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Abstract-In this paper we present an improved version of a method for the automatic analysis of flow 
cytometric DNA histograms from samples containing a mixture of two cell populations. The procedure 
is tested against two sets of ad hoc experimental data, obtained by mixing cultures of cell lines in different 
known proportions. The potentialities of the method are enlightened and discussed with regard to its 
capability of recovering the population percentages, the DNA index and the Go/G,, S, G, + M phase 
fractions of each population. On the basis of the obtained results, the procedure appears to be a promising 
tool in the flow cytometric data analysis and, in particular, in problems of diagnosis and prognosis of 
tumor diseases. 

1. INTRODUCTION 

In the recent literature, many methods and algorithms have been proposed for the analysis of 
DNA flow cytometric data in the case of a single cell population (see, for example, Ref. [l] and 
references cited therein). On the contrary, only few results are available concerning the analysis 
of DNA histograms from samples containing two cell populations. This problem appears to be of 
great relevance in the study of human malignancies both for diagnosis and prognosis purposes. 
A practical graphical method has been proposed in Ref. [2]; a computer-based system can be 
found in Ref. [3]. Moreover, a cell analysis program, developed by P. S. Rabinovitch (Multicycle, 
Phoenix Flow Systems, San Diego, Calif.), is available for fitting complex tumor DNA 
histograms. 

Recently, a mathematical model was proposed [4,5] for describing the DNA content distribution 
of a sample containing a mixture of two cell populations and a procedure was presented for the 
fully automatic estimation of the unknown model parameters. The procedure was tested against 
both simulated data and a few real data from clinical material. The results there obtained were 
satisfactory, but further validations appeared to be appropriate, in particular with respect to the 
experimental data. 

The aim of this paper is to perform a further analysis along this line. More specifically, 
we have carried out some ad hoc experiments by mixing cultures of two cell lines in different known 
proportions. Subsequently, we have applied to the corresponding flow cytometric histograms 
a new version of the previous method, improved both in the model and in the estimation 
procedure. 

In the following sections, first we briefly describe the method and the modifications introduced 
in order to improve its efficiency from a computational point of view and the reliability of the 
obtained estimates. Thereafter we account for the experimental material and the measurement 
method, and we report the numerical results obtained by the revised procedure. Finally, we discuss 
and interpret these results in order to enlighten the potentialities of the method in flow cytometric 
data analysis. 
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2. MATHEMATICAL MODEL AND ESTIMATION PROCEDURE 

In this section we briefly account for the method proposed in Refs [4, 51 and, more specifically, 
we describe both the changes performed on the models of DNA and fluorescence distributions and 
the improvements introduced in the parameter estimation procedure. 

In the following, we denote by the indices i = 1,2 the parameters of the lower and the higher 
DNA content populations, respectively. 

The DNA content distribution g’“(y) of each population consists of two concentrated masses 
(G’;1, G’;1), corresponding to the Go/G, and G, + M phases, located at v$‘) and 2ytJ values of DNA 
content respectively, and of a mass (Sol), corresponding to the S-phase, which is assumed to be 
piecewise constant distributed in the interval [yy), 2yy’]. 

In order to avoid the analytical complications deriving from a constraint on the Go/G1 peak 
locations, the condition y{*’ - y$” > c > 0, introduced in Refs [4, 51, has been removed. This allows 
the two populations to fully overlap, and in this case their distinction may be accomplished, in 
principle, only if they exhibit a sufficiently different behavior with respect to the flow cytometric 
analysis. However, this situation will not be considered in this study; the effective capability of the 
procedure to recover two fully overlapped populations out of their mixture requires further 
investigation. 

A second change introduced here on the DNA content distribution model is related to the 
number of equal subintervals in [yy), 2yy)] with constant S-phase density: in particular these 
numbers, n@, i = 1,2, are allowed to be different for the two populations in order to make the 
model more flexible. They are chosen by the operator, in the set { 1,2,4}, on the basis of the shape 
of the measured histogram. 

As far as the fluorescence distribution model is concerned, we describe both the staining and 
instrumental dispersions by a Gaussian density function. More specifically, denoting by x the 
fluorescence intensity, we assume that the fluorescence density p@(x ]u), for a cell of the ith 
population with DNA content y, is a Gaussian with mean y and variance 

v’“(y) = y”$ + CS*y*. (1) 

Motivations about this choice are given in Refs [4, 51. 
In fluorescence histograms it is frequently observed that the location of the G2 + M peak is not 

exactly at twice that of the Go/G, peak, as we have assumed in the DNA distribution model. This 
effect is probably due to an instrumental bias which causes the fluorescence intensity x not to be 
exactly proportional to the DNA content y, and it has been accounted for in our model by a 
suitable shift p on the fluorescence intensity axis. This corresponds to considering for p@(x 1~) the 
Gaussian with mean y + p and the same variance (1). Differently from Refs [4, 51 where this shift 
was manually performed on the measured histogram, the parameter p is now a continuous variable 
to be automatically estimated together with the other unknown parameters. 

In this paper we do not consider any model for the debris background because the aim is here 
to validate our procedure against ad hoc experimental data which lack a significant debris 
component. 

As is well-known, the fluorescence distribution density f(x; 0) can be mathematically expressed 
as follows: 

f(x;V = i 

s 

2Yl” 

P”‘(x I yk”‘(v> dx 
i=l Yl” 

where, on the basis of the previous assumptions, the vector 8 of unknown parameters to be 
estimated has the following n(‘) + n(*) + 10 components: 

(3) 

In vector (3), AtI, k = 1, . . . , ncn, denote the S-phase fractions on each subinterval of [y($, 2y(?] 
with uniform distribution, so that 

“117 
S’” = $, AtI. 
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Since the experimental histogram gives the number of cells in each of the channels in which the 
fluorescence axis is subdivided, in order to relate it tof(x; 0), it is necessary to discretize this latter 
continuous function, by integrating it over each channel. We denote by [A, j,] the prefixed channel 
interval over which the analysis will be effectively performed. This interval, which is obviously 
finite, has to be chosen so that tails of the fluorescence histogram due to effects not considered in 
the model (background and cell aggregations) are excluded. Therefore, a normalization to unit area 
of the same functionf(x; 0) on the prefixed interval is also required. Thus, denoting by Hi(e) the 
discretized and normalized fluorescence density: 

j = ji, . . . ,A, 

the observation equation is 

N. 
-$ = Hi(e) + R,, j=ji,. . . ,j,, 

(4) 

where Nj is the cell number registered in the jth channel, 

N= 5 N,, 
j=ji 

and R, is an error term due to the finiteness of the cell sample. 
In order to estimate the unknown parameter vector 0, we adopt here the maximum likelihood 

approach instead of the minimum x2 error index, which was used in Ref. [4]. This choice is justified 
by the well-known statistical properties of the achieved estimation [6]. 

The maximum likelihood estimation for 8 is the value which minimizes the function 

L(e) = -log fi H,(e)% = - f NjiOg Hj(e). 
(6) 

j=j, j=A 

Of course, it is necessary to take suitable constraints on 0 into account, which are a nonnegativity 
constraint of obvious physical meaning for all the components with the exception of p, and the 
normalization constraint: 

n(l) n(2) 

Gj”+ 1 Af'+GI"+G\2'+ C ~f’+G$2’= 1. (7) 
k=l k=l 

By performing suitable changes of variables [5], the previous constrained minimization problem 
has been transformed into an unconstrained one. 

3. MINIMIZATION ALGORITHM 

The unconstrained minimization of L is performed by using essentially the same technique as 
employed in Refs [4, 51. More specifically, an algorithm is designed which implements a version 
of Newton’s method; at each step, the search direction in the parameter space is determined by 
using the analytical expressions for the first and the second order derivatives of L. As regards the 
stabilization technique, a nonmonotone line search strategy is adopted, which allows considerable 
computational savings both in the number of line searches and in the number of function 
evaluations. Further improvements in this direction have been achieved, by introducing in the 
minimization algorithm the following modifications. 

In order to guarantee a satisfactory approximation in the S-phase reconstruction, the 
convolution integrals which appear in equation (2) are numerically computed, as in Refs [4, 51, by 
using a second order formula (Simpson’s integration rule). On the contrary, we have verified that 
a relevant reduction of the computational effort, without sensible loss of precision, can be obtained 
by performing a first order interpolation to compute the integrals in equation (4). 
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By applying these integration procedures, the function H,(8) turns out to be expressed in terms 
of linear combinations of Gaussian density functions. The same property holds true for the first 
and the second order derivatives of Hj(0) with respect to the components of 8, and therefore for 
those of L. A second computational advantage has been achieved by exploiting the fast decay of 
the Gaussian function: in the computation of the above-mentioned linear combinations, the 
contribution of each Gaussian is definitely ignored as soon as it assumes a value lower than a 
prefixed threshold (the value 10e4 has been used in the data processing reported here). The saving 
in computing time thus obtained, is particularly relevant in the evaluation of the derivatives. 

Of course, the minimization algorithm ensures in practice convergence to a local minimum; in 
order to obtain a physically reliable final estimation and to reduce the processing time, the choice 
of the starting point deserves particular care. In Refs [4, 51, this choice was left to the experience 
and skillfulness of the operator. Here, a procedure has been implemented to perform this task 
automatically. On the basis of the measured histogram to be processed, the user should select, on 
the fluorescence intensity axis, four nonadjacent channel intervals corresponding to the location 
of the G,,/G, and G2 + A4 phases of the two populations as well as the modal channel value of the 
four peaks. By exploiting this information, the computing program automatically determines an 
initial guess for 8. Should any of the previous phases not be clearly identifiable, the operator can 
nevertheless make a tentative choice for them and check its acceptability by verifying the fitting 
of the computed histogram with respect to the experimental one. In order to further improve this 
choice, a fixed number of iterations may be performed by minimizing a x2 error index, before 
initiating the maximum likelihood estimation process. 

4. TESTING THE ESTIMATION PROCEDURE AGAINST 
AD HOC EXPERIMENTAL DATA 

In this section we describe two sets of experiments which have been specifically carried out with 
the aim of testing the capability of the revised procedure in the separation of two populations when 
applied to real data. 

In the experiments, trout spleen, mouse spleen, mouse thymo and human thyroid cells were used. 
Cells were cultured in RPM1 supplemented with 10% fetal calf serum, nonessential amino acids 
and antibiotics (100 UI/ml penicillin and 100 pgg/ml streptomycin). 

Cells were washed twice with PBS pH 7.4, appropriately diluted with isotonic liquid and counted 
using a Coulter counter. The suspensions were centrifuged at 1000 rpm for 10 min and the cell pellet 
was fixed in 70% ethanol and stored at 4°C. 

The cells were taken out of the ethanol and prepared for flow cytometric analysis. In particular, 
we have considered two couples of the previous cell populations: the first one obtained by mixing 
trout and mouse spleen cells, the second one by using mouse thymocytes and human thyroid cells. 
We have measured them both separately and in mixtures of various known proportions. 

Cells were treated for 10 min at room temperature with 0.5% pepsin-HCl solution (Serva, 
Heidelberg, F.R.G.), pH 1.8. Those relative to the first experiment were stained with DAPI 
(4’6’-diamidino’-2-phenylindolo) [7], to a final concentration of 5 pg/ml in Tris buffer containing 
40 mM MgCl, and lo6 cells. In the second experiment, cells were stained with a dye solution of 
ethidium bromide (Serva, Heidelberg, F.R.G.), mithramycin (Pfizer Inc., New York, U.S.A.) and 
MgCl,, in 0.1 M Tris-HCl buffer, pH 7.5 [8] to a final concentration of 5 ,ugg/ml ethidium bromide, 
12.5 pg/ml mithramycin, 7.4. 10e3 M MgCl, and lo6 cells. Samples were filtered through a 70 pm 
dia nylon mesh and kept at 4°C for 15 min before flow analysis. 

Cells stained with DAPI were measured using a Partec Pas II flow cytometer (Partec AG, 
Arlesheim, Switzerland). Excitation wavelengths around 350 nm were selected by two filters: BG38 
and UGl. A TK 420 dichroic mirror was used to separate the incident light from the emission 
light. The fluorescence light was filtered by a GG 435 step filter. In the second experiment, an ICP 
flow cytometer (ORTO) was used. The excitation light was selected by a BG12 filter (around 
405 nm). The fluorescence light, separated by a TK 455 dichroic mirror, was filtered by a RG 610 
step filter. 

About lo4 cells were accumulated for each histogram. 
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As far as the data processing is concerned, the minimization algorithm has been coded in 
FORTRAN 77 in double-precision arithmetic. The computational results have been obtained by 
using a VAX-l l/780 under the VMS operating system. 

In Tables 1-4, we report the results corresponding to the two sets of experiments. In particular, 
the first two columns show the known proportions of the two populations in the measured mixture 
and the estimated proportions, respectively. The subsequent three columns report the estimated cell 
cycle phase percentages; in parentheses we have indicated the corresponding percentages of the 
three phases within each of the two populations. The last column indicates the estimated value of 
the DNA index, i.e. the ratio of the estimated locations of the two G,,/G, peaks. Tables 1 and 2 
refer to the experiment with trout (i = 1) and mouse (i = 2) spleen cells, whereas Tables 3 and 4 

Table 1. Experiment with trout (Tr) and mouse (MO) spleen cells (n”’ = n(*) = I) 

Sample Estim. 
prop. (%) prop. (%) G, s GZ YWYI” 

Tr 0 0 
MO 100 100 

Tr 2.0 20.62 
MO 80 79.38 
Tr 25 20.91 
MO 75 79.09 
Tr 33.4 29.78 
Mo 66.6 70.22 
Tr 50 43.45 
MO 50 56.55 
Tr 66.6 63.13 
MO 33.4 36.87 
Tr 75 74.72 
MO 25 25.28 

Tr 100 99.69 
MO 0 0.31 

0 (0) 
83.35 (83.35) 

13.06 (63.33) 
67.59 (85.14) 
15.02 (71.83) 
65.27 (82.53) 
21.25 (71.35) 
57.31 (81.60) 
33.31 (76.67) 
44.89 (79.37) 
52.98 (83.92) 
27.13 (73.58) 
58.63 (78.46) 
15.95 (63.08) 

82.23 (82.48) 
0.31 (100) 

0 (0) 
4.37 (4.37) 

7.14 (34.62) 
4.00 (5.04) 
5. I3 (24.52) 
5.17 (6.54) 
7.18 (24.11) 
5.09 (7.26) 
7.60 (17.49) 
6.53 (I 1.56) 
6.05 (9.58) 
6.89 (18.68) 

11.81 (15.82) 
7.83 (30.98) 

9.92 (9.95) 
0 (0) 

0 (0) 
12.28 (12.28) 

0.42 (2.05) 
7.79 (9.82) 1.31 

0.76 (3.65) 
8.65 (10.93) 1.31 

1.35 (4.54) 
7.82(11.14) 1.30 

2.54 (5.84) 
5.13 (9.07) 1.31 

4.10 (6.50) 
2.85 (7.74) I .30 

4.28 (5.72) 
1.50 (5.94) 1.30 

1.54 (7.56) 
0 (0) 

Table 2. Experiment with trout (Tr) and mouse (MO) spleen cells (n(l) = n(” = 2) 

Sample 
DIwl. C%) 

Estim. 
!JroL). C%) G, s G, v’2’/Y\” 

Tr 0 0 
MO 100 100 

Tr 20 20.99 
MO 80 79.01 
Tr 25 21.04 
MO 75 78.96 
Tr 33.4 33.01 
MO 66.6 66.99 
Tr 50 41.90 
MO 50 58.10 
Tr 66.6 67.70 
MO 33.4 32.30 
Tr 75 74.61 
MO 25 25.39 

Tr 100 99.64 
MO 0 0.36 

0 (0) 
83.13(83.13) 

12.08 (57.54) 
65.52 (82.92) 
13.94 (66.29) 
63.53 (80.45) 
20.11 (60.91) 
55.88 (83.41) 
32.62 (77.85) 
43.55 (74.94) 
5 1.64 (76.28) 
25.16 (77.91) 
58. I3 (77.90) 
15.18 (59.76) 

82.28 (82.58) 
0.36 (100) 

0 (0) 
4.44 (4.44) 

8.26 (39.37) 
5.96 (7.55) 
6.21 (29.55) 
7.07 (8.96) 

II.71 (35.49) 
3.68 (5.50) 
6.37 (15.21) 
9.57 (16.48) 

12.21 (18.04) 
4.49 (13.90) 

11.94 (16.01) 
8.79 (34.63) 

9.85 (9.88) 
0 (0) 

0 (0) 
12.43 (12.43) 

0.65 (3.09) 
7.53 (9.53) 1.31 

0.88 (4.16) 
8.36 (10.59) 1.32 

1.19 (3.60) 
7.43(11.09) 1.31 

2.91 (6.94) 
4.98 (8.58) 1.31 

3.85 (5.68) 
2.65 (8.19) I .30 

4.54 (6.09) 
1.42 (5.61) 1.30 

7.51 (7.54) 
0 (01 

Table 3. Experiment with mouse thymocytes (Tm) and human thyroid cells (Ty) (n(l) = n’*) = I) 

Sample Estim. 
LwJp. I%) lJro!J. (%) G, s G, VWVl” 

Tm 0 
Ty 100 

Tm 20 
Ty 80 
Tm 25 
Ty 75 
Tm 50 
Ty 50 
Tm 80 
Ty 20 

Tm 100 
TY 0 

1.27 1.27(100) 0 (0) 0 (0) 
98.73 80.98 (82.02) 6.31 (6.39) 11.44(11.59) 

19.97 17.83 (89.26) 
80.03 70.27 (87.79) 
23.72 19.66 (82.89) 
76.28 65.10 (85.35) 
62.23 42.90 (68.93) 
37.77 28.69 (75.96) 
80.17 62.55 (78.01) 
19.83 12.53 (63.20) 

0 (0) 
3.49 (4.38) 
1.91 (8.06) 
4.13 (5.41) 

11.91 (19.14) 
4.07 (10.78) 
4.38 (5.47) 
5.41 (27.27) 

2.14(10.74) 
6.27 (7.83) 1.25 

2.15 (9.05) 
7.05 (9.24) 1.27 

7.42 (I 1.93) 
5.01 (13.26) 1.25 

13.24(16.52) 
1.89 (9.53) 1.27 

100 81X4(81.64) 6.41 (6.41) 11.95 (11.95) 
0 0 (0) 0 (0) 0 (01 
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Table 4. Experiment with mouse thymocytes (Tm) and human thyroid cells (Ty) (n”’ = n’*’ = 2) 

Sample Estim. 
prop. (%) prop. (%) G, s G, Y(2’/v(” 

Tm 0 
Ty 100 

Tm 20 
Ty 80 
Tm 25 
Ty 15 
Tm 50 
Ty 50 
Tm 80 
Ty 20 

Tm 100 
Tv 0 

1.34 
98.66 

18.79 
81.21 
27.15 
72.85 
59.87 
40.13 
82.16 
17.84 

100 
0 

1.34 (100) 
80.85 (81.95) 

17.77 (94.60) 
70.43 (86.72) 
18.93 (69.74) 
63.59 (87.29) 
43.28 (72.29) 
32.40 (80.73) 
62.57 (76.16) 
13.26 (74.32) 

Sl.80(81.80) 
0 (0) 

0 (0) 0 (0) 
6.25 (6.33) 11.56(11.72) 

0 (0) 1.02 (5.40) 
5.41 (6.66) 5.37 (6.62) 1.25 

6.41 (23.60) 1.81 (6.66) 
2.38 (3.27) 6.88 (9.44) 1.28 

11.29(18.86) 5.30 (8.85) 
2.76 (6.87) 4.97 (12.40) 1.25 

7.19 (8.75) 12.40(15.09) 
2.74(15.36) 1.84 (10.32) 1.27 

6.67 (6.67) 11.53(11.53) 
0 (0) 0 (0) 

refer to the one with mouse thymocytes (i = 1) and human thyroid cells (I’ = 2). Tables 1 and 3 
report the results obtained by means of the model with a single S-phase compartment 
(n(l) = n”) = 1); Tables 2 and 4 refer to the case of two S-phase compartments for each population 
(n(‘) = PP’ = 2). 

In order to show the fitting property of our method, in Figs l-8 some measured histograms 

(*-- l ) are plotted for the two experiments, along with the corresponding final estimated 
distributions (-- ). All figures refer to the choice n”’ = n”) = 1. 

5. DISCUSSION 

A first argument of discussion refers to the capability of the procedure to recover out of a 
given mixture the proportions of the two populations. In this regard, as far as the first experiment 
is concerned, we have plotted in Fig. 9 the estimated percentages of trout spleen cells (second 
columns of Tables 1 and 2) vs the known percentages of the same cell population in the 
sample (first columns of Tables 1 and 2). In the same figure both the results corresponding to the 
choices n”’ = nc2) = 1 and n”) = n(Z) = 2 are represented. Obviously, the percentages of the second 
population (mouse spleen cells) are represented in the same figure as the complements of the 
percentages of the first one. Similarly, the population percentages relative to the second experiment 
are plotted in Fig. 10. 

The absolute mean deviations between the estimated and the known percentages for the first 
experiment are 2.37 in the case n”) = n(*) = 1 and 1.91 in the case n”’ = nQ) = 2, with maximum 
deviations of 6.55 and 8.1, respectively. For the second experiment, the mean deviations are 2.5 
in the case n(” = nrn = 1 and 2.79 in the case n(‘) = nC2) = 2, with maximum deviations of 12.23 and 
9.87, respectively. From these results it appears that the procedure is able to properly estimate the 
proportions of the two populations. Furthermore, from Figs 9 and 10, we note that the deviations 
are less significant when the sample proportions are unbalanced, whereas the worst cases occur 
always in correspondence to sample proportions of 50%. We remark that the procedure has been 
applied also to the samples containing the single four populations with quite satisfactory results 
regarding the capability of the algorithm to exclude in these cases the presence of a second 
population. 

The above fact may be explained to some extent by interpreting the flow cytometric processing 
of the cells of a given sample as repeated trials and by considering as a success the belonging of 
each cell to one of the two populations. By assuming these trials to be independent and by taking 
into account the uncertainty due to the sample finiteness, the success frequency turns out to be 
proportional to a random variable with a binomial distribution [6]. Denoting by p the known 
fraction of one of the two populations, as is well-known, the variance of this random variable is 
proportional to ~(1 -p). Therefore, the estimate of the fraction p is expected to be more reliable 
the more the percentages are unbalanced (p near to 0 or to 1). 

A second point concerns the possibility of estimating the value of the DNA index. From the final 
columns of Tables l-4 it appears that the procedure yields an estimate of this index virtually 
without any fluctuation, both with respect to the proportions in the sample and to the choice of 
the parameters n(‘) and ,‘*J, The stability of this estimate can be related to the fact, as already 
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pointed out, that our procedure is able to automatically compensate for a possible instrumental 
bias on the fluorescence intensity. 

A third item of interest is related to the problem of estimating the phase fractions of each 
population from the overall histogram. In Fig. 11, with reference to the first experiment, we 
have plotted the estimated percentages of the G,/G,, S, G2 + M phases, for both trout and 
mouse spleen cells, separately for the cases n(l) = n(*) = 1 and n(‘) = n(2) = 2 (third, fourth and fifth 
columns of Tables 1 and 2). The same kind of representation is given in Fig. 12 for the second 
experiment. 

From these figures it appears that, in any case, the phase fraction estimates are sufficiently stable, 
and therefore, probably reliable, when the corresponding population constitutes the greater part 
of the sample. On the contrary, the phase fraction estimates of the lower percentage population 
turn out to be less significant. 

The obtained results do not exhibit meaningful differences when changing the value of the 
parameters n(” and .c2), so they do not allow us to give any specific indications about their choice. 
This fact could be caused by the almost uniform S-phase shape of the considered cell lines. Further 
investigations on this point are needed. 

Finally, we observe that the above conclusions are in agreement with those previously formulated 
in Ref. [4], with reference to the analysis of simulated data. 
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6. CONCLUDING REMARKS 

Two relevant features of the revised method for aneuploid DNA histogram analysis presented 
in this paper are (1) the introduction of an automatic choice of the initial estimate of the unknown 
model parameters and (2) the considerable reduction of the computational cost inherent in the 
optimization process. The first point is important with respect to the requirement of obtaining 
physically reliable estimates, while the second is particularly interesting with respect to the 
possibility of avoiding the use of a mainframe computer (some encouraging applications have been 
performed by employing an advanced technology PC). A further important feature of the revised 
model is the introduction of a shift parameter on the fluorescence intensity, allowing an automatic 
compensation of a possible instrumental bias. 

From the tests performed it appears that the procedure is able to recover the DNA index value, 
as well as the percentage of each population in the mixture. We have also observed that the more 
the sample proportions are unbalanced, the more this last capability increases. This fact confirms 
the interest, already stressed in Ref. [4], about the potential of the method in problems of the early 
diagnosis of cancer diseases (the possibility of detecting and quantitatively evaluating an abnormal 
stemline during an early development stage). 

The procedure appears also to be a useful tool for estimating the cell cycle phase fractions of 
each of the two mixed populations. In particular, since the S-phase percentage may account for 



1154 C. BRUNI et al. 

the proliferative activity in several tumor types, the possibility of quantitatively evaluating this 
parameter can help in prognostic problems, However, we have noted that the phase fraction 
identification turns out to be less reliable when the overall proportion of the corresponding 
population is small. 

Further investigations would be useful with respect to either the previous considerations or to 
the other questions raised, like that of the choice of the number of S-phase compartments. It would 
be also of interest to analyze the behavior of the estimation procedure when the DNA index takes 
values near to 1 or 2. Finally, we remark that it is necessary to include in the mathematical 
description of the fluorescence distribution and adequate background model, in order to success- 
fully apply our method of analysis to histograms from solid tumor samples. A function accounting 
for the actual cell fragment distribution has been proposed recently [9]. 
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