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Abstract-A kinetic equation of the Boltzmann kind is adopted to approach the analysis of a 
population of individuals subject to social interactions. The state variable, referred to a dominant 
social feature such as the individual wealth, is defined on the whole real axis. Different kinds of 
interactions are allowed, both on a stochastic and a deterministic basis. Structural parameters are 
varied, and the related system sensitivity analysed. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

This paper deals with a computational analysis of the time evolution and parameter sensitivity 
exhibited by a class of population kinetic models for social dynamics. The mathematical structure 
underlying the class consists of an integrodifferential evolution equation defined for a population 
density function f 2 0 depending on the time t E [0, co) and on a scalar state variable ‘11 E R. 

The class of models considered in this paper can be regarded as a generalization and devel- 
opment of a model proposed by Jager and Segel [l] to describe the social behaviours of certain 
populations of insects, actually the bumblebee. The mathematical model shows a structure simi- 
lar to the classic Boltzmann equation, i.e., an integrodifferential equation for a suitable probability 
clensity function. Indeed, it was classified in [2] as a generalized kinetic model. 

Application of generalized kinetic models in applied sciences was motivated in [3]. Indeed, 
several developments have been studied by many authors with reference to various fields of ap- 
plied sciences. Developments refer both to mass conservative equations, as well as to models 
which include proliferative and destructive phenomena. For instance, the model was developed, 
<as documented in (4,5], to describe the immune competition against invasive tumour cells. A 
completely different field of application is the one in [6] where a similar model was proposed to 
describe a multilane traffic flow. Generalization to models with transition from one population 
t,o the other is extensively developed in [7], motivated by applications to mathematical immunol- 
ogy [4]. Paper [7] also provides a qualitative analysis of the initial value problem. Indeed, this 
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chass of models generates several interesting mathematical problems, as it is documented in the 
review paper (81. 

The present paper follows the line of the discussion in Chapter 5 of [3], and elaborates a 
parameter sensitivity analysis for mass conservative models in the spatially homogeneous case. 
Technically finite differences methods [9] are developed to adjust suitable schemesz initiated 
in [lo], towards the structure of the models dealt with in this paper. Sensitivity analysis is 
worked out with special attention to the asymptotic behaviour of the solutions. 

In almost all examined cases, the system behaviour proves to be satisfactorily stable under 
different numerical approaches and even under variations of several control parameters. On the 
contrary, there are some of the parameters that produce bifurcation points, and these appear to be 
structurally stable, in the sense that the bifurcation is not cancelled by (reasonable) modifications 
of the other controls. 

At generic conditions, a stable time-asymptotic distribution function has been found. However, 
in few and extreme cases (generally in the bifurcation neighbourhoods), the numerical precision 
is hardly sufficient to guarantee the result in all its details, although it is possible to induce them 
by analysing the complete picture. 

The contents are organized into three additional sections which follow this introduction. Sec- 
tion 2 deals with a brief description of the models? and it reports the main assumptions that 
have been used to frame them. Section 3 deals with the development of a suitable computational 
scheme that starts from finite differences method. Section 4 deals with simulations and parameter 
sensit.ivity. The analysis is followed by a brief conclusive discussion. 

2. MODELS DESCRIPTION 
As already mentioned in the introduction, this paper deals with a suitable development of the 

Jager and Segel model. It can be regarded as a population dynamics model for interacting indi- 
viduals with an internal structure (identified in what follows by a scalar variable ,u). Interactions 
do not modify the number of individuals (the size of the population), but modify the state of 
the interacting individuals. Therefore, rather than studying the evolution of the total number of 
individuals as in traditional population dynamics models, see, e.g. [ll], we are interested in the 
evolution of the interacting individuals statistical distribution over the above-mentioned internal 
st,ate. 

Specifically this paper refers to the modelling of human social competition; the state variable 
u E lR is meant to represent the social state, from low to high social level, of the individuals of the 
population. Negative values of u correspond to poor social state, which is extreme for u -+ -oo; 
positive values correspond to wealthy social state. The value u = 0 marks the separation between 
poverty and wealth. 

The dependent variable of the evolution equation is a nonnegative function 

f = f(hUh f : [O? ,m) x R + [O, co), (2.1) 

which is a population density, in the sense that the value 

N(L V) = J f(&U)dU (2.2) 
b 

assigns the expected number of individuals to be found at time t with states in a (regular) 
subset V of the phase state space. For instance, V = [UI, ug] c R. 

For the problems to be meaningful, f has to be integrable for each t 2 0; that is, it will be 
assumed that f(tt u) du = N(t) < CG, for each t 2 0. (2.3) 
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In fact, due to the particular structure of the evolution equation considered here, the integral in 
equation (2.3), which represents the total number of individuals in the population, is a constant 

N(t) = N(0) =: Na, (24 

On the other hand, in order that the initial conditions may correspond to some effectively 
observed social distribution, a value ua may be introduced such that the value Na is assigned by 

iv(t = 0, u E [-t&-J. uc]) z No. (2.5) 

For instance, and this is what it will be done in the simulations that follow, one may assume that 
the initial distribution is given by 

f(t = O,u) =: Jo(u) = No90(21), (24 

where go is a truncated normal distribution with a prioti known mean value mc, variance 00, 
and support [ --uo, UO], 

go(u) = 

otherwise. 
(2.7) 

Here mo, which may be either positive or negative, is meant to represent the actually observed 
mean value of the initial social state, and ~a > 0 refers on how much the observed initial popu- 
lation wealth is concentrated around mc. For 00 small enough, ua may be identified with some 
critical value u, such that the population iV(t = 0, u E [-ucr uC]) satisfactorily approximates the 
population value of the complete normal distribution over R. The constancy of the total popu- 
lation value N = N(t) allows us to renormalize the density function f to a probability density 
function, and interpret the integral in equation (2.2) as the probability of finding an individual 
at time t in a state zt E V. 

As in the model proposed by Jager and Segel, microscopic interactions among the individuals 
are taken into account by introducing a pair of terms, if and $, respectively, modelling the rate of 
encounters between individuals and the transition probability density which modifies the state of 
each individual subject to an encounter. More in detail, a nonnegative function 71 = n(v,,w) for 
the encounter rate refers to the expected number of pairwise encounters per unit time between 
individuals in the state v and individuals in the state w. The transition of an individual from 
the st,ate v to the state u because of an encounter with an individual in the state w admits a 
transition probability density, with respect to the variable u, denoted by $(u; u, w) 2 0. Only 
binary encounters are considered. Factorization of the joint probability is assumed. Neither the 
encounter rate nor the transition probability density explicitly depend on the time. 

In addition, it is supposed that interactions are the only possible mechanism for the individuals 
to change their states. Namely, it is a ptioti assumed that no external field acts on the system 
it = 0, and hence, that the total time derivative of the distribution f identically equals its partial 
derivative. 

The evolution equation for the density functions f is obtained, as in the Boltzmann case, by 
equating the time derivative of f to a balance between gain and loss terms. In particular, the 
mathematical structure resides in the balance equation 

where the gain and loss terms have the following expressions: 

(2.9) 

(2.10) 
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Starting from the above model, and in order to be more specific about the interactions between 
individuals, the following procedure will be adopted. First, some peculiar features are discussed 
that characterize the interaction procedures and different kinds of interactions are supposed 
to happen. Then, the occurrence of each interaction kind is assumed to be controlled either 
011 a deterministic basis, or as a stochastic event. Finally, a further specialization is possibly 
introduced of the functions 17, 1L, that acquire the meaning of conditional quantiti~, and as many 
of them defined <as many interaction kinds are considered. In the details, let a (discrete) set 
lb c  N sample the various procedures, and E E lb be the corresponding label for the interaction 
character. Equations (2.9) and (2.10) are written as follows: 

G[fl(t> u) = c Sa lx qeqe(,u, w)$(u: v1 w; l)f(t, v)f(t, w) dvdw, (2.9’) 
ech. -m --OG 

(2.10’) 

where rip denoted the probability of occurrence of the E th kind of interaction, and may be set 
rcpal to one in the deterministic case. 

The aim of this paper is to analyse the social behaviours that happen when people of different 
social power, specifically of different wealth, are subject to mutual interactions. Correspondingly, 
a sampling may be tuned according to the desire and friendship that the individuals feel in 
encountering and interacting with each other, and possibly to the degree of individual profit 
or social balance that is produced by the interaction. Admittedly, these features influence not 
only the actual occurrence of each kind of interaction, but also the (conditional) frequencies and 
expected output states. 

As the frequency 77 is concerned, specialization may yield different functions of the individ- 
ual states. For instance, people with very different social states may be hindered in undergoing 
balanced business-like interactions and only suffer d~ruptive connections. On the contrary, sim- 
ilar social states act in favour of cooperative exchanges or, at least, more easily allow an even 
redistribution of the resources. 

Even stronger is the effect that the different interaction characters may induce not only on the 
specific values of the transition probability density $J, but even on its qualitative shape altogether. 
In this paper, the following details will be adopted. The transition function $J is a probability 
density with respect to its first variable, i.e., 

J  
+CQ ~$@: u, w; t )  du = 1, for each v, w E R, d E IL. (2.11) 

--oc 

Regarding the dependence of $ on the other state variables, the same simple idea is used here 
xs it was done for the initial distribution functioli; namely, the function + is selected from the 
family of probabihty densities on R that are completely characterized by assigning their first and 
second moments, i.e., the mean value m and variance 0 of the random variable they depend upon. 
Specifically, it is assumed that the mean vu&e nt of the post interaction state u (of the incoming 
individual who leaves the state v), and its standard deviation u, are a priori known per each 
value of I, ‘u, and ‘w: and that this knowledge is sufficient to assign the value of the function $ at 
each point u. Namely, both nz and cr are given as functions of the state variables of the incoming 
individuals per each interaction procedure, 

m = me(V, W) E IR: 

ci = Ce(v, W) > 0: 
u, 2’ E w, e E IL. 

Co~lseque~ltly, function Q may be written as 

(2.12) 

(2.13) 
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provided that 

s 

+cr. +m 
111 = u T,!J( IA, m, a) du; CT= (.u - m)2q(u; m, a) du. (2.14) 

-m s 
_-oo 

The qualitative shape of the function $ being a prioti fixed, the various interaction characters 
affect only the values of tn and 6. For instance, an interaction with the character of social 
assistance, or at least with protective social rules, preludes to a mean value m which is inside 
the interval (V - ,w): this interaction is of altntistic nature. Conversely, when the logic of a strict 
individual profit implies that the state of the incoming individual is enhanced in the expected 
output state, then the interaction is of competitive nature. 

\Vith these assumptions, equations (2.9’) and (2.10’) acquire their final form 

W](G uf = c _f(& u) 1% Qe Q(% W)f(G Uff d.LL’, (2.10”) 
EEL -3G 

which may hold both in the deterministic and the stochastic approach. In the stochastic case, 
the set of numbers {qp}pEn. has the characters of a probability distribution 

OIqe<l, c 4e = I, (2.15) 
ea.. 

and the encounter rates {qe}ees are arbitrary nonnegative integrable functions. In the determin- 
istic case, all the numbers qe may conventionally be set to one. For the rate function n, and 
because of the specific form of equations (2.9’) and (2.10’), variables are redefined such as to 
allow the specific form 

~e(~,,~) = ~O#~(Z~, a*), 

where 77’ > 0 is a real constant and @e are such that 

E E IL, (2.16) 

~&(V,W) = 1, V,ZU E JR. (2.17) 
CEIL 

Again it has to be remarked that this picture shows two notable differences with respect to 
the Jager and Segel model. Specifically, u is defined over the whole real line, and more than one 
interaction procedures are here allowed to happen. 

Within the above framework, the following assumptions appear to be appropriate to construct 
specific models. 

ASS~~~PTION 1. The sample space IL of the jnteractjon characters is restricted to a binary set 
IL := {1,2}+ 

ASSUMPTION 2. Interactions of the first kind, E = 1, denote an altruistic nature, and provide an 
expected mean value m inside the social states interval (TV - W) of the two interacting individuals. 
Interactions of the second kind, e = 2, denote a competitive nature. They provide, for the 
individual that has v as initial state, an expected mean l*alue m that is higher than v if v is 
higher than 20, whereas m is lower than v if v is lower than 20. 

ASSUMPTION 3. The transition probability variance D is independent both of the interaction 
characters and of the social states. 

It is now possible to explicitly trace the details of the following experiments, with the aim of 
analysing the system behaviour at infinity, and possibly interpreting its sensitivity upon both the 
structural parameters and the initial conditions. 
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EXPERIMENT n.1. The altruistic and competitive events, respectively, have probabilities q > 0 

and l-q. All the interactions rates are independent of the individuals’ social states. The expected 
mean value is assigned by an easy linear law 

mc(u, w) = 
{ 

7_-cr(z’-zc), ifE=l, ~20, 

v+/~(u-w), ifC=2, p>O. 
(2.18) 

Two shapes are adopted for the transition probability density: one localized in the immediate 
neighbourhood of m, the other spread all over the real axis. Specifically, the following functions 
are considered. 

MOVABLE SQUARED DISTRIBUTION. 

I$()( u: 171, a) = 
i 

(2c,v@. if u E [in - cs&, m + c,fl , 

0, otherwise: c, > 0. 

NORMAL DISTRIBUTION. 

l$,(u; 172, a) = - 
(IL - ~172)2 

& exp- 2c7 . 

(2.19) 

(2.20) 

Admittedly, no a priori reason really justifies this particular choice, and other well-known 
distributions could have been preferred, such as the following. 

RIO~ABLE BETA DISTRIBUTION. 

T(r + s) u - ln+c~& 
r-1 

> ( 

m+cb&-u 

> 

S-l 1 

@I (u; 1n, 0) = 
T(r)Us) 2cb fi 2cb& 

if 21 E [rn - cb fi, m + cbfi]. 
(2.21) 

otherwise; cb > 1. 

MOVABLE GAhIhm DISTRIBUTION. 

& (u - ,172 + cg &)‘-l exp (--1‘ (,u - m + cg fi)) 

l$*(u: m,fT) = if u > 172 - cy fi, (2.22) 

0, otherwise: cg > 0. 

However, several simulations have been performed using these last two functions, and no signi- 
ficative differences or particular dynamics have been observed associated with either of them. 
Indeed, both behave quite closely to $3 when cb and cg are greater than 3, and show some more 
resemblance to ,$+-, when the two constants are equal to 2. Values lower than 2 have not been 
pursued to avoid local spikes, which in any case do not change the overall dynamics. Hence, in 
what follows, reference will be made only to either $0 or 43. 

In the next experiments, interest resides in the dependence of interaction frequency from social 
states rather than on the aleatory occurrence of the possible interactions. Therefore, the various 
kinds of interactions will be assumed to happen on a deterministic basis and, on the contrary, 
the conditional interaction frequencies will explicitly depend on the social states of interacting 
individuals. In particular, the following experiments are defined. 

ExPERIhIENT n.2. The altruistic and competitive events happen on a deterministic basis: q1 = 

‘12 = 1. The interaction rates are assigned by equations (2.16) and (2.17) where the function 
@i =: Q is given by 

c$(u,w) = L 
1 + c, (,L! - .&I)* - 

c, > 0 (2.23) 
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With regard to the transition probability density, all the details characterizing Experiment n.1 
hold in the present one as well. 

ExPERIh~iENT n.3. With regard to the occurrence of the interactions and to the transition prob- 
ability density, all the details characterkin, Q Experiment n.2 hold for the present one. The 
interaction rates of this experiment are again assigned by equations (2.16) and (2.17) where the 
function 41 =: C$ is given by 

(2.24) 

However, in the numerical treatment of the model, some technical details force the introduction 
of slight though necessary modifications of the said functions, as it is described in the next section. 

3. DISCRETIZATION SCHEME 

In the preceding section, the model structure has been described without reference to the actual 
computations performed to generate the simulations and their results. This section is devoted to 
briefly summarize few technical details concerning the adopted discretization technique, and the 
consequent approximation procedure. 

The unboundedness of phase space R has been represented by introducing a nonlinear function c 
mapping a prefixed interval [A,‘B] into [A*, B‘] := [<(A),t(B)) meant to represent the real axis 

<:xc~ [A,B] w @ = C(x) E R, 
-A=B, -a-s) = iF(Z)l B* =<(B) > B. (3.1) 

Using this function, and defining a regular mesh for the variable z on the interval [A,B], a 
corresponding mesh for the actual variables u, 21, u’ E W is easily obtained by the algorithm 

select v E N, and for 11 = 1. . . . ,2v + 1, 

define x n := A + (n - l)Az, where Ax := v: (3.2) 

then let 21, E [A*,B*] be defined by un := c(zfl). (3.3) 

In what follows, the node number is odd and written as 2v + 1, the central value v + 1 reserved 
for TV = 0, the value -A” = B* meant to represent infinity is summarized by the p~ameter 
x := log,, B*, and the function 5 used in most of the simulations is 

E(z) = 
{ exp _exp -22 - 

( > loo +l, iflOO<x<O, 

ax 
( 100 > 

1, if 0 < 2 I 100, 
(3.4) 

where a = ln(B* $1). 
With this method, however, a compact image of the real line is produced, that implies some 

minor adjustments and corrections to the above-cited functions Q and ,$. 
For instance, the mean value function that has been effectively employed is the following one: 

t72p( c, m) = ( 2 - cr(v - w), ifd=l, cr10, 

v + p(u - ~)~f(~~. .w), if t = 2, B 2 0, 
(3.5) 

where 111 z 1 for almost all values of ZJ and W, except those that would project m2 outside the 
closed numerical image: [A*, B*] of the set R. In particular, 

1 - $, if 2’ < ‘~7 and u < 0, 

hl(v,?Z) = 1 _ 2’ 
B” if v > w and v > 0, (3.6) 

otherwise. 
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Analogous truncating procedures have been adopted, when necessary, on the endings of the 
function 111 domain. and on the value C? of the transition probability density variance, especially 
when the mean value nz approaches extreme values. 

The actual discretization of the problem that corresponds to each of the experiments cited 
above has been accomplished as follows. A first-order scheme in time has been introduced, which 
specializes equation (2.8) into the following problems, for (j = 0,  1,2,3, and) fk(.u) := f(t = tk, u), 
k = O,l,. . .: 

where {to = 0, $1, t2, t3,. . . ) is the time discretization, and A@,. := tl;+i - tk. 
Then, integration has been valued by means of an easy trapezoidal rule 

A, := c&l+1 - 4&-l) 

2 ’ 
for 12 = 2,3,. . . ,2u, 

(‘02 - 4 Ai := 2 , A2v+i := IE’2u+l - V2Y) 

2 ’ 

(3.8) 

which transforms (the jth of) equation ( 3.7 ) ‘n I to the following set of (2~ + 1) recursive equations: 

fh -4; k-b1 
At, 

= G:(j) - L;, h=1,...,2v+l, 

where 

2 2v+l 2v+l 

(3.9) 

(3.10) 

(3.11) 

and where 
f; := f&.(Vh)‘ q;- := .Q(Vi, e$J, 

h,i,nE {l,..., 2v+l}, j = 0,. .., 3, 
(3.12) 

and coefficients $1 will be taken from the cited functions (2.19)-(2.22) such that normaliza- 
tion (2.11) holds true. 

On one hand, because of their Cassumed time independence, weights $I may be computed once 
and for all at the be~illnin~ of the time series. On the 
k = 1,2, . . . the conditions 

2r.41 

n=l 

are satisfied with all the required accuracy, a fact that it is implicit in the structure of equa- 
tions (2.8). (2.9”). (2.10’7, a further renormalization of weights $ has to be adopted. In this 
way, it is possible to account not only for the nodes rarefaction, that in all cases happens towards 
infinity, but also for the domain truncation and variance redefinition, that are needed when an a 
priori mean value 1~ too close to the points A* or B* projects either of the Q domain endings 
outside the image [A*, B’] of the real line. 

other, to be ensured that for each 

(3.13) 
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To be precise, for i, n E (1, . . . ,2v + 1) and I E { 1? 2}! call ti~:~ the a priori mean values 
assigned by equation (2.18), that is 

I$” = me(v = Z’j, ‘W = w,) (3.14) 

where V, and ‘w, are defined by equation (3.3). Then use equations (2.19)-(2.22) to define 

(3.15) 

where C$ > 0 is a constant, h = 1,. . . ,2v + 1, and j = 0,. . . .3. 
Due to the facts that me and u may be wide apart from one another, and that for any reasonable 

choice of 8 there are many nodes { hr , hz, . . . } such that v’Z < A,-, for L E {hi, 122,. . . }, it often 
happens that the numeric integral 

2v+l 

s, := S;-(E) := c $;.‘.n(E) & 

h=l 

(3.16) 

not only is less than one, but even unreasonably small. To overcome this problem, weights 

+_I ‘q”.‘.,(,) to be used in equation (3.9) have been defined as follows: 

{ 

G;.‘.“(f) 
,$J.n(e) = 

if S > S 

S?(E) ’ - ’ (3.17) 

&.i.n (l), if 0 I: S < S, 

where ,$ is given by equation (3.15), where 3 := 10m3’, and where @a is now to be specified on 
accoimt of equation (2.19). 

Define 
- i.n + & 

1n* = )ll[ (3.18) 

nnd introduce the first neighbourhood nodes &._ 2 1: and h+ 2 2~ + 1, respectively, on the left 

and on the right sides of the open interval On_, ‘m+), i.e., such that 

Z’h 5 m_ when h 5 h_, and uh>?n+ whenhzfi+. 

In this way, the interval f,., := [IJ~_, ty,+] is the smallest closed interval, with node endings, 

that contains [m_.m+]. 
A first possible discretization of equation (2.19) is as follows, and in the next section this rule 

will be addressed to as the “AND” rule: 
(h+ - k_ + l))-’ 1 if &._ I h < h+, 

otherwise. 
(3.19) 

Although straightforward, this definition is to be regarded as too rough, especially when the 
syst,em evolution is structurally unstable. A second, tighter though questionable, discretization 
is obtained by excluding the nodes that lie too far from the interval [m_, m+]. That is: instead 
of II*, the following are introduced: 

h-+1, if 
“Ft- + ~‘A_+1 

h- := 
> 

2 
< m- and h_ < 2u + 1. (3.20) 

FL-. otherwise; 
a11cl 

FL+ - 1, if 
2’h+ + L’&+_l 

11 
> 

+ := 2 
> m+ and h+ > 1. (3.21) 

FL+, otherwise. 
In this way. the interval I,,., := [L’h_? vh,] has node endings that are the “half-nearest” ones, 
respectively, to the values m+. 

In this second case $0 becomes? and this rule will be addressed to as the “OR” rule, 

‘VO 
,h.i.tye) = { ;dh+ - h- + l))-’ 9 ft;f-r\;;; I h,, 

(3.22) 
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4. SIMULATIONS 

Simulations have been performed to analyse the time evolution, and asymptotic behaviour, 
of a given initial distribution function. The analysis has been developed by varying not only 
some of the control parameters, but also those that assign initial conditions. In all cases, the 
qualitative shape of the initial condition distribution function has been maintained one and the 
same, namely the normal distribution function given by equation (2.7). 

Different initial conditions have been realized by using different values for nzo and 00, whereas 
the support [-~0: us] has always been chosen wide enough to appreciably include the complete 
normal distribution. 

The total initial population NO, that renormalizes the distribution function f, has been com- 
puted by means of the discretized version g” of the function go of equation (2.7) as follows: 

2v+1 

No = c cgRA,! where gn := go(u = Us), 
n=l 

(4.1) 

and c is a scale constant to be conveniently set. In fact. it may be argued that c represents a 
further control parameter. to be compared with the time step intervals Atk of equation (3.7). 
In the following simulations, time steps have been chosen of the order of 10e2 (in particular: 
Atk = 0.001 for 0 5 tk 5 0.2 and Atr, = 0.01 for tk > 0.2); and the value c = 50 has been 
adopted when ma = 0 since it proved not to give rise to inconvenient oscillations. Moreover, the 
constants a and iiJ of equation (2.18) have been fixed to o = 0.50 and p = 0.25. 

Experiment n.1 

The first experiment of those cited in Section 2 is now discussed, and in particular for symmetric 
initial conditions: n2a = 0. On the other hand, several of the considerations that may be done in 
this case hold for the others as well. 

The main control parameter of this experiment is the occurrence probability q introduced in 
Section 2. On the contrary, the system shows no appreciable sensitivity to other parameters such 
as t.he initial condition variance 00, that has been fixed to a reference value of ra = 30, and only 
a reduced sensitivity to the variance b of the transition probability @, and even to which is the 
adopted one among the transition probabilities listed in Section 2. 

Depending on the values of q, the system shows evolutions and, in particular, time asymptotic 
distribution fS, which may be grouped into three different kind of behaviours: 

(1) localized forms. 
(2) semi-localized forms. and 
(3) dispersed forms. 

They are characterized by the following facts. 

(1) Localized Forms. In the localized forms, the distributions fk(,u) := f(t = tk,u) not only 
admit compact supports Sr; at each t = t,+, k = 0: l? 2,. . : yet, besides, nearly the entire initial 
population (i.e., a percentage greater than 99.60/,) is localized on conveniently small intervals 
Lk & Sk of the social state space. Here, the word “support” is meant to denote the set Sk := 
{u 1 fk(u) 2 1O-s}, and “compact” is to say: definitely smaller than (and properly contained in) 
[A*. B”]. 

In other words, the whole population is gathered at each time within a small interval of social 
states. 

In adclition, if the conditions are generic, after a short transient of time past the initial condition 
all the intervals Lk+=, assume one and the same finite length L, which increases directly with 6 
and inversely with q. Finally, when 020 = 0, all the intervals Lk are centered around the origin. 
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An estimate of the length L of intervals L, has been done as follows. If a threshold of r = 0.01 
is adopted as an indicative value for the distribution function fk, and L, is identified with the 
set {U 1 fm (IL) 2 r}, then an estimate of L can be given by 

L hJ 1ocTq-2, where y := 
0.4, if IJ = *3, 

0.3, if $J = $0, (4.2) 

as is briefly summarized by the experimental graph in Figure 1, where the technical values 
v = 80 and X = 8 have been used, and where the barred $ refer to the “AND” rule (3.19), and 
the unbarred ones to the “OR” rule (3.22). 

Figure 1. q2L/2 vs. k7. (a) (Q;q) = (Q,g,&; 0.8). (b) (@;q) = ($rg,&; 0.6). 

(c) (&cl) = (2113,43; 0.7). (d) (1L;q) = (Qo; 0.8). (e) (1L;q) = (1Lo; 0.6). (f) (1L;q) = 
($0; 0.6). (g) (@in) = (40; 0.8). 

For small times the shape of the distribution functions obviously depends upon the choice 

$0,. . . I $3, the mesh function <, and the value A := log,, B*. Conversely, and if the conditions 
are far from a bifurcation region, the time asymptotic distribution foe of the localized forms is 
stable and fairly independent of the mesh features. 

Although this overall behaviour is shared by the time-asymptotic distributions foe generated by 
,*o,... , $3, all the same some minor differences may be focused, that become more and more ap- 
parent the bigger is 6. In particular, $0 produces a higher and sharper tent-like figure, whereas $3 
yields a convex, flat, and smooth bump as it may be seen in Figure 2 that shows two foe distri- 
butions, respectively, produced by $0 (on the left-hand side) and by $3 (on the right-hand side) 
starting from identical initial conditions (technical values are: Y = 80, A = 8, 6 = 50, q = 0.8). 

4 

3 fi . . 
- t=12 

I :/j “:. 

.-._ t.=5 is l., 

: / 
: 2 :: 

-Jj-& 
-40 -30 -2o’.-10 10”. 20 30 40 

Figure 2. f vs. U; 3 = tie and II, = Q3. 

(2) Semi-Localized Forms. In the semilocalized forms, the distribution functions values gener- 
ally decrease as k grows, in that the supports SI, become large although remaining definitely 
smaller than [A*, B’]. However, small intervals of social states may still be found that sustain 
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an appreciable percentage of the total population, and wherein the distribution function values 
are sufficiently high. 

For times sufficiently great, the shape of the distributions may be loosely summarized as that 
of a horizontally drawn, upward aiming curly bracket, whose central small peak is placed at the 
origin, and whose big wings are stretched towards infinity. The wings profile generally decreases 
as the time flows, until a stable distribution fm is reached such that the height of the two outer 
sides is much lower than that of the central bump. The central peak height may either only 
decrease with the time, or first decrease and then increase until it stabilizes to draw foe. 

Although its shape depends upon the choice of $,, the small central bump is anyway big enough 
to sustain a population N, which is definitely greater than zero. If N,. is valued by 

2v+l 

N, = c fjlj”A,, where f&’ := f &, if f$ 2 r := 0.01, 

?l=l 0: otherwise, (4.3) 

then the ratio c, := N,/Na is almost a constant 

Nr - 0.02 Na, (4.4) 

in the sense that it is roughly independent of the mesh features, on the initial conditions’ vari- 
ance uc, on the transition variance 6, and even on the choice of $. In the details, instead, the 
ratio c, suffers not only of the drastic definition of N,., but it also depends on the mesh. For 
instance, when different functions c are used, c, varies from 0.1 to 0.02; or, in some cases when 
v = 40 is used instead of v = 80, it may become 0.04 instead of 0.02; and it slightly grows, 
directly with q and X, inversely with c? and V. 

Concerning the differences between the time asymptotic distributions foe generated by $0 and 
those by $13, the same may be said in the semilocalized as in the localized one; namely, they 
produce qualitatively similar dynamics. The details of the asymptotic distributions obviously 
depend on which is the adopted r+!~. Yet, at generic conditions, differences are not so notable, and 
summarizable as above: $0 produces a sharper tent-like figure, and $13 a convex smooth bump. 
Only in some instances will $0 yield a somewhat more uncertain dynamics, in that it shows to 
be more sensible than $9 to variations of the other parameters, and ready to abandon standard 
behaviours in favour of nonstandard ones. 

Figure 3 shows in bold lines the foe functions produced by $JO and $3 in a semilocalized case 
(technical values are: v = 80, X = 8, 6 = 5, q = 0.5). 

A, 

-  t =36 

. - . -  t =2 

.  .  .  .  .  .  .  t =0 

' . 1, \  
. . '  .  

10 ' 20~' 3; '  40 

_ t =36 

. - . -  t =2 

Figure 3. f vs. IL; Q = $0 and @ = 7+h3 

(3) Dispersed Forms. The case of dispersed distribution is self-explaining: nowhere is the value 
of the foe distribution function greater than 0.01. Hence, now, one has N, = 0.0 although here, 
as well as in both the preceding cases, the total integral CF=:‘,’ fc A, (see equation (3.13)) of the 
distribution functions {f~}n=r.....2v+r equals NO for each k. This third behaviour is observed, for 
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- t=20 

.-._ t=2 

. . . . . . t=0 

Figure 4. f VS. U; v = 40; X = 7; 6 = 0.5; q = 0.6; ti = 43. 

instance, when q = 0 . 0  or when numeric or structural instabilities happen that brake the natural 
evolutions that give rise to either of the above discussed forms. 

A hybrid form has also been observed, possessing a shape as in Case 2, but with the outer 
edges that maintain an appreciable part of the whole population, typically of the order of 0.5 No, 
and that show to be quite stable. These forms preferably appear when the node density is big 
(v/X > 10) or in the very nei~hbourhood of a bifurcation. 

As well it has been observed, although in very few cases, that a lower density of nodes may even 
act in favour, instead of contrasting, the localized form. It is sufficient, though, to operate small 
variations on the system conditions, such as replace 111 with 6, to break the numerical equilibrium 
and correctly remain into Case 2. 

The following graphs summarize how the time asymptotic distribution functions foe for Experi- 
ment n.1 vary on variations of the interaction probability variance ci. Specifically, Figures 5 and 6 
show the semilocalized asymptotic distributions, respectively, produced by $ = ,$a and 1c, = $3. 
Figures 7 and 8 show the same graphs in the localized case. Initial conditions are identical for all 
of them. The graphs marked with a-e correspond to foe distributions, respectively, produced by 
& = 5 x 10h for h = -f,O, 1,2,3. The graphs marked with f correspond to the initial conditions 
(technical values are: v = 80, X = 8). 

‘1 :s; -__ a : 0.8 
.-.b ; I 

Figure 5. fm vs. u; ?_h = I&J; q = 0.5. 

_ 
-c : 

f : 0. 6'  
I.... 

‘:. . . . ...*.* *_- ~ 

&I15 -10 -; 5 10 li“20 

0:. 1. : 

-C o.;oa, ; - . . d 

1:: F ~~ _-_.__ 
_-.-_L_irL -‘;I-_, 

-100-75 -50 -25 25 50 75 100 

Figure 6. jr. vs. u; @ = $33; q = 0.5. 
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Figure 7. fm vs. u; 7) = Q,o; q = 0.8. 

Figure 8. fm vs. u; ~3 = ~43; q = 0.8. 

From the above figures, it is apparent that in this first experiment the parameter q is of 
primary importance in analysing which are the a priori conditions that yield Case 1, Case 2, 
or Case 3. Actually, when q ranges from 0 to 1, an abrupt change in the general behaviour of 
the system dynamics occurs, which shows features typical of a structural instability point; hence, 
in what follows, it will be addressed to as a bifurcation. In its neighbourhood, the dynamics 
not only shows a deeper dependence on the other control parameters such as the value 6 of 
the transition variance, and on the choice of the adopted transition function 11, but also on the 
technical characteristics, in the sense that if all the other parameters are assigned then a certain 
finite interval of values may be found such that, if q is fixed inside it, then the dynamics may 
still assume different forms depending on the choice of <, V, X. Figures 9a and 9b show two time 
evolutions that correspond to identical initial and structural conditions except the values of q. 
It may be noticed that small differences (- 0.3%) on the values of q produce totally different 
dynamics and justify the name of bifurcation (technical values are: v = 80, X = 8, 6 = 5.0, 
,II, = $3). 

(a) f vs. (u, t); q = 0.558. 
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(b) f vs. (u, t); 9 = 0.555. 

(c) fm vs. u; q = 0.558 and q = 0.555 

Figure 9. 

Quantitatively, the differences between the foe functions in Figures 9a and 9b may be better 
appreciated in Figure 9c. 

A more detailed analysis about the bifurcation region is difficult. What may safely be said 
is that values of q inside the interval (0.0,0.5) seemingly forbid the localized form to happen, 
whereas values of q in (0.7,l.O) easily allow us to sustain the whole population in a small interval. 
Values of q in each of these ranges yield evolutions which share the same qualitative behaviour, 
and this happens almost independently of the choices of 6, 00, <, u, X, and even of $J. Thus, 
structural instabilities are to be expected for q in the interval (0.5,0.7). 

On the other hand, some side-factors make it difficult to establish a closer estimate of the 
bifurcation values. For instance, in the bifurcation region the dynamics may occasionally be 
influenced by the choice of the grid point function <, or the number of nodes v, or the parameter X. 
As well, in contrast with what happens at generic conditions, and in addition to the usual 
differences that are seen between the asymptotic distributions foe, in the neighbourhood of a 
bifurcation, discrepancies may be found due to which one is adopted r+!~. In particular, the AND 
rule of Section 2 may create instabilities and hybrid cases in the dynamics near a bifurcation, 
especially if $0 is used rather than $3. Indeed, the AND rule may broaden the shape of the 
distributions (compared with those produced by the OR rule) to such an extent that the eventual 
distribution in the neighbourhood of a bifurcation may assume a hybrid form, or even suffer of 
poorness of nodes and be erroneously attributed to Case 2. Localized form distributions that are 
sensibly larger (and lower) than those allowed by equation (4.2) either prelude to a bifurcation, 
or produce some only seemingly stable distribution “fm” which in the long run proves to be 
unstable. 

In conclusion, and apart from nongeneric conditions, the asymptotic distribution of this first 
experiment exists stable, as shown in Figures 5-8, and proves to be fairly independent of the values 
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(v, X) provided the ratio Y/A is sufficiently great and the mean value of the initial distribution 
function is equal to zero. 

At present, the same cannot be said about values of mo different from zero. Not only drastically 
different behaviours have been observed depending on the choice of ,$ in the set ($0, $0, $s, &}, 
but also an occasional dependence of the dynamics has been found upon the other controls, even 
the technical ones. Due to the relevant number of parameters, some more investigations are 
needed to sketch the complete picture. 

As already mentioned, the generalities pointed out for Experiment n.1 hold true for the other 
two as well. Hence, and still in the mo case, a very brief report about these is here sufficient. 

Experiment n.2 

In this second case, the real constant c, of equation (2.23) plays the role of interest. Indeed, 
parameter ce assigns the shape and extension of the interaction, which is already very well 
localized due to the second power of the difference (u - w): see equation (2.23). The larger c, is, 
the more localized the interactions become. 

As c, varies, the system either shows a behaviour as in Case 1, or as in Case 3. The dynamics, 
instead, does not critically depend on the other structural parameters. Simulations have been 
accomplished for values of 6 in the range [0.5,5000) and of c, in the range [10-l, lo-“], together 
with tie and $3, and a neat bifurcation may be observed in the region c, E (10e8, lo-a), which 
do not appear to depend on 6 or on the choice of the function Q. 

For c, > lo-‘, no initial or structural condition has been found that allows the system to 
remain in the localized form of Case 1, and it eventually collapses into the dispersed Case 3. 

For c, 5 lo-“, all the examined conditions maintain the localization of Case 1, and this 
happens independently of the mesh characteristics. 

With some more detail, the system shows the following behaviour. At quite short times after 
t,he initial conditions t = 0, the system assumes a localized shape, in fact appreciably the same 
localized form it would have acquired under the same conditions in Experiment n.1 for q suffi- 
ciently great. Then, as the time grows, the probability distribution almost does not change at all. 
Sul~seque~ltly, two different behaviours are observed. If c, I lo-“, the probability distribution 
ftmction maintains its localized form ~ymptotically in time. Conversely, if c, > lows, after a 
certain period T of time, and almost abruptly! the whole distribution collapses to values less 
than lo-* on the whole real axis. This Case 3 distribution function frequently shows maxima 
values around infinity, and it is the one that stably survives. The time T strongly depends on 6 
and ce. Concisely, it may be said that T increases directly with ci and Y, and inversely with c, 
and X. 

Just for the sake of completeness, it may be mentioned that the bifurcation interval for c, may 
slightly depend on the adopted mesh generator (F. 

Experiment n.3 

The structural parameter of this last case, in addition to the transition variance &, is the 
radius cd of the interaction rule; see equation (2.24). Under the qualitative respects, in this 
experiment the system behaves exactly like in the previous one. As well, the parameter cd 
is strong enough to effectively drive the system either to Case 1 or to Case 3; and, as well, 
bifurcation intervals for cd may be found such that for lower values of cd the system collapses 
after a transient and possibly long time T. whereas for higher values of cd a localized form is 
stably attained. On the other hand, this experiment differs from the previous one in that the 
bifurcation intervals of the parameter Cd depend on the values of 6, as is here briefly summarized. 

Moreover, the above intervals may also depend on the node number, in that it may happen 
t,hat the v = 40 case localizes whereas v = 80 collapses. However, this has been observed only in 
the l~ifurcation nei~hbourhoods. 
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Table 1. Bifurcation intervals for the parameter cd. 

6 = 0.5 6=5 6 = 50 ti = 500 6 = 5000 

@ = $0 (100.150) (150,200) (150.200) (300,350) (1000,1050) 

@ = 7b3 (150,200) (150,200) (350.400) (1000,1050) (3350,340O) 

5. CONCLUSIONS 

The last section contains a very brief discussion on the models described above. 
Under the mathematical respects, none of them shows critical instabilities, with the exception 

of the conditions that characterize a bifurcation as those mentioned above. Under the numerical 
respects, the adopted discretization and numerical integration seem to be satisfying and appro- 
priate to solve the problem for generic values of the controls and symmetric initial conditions. On 
the other hand, in the neighbourhood of a bifurcation, the system becomes so sensitive to each 
of the control parameters that any change of the conditions results in an a priori unpredictable, 
and sometimes a posterior+ indecipherable, dynamics. All the same, when the whole structural 
picture is observed, the bifurcation may be fairly localized. Concerning the choice of the transi- 
tion probability functions, the most stable and reliable appears to be $ = $3, namely the normal 
distribution together with the strict OR rule of the nearest node. hIoreover, the function $9 
behaves as the most representative of those considered, in that the others give rise to dynamics 
that may be seen as a simple variation of the former one. 

From the point of view of the physical interpretation, it may be said that even if the model 
is exceedingly simplified, all the same it does confirm everyday life expectations. Indeed, if the 
social rules are protective, the competition reduced, and the initial distribution balanced, then 
the model predicts that all the individuals eventually attain a comparable amount of wealth. 
Conversely, in a competitive society, the wealth distribution spreads more and more, and huge 
ctifferences of social classes are allowed. In this case, only a small percentage of the population 
remains identifiable with a social status that is centered at the separation point between poverty 
and richness. Both these opposite behaviours are possibly tuned by minor details, yet they are 
stable and reproducible. 

On the other hand, we feel that the times are not yet ready to develop a conclusive discussion 
in the cases that arise from an unbalanced initial distribution, Indeed, the question is still 
open concerning the dynamics starting from initial mean values away from the origin. Existing 
numerical results on this matter deserve some more investigation, both under the numerical and 
t,heoretical aspects. 
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