AL-HASHEMI, “A Grayscale Semi-Lossless Image

Compression Technique Using RLE,” Journal of Applied Computer Science &

Mathematics, vol. January 2011, 2011.

[20] ETSI, “Organisation of European Frequency Spectrums Grouped by Standards

Families,” ETSI, 2020. [Online]. Available: https://www.etsi.org/e-

brochure/FrequencyChart/mobile/index.html#p=1. [Accessed 24 May 2021].

[21] COMREG, 2 Febuary 2018. [Online]. Available:

file:///C:/Users/poconnor/Downloads/ComReg02_71-R11.pdf. [Accessed 24 May

2021].

[22] Wikimedia Foundation, Inc., “Claude Shannon,” 13 july 2021. [Online].

Available: https://en.wikipedia.org/wiki/Claude_Shannon. [Accessed 16 July

2021].

[23] H. J. David Frykskog, “Construction of RF-link budget template for transceiver

modelling,” Linköping University Electronic Press, 2019.

113

[24] J. W. a. P. Varaiya, in High-Performance Communication Networks, Elsevier

Inc., 2000, p. 7.2.7.

[25] Intersil, “Tutorial on Basic Link Budget Analysis,” Inersil, 1998.

[26] Gaussian Waves, “Performance comparison of Digital Modulation techniques,”

14 April 2010. [Online]. Available:

https://www.gaussianwaves.com/2010/04/performance-comparison-of-digital-

modulation-techniques-2/#comments. [Accessed May 2021].

[27] R. C. DIXON, in Spread Spectrum Systems with Commercial applications, New

York, JOHN WILEY & SONS inc, 1994, pp. 3-17.

[28] O. B. A. S. N. Seller, “Low power long range transmitter”. European Patent EP 2

763 321 A1, 05 Febuary 2013.

[29] R. H. M. R. H. B. H. A. B. S. a. A. M. Ilfiyantri Intyas, “Improvement of Radar

Performance Using LFM Pulse Compression Technique,” in The 5th

International Conference on Electrical Engineering and Informatics 2015, Bali,

2015.

[30] Texas Instruments, “RF BASICS,” Texas Instruments.

[31] everythingRF, “Link budget calculator,” [Online]. Available:

https://www.everythingrf.com/rf-calculators/link-budget-calculator. [Accessed 30

May 2021].

114

[32] Wikimedia Foundation, Inc., “Friis transmission equation,” 1 June 2021.

[Online]. Available: https://en.wikipedia.org/wiki/Friis_transmission_equation.

[Accessed 16 July 2021].

[33] ESPRESSIF, “ESP32 Specifications (WiFi Receive),” 21 September 2017.

[Online]. Available: https://esp32.com/viewtopic.php?t=3096. [Accessed 4 6

2021].

[34] ESPRESSIF, “API Guides >> WiFi Driver,” ESPRESSIF, [Online]. Available:

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-

guides/wifi.html#wi-fi-protocol-mode. [Accessed 5 6 2021].

[35] Texas Instruments, “Single Chip Very Low Power RF Transceiver datasheet

(Rev.A),” Texas Instruments.

[36] Semtech, “SX1272/73 DATASHEET,” no. Rev.4, pp. 1-32, 2019.

[37] 4D SYSTEMS, “forum,” 4D SYSTEMS, May 2018. [Online]. Available:

https://forum.4dsystems.com.au/node/63649. [Accessed 16 June 2021].

[38] ArduCam, “arducam.com,” [Online]. Available:

https://www.arducam.com/product/arducam-2mp-spi-camera-b0067-arduino/.

[Accessed 21 june 2021].

[39] Airspy.com, “airspy.com,” [Online]. Available: https://airspy.com/download/.

[Accessed 21 june 2021].

[40] openocd.org, “openocd.org,” 7 March 2021. [Online]. Available:

http://openocd.org/. [Accessed 21 June 2021].

115

[41] FTDI Chip, “ftdichip.com,” FTDI Chip, [Online]. Available:

https://ftdichip.com/drivers/vcp-drivers/. [Accessed 21 June 2021].

[42] Zadig, “zadig.akeo.ie,” [Online]. Available: https://zadig.akeo.ie/. [Accessed 21

June 2021].

[43] PLatformIO.org, “docs.platformio.org,” [Online]. Available:

https://docs.platformio.org/en/latest/tutorials/espressif32/arduino_debugging_unit

_testing.html#setting-up-the-hardware. [Accessed 21 June 2021].

[44] Processing.org, “processing.org,” [Online]. Available:

https://processing.org/tutorials/overview/. [Accessed 21 June 2021].

[45] wireshark.org, “wireshark.org,” [Online]. Available: https://www.wireshark.org/.

[Accessed 21 june 2021].

[46] Espressif, “Frame Format,” [Online]. Available:

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-

reference/network/esp_now.html?highlight=espnow. [Accessed 28 June 2021].

[47] Adafruit, “adafruit-gfx-graphics-library,” 14 July 2021. [Online]. Available:

https://learn.adafruit.com/adafruit-gfx-graphics-library. [Accessed 14 July 2021].

[48] DIGI,

“https://www.digi.com/resources/documentation/digidocs/pdfs/90002126.pdf,”

March 2019. [Online]. Available: https://www.digi.com. [Accessed 28 May

2021].

116

[49] airspayce.com, “RadioHead,” [Online]. Available:

http://www.airspayce.com/mikem/arduino/RadioHead/index.html. [Accessed 24

June 2021].

117

Appendix

C++ Code for end-device:

#include <Arduino.h>
#include <Adafruit_GFX.h>

#include "WiFi.h"

#include "esp_camera.h"

#include "config.h"

#include "pin_config.h"

#include <esp_wifi .h>
#include <fstream>

/ /#include "soc/soc.h" / / Disable Brownout problem

//#include "soc/rtc_cntl_reg.h" / / Disable Brownout problem
/ /---

/ / ESPNow stuff

/ / --
#include <esp_now.h>

/ / Global copy of slave
esp_now_peer_info_t slave;

#define CHANNEL 1

#define PRINTSCANRESULTS 0
#define DELETEBEFOREPAIR 0

#define BLACK 0x0000

#define WHITE 0xffff
uint16_t cnt = 0;

uint32_t i = 0;

uint32_t j = 0;

uint8_t k = 0;

uint8_t k1 = 0;

uint32_t p = 0;
boolean ACKED = 0; / /Used to make sure the first frame has been acked - used for

synchronisat ion with slave.

uint16_t Frame = 0; // DITTO
uint8_t CurrentID; // DITTO

uint8_t Count = 1;
#define BUFFER_SIZE 245

uint8_t NewArray[BUFFER_SIZE * 2];

uint8_t dataBuf[BUFFER_SIZE];
uint8_t dataToSend[245]; / / packet structure to transmit goes here. 245 (WAS 243 for raw image

test ing)

uint32_t frameStart = 0;
uint32_t frameEnd = 240;

const uint8_t frame_length = 240; // length of payload 240

uint8_t frame_length1 = 240 ;
uint8_t randomNumber;

boolean first = false;

/ / --
/ / ROI variables

uint16_t H = 80; / / Width of ROI Box

uint16_t W = 320; / / Width of Image (320)
uint16_t V = 60; / / Vert ical co -ord top left of box max 120.

uint32_t h = 0; / / top l eft hand corner of box in pixel count.

uint32_t r = 0; / / Bottom right hand corner of box in Pixel count
/ / --

/ / --

boolean QLOw = false; / / image quali ty set t ing
boolean QMed = true;

boolean Qhigh = false;

uint8_t mask; / / mask used for quality set ting
uint8_t many; // used in compression function.

/ / --------------------------------- ---------------------------------

118

/ /uint8_t Payload[BUFFER_SIZE];

using namespace std;

/ /ofstream outputFile;

/ /ofstream fs;

/ /std: :string fi lename = "/home/paschal/Documents/Image.csv";

/ / Ini t ESP Now with fal lback

void Ini tESPNow() {

 / /WiFi.disconnect();
 i f (esp_now_init() == ESP_OK) {

 Serial .print ln("ESPNow Init Success");

 }
 else {

 Serial .print ln("ESPNow Init Failed");

 / / Retry Ini tESPNow, add a counte and then restart?
 / / Ini tESPNow();

 / / or Simply Restart

 ESP.restart();
 }

}

/ / cal lback when data is sent from Master to Slave

void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {
 char macStr[18];

 snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",

 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
 Serial .print("Last Packet Sent to: "); Serial .print ln(macStr);

 Serial .print("Last Packet Send Status: "); Serial .print ln(status == ESP_NOW_SEND_SUCCESS ?

"Delivery Success" : "Delivery Fai l");
}

/ / --
/ / Pixel drawing stuff here.

/ / --

class aFrameBuffer : public Adafruit_GFX {
 public:

 uint8_t *buffer = NULL;

 uint32_t size1;
 int w;

 int h;

 aFrameBuffer(int16_t ww, int16_t hh): Adafruit_GFX(ww,hh){
 w = ww;

 h = hh;

 size1 = h * w;
 }

/ / ------------------------------

/ / where to draw
/ /------------------------------

void setBuffer(uint8_t *b){

 buffer = b;
}

/ / -------------------------------
/ / Drawing a Pixel

/ / -------------------------------

void drawPixel(int16_t x, int16_t y, uint16_t color){
 i f(x<0 | | x>= w | | y<0 | | y>=h)

 return;

 buffer[x + y * w] = color;
}

};

void setup()

{

 Serial .begin(115200);
 WiFi.mode(WIFI_STA); / /Set device in STA mode to begin with

 WiFi.disconnect();

 Serial .print("STA MAC: "); Serial .print ln(WiFi.macAddress()); / / This is the mac address of the Master in
Stat ion Mode

 Ini tESPNow(); / / Ini t ESPNow with a fal lback logic

119

/ / Once ESPNow is successfully Ini t , we wil l register for Send CB to

/ / get the s tatus of Trasnmitted packet

 esp_now_register_send_cb(OnDataSent);

 / / ------------------------------

 / / Camera

 / / ------------------------------
 / / Tuenoff the Brownout dectector

 / /WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0);

 camera_config_t con fig;
 config.pin_pwdn = PIN_PWDN;

 config.pin_reset = PIN_RESET;

 config.pin_xclk = PIN_XCLK;
 config.pin_sscb_sda = PIN_SIOD;

 config.pin_sscb_scl = PIN_SIOC;

 config.pin_d7 = PIN_D7;
 config.pin_d6 = PIN_D6;

 config.pin_d5 = PIN_D5;

 config.pin_d4 = PIN_D4;
 config.pin_d3 = PIN_D3;

 config.pin_d2 = PIN_D2;

 config.pin_d1 = PIN_D1;
 config.pin_d0 = PIN_D0;

 config.pin_vsync = PIN_VSYNC;

 config.pin_href = PIN_HREF;
 config.pin_pclk = PIN_PCLK;

 config.xclk_freq_hz = 20000000;

 config.ledc_timer = LEDC_TIMER_0;

 config.ledc_channel = LEDC_CHANNEL_0;
 / /config.pixel_format = PIXFORMAT_JPEG;

 config.pixel_format = PIXFORMAT_GRAYSCALE;

 / /config.frame_size = FRAMESIZE_SVGA;

 config.frame_size = FRAMESIZE_QVGA;

 config.jpeg_quality = 10;
 / /config.fb_count = 2;

 config.fb_count = 1;

 esp_err_t err = esp_camera_init(&config);

 i f (err != ESP_OK)
 Serial .printf("Camera ini t fai led with error 0x%x", err);

 / / ---------------------------------
 / / Show Camera model

 / / ---------------------------------

 sensor_t *s = esp_camera_sensor_get();
 switch (s->id.PID)

 {

 case OV9650_PID:

 Serial .print ln("OV9650 sensor found.");

 break;
 case OV7725_PID:

 Serial .print ln("OV7725 sensor found.");

 break;
 case OV2640_PID:

 Serial .print ln("OV2640 sensor found.");

 break;
 default :

 Serial .print ln("Unknown sensor found.");

 break;
 }

}

void deletePeer() {

 esp_err_t delStatus = esp_now_del_peer(slave.peer_addr);

 Serial .print("Slave Delete Status: ");
 i f (delStatus == ESP_OK) {

 / / Delete success

 Serial .print ln("Success");
 } else if (delStatus == ESP_ERR_ESPNOW_NOT_INIT) {

 / / How did we get so far!!

 Serial .print ln("ESPNOW Not Ini t");

120

 } else if (delStatus == ESP_ERR_ESPNOW_ARG) {

 Serial .print ln("Invalid Argument");

 } else if (delStatus == ESP_ERR_ESPNOW_NOT_FOUND) {

 Serial .print ln("Peer not found ?.");
 } else {

 Serial .print ln("Not sure what happened");

 }
}

/ / Check if the slave is already paired with the master.
/ / If not , pair the slave with master

bool manageSlave() {

 i f (slave.channel == CHANNEL) {
 i f (DELETEBEFOREPAIR) {

 deletePeer();

 }

 / / Serial .print("Slave Status: ");

 / / check if the peer exists
 bool exists = esp_now_is_peer_exist(slave.peer_addr);

 i f (exists) {

 / / Slave already paired.
 Serial .println("Already Paired");

 return true;

 } else {
 / / Slave not paired, attempt pair

 esp_err_t addStatus = esp_now_add_peer(&slave);
 i f (addStatus == ESP_OK) {

 / / Pair success

 / /Serial .print ln("Pair success");
 return true;

 } else if (addStatus == ESP_ERR_ESPNOW_NOT_INIT) {

 / / How did we get so far!!
 / /Serial .print ln("ESPNOW Not Ini t");

 return false;

 } else if (addStatus == ESP_ERR_ESPNOW_ARG) {
 / /Serial .print ln("Invalid Argument");

 return false;

 } else if (addStatus == ESP_ERR_ESPNOW_FULL) {
 / / Serial .print ln("Peer l ist ful l");

 return false;

 } else if (addStatus == ESP_ERR_ESPNOW_NO_MEM) {
 / /Serial .print ln("Out of memory");

 return false;

 } else if (addStatus == ESP_ERR_ESPNOW_EXIST) {
 / / Serial .print ln("Peer Exists");

 return true;

 } else {
 / / Serial .print ln("Not sure what happened");

 return false;

 }
 }

 } else {

 / / No slave found to process
 Serial .print ln("No Slave found to process");

 return false;

 }
}

void initBroadcastSlave() {

 / / clear slave data

 memset(&slave, 0, sizeof(slave));
 for (int i i = 0; i i < 6; ++ii) {

 slave.peer_addr[i i] = (uint8_t)0xff;

 }
 slave.channel = CHANNEL; / / pick a channel

 slave.encrypt = 0; // no encryption

 manageSlave();
}

/ / Scan for slaves in AP mode

void ScanForSlave() {

 int8_t scanResults = WiFi.scanNetworks();

121

 / / reset on each scan

 bool slaveFound = 0;

 memset(&slave, 0, sizeof(slave));

 / /Serial .print ln("");

 i f (scanResults == 0) {

 Serial .print ln("No WiFi devices in AP Mode found");
 } else {

 Serial .print("Found "); Serial .print(scanResults); Serial .print ln(" devices ");

 for (int i = 0; i < scanResults; ++i) {
 / / Print SSID and RSSI for each device found

 String SSID = WiFi.SSID(i);

 int32_t RSSI = WiFi.RSSI(i);
 String BSSIDst r = WiFi.BSSIDstr(i);

 i f (PRINTSCANRESULTS) {

 Serial .print(i + 1);

 Serial .print(": ");
 Serial .print(SSID);

 Serial .print(" (");

 Serial .print(RSSI);
 Serial .print(")");

 Serial .print ln("");

 }

 delay(10);
 / / Check if the current device starts with `Slave`

 i f (SSID.indexOf("Slave") == 0) {

 / / SSID of interest
 / /Serial .print ln("Found a Slave.");

 / /Serial .print(i + 1); Serial .p rint(": "); Serial .print(SSID); Serial .print(" ["); Serial .pr int(BSSIDstr);

Serial .print("]"); Serial .print(" ("); Serial .print(RSSI); Serial .print(")"); Serial .print ln("");
 / / Get BSSID => Mac Address of the Slave

 int mac[6];

 i f (6 == sscanf(BSSIDstr .c_str(), "%x:%x:%x:%x:%x:%x", &mac[0], &mac[1], &mac[2], &mac[3],
&mac[4], &mac[5])) {

 for (int i i = 0; i i < 6; ++ii) {

 slave.peer_addr[i i] = (uint8_t) mac[i i];
 }

 }

 slave.channel = CHANNEL; / / pick a channel

 slave.encrypt = 0; / / no encryption

 slaveFound = 1;

 / / we are planning to have only one slave in this ex ample;

 / / Hence, break after we find one, to be a bi t efficient
 break;

 }

 }
 }

 i f (slaveFound) {
 Serial .print ln("Slave Found, processing. .");

 } else {

 Serial .print ln("Slave Not Found, trying again.");
 }

 / / clean up ram
 WiFi.scanDelete();

}

void sendData() {

 const uint8_t *peer_addr = slave.peer_addr;

 esp_err_t result = esp_now_send(peer_addr, dataToSend, sizeof dataToSend);

 Serial .print("Send Status: ");
 i f (result == ESP_OK) {

 i f (cnt == 0){

 ACKED = true;
 }

 Serial .print ln("Success");

 } else if (result == ESP_ERR_ESPNOW_NOT_INIT) {

122

 / / How did we get so far!!

 Serial .print ln("ESPNOW not Ini t .");

 } else if (result == ESP_ERR_ESPNOW_ARG) {

 Serial .print ln("Invalid Argument");
 } else if (result == ESP_ERR_ESPNOW_INTE RNAL) {

 Serial .print ln("Internal Error");

 } else if (result == ESP_ERR_ESPNOW_NO_MEM) {
 Serial .print ln("ESP_ERR_ESPNOW_NO_MEM");

 }

 else if (result == ESP_ERR_ESPNOW_NOT_FOUND)
 {

 Serial .print ln("Peer not found .");

 }
 else

 {

 Serial .print ln("Not sure what happened");
 }

 / /delay(1);
 / / else

 / / {

 / / Serial .printf(" \r\nDID NOT SEND.. . .");
 / / }

}

void Packet(){

 dataToSend[0] = randomNumber; / / frame I.D.

 dataToSend[1] = frameStart>>24; // frame count number.
 dataToSend[2] = frameStart>>16;

 dataToSend[3] = frameStart>>8;

 dataToSend[4] = frameStart & 0Xff;
 / /i f (frameEnd >= 76800){

 / / dataToSend[0] = 127; // use this as end of Image data (I.D should be <= 10)

 / /}
 i f (i >= 76800){

 dataToSend[0] = 127; / / use this as end of Image data (I.D should be <= 10)

 Serial .print ln("End of image");
 Serial .printf("i = %d", i);

 }

 i f (first) {
 dataToSend[0] = randomNumber; / / frame I.D.

 dataToSend[1] = 0; / / frame count number.

 dataToSend[2] = 0;
 dataToSend[3] = 0;

 dataToSend[4] = 0;

 fi rst = false; // only do for first packet .
 }

/*

 Serial .printf("FrameStart = %d", dataToSend[1]);
 Serial .printf (", %d",dataToSend[2]);

 Serial .printf(", %d", dataToSend[3]) ;Serial .printf (", %d", dataToSend[4]);

 Serial .print ln("");
 */

 / / frameStart = frameEnd;

 / / frameEnd = frameStart + 240; / / was +200
 / / --- -------;

 / / Payload Structure (Frame) ;

 / / -- ;
 / /Frame I.D | frameStar t | ;

 / / 1 Byte | 4 Bytes | 240 Bytes ;

 / / -- ;
 p = 0;

 while (p < 240 && i <= 76800) / / was 245

 {
 dataToSend[p + 5] = NewArray[p];

 p++; // number of elements to copy

 //Serial .print(dataToSend[i]);
 }

 frameStart = i ; // index into fb ->buf.

 / /i = 0; / / reset index for next value of cnt
 p = 0;

 /*

 i f (frameEnd > 76800){

123

 for (i = 0; i < 245;i++){

 Serial .print(dataToSend[i]);

 Serial .print(",");

 }
 }

 */

 / / i = 0;

}

void PacketCompressed(){

 dataToSend[0] = randomNumber; / / frame I.D.
 dataToSend[1] = frameStart>>24; // frame count number.

 dataToSend[2] = frameStar t>>16;

 dataToSend[3] = frameStart>>8;
 dataToSend[4] = frameStart & 0Xff;

 / /i f (frameEnd >= 76800){

 / / dataToSend[0] = 127; // use this as end of Image data (I.D should be <= 10)
 / /}

 i f (i >= 76800){

 dataToSend[0] = 127; / / use this as end of Image data (I.D should be <= 10)
 Serial .print ln("End of image");

 Serial .printf("i = %d", i);

 }
 i f (first) {

 dataToSend[0] = randomNumber | 160; / / frame I.D.
 dataToSend[1] = 0; / / frame count number.

 dataToSend[2] = 0;

 dataToSend[3] = 0;
 dataToSend[4] = 0;

 / /Serial .printf("data ID = %d",dataToSend[0]&0xf0);

 fi rst = false; / / only do for first packet .
 }

/*

 Serial .printf("FrameStart = %d", dataToSend[1]);
 Serial .printf (" , %d",dataToSend[2]);

 Serial .printf(", %d", dataToSend[3]);Serial .printf (", %d", dataToSend[4]);

 Serial .print ln("");
 */

 / / frameStart = frameEnd;

 / / frameEnd = frameStart + 240; / / was +200
 / / -- ;

 / / Payload Structure (Frame) ;

 / / -- ;
 / /Frame I.D | frameStar t | ;

 / / 1 Byte | 4 Bytes | 240 Bytes ;

 / / -- ;
 p = 0;

 while (p < 240 && i <= 76800) / / was 245

 {
 dataToSend[p + 5] = NewArray[p];

 p++; // number of elements to copy

 //Serial .print(dataToSend[i]);
 }

 frameStart = i ; // index into fb ->buf.

 / /i = 0; / / reset index for next value of cnt
 p = 0;

 /*

 i f (frameEnd > 76800){
 for (i = 0; i < 245;i++){

 Serial .print(dataToSend[i]);

 Serial .print(",");
 }

 }

 */

 / / i = 0;

}

void PacketROI(){

 dataToSend[0] = randomNumber; / / frame I.D.
 dataToSend[1] = frameStart>>24; // frame count number.

 dataToSend[2] = frameStart>>16;

 dataToSend[3] = frameStart>>8;

124

 dataToSend[4] = frameStart & 0Xff;

 / /i f (frameEnd >= 76800){

 / / dataToSend[0] = 127; // use this as end of Image data (I.D should be <= 10)

 / /}
 i f (h >= r){ / / was i

 dataToSend[0] = 127; / / use this as end of Image data (I.D should be <= 10)

 Serial .print ln("End of image");
 //Serial .printf("i = %d", i);

 }

 i f (first) {
 dataToSend[0] = randomNumber | 96; / / frame I.D. -> 96 indicates a ROI frame

 dataToSend[1] = frameStart>>24; // frame count number.

 dataToSend[2] = frameStart>>16;
 dataToSend[3] = frameStart>>8;

 dataToSend[4] = frameStart & 0Xff;

 / / fi rst = false; // only do for first packet .
 / /Serial .printf("DataToSend[0] = %d",dataToSend[0]);

 }

/*
 Serial .printf("FrameStart = %d ", dataToSend[1]);

 Serial .printf (", %d",dataToSend[2]);

 Serial .printf(", %d", dataToSend[3]);Serial .printf (", %d", dataToSend[4]);
 Serial .print ln("");

 */

 / / frameStart = frameEnd;
 / / frameEnd = frameStart + 240; / / was +200

 / / -- ;
 / / Payload Structure (Frame) ;

 / / ---------------------------------- ------------------------------------ ;

 / /Frame I.D | frameStar t | ;
 / / 1 Byte | 4 Bytes | 240 Bytes ;

 / / ----------------------------------- ----------------------------------- ;

 p = 0;
 i f(first){

 while (p < 240 && h < r) / / <r

 {
 dataToSend[p + 5] = NewArray[p];

 //Serial .print(dataToSend[p]);

 p++; // number of elements to copy

 //Serial .print(dataToSend[i]);

 }
 / / fi rst = false;

 / /p = 0;

 }
 else if (!first){

 p = 0;

 while (p < 240 && h < r) / / < r
 {

 dataToSend[p+5] = NewArray[p];

 //Serial .print(dataToSend[p]);
 //Serial .print(",");

 p++; // number of elements to copy

 //Serial .print(dataToSend[i]);
 }

 }

 / / frameStart = h + j ;
 / /Serial .printf("frameStart = %d", frameStart);

 / /Serial .print ln(""); / / index into fb ->buf.

 // i = 0; / / reset index for next value of cnt
 p = 0;

 fi rst = false;

 / / for (i = 0; i < 245; i++)
 / /{

 / / Serial .print(dataToSend[i]);

 / / Serial .print(",");
 / /}

 / / i = 0;

}

void ROI(){

125

 camera_fb_t *fb = esp_camera_fb_get(); / /Snap picture - DON'T TAKE SHOT IF SENDIND

MULTIPLE VERSIONS OF IMAGE - USE FULL IMAGE DATA

 first = true;

 srand((unsigned) t ime(0)); // generate a random number 1 - 10, to use as frame I.D in payload
 / / int randomNumber;

 for (int index = 0; index < 1; index++) {

 randomNumber = (rand() % 10) + 1;
 }

 i f (fb) { / / -- -------------------------- UNCOMMENT FOR NORMAL OPERATION

 j = 0;
 h = (V * W) + H;

 r = (h + H) + (V * W);

 frameStart = h;
 Serial .printf("frameStart = %d", h);

 Serial .print ln("");

 Serial .printf("corner = %d", r);
 Serial .print ln("");

 while (h < r) / / r

 {
 while (j < 240)

 {

 for (i = h; i < h + 80; i++) / / h+80
 {

 NewArray[j] = fb ->buf[i];

 j++;
 }

 Serial .printf("h1 = %d", h);
 h = h + W;//W

 / /h = h + 321;

 Serial .print ln("");

 / /Serial .printf("j1 = %d", j);Serial .print ln("");

 }
 / /Serial .printf("j = %d", j);Serial .print ln("");

 j = 0;

 / /Serial .printf("h = %d", h);Serial .print ln("");
 PacketROI();

 sendData();

 }
 / / frameStart = h + j;

 esp_camera_fb_return(fb); / / release camera buffer.
 } / / --- UNCOMMENT FOR NORMAL OPERATION

 / /esp_camera_fb_return(fb); / / release camera buffer.

}

void compress(){

 camera_fb_t *fb = esp_camera_fb_get(); //Snap picture
 i f (fb) {

 / / ---

 / / Write to main camera buffer direct ly
 OSD.setBuffer(fb ->buf);

 OSD.setTextSize(1);

 OSD.setTextColor(BLACK,WHITE);
 for (i = 80; i < 320;i += 80){

 OSD.drawFastVLine(i , 0 , 240, WHITE);

 }
 for (i = 80; i < 240;i+= 80){

 OSD.drawFastHLine(0, i , 320, WHITE);

 }
 OSD.setCursor(20, 220);

 OSD.print("Bat. Voltage = 3.4v");

 / / ---

 fi rst = true; / / fi rst frame indicator

 Serial .print ln("Snap Taken"); / / COMPRESSION AND RLE STA RTS HERE.
 srand((unsigned) t ime(0)); // generate a random number 1 - 10, to use as frame I.D in

payload

 / / int randomNumber;
 for (int index = 0; index < 1; index++) {

 randomNumber = (rand() % 10) + 1;

 }
/*

 while(frameEnd <76800){

126

 while (j < 240){ //

 for (i = frameStart ; i < frameEnd;i++){ / / free up last 4 bi ts of each value

 k = fb->buf[i]; / / i .e remap values.

 k = k >> 4;
 k = k << 4;

 dataBuf[p] = k; // HAVE 240 BYTES FROM CAMERA BUFFER

 / /Serial .print(dataBuf[p]);
 p++;

 }

 */
/ /debug

/*

 for (i = 0; i <400; i++)
 {

 Serial .print(fb ->buf[i]);

 Serial .print(",") ;
 }

 */

 i = 0;
 /*

 p = 0;

 i = 0;
 Count = 1;

 while(i<240){ / / was i<200 && j<240

 while (dataBuf[i] == dataBuf[i + 1])

 { / / is current value = next value ?
 Count++; / / i f yes the inc. Count.

 i++; // point to next pixel value.

 }
 i f (Count <= 15){ // count only has 4 -bits, so max 15

 uint8_t val = dataBuf[i]; / /
 val = val + Count;

 NewArray[j] = val; / / upper 4 -bits is greyscale val , lower 4 -bits is repetit ion number. ;

 //Serial .print(NewArray[j]);
 j++; / / next loccation.

 //Serial .printf("count is less than 15, j = %d", j);

 //Serial .printf(" ,count = %d", Count);
 i++;

 //Serial .printf(" , i = %d", i);

 //Serial .println(" ");

 }

 else{ / / i f we have more than 15 repit ions then put additional values in next
location.

 uint8_t Quot = Count / 15; / / Quotient (number of repit i t ions / 15)
 uint8_t Rem = Count % 15; / / modulus (remainder)

 while (Quot > 0){ / / repeat unti l divisor = 0.
 uint8_t val1 = dataBuf[i];

 val1 = val1 + 15;

 NewArray[j] = val1;
 / /NewArray[j] = (da taBuf[i + 15]); / / add 15 to value in NewArray

 Quot--; / / subtract 1 from quotient unti l quotient = 0.

 j++ ; / / point to next location in newArray.
 val1 = dataBuf[i];

 val1 = val1 + Rem;

 NewArray[j] = val1;
 / /NewArray[j] = (da taBuf[i]) + Rem; / / add remainder to current location.

 j++ ;

 i++;
 */

 / /Serial .printf("count is more than 15, j = %d", j);

 /*
 Serial .printf(" , Count = %d", Quot);

 Serial .printf(" , Quot is = %d", Quot);

 Serial .printf(" , i = %d", i);
 Serial .print ln(" ");

 */

 /*
 }

 }

127

 Count = 1;

 }

 frameStart = frameEnd;

 frameEnd = frameStart + 240; // was +200

 Serial .printf("frameStart = %d", frameStart);

 Serial .print ln("");
 Serial .printf("frameEnd = %d", frameEnd);

 Serial .print ln("");

 }

 */

 /*
 Serial .print ln(" ");

 Serial .printf("Size of NewArray = %d", j);

 Serial .print ln(" ");
 Serial .printf("Index into buf = %d", i);

 Serial .print ln(" ");

 frameStart = (frameStart - 240) + i ; / / was - 200

 frameEnd = frameStart + 240; / / was +200
 Serial .printf("So.. new frameStart = %d", frameStart) ;

 Serial .printf(" , new frameEnd = %d", frameEnd);
 Serial .print ln("");

 for (i = 0; i < j ;i++){
 Serial .print(NewArray[i]);

 Serial .print(",");

 }
 */

 while (i <= 76800)

 {
 while (j < 240 && i <= 76800)

 {

 //p = fb->buf[i];
 //Serial .printf("buf = %d", p);Serial .print(",");

 //Serial .printf("buf+1 = %d", fb ->buf[i+1]);Serial .print(",");

 i f (Qhigh){
 mask = 0xf8; / /Serial.print(","); map to 32 values

 many = 7;

 }

 else if(QMed){

 mask = 0xf0; / /Serial.print(","); / / map to 16 values
 many = 15;

 }

 k = fb->buf[i] & mask;
 //Serial .printf("start i = %d", i);Serial .print(" ,");

 //k1 = fb->buf[i + 1] & 0xf0;

 //Serial .printf("k = %d", k);
 //Serial .print(",");

 //Serial .printf("k1 = %d", fb ->buf[i + 1] & 0xf0);

 //while (k == k1 && i <= 76800)

 while (k == (fb ->buf[i+1] & mask)&& i <= 76800) / / map to Qhigh, Qmed,Qlow values

 {
 Count++;

 i++;

 / /k = fb->buf[i] & 0xf0;
 / /k1 = fb->buf[i + 1] & 0xf0;

 / /Serial .printf("Count = %d", Count);Serial .print(",");

 }

 i f (Count <= many && i <= 76800)

 // i f (Count <= 15 && i <= 76800)
 {

 NewArray[j] = k + Count;

 j++;
 / / i++;

 i f(Count == 0){

 i++;

128

 }

 else{

 i++;

 / / i = i + Count;
 / / i = Count + 1;

 }

 / /Serial .printf("(i <= 15) = %d", i);Serial .print(",");
 / /Serial .printf("Count1 = %d", Count);

 }

 else if (Count > many && i <= 76800)
 //else if (Count > 15 && i <= 76800)

 {

 uint8_t Quot = Count / many;
 uint8_t Rem = Count % many;

 / /uint8_t Quot = Count / 15;

 / /uint8_t Rem = Count % 15;
 while (Quot > 0)

 {

 NewArray[j] = k + many;

 / /NewArray[j] = k + 15;

 Quot--;
 j++;

 i f(Quot == 0 && Rem >0){

 NewArray[j] = k + Rem;
 j++;

 }
 / / i++;

 / / i = i + Count;

 / / i = Count + 1;
 / /Serial .printf("Count2 = %d", Count);

 / /Serial .printf("(i >= 15) = %d", i);Serial .print(",");

 }
 / /Serial .print ln("");

 i++;

 }

 Count = 1;

 }

 / /Serial .printf(" i = %d", i);

 j = 0;
 /*

 for (p = 0; p < 100; p++)

 {
 Serial .print(fb ->buf[p]);

 Serial .print(",");

 }
 p = 0;

 Serial .print ln("NewArray");

 for (p = 0; p < 100; p++)
 {

 Serial .print(NewArray[p]);

 Serial .print(",");
 }

 */

 p = 0;
 Serial .printf("End i = %d", i);

 PacketCompressed();

 sendData();

 }

 }

 i = 0;

 frameStart = 0;
 frameEnd = 240; / / was = 200

 esp_camera_fb_return(fb); / / release camera buffer.
}

void ful lImage(){
 camera_fb_t *fb = esp_camera_fb_get(); / /Snap picture

 / /Serial .print ln(fb ->width);

 / /Serial .print ln(fb ->height);

129

 / /Serial .print ln(fb ->format);

 i f (fb) {

 / /Serial .print ln("Snap Taken");

 srand((unsigned) time(0)); / / generate a random number 1 - 10, to use as frame I.D in
payload

 int randomNumber;

 for (int index = 0; index < 1; index++) {
 randomNumber = (rand() % 10) + 1;

 }

 uint16_t num_of_frames = (fb ->len / frame_length);
 / / for QVGA - 320X240 Pixels, using greyscale B&W = 76800 Bytes.

 / / each frame is 240 bytes long.

 / / Number of frames = 76800/240 = 320 frames.

 for (cnt = 0; cnt < num_of_frames+1; cnt++) // frames+1 otherwise only 383 packets sent .

 {
 /*---------------------------- Test ing only ----------------------------------

 Serial .print ln(" ");

 Serial .printf(" Next Frame: %d", cnt);
 Serial .print(" ");

 Serial .printf("frameStart %d", frameStart);

 Serial .printf(" : frameEnd %d", frameEnd);
 Serial .print ln("");

 ---------------- ---
 */

 dataToSend[0] = randomNumber | 144; / / frame I.D., 144 is Raw image indicator

 dataToSend[1] = highByte(cnt); / / frame count number.
 dataToSend[2] = lowByte(cnt);

 dataToSend[3] = 0;

 dataToSend[4] = 0;

 i f(frameEnd >= fb ->len){
 frameEnd = fb ->len;

 frame_length1 = (frameEnd - frameStart);

 }

 else{

 frame_length1 = frame_length;
 }

 while (i < frame_length1)
 {

 dataToSend[i + 5] = fb ->buf[frameStart+i];

 i++; / / number of elements to copy
 }

 i = 0; // reset index for next value of cnt .

 /*-------------------------------- For test ing only -----------------------------
 Serial .print ln("Compose ");

 / / for (k = 0; k < sizeof(dataToSend); k++)

 for (k = 0; k < frame_length1+3; k++)
 {

 Serial .print(dataToSend[k]);

 } / / }
 Serial .printf(" Number of bytes = %d", k);

 Serial .print ln(" ");

 / / ---
 */

 / /************ / / TEST CODE STARTS HERE

 / /Frame = (dataToSend[1] << 8) + dataToSend[2];

 /*

 i f (Frame == 0) / / The first Frame of an Image
 {

 CurrentID = (dataToSend[0]); / /Store ID of first f rame

 }

 / /Serial .printf("Current ID = %d", CurrentID);

 / /Serial .print ln("");

130

 i f (Frame <= 384)

 { / / Check if i t is from the same photo (i .e . same I.D)

 while (i < frame_length1) / / -- was frameEnd Total data length = 203 (image data = 200 - I.D

& Frame count)
 //while (i < (fb ->len)-(fb->len-frameStart))

 {

 Payload[j] = dataToSend[i + 3];
 i++; // number of elements to copy

 j++; // increment pointer into Payload array

 }

 i = 0; / / reset index

 /*
 ------------------------------- Test ing only --

 Serial .print ln("Decompose"); / /test

 // for (k = frameStart ;k < frameEnd && k <= fb ->len;k++){ // test
 for (k = frameStart ;k < (frameStart + frame_length1) && k <= fb ->len;k++){

 Serial .print(Payload[k]);
 }

 Serial .printf(" Number of bytes = %d", frameEnd -frameStart);

 // --

 }

 else
 {

 / /Serial .print ln("Received Packet from different Image.");

 / / j = 0;
 / /Frame = 0;

 }

 frameStart = frameEnd ;

 frameEnd = frameStart + (frame_length1);

 }

 i f (Frame == 383) / / number of frames for complete image (76800 / 200) = 0 -199
 {

 j = 0; / / reset index into Payload array.

 Frame = 0;
 / /Serial .print ln("Image received");

/*

 for (k = 0; k < 204;k++){
 Serial .print(Payload[k]);

 }
 Serial .println("Buffer contents = ");

 for (k = 0; k < 204;k++){

 Serial .print(fb ->buf[k]);
 }

 / / test

 while (Serial .availableForWrite())

 {

 for (k = 0; k < sizeof(Payload); k++)

 {

 //Serial .write(Payload, sizeof(Payload));
 Serial .write(Payload[k]);

 }

 }

 / /cl ient .write(buff, size);

 / /cl ient .flush();

131

 }

 / /}

 / /TEST CODE ENDS HERE
 */

 / / i f (esp_now_send(peer_addr, dataToSend, frame_length1) == ESP_OK){
 / / Serial .println("Send S uccess");

 / / }

 sendData();

 / /delay(25);

 Serial .printf("Frame Number = %d", cnt);
 frameStart = frameEnd;

 frameEnd = frameStart + (frame_length1);

 / / i f(!ACKED){ / / i f we got a response from the slave for the first frame (0) continue
 / / Serial .println("1st Frame not ACKED");

 / / break; / / i f not the don't send the rest of the photo. Trying to sync the slave with

frame zero.
 / / }

 }

 / /ACKED = false;

 / /dataToSend[5] = {I,m,a,g,e1};

 / /sendData;
 esp_camera_fb_return(fb); / / release camera buffer. DO NOT RELEASE IF MULTIPLE VARIATIONS

ARE TO BE SENT FOR COMPARISION

 frameStart = 0 ;
 frameEnd = 240; / /200

 / /memset(Payload, 0, sizeof(Payload)); / / flush array
 / /Serial .flush();

 Serial .println("Complete Frame Sent -- ");

 }else{
 Serial .print ln("NO snap taken ?");

 }

 }

void loop() {
 / / In the loop we scan for slave

 ScanForSlave();

 / / If Slave is found, it would be populate in `slave` variable
 / / We wil l check if `slave` is defined and then we proceed further

 i f (slave.channel == CHANNEL) { / / check if slave channel is defined

 / / `slave` is defined
 / / Add slave as peer if i t has not been added already

 bool isPaired = manageSlave();

 i f (isPaired) {
 / / pair success or already paired

 / / ful lImage();

 / /delay(7000);
 compress(); / / take photo & compress & send data.

 / /delay(8000);

 ROI(); / / Region of Interest - uncompressed & send data

 / / wait for 10 seconds to run the logic again

 delay(10000);
 }

 else

 {
 / / slave pair fai led

 Serial .println("Slave pair fai led!");

 }

}

}

132

C++ Code for ESPNOW->Serial (SLAVE):

/**
 ESPNOW - Basic communication - Slave

 Date: 26th September 2017

 Author: Arvind Ravulavaru <https:/ /gi thub.com/arvindr21>
 Purpose: ESPNow Communication between a Master ESP32 and a Slave ESP32

 Descript ion: This sketch consists of the code for the Slave module.

 Resources: (A bit outdated)
 a . ht tps: / /espressif.com/si tes/default/fi les/documentation/esp -now_user_guide_en.pdf

 b . http:/ /www.esploradores.com/practica -6-conexion-esp-now/

 << This Device Slave >>

 Flow: Master
 Step 1 : ESPNow Init on Master and set it in STA mode

 Step 2 : Start scanning for Slave ESP32 (we have added a prefix of `slave` to the SSID of slave for an

easy setup)
 Step 3 : Once found, add Slave as peer

 Step 4 : Register for send callback

 Step 5 : Start Transmitt ing data from Master to Slave

 Flow: Slave

 Step 1 : ESPNow Init on Slave
 Step 2 : Update the SSID of Slave with a prefix of `slave`

 Step 3 : Set Slave in AP mode
 Step 4 : Register for receive cal lback and wait for data

 Step 5 : Once data arrives, print i t in the serial monitor

 Note: Master and Slave have been defined to easi ly understand the setup.

 Based on the ESPNOW API, there is no concept of Master and Slave.

 Any devices can act as master or salve.
*/

#include <Arduino.h>

#include <esp_now.h>
#include <WiFi.h>

#include <esp_wifi .h>

/ /#define BUFFER_SIZE 76800

/ /uint8_t buff[BUFFER_SIZE];

#define CHANNEL 1

uint32_t i = 0;
uint8_t CurrentID;

uint32_t j = 0;

uint8_t k = 0;
uint8_t l = 0;

uint16_t BytesRev;

uint16_t TotFrameNum;
uint8_t Payload[40000]; //40000

uint16_t Frame = 0;

uint8_t data[250]; / /256
boolean sync = false; / / Raw data indicator

boolean sync1 = false; // ROI indicator

boolean sync2 = false; // compressed data indicator
boolean Raw = false;

boolean FullImage = false;

boolean ROI = false; / / used to indicate if received data is Region of Interest .
boolean Comp = false;

RingbufHandle_t buf_handle;
/ /stat ic char tx_item[] ;

/ / Ini t ESP Now with fal lback

void Ini tESPNow() {

 i f (esp_now_init() == ESP_OK)

 {

133

 Serial .print ln("ESPNow Init Success");

 }

 else {

 / / Serial .print ln("ESPNow In it Failed");
 / / Retry Ini tESPNow, add a counte a nd then restart?

 Ini tESPNow();

 / / or Simply Restart
 ESP.restart();

 }

}

/ / config AP SSID

void configDeviceAP() {
 const char *SSID = "Slave_1";

 bool result = WiFi.softAP(SSID, "Slave_1_Password", CHANNEL, 0);

 i f (!result) {
 Serial .print ln("AP Config fai led.");

 } else {

 Serial .print ln("AP Config Success. Broadcasting with AP: " + String(SSID));
 Serial .printf("with Channel no. = %d ",CHANNEL);

 Serial .print ln(WiFi.macAddress());

 }
}

/ / cal lback when data is recv from Master

void OnDataRecv(const uint8_t *mac_addr,const uint8_t *data, int data_len) {

 / / -- ;

 / / Data Structure (Frame) ;
 / / -- ;

 / /Frame I.D | Frame Number| ;

 / / 1 Byte | 4 Bytes | 240 Bytes ;
 / / -- ;

 / /Serial .print ln(data_len);

 / /uint8_t data2[200];

 / /memcpy(data2,data+3,200);

 / /delay(0.5);

 / /Serial .print ln(data_len);
 / /uint8_t *pa = Payload; / / pointer to array

 / /uint8_t *pb = (uint8_t *)&data[3]; / / pointer to received data

 / /Frame = (data[1] << 8) + data[2]; / / .
 / /Serial .print ln(data[0]);

 / /Serial .print ln(Frame);

 / /Serial .printf("Current ID = %d", data[0]);

 / /uint32_t Loc = Frame * (data_len - 3);

 / / i f (Frame == 0) / / The first Frame of an Image .

 / /{ / / .

 / / CurrentID = (data[0]); / /Store ID of first frame .
 / /Serial .printf("Current ID = %d", CurrentID);

 / /Serial .print ln("");

 / / } / / .

 / / i f (CurrentID == data[0] && Frame <= 384) { / / Check if i t is from the same photo (i .e . same I.D)
.

 / / Serial .print ln(Frame);
 / /Send an item to buffer

 UBaseType_t res = xRingbufferSend(buf_handle,data, data_len, pdMS_TO_TICKS(500)); / / was 100

 / /Serial .printf("data_len = %d", data_len);
 i f (res != pdTRUE)

 {

 printf("Failed to send i tem\n");
 }

 / /} / / . poc 15/12/20

/*

 while (i < data_len) / / Total data length = 203 (image data = 200 - I.D & Frame count)

 {

134

 / /Payload[j] = *pb++;

 Payload[Loc+j] = data[i + 3]; / / Put pa ckets in correct location.

 i++; / / number of elements to copy

 j++; / / increment pointer into Payload array
 }

 i = 0; / / reset index

 / /Serial .printf("Frame ID = %d", data[0]);

 / /Serial .print ln(Frame);
 / /Serial .printf("Data_len = %d", data_len);

 while (Serial2.availableForWrite()){

 / / for (k = 3; k < data_len;k++){
 / /Serial .write(data[k]);

 Serial2.write(data+3,data_len);

}

/ /Serial .printf("Frame = %d", Frame);

/ /Serial .println("");
 / /}

 /*

 }
 else

 {
 / /Serial .print ln("Received Packet from different Image.");

 j = 0; / / reset index into Payload.

 i = 0;
 / /Frame = 0;

 }

 / / for QVGA - 320X240 Pixels, using greyscale B&W = 76800 Bytes.

 / / each frame is 200 bytes long, 200 bytes of actual data.

 / / Number of frames = 76800/200 = 384 frames. - even boundaries.

}

}

*/
 }

void setup() {

 Serial .begin(115200);

 Serial2.begin(115200,SERIAL_8N1,16,17); / / connection with socket ESP32 - pin 16 & 17

 / / Set the device as a Stat ion and Soft Access Point simultaneously

 WiFi.mode(WIFI_AP);

 /* WiFi.begin(ssid, password);

 WiFi.printDiag(Serial); / / Uncomment to verify channel number before
 esp_wifi_set_promiscuous(true);

 esp_wifi_set_channel(CHANNEL, WIFI_SECOND_CHAN_NONE);

 esp_wifi_set_promiscuous(false);
 WiFi.printDiag(Serial); / / Uncomment to verify channel change after

*/

 / /configDeviceSTA();
 /*

 WiFi.begin(ssid, password,CHANNEL);

 while (WiFi.status() != WL_CONNECTED)

 {

 delay(1000);
 Serial .print ln("Sett ing as a Wi -Fi AP..");

 }

 Serial .print("Stat ion IP Add ress: ");
 Serial .print ln(WiFi. localIP()) ;

 Serial .print("Wi-Fi Channel: ");

 Serial .print ln(WiFi.channel());

135

*/

 / / configure device AP mode

 configDeviceAP();

 / /wifiServer.begin();

 / / This is the mac address of the Slave in AP Mode

 / /Serial .print("AP MAC: "); Serial .print ln(WiFi.softAPmacAddress());
 / / Ini t ESPNow with a fal lback logic

 Ini tESPNow();

 esp_now_register_recv_cb(OnDataRecv);

 / /Create ring buffer
 / /RingbufHandle_t buf_handle;

 buf_handle = xRingbufferCreate(70000, RINGBUF_TYPE_BYTEBUF);
 i f (buf_handle == NULL)

 {

 / /printf("Failed to create ring buffer \n");
 }

}

void loop() {

 / /Receive data from byte buffer

 size_t i tem_size ;
 uint8_t *i tem = (uint8_t *)xRingbufferReceiveUpTo(buf_handle, &item_size,

pdMS_TO_TICKS(500),1024); / /was245

 / /Check received data
 i f (i tem != NULL) / / was != NULL

 {

 i f (!sync)
 {

 for (int i = 0; i < i tem_size; i++) / / was < i tem_size

 {
 / /Serial .print(i tem[i]);

 / /Serial .print(",");

 / /Serial2.write(i tem[i]);
 data[i] = i tem[i]; / / check if first three bytes in correct sequence

 vRingbufferReturnItem(buf_handle, (void *)i tem);

 }
 i = 0;

 / / ---
 / / Compressed Data conditional

 / / --

 i f ((data[0]& 0xf0) == 160 && (data[0]& 0x0f) <= 10) / / is first Byte (I.D) < = 10 ? & compressed
identifier.

 {

 / / Get next byte
 i f (data[1] == 0 && data[2] == 0 && data[3] == 0 && data[4] == 0) / / is 1st ,2nd,3rd,4th Byte = 0 ? -

- WAS DATA[1] FOR uncompressed data

 {
 / /Serial .println("Compressed Sync detected"); // Yes, ID <=10 & FRame Number = 0 (1st

Frame)

 sync2 = true;
 sync = true;

 Comp = true;

 for (int i = 0; i < i tem_size; i++) / / Don't know how many Bytes were buffered so get size.
 {

 Payload[j] = data[i]; / / Store next Byte in correct location in Array.

 //Serial .print(Payload[j]);
 //Serial .print(",");

 j++;

 }

 i = 0;

136

 }

 }

 / / ---

 / / Raw Data condit ional
 / / --

 else if ((data[0]& 0xf0) == 144 && (data[0]& 0x0f) <=10) / / is first Byte (I.D) < = 10 ? and

RawImage flag set ?
 {

 / / Get next byte

 j = 0;
 i f (data[1] == 0 && data[2] == 0) / / is 1st ,2nd Byte = 0 ?

 {

 / /Serial .println(" Raw Sync detected"); / / Yes, ID <=10 & FRame Number = 0 (1st Frame)
 sync = true;

 Raw = true;

 for (int i = 0; i < i tem_size && j <= 78400; i++) / / Don't know how many Bytes were buffered so
get size.

 {

 Payload[j] = data[i]; / / Store next Byte in correct location in Array.
 //Serial .print(Payload[j]);

 //Serial .print(",");

 j++;

 }

 i = 0;

 }
 }

 / / ---

 / / ROI Data condit ional
 / / --

 else if((data[0]& 0xf0) == 96 && (data[0]& 0x0f) <=10){

 ROI = true;
 sync1 = true;

 sync = true;

 / /Serial .print ln("ROI Frame");
 for (int i = 0; i < i tem_size && j <= 4800; i++) // Don't know how many Bytes were buffered so get

size.

 {
 Payload[j] = data[i]; / / Store next Byte in correct location in Array.

 / /Serial .print(Payload[j]);

 / /Serial .print(",");
 / /Serial .print ln("ROI Detected");

 j++;

 }

 i = 0;

 }
 }

 i f (sync2 && sync && Comp){ / / compressed data indicator
 / /Serial .print ln("in Sync2"); // If we have already detected the 1st Frame

then . .

 for (i = 0; i < i tem_size ; i++)
 {

 data[i] = i tem[i]; / / Read in buffered data and store in next location in 'Payload' array

 Payload[j] = data[i];
 //Serial .print(Payload[j]);

 vRingbufferReturnItem(buf_handle, (void *)i tem);

 j++;

 i f (data[0] == 127){ / / possibil ity of false trigger ?

 // i f (j >= 77600){ // possibil i ty of false trigger ?
 FullImage = true;

 }

 }

 //vRingbufferReturnItem(buf_handle, (void *)i tem);

 i = 0;

 }

 i f (sync1 && sync){

 / /Serial .print ln("in Sync1"); // If we have alread y detected the 1st Frame

then . .

137

 for (i = 0; i < i tem_size && j <= 4800 ; i++)

 {

 data[i] = i tem[i]; / / Read in buffered data and store in next location in 'Payload' array

 Payload[j] = data[i];
 //Serial .print(Payload[j]);

 vRingbufferReturnItem(buf_handle, (void *)i tem);

 j++;

 // i f (data[0] == 127){ / / possibil ity of false trigger ?

 i f (j >= 4800){ / / possibil ity of false trigger ?
 FullImage = true;

 }

 }

 //vRingbufferReturnItem(buf_handle, (void *)i tem);

 i = 0;

 }

 i f (sync && !sync1 && !sync2){
 / /Serial .print ln("in Sync"); / / If we have already detected the 1st Frame

then . .

 for (i = 0; i < i tem_size ; i++)
 {

 data[i] = i tem[i]; / / Read in buffered data and store in next location in 'Payload' array

 Payload[j] = data[i];
 //Serial .print(Payload[j]);

 vRingbufferReturnItem(buf_handle, (void *)i tem);

 j++;

 // i f (data[0] == 127){ / / possibil ity of false trigger ?
 i f (j >= 77600){ / / possibil i ty of false trigger ?

 FullImage = true;

 }

 }

 //vRingbufferReturnItem(buf_handle, (void *)i tem);
 i = 0;

 }

 } else {
 / /Failed to receive i tem

 / /Serial .print("Failed to receive i tem \n");

 }

 / /}

 i f (FullImage && Comp){
 / /Serial .print ln("");

 / / Serial .print ln("Full Image ");

 / / Serial .printf("j = %d", j);
 / / Serial .print ln("");

 esp_now_unregister_recv_cb();

 while(Serial .availableForWrite()){ / / wri te Payload size to S erial2, Serial -> TCP or direct ly to
Serial for test ing

 Serial .print("Image Size ");

 Serial .write(j & 0xff);
 Serial .write((j >> 8) & 0xff);

 Serial .write((j >> 16) & 0xff);

 Serial .write((j >> 24) & 0xff);
 for (i = 0; i < 230;i++){ / / need to send a total packet of 245 bytes to trigger a serialEvent in

processing.

 Serial .write(0);
 }

 / /Serial2.print ln("");

 for (i = 0; i < j ; i++)

 {

 Serial .write(Payload[i]);
 }

 / /Serial .print(Payload[i]);
 / /Serial .print(",");

 }

 FullImage = false;

138

 j = 0;

 sync2 = false;

 sync = fa lse;

 Comp = false;
 }

 else if(FullImage && ROI){

 / / while(Serial .availableForWrite()){
 ROI = false;

 / /Serial .printf("j = %d", j);

 / /Serial .print ln("");
 / / for (i = 0; i < j ; i++)

 / /{

 Serial .write(Payload,j); / / was Serial2 / /Payload[i]
 / /}

 / / }

 / /Serial .flush();
 FullImage = false;

 j = 0;

 sync1 = false;
 sync = false;

 }

 else if(FullImage && Raw){
 / / while(Serial .availableForWrite()){

 Raw = false;

 / /Serial .printf("j = %d", j);
 / /Serial .print ln("");

 / / for (i = 0; i < j ; i++)
 / /{

 Serial .write(Payload,j); / / was Serial2 / /Payload,j

 / /}
 / / }

 / /Serial .flush();

 FullImage = false;
 j = 0;

 sync = false;

 }

 / /Serial2.flush();

 esp_now_register_recv_cb(OnDataRecv);
 / /FullImage = false;

 / / j = 0;

 / /sync = false;
 i = 0;

 }

 / /Serial .print ln("");
 / /esp_now_register_recv_cb(OnDataRecv);

 /*

 i f (Frame == 383) / / number of frames for complete image (76800 / 200)
 {

 esp_now_unregister_recv_cb();

 j = 0; / / reset index into Payload array.
 / /Serial .print ln("Image received");

 Frame = 0;

/*
 while (Serial .availableForWrite()){

 for (k = 0; k < sizeof(Payload);k++){

 Serial .write(Payload[k]);
 }

 }

 esp_now_register_recv_cb(OnDataRecv);

 / /Serial2.flush();

*/
 /*

 / / read data from Payload and send to Serial2

 while (Serial2.availableForWrite()) {
 / /size = (size >= BUFFER_SIZE ? BUFFER_SIZE : size);

 / /Serial .readBytes(buff, size);

 for (k = 0; k < sizeof Payload;k++){
 //Serial2.write (Payload, sizeof Payload);

 Serial2.write(Payload[k]);

 }
 / /cl ient .write(buff, size);

 / /cl ient .flush();

 / /Serial2.flush();

139

 }

*/

 / /}

 / /Serial2.flush();

 / / esp_now_register_recv_cb(OnDataRecv);

 / / j = 0; / / reset index into Payload array.
 / / for (k = 0; k<=sizeof(Payload); k++){

 / / Serial .print(Payload[k]);

 / /}

 / /Frame = 0;

 / /Serial .print ln("");
 / /Serial .print ln("Image received");

 / /}

 /*
 / /Serial .print ln("Image received");

 WiFiClient cl ient = wifiServer.available(); / / i f cl ient connected.

 i f (cl ient)
 {

 / / i f (cl ient .available())

 / /{
 Serial .print("Client connected with IP:");

 Serial .print ln(cl ient .remoteIP());

 / / for (k = 0; k<=sizeof(Payload); k++){
 / / Serial .print(Payload[k]);

 cl ient .write(Payload, sizeof(Payload));
 / /cl ient .stop();

 / /}

 / /delay(2);
 / /}

 }

 / /client.stop();
 */

 / /}

/ /}

C++ Code for Serial->TCP(Slave):

#include "Arduino.h"

#include <WiFi.h>
/ / debug log, set to 1 to enable

#define ENABLE_DEBUG_LOG 1

/ / wifi config

const char* ssid = "";

const char* password = "";

/ / ethernet config

const IPAddress local_IP(192, 168, 0, 20);

const IPAddress gateway(192, 168, 0, 1);

const IPAddress subnet(255, 255, 255, 0);

const IPAddress primaryDNS(8, 8, 8, 8);
const IPAddress secondaryDNS(8, 8, 4, 4);

/ / rs-server config
const int serverPort = 3000;

const int baudrate = 115200;
const int rs_config = SERIAL_8N1;

uint32_t k = 0;

uint32_t i = 0;
uint32_t j = 0;

uint16_t capacity = 0;

uint16_t Frame = 0;
uint8_t data[256]; //256 / / reading buffer config

/ /uint8_t Payload[77952]; / / use to actually hold complete frame structure + pa yload

140

boolean sync = false;

boolean FullImage = false;

IPAddress ipServer(192, 168, 0, 199); / / Declarat ion of default IP for Client

hw_timer_t *t imer = NULL;

volati le SemaphoreHandle_t t imerSemaphore;

portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;

/ / global objects

WiFiServer server(serverPort);
WiFiClient RemoteClient; / / Instantiate WiFiClient as REmoteClient

void debug_log(char* str) {

#if ENABLE_DEBUG_LOG == 1

 Serial .print ln(str);
#endif

}

void setup() {

 Serial .begin(baudrate, rs_config); / / Terminal on Serial1

 Serial2.begin(115200,rs_config,16,17); / / Readin on Serial2 out on Socket TCP

 / / ini t wifi connection
 i f (!WiFi.config(local_IP, ga teway, subnet , primar yDNS, secondaryDNS))

 {
 debug_log("Failed to configure network set t ings");

}

 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {

 debug_log("connecting to WiFi network");

 delay(500);
}

 #if ENABLE_DEBUG_LOG == 1
 Serial .println("connected to WiFi");

 Serial .println("IP adddr: ");

 Serial .println(WiFi. localIP());
 #endif

 delay(1000);

/ /start server

 server = WiFiServer(serverPort);

 server.begin();
 delay(1000);

 debug_log("server started");

}

/ / On data received on Serial2 do something. Called in Main loop.
/ / Detect start of Image by checking if the ID is < =10, and the nect two bytes are the first frame (0,0).

/ / If sta rt detected then set 'sync' and store the received data in the 'Payload' array.

/ / next data received should be from the same ID , so save in 'Payload' .
/*

void serialEvent2() {

while ((capacity = Serial2.available())) {
 / /Serial .printf("Size = %d", size);

i f(capacity >0){

 for (i = 0; i < capacity; i++)
 {

 data[i] = Serial2.read(); / /

 RemoteClient .write(data[i]);
 Serial .print(data[i]);

 }

 / /Serial .printf("load size = %d", size);
 / /Serial .print ln("");

 / / for (i = 0; i < capacity; i++){

 / /RemoteClient .write(data[i]);
 / / Serial .print(data[i]);

 / /}

 Serial .println("");
 / / j = 0; // Reset Index into Payload, ready for nex t Image.

 / / i = 0;

 / /Frame = false;

141

 i = 0;

 Frame = true;

 /*

 i f (!sync)
 {

 for (i = 0; i < 245; i++)

 {
 data[i] = Serial2.read(); / / check if first three bytes in correct sequence

 }

 i = 0;
 i f (data[0] <= 10) / / is first Byte (I.D) < = 10 ?

 {

 / / Get next byte
 i f (data[1] == 0 && data[2] == 0 && data[3] == 0 && data[4] == 0) / / is 1st ,2nd,3rd,4th Byte = 0 ? -

- WAS DATA[1] FOR uncompressed data

 {
 Serial .print ln("Sync detected"); / / Yes, ID <=10 & FRame Number = 0 (1st Frame)

 sync = true;

 / /Serial .printf("size = %d",size);
 for (int i = 0; i < 245; i++) / / Don't know how many Bytes were buffered so get size.

 {

 Payload[j] = data[i]; / / Store next Byte in correct location in Array.
 j++;

 Serial .print(data[i]);

 }
 i = 0;

 / /}
 }

 }

 i = 0;
 }

 else if (sync){ // If we have already detected the 1st Frame then . .

 for (i = 0; i < size; i++)
 {

 data[i] = Serial2.read(); / / Read in buffered data and store in next location in 'Payload'

array
 Payload[j] = data[i];

 j++;

 i f (data[0] == 127){
 FullImage = true;

 }

 }
 / /Serial .printf("size in sy nc = %d",size);

 i = 0;

 }

 }

 }
}

*/

/ / Used to check if Client is or is t rying to connect .

void CheckForConnections()

{
 i f (server.hasClient())

 {

 i f (RemoteClient .connected())
 {

 Serial .println("Connection Rejected"); // If already connected then reject .

 server.available().stop();
 }

 else

 {
 Serial .println("Connected accepted");

 RemoteClient = server.available();

 }
 }

}

void loop() {

 CheckForConnections();

 i f (RemoteClient)

142

 {

 / /serialEvent2();

 while ((capacity = Serial2.available())) {

 / /Serial .printf("Capacity = %d", capacity);
 / /Serial .print ln("");

 i f (capacity > 0)

 { / / >0
 for (i = 0; i < capacity; i++)

 {

 data[i] = Serial2.read(); / /
 / /RemoteClient .write(data[i]);

 / /Serial .print(data[i]);

 / /Serial .print(",");
 }

 / /Serial .printf("load size = %d", size);

 / /Seria l .print ln("");
 / / for (i = 0; i < capacity; i++){

 RemoteClient .write(data,capacity);

 / /Serial .write(data[i]);
 / /}

 / /Serial .print ln("");

 / / j = 0; // Reset Index into Payload , ready for next Image.
 / / i = 0;

 / /Frame = false;

 i = 0;
 Frame = true;

 }
 }

 }

 / / i f (FullImage) / / j >= 77952 // If the 'Payload' counter indicates we have
received a ful l image.

 / /{

 / / Serial .print ln("Should have a ful l payload now");
 /*

 i f (Frame){

 i f (RemoteClient .connected()) {
 Serial .print("Client CAMERA connected with IP:");

 Serial .print ln(RemoteClient .remoteIP());

 Serial .printf("Payload size = %d", capacity);
 / /RemoteClient .write(data, size); / / Send Complete Image + overhead to remote Client via TCP

 for (i = 0; i < capacity; i++){
 / /RemoteClient .write(data[i]);

 Serial .print(data[i]);

 }

 / / j = 0; / / Reset Index into Payload, ready for next Image.

 i = 0;
 Frame = false;

 / /FullImage = false;

 / /sync = 0; / / need to detect 1st Frame so reset sync.
 / /Serial .print ln("Client Disconnected");

 }

 }
 / / i f (!sync){

 i f (RemoteClient)
 {

 Serial .print("Client connected with IP:");

 Serial .print ln(RemoteClient .remoteIP());

 }

 */

} / / end loop

Java Image decompress Code:

143

import processing.serial .*;

Serial myPort;

Table datatable;
short portIndex = 32; / / 33 select the com port , 0 is the first port

/ / i f (myPort .available() >0) { / / i f data is available

/ / val = myPort .read(); // read i t and srore i t in val

/ / int camPixels[];

int[] camPixels = new int[77800];

stat ic int camWidth = 320;/ /320

stat ic int camHeight = 240;/ /240

int Frame;

int i = 0;
int j = 0;

int CurrentID;

int[] data = new int[245]; / /203
byte [] data1 ;

int v; / / Input string from serial port

boolean Raw = false;
boolean Compressed = false;

boolean First = true;
int x = 0;

int y = 0;

int[] dataIn = new int[245];

int[] temp = new int[4900];
int decompress[];

/ / int camPixels[];

int num;
int p = 0;

;

int val = 0;
int size = 4800;

int h = 0;

int frame0;
int frame1;

int frame2;

int frame3;
boolean image = false;

boolean set = false;

boolean done = false;
int frameStart ;

int frameEnd;

int ID;
int ID1;

int loc = 0;

boolean Qmed = false;
boolean Qhigh = true;

boolean info = false;

boolean Comp = false;

PrintWriter output;

void setup()

{
 size(320, 240);

 String portName = Serial . l ist()[port Index];
 print ln(Serial . l ist());

 print ln(" Connecting to -> " + Serial . l ist()[portIndex]);

 myPort = new Serial(this, portName, 115200);
 myPort .buffer(245); / /203

 temp = new int[4900];

 decompress = new int[80000];
 datatable = new Table();

 datatable.addColumn("Value");

144

 / /output = createWriter("ROI_1.csv");

 / /output = createWriter("Image.csv");

}

void draw()

{

 / /noStroke();
 int p = 0;

 i f (Frame == 315 && Raw) {
 j = 0; / / reset index into Payload array.

 print ln("Received an Image !");

 Raw = false;
 Frame = 0;

 First = true;

 noStroke();
 for (int y = 0; y<camHeight; y++)

 for (int x=0; x<camWidth; x++)

 {
 int v = camPixel s[p++];

 / /TableRow newRow = datatable.addRow();

 / /newRow.setInt("Value",datatable.getRowCount() -1);
 / /newRow.setInt("Value",v);

 fi l l (color(v, v, v));

 rect(x*1, y*1, 1, 1);
 }

 saveFrame("Raw-###1.png");
 / /saveTable(datatable,"Raw-###1.csv");

 } else if (set && !Raw && !Comp) {

 j = 0;

 noStroke();

 for (int y = 0; y<60; y++) {
 for (int x=0; x<80; x++)

 {

 int v = temp[j++];
 fi l l (color(v, v, v));

 rect(x*1, y*1, 1, 1);

 }
 }

 saveFrame("ROI-##1.png");

 j = 0;
 p=0;

 dataIn[0] = 0;

 set = false;
 image = false;

 First = true;

 } else if (set && Comp) {
 i=0;

 j = 0;

 h = 0; / / index into decompressed fi le.
 while (frameEnd <= size) { / / is this the first frame ? - no, then.. . . reuse j as index into

decompress - upto 76800

 for (i=frameStart ; i<frameEnd; i++) {
 i f (Qhigh) {

 int col = camPixels[i]& 0xf8 ;

 int freq = camPixels[i]& 0x07 ;
 while (freq >0) { / / was freq >0 - poc 12/7/21

 decompress[loc+h] = col; // i f frameStart = 0 -> 0+1,0+2 etcc. until frameEnd: ini t ial ly 0 ->240

 h++;
 freq--;

 }

 } else if (Qmed) {
 int col = camPixels[i]& 0xf0 ;

 int freq = camPixels[i]& 0x0f ;

 / /print ln("freq = "+freq);
 while (freq > 0) {

 decompress[loc+h] = col; // i f frameStart = 0 -> 0+1,0+2 etcc. until frameEnd: ini t ial ly 0 ->240

 h++;
 freq--;

 }

 }
 }

145

 h = 0;

 / /print("frame Start ="+frameStart);

 / /print("frame end = "+frameEnd);

 / /print ln("");
 frameStart = frameEnd+5;

 frameEnd = frameStart + 240;//240

 int frame0 = (camPixels[frameStart -4]) <<24;
 int frame1 = (camPixels[frameStart -3]) <<16;

 int frame2 = (camPixels[frameStart -2]) <<8;

 int frame3 = (camPixels[frameStart -1]) & 0XFF;
 loc = frame0 | frame1 |f rame2 | frame3;

 print("loc = "+loc);
 println("");

 print("I.D = "+ camPixels[frameStart -5]);

 }

 j = 0;

 set = false;
 image = false;

 print ln("set = false");

 / /}

 int q = 0;

 noStroke();
 i f (frameEnd >=size) {

 / /noStroke();
 for (int y = 0; y<camHeight; y++) {

 for (int x=0; x<camWidth; x++)

 {
 int v = decompress[q++];

 TableRow newRow = datatable.addRow();

 newRow.setInt("Value",datatable.getRowCount() -1);
 newRow.setInt("Value",v);

 / /v&=0x000000ff;

 fi l l (color(v, v, v));
 rect(x*1, y*1, 1, 1);

 }

 }

 }
 saveTable(datatable,"Comp-##1.csv");

 saveFrame("Comp-##1.png");

 stop();

}

}

void serialEvent(Serial myPort) {

 i f (First) {
 j = 0;

 for (i=0; i<245; i++) {

 dataIn[i] = myPort .read(); / / check if first three bytes in correct sequence
 }

 / /print ln(data[0]);

 i f ((dataIn[0] & 0xf0) == 144 && (data[0] & 0x0f) <=10) / / ------------ Is this a Raw
Image ?

 {

 / / Get next byte
 / /data[1] = myPort .read(); / / check if first three bytes in correct sequence

 i f (dataIn[1] == 0)

 {
 / /data[2] = myPort .read(); / / check if first three bytes in correct sequence

 i f (dataIn[2] == 0)

 {
 / / in sync so get last 240 bytes

 / / for (int i=3; i < 245; i++) / /203

 / / {

146

 / / data[i] = myPort .read();

 / / }

 while (i < 240) { / /200
 camPixels[j] = dataIn[i+5]; / / disregard the first 3 bytes (ID & Frame number).

 j ++; / / reset index otherwise we first f rame twice !

 i++;
 }

 }

 i = 0;

 Frame = (dataIn[1] << 8) + dataIn[2]; / / get Frame number

 CurrentID = dataIn[0]& 0x0f;
 println("Frame1 = ", Frame, "ID = ", Current ID);

 Raw = true; // we have found start of Image sequence.

 First = false; / / set to stop fal l ing through to next if on first frame detection.
 j = 0;

 }

 }

 i f ((dataIn[0] & 0xf0) == 96 && (dataIn[0] & 0x0f) <=10) { / / --------------------------------- Is this

a ROI Image ?
 / /dataIn[0] = data[0];

 / / for (int i=1; i < 245; i++)/ /203

 / /{
 / / dataIn[i] = myPort .read();

 / /}
 i f ((dataIn[0] & 0xf0) == 96) {

 int frame0 = (dataIn[1]) <<24;

 println("frame0 = "+ frame0);
 int frame1 = (dataIn[2]) <<16;

 println("frame1 = "+ frame1);

 int frame2 = (dataIn[3]) <<8;
 println("frame2 = "+ frame2);

 int frame3 = (dataIn[4]) & 0XFF;

 println("frame3 = "+ frame3);
 loc = frame0 | frame1 |f rame2 | frame3;

 println("dataIn[0] = ", dataIn[0]&0xf0);

 print("loc = "+loc);
 println("");

 println("I.D = "+ (dataIn[0]&0x0f));

 image = true; / / indicate first frame.
 First = false;

 / /set = true;

 i = 0;
 int start = 5;

 / / int newline = 80; / / width of ROI

 / / while (i<= val) {
 for (i=start ; i<245; i++) {

 temp[p] = dataIn[i];

 / /print(temp[p]);
 / /print(",");

 p++;

 }
 }

 }

 /*else if ((data[0] & 0xf0) == 160 && (data[0] & 0x0f) <=10) { / / Is this a ROI Image ?

 dataIn[0] = data[0];

 for (int i=1; i < 245; i++)/ /203
 {

 dataIn[i] = myPort .read();

 }
 */

 i f ((dataIn[0] == 73) && (dataIn[1] == 109) && (dataIn[2] == 97) && (dataIn[3] == 103) && (dataIn[4]

== 101) && (dataIn[5] == 32) && (dataIn[6] == 83) && (dataIn[7] == 105) && (dataIn[8] == 122) &&
(dataIn[9] == 101) && (dataIn[10] == 32)) {

 int size0 = (dataIn[14])<<24;

 int size1 = (dataIn[13]) <<16;
 int size2 = (dataIn[12]) <<8;

 int size3 = (dataIn[11]) & 0XFF;

 size = size0 | size1 |size2 | size3; / / size of fi le to receive.
 println("");

 print("Image size = ");

 print(size);

147

 println("");

 ID = dataIn[15];

 print("ID = "+ ID);

 println("");
 print("Start = "+ dataIn[16] + dataIn[17] + dataIn[18] + dataIn[19]);

 println("");

 for (i=15; i<245; i++) {
 camPixels[j] = dataIn[i];

 / /print(camPixels[j]);

 / / print(",");
 j++;

 }

 j = 0;
 Comp = true; / / indicate first frame.

 First = false;

 / /set = true;
 i = 0;

 }

 } else if (!First && image) { / / i f we have detected the first Frame of the image already get the
rest . ROI

 for (i=0; i<245; i++) {

 dataIn[i] = myPort .read();
 }

 print ln("Image");

 print ln("p = "+p);
 / /print ln("val = "+val);

 i f (p< size) {
 for (i=5; i<245; i++) {

 temp[p] = dataIn[i];

 p++;
 }

 } else if (p >= size) {

 dataIn[0] = 0;
 set = true;

 println("Set");

 println("Size reached");
 }

 } else if (!First && Raw) { / / i f we have detected the first Frame of the image already get the rest .

 for (int i=0; i < 245; i++)/ /203
 {

 data[i] = myPort .read();

 }
 Frame = (data[1] << 8) + data[2]; / / get Frame number

 int ID = data[0]& 0x0f;

 i=0;
 print ln("Frame = ", Frame, "ID = ", ID);

 i f ((data[0]&0x0f) == CurrentID && Frame < 317) { / /384 if the frame is within the image size and i t 's

from the same image.(data[0]&0x0f) == CurrentID &&
 while (i < 240) { / /200

 camPixels[j] = data[i+5]; // disregard the first 3 bytes (ID & Frame number).

 j ++;
 i++;

 };

 i = 0;
 } else {

 println("Different Image Data");

 i=0;
 j = 0;

 First = true;

 Frame = 0;
 / /dataIn[0] = 0;

 }

 } else if (!First && Comp) { / / i f we have detected the first Frame of the image already get the
rest .

 i f (j < size)/ /203

 {
 for (i=0; i<245; i++) {

 camPixels[j] = myPort .read(); ;

 j++;
 }

 } else if (j >= s ize) {

 set = true;
 / /camera.stop();

 / / image = false;

 }

148

 }

 frameStart = 5; / / because data is only saved from [15] onwards.

 frameEnd = frameStart+240;//240

 loc = 0;
}

/*

 / / i f (camera.available()>=4800) {

 i f (mySerial .available()>0) {
 / / info = true;

 / / init ial=camera.readBytes();

 ini t ial=mySerial .readBytes();
 int val = (ini t ial .length);

 print("val1 = "+val);

 dataIn = new int[val]; / / java converts bytes to +127 -> -128 so convert back
 for (i=0; i<val; i++) {

 dataIn[i] = int(ini t ial[i]);

 / /print(dataIn[i]);print(",");
 }

 */

/ /}

/ /println("p = "+p);
/ /start = newline;

/ /newline = start+80;

/ / loc = loc + 320; / / next location of ROI i .e next l ine down location start
/ / }

/ / for (i=0; i<val; i++) {

/ / print(dataIn[i]);
/ / print(",");

/ / }

/ /}
/ / info = false;

/*

 void serialEvent(Serial mySerial) {

 i f (!image) {
 for (i=0; i<245; i++) {

 dataIn[i] = mySerial .read();

 }
 / /println("i = "+i);

 i f ((dataIn[0] & 0xf0) == 96) {

 int frame0 = (dataIn[1]) <<24;
 print ln("frame0 = "+ frame0);

 int frame1 = (dataIn[2]) <<16;

 print ln("frame1 = "+ frame1);
 int frame2 = (da taIn[3]) <<8;

 print ln("frame2 = "+ frame2);

 int frame3 = (dataIn[4]) & 0XFF;
 print ln("frame3 = "+ frame3);

 loc = frame0 | frame1 |frame2 | frame3;

 print ln("dataIn[0] = ", dataIn[0]&0xf0);
 print("loc = "+loc);

 print ln("");

 print ln("I.D = "+ (dataIn[0]&0x0f));
 image = true; / / indicate first frame.

 / /set = true;

 i = 0;
 int start = 5;

 / / int newline = 80; / / width of ROI

 / / while (i<= val) {
 for (i=start ; i<245; i++) {

 temp[p] = dataIn[i];

 / /print(temp[p]);
 / /print(",");

 p++;

 }
 }

 / /p=p+5;

 }

149

 / / image = true; / / indicate first frame.

 else if (image) {

 for (i=0; i<245; i++) {
 dataIn[i] = mySerial .read();

 }

 print ln("Image");
 print ln("p = "+p);

 / /println("val = "+val);

 i f (p< size) {
 for (i=5; i<245; i++) {

 temp[p] = dataIn[i];

 p++;
 }

 } else if (p >= size) {

 set = true;
 print ln("Set");

 print ln("Size reached");

 / /camera.stop();

 / / image = false;

 }
 / / info = false;

 }

 / / }

 / /}

 / / frameStart = 5; / / because data is only saved from [15] onwards.

 / / frameEnd = frameStart+320;/ /240
 / / loc = 0;

 / /}

 / / i f (set) {
 / / for (i = 0; i< size; i++) {

 / / print(temp[i]);

 / / print(",");
 / / }

 }

 / / image = false;
 / /print(i);print(",");

 / /}

 / /print(i);
 / /p = 0;

 / /p=0;

 / / j=0;

 / /}
 / /}

/*
 i f (set) {

 i=0;
 j = 0;

 h = 0; / / index into decompressed fi le.

 while (frameEnd <= size) { / / is this the first frame ? - no, then. .. . reuse j as index into
decompress - upto 76800

 for (i=frameStart ; i<frameEnd; i++) {

 i f (Qhigh) {
 int col = camPixels[i]& 0xf8 ;

 int freq = camPixels[i]& 0x07 ;

 while (freq > 0) {
 decompress[loc+h] = col; / /if frameStart = 0 -> 0+1,0+2 etcc. unti l frameEnd: init ial ly 0 ->240

 h++;

 freq--;
 }

 } else if (Qmed) {

 int col = camPixels[i]& 0x f0 ;
 int freq = camPixels[i]& 0x0f ;

 / /println("freq = "+freq);

 while (freq > 0) {
 decompress[loc+h] = col; / /if frameStart = 0 -> 0+1,0+2 etcc. unti l frameEnd: init ial ly 0 ->240

 h++;

 freq--;

150

 }

 }

 }

 h = 0;

 / /print("frame Start ="+frameStart);
 / /print("frame end = "+frameEnd);

 / /println("");

 frameStart = frameEnd+5;
 frameEnd = frameStart + 240;/ /240

 int frame0 = (camPixels[frameStart -4]) <<24;

 int frame1 = (camPixels[frameStart -3]) <<16;
 int frame2 = (camPixels[frameStart -2]) <<8;

 int frame3 = (camPixels[frameStart -1]) & 0XFF;

 loc = frame0 | frame1 |frame2 | frame3;

 print("loc = "+loc);

 print ln("");
 print("I.D = "+ camPixels[frameStart -5]);

 }

 j = 0;

 set = false;

 image = false;
 print ln("set = false");

 }

 int p = 0;

 / /noStroke();
 i f (frameEnd >=size) {

 noStroke();

 for (int y = 0; y<camHeight; y++) {
 for (int x=0; x<camWidth; x++)

 {

 int v = decompress[p++];
 / /v&=0x000000ff;

 fi l l (color(v, v, v));

 rect(x*1, y*1, 1, 1);
 }

 }

 }
 */

	Image Transmission over Resource-constrained Low-Power Radio Networks
	Recommended Citation

	tmp.1666363727.pdf.h5P67

