
Machine Learning for Intelligent IoT
Networks with Edge Computing

Xiaolan Liu

Doctor of Philosophy

School of Electronic Engineering and Computer Science

Queen Mary, University of London

June 18, 2021

Abstract

The intelligent Internet of Things (IoT) network is envisioned to be the internet of intel-

ligent things. In this paradigm, billions of end devices with internet connectivity will

provide interactive intelligence and revolutionise the current wireless communications. In

the intelligent IoT networks, the unprecedented volume and variety of data is generated,

making centralized cloud computing inefficient or even infeasible due to network conges-

tion, resource-limited IoT devices, ultra-low latency applications and spectrum scarcity.

Edge computing has been proposed to overcome these issues by pushing centralized com-

munication and computation resource physically and logically closer to data providers

and end users. However, compared with a cloud server, an edge server only provides

finite computation and spectrum resource, making proper data processing and efficient

resource allocation necessary. Machine learning techniques have been developed to solve

the dynamic and complex problems and big data analysis in IoT networks. Specifi-

cally, Reinforcement Learning (RL) has been widely explored to address the dynamic

decision making problems, which motivates the research on machine learning enabled

computation offloading and resource management.

In this thesis, several original contributions are presented to find the solutions and

address the challenges. First, efficient spectrum and power allocation are investigated

for computation offloading in wireless powered IoT networks. The IoT users offload

all the collected data to the central server for better data processing experience. Then

a matching theory-based efficient channel allocation algorithm and a RL-based power

allocation mechanism are proposed. Second, the joint optimization problem of com-

putation offloading and resource allocation is investigated for the IoT edge computing

networks via machine learning techniques. The IoT users choose to offload the inten-

sive computation tasks to the edge server while keep simple task execution locally. In

this case, a centralized user clustering algorithm is first proposed as a pre-step to group

i

the IoT users into different clusters according to user priorities for achieving spectrum

allocation. Then the joint computation offloading, computation resource and power allo-

cation for each IoT user is formulated as an RL framework and solved by proposing a

deep Q-network based computation offloading algorithm. At last, to solve the simulta-

neous multiuser computation offloading problem, a stochastic game is exploited to for-

mulate the joint problem of computation offloading mechanism of multiple selfish users

and resource (including spectrum, computation and radio access technologies resources)

allocation into a non-cooperative multiuser computation offloading game. Therefore, a

multi-agent RL framework is developed to solve the formulated game by proposing an

independent learners based multi-agent Q-learning algorithm.

ii

Declaration

I, Xiaolan Liu, confirm that the research included within this thesis is my own work or

that where it has been carried out in collaboration with, or supported by others, that

this is duly acknowledged below and my contribution indicated. Previously published

material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and does

not to the best of my knowledge break any UK law, infringe any third partys copyright

or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check the

electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree

by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author.

Signature:

Date: June 18, 2021

iii

Acknowledgments

Foremost, I would like to express my deepest gratitude to my primary supervisor Prof.

Yue Gao for his prudent guidance, continuous support and patience during my three year

PhD journey, and to my co-supervisor Dr. Yuanwei Liu for his kind help and continuous

support in the final year of my PhD With their professional supervision, I could figure

out research problems, deal with challenges, and then contribute a list of publications.

Secondly, I want to thank Dr. Zhijin Qin for her patient revision of my research paper.

I would also like to thank my collaborators, Dr. Wenge Rong from Beihang University

and Dr. Julie A McCann from Imperial College London, for their technical support and

research feedback. Through our collaboration, I gained special research experience and

a thorough understanding of my research works.

I would also like to express my thanks to my second supervisor, Dr. Yasir Alfadhl and

my independent accessor Dr. Akram Alomainy, for their support of my PhD progression

viva, and all the colleagues in antenna group and network group including Dr. Xingjian

Zhang, Wei Su, Dr. Qiao Cheng, Dr. Andrea Toma, Dr. Liang Yang, Zhong Yang,

Xiao Liu, Chao Shu, Zihang Song, Dr. Zixiang Ma, Xiaoshuai Zhang, Hadeel Alrubayyi,

Dr. Shaker Alkaraki, Joseph Nannim Mamvong, Yihua Zhou, Tianwei Hou for their

insightful comments and kind help.

I would also like to thank the committee for my viva defense: Prof. Kai-Kit Wong, and

Prof. Maziar Nekovee, for their professional comments and feedback.

I also want to thank my dear friends Jiadong Yu, Haoran Qi, Yan Liu, Xiaomiao Li,

Lanting Zha, Mingyang Wang, Songyan Du, Pengfei Fan, Yichen Yuan for their contin-

uous encouragement and warm accompany, so I could stay happy and keep a positive

attitude towards my PhD life.

iv

Finally, I would like to thank my family for their support and giving me freedom to be

myself, and especially express thanks to my boyfriend for his encouragement and love, I

could rebuild confidence quickly every time when I met challenges and felt worried about

my research.

v

List of Publications

Journal Papers

1. X. Liu, Y. Gao and F. Hu, “Optimal Time Scheduling Scheme for Wireless Pow-

ered Ambient Backscatter Communication in IoT Network,” IEEE Internet of

Things Journal 6 (2), 2264-2272, Dec. 2018.

2. X. Liu, Z. Qin, Y. Gao and J. A. McCann, “Resource Allocation in Wireless

Powered IoT Networks” IEEE Internet of Things 6(3) 4935 - 4945, Jan. 2019.

3. X. Liu, J. Yu, J. Wang and Y. Gao, “Resource Allocation with Edge Computing

in IoT Networks via Machine Learning” IEEE Internet of Things 7 (4) 3415 -

3426, Apr. 2020.

4. X. Liu, J. Yu, H. Qi, J. Yang, W. Rong, X. Zhang and Y. Gao, “Learning to

Predict the Mobility of Users in Mobile MmWave Networks” IEEE Wireless com-

munications magazine 27 (1) 124 - 131, Feb. 2020.

5. J. Yu, X. Liu, Y. Gao and X. Shen, “3D Channel Tracking for UAV-Satellite Com-

munications in Space- Air-GroundIntegrated Network” IEEE Journal on Selected

Areas in Communications PP(99):1-1, Jul. 2020.

6. X. Liu, J. Yu and Y. Gao, “Multi-agent Reinforcement Learning for Resource

Allocation in IoT networks with Edge Computing” China Communications, 17(9):

220-236, 2020.

7. J. Yu, X. Liu, H. Qi and Y. Gao, “Long-term Channel Statistic Estimation for

Highly-Mobile Hybrid MmWave Multi-User MIMO Systems” IEEE Transactions

on Vehicular Technology 69(12):14277-14289, Dec. 2020.

vi

8. J. Yu, X. Liu, Y. Gao and X. Shen “3D On and Off-Grid Dynamic Channel

Tracking for Multiple UAVs Space-Air Communications” IEEE Transactions on

Wireless Communications (Under Review)

Conference Papers

1. X. Liu, Z. Qin and Y. Gao, “Resource Allocation for Edge Computing in IoT Net-

works via Reinforcement Learning,” IEEE Conference on Communications (ICC),

Shanghai, China May, 2019.

2. X. Liu, Y. Gao, “Reinforcement Learning Approaches for IoT Networks with

Energy Harvesting ,” IEEE/CIC International Conference on Communications

in China (ICCC), Changchun, China Aug, 2019.

3. J. Yu, X. Liu, H. Qi, W. Zhang and Y. Gao, “Spatial Channel Covariance Esti-

mation for Hybrid mmWave Multi-User MIMO Systems” IEEE Global Commu-

nications Conference (GLOBECOM), Hawaii, USA Dec, 2019.

vii

Table of Contents

Abstract i

Declaration iii

Acknowledgments iv

List of Publications vi

Table of Contents viii

List of Figures xii

List of Tables xiv

List of Notations xv

List of Abbreviations xvii

1 Introduction 1

1.1 Overview of IoT Networks . 4

1.1.1 Enabled Technologies . 5

1.1.2 Resource Management Issues in IoT Networks 7

1.2 Literature Review . 8

1.2.1 Matching Theory for Resource Allocation 8

1.2.2 Dynamic Power Allocation . 10

viii

1.2.3 Computation Offloading . 11

1.2.4 RL for Computation Offloading . 13

1.2.5 MARL for Computation Offloading 15

1.3 Motivations and Contributions . 17

1.3.1 Computation Offloading in Wireless Powered IoT Networks 17

1.3.2 Computation Offloading in IoT Networks via Machine Learning . . 18

1.3.3 MARL for Multiuser Computation Offloading in IoT Networks . . 19

1.4 Thesis Outline . 20

2 Background 22

2.1 Matching Theory . 22

2.1.1 The Preliminaries . 22

2.1.2 Matching Theory for Wireless Resource Allocation 24

2.2 Machine Learning . 25

2.2.1 Supervised and Unsupervised Learning 25

2.2.2 The Preliminaries of RL Techniques 26

2.2.3 RL Algorithms . 28

2.3 Edge Computing . 32

2.3.1 Computation Offloading Schemes 33

2.3.2 Machine Learning for Computation Offloading 36

2.3.3 Summary . 38

3 Computation Offloading in Wireless Powered IoT Networks 39

3.1 Objectives and Contributions . 40

3.2 Resource Allocation of Computation Offloading in Wireless Powered IoT

Networks . 41

3.2.1 System Model . 41

3.2.2 Problem Formulation . 43

3.3 Matching based Channel Allocation . 46

3.3.1 Many-to-One Matching . 47

ix

3.3.2 Efficient Channel Allocation Algorithm 49

3.4 RL-based Power Allocation . 53

3.4.1 DP-based Power Allocation Algorithm 56

3.4.2 Q-Learning based Algorithm . 58

3.5 Numerical Results . 60

3.5.1 DP-based Power Allocation . 63

3.5.2 Q-learning based Power Allocation 66

3.6 Summary . 67

4 Computation Offloading in IoT Networks via Machine Learning 69

4.1 Objectives and Contributions . 70

4.2 System Model . 71

4.3 Problem Formulation . 73

4.3.1 Local Computing Model . 74

4.3.2 Edge Computing Model . 75

4.4 Centralized User Clustering . 76

4.4.1 User Priority Initialization . 76

4.4.2 Priority-driven Clustering based on K-means 77

4.4.3 Complexity Analysis . 79

4.5 DRL-based Computation Offloading . 80

4.5.1 The RL Preliminaries . 80

4.5.2 Optimality and Approximation . 84

4.5.3 DQN-based Computation Offloading Algorithm 85

4.5.4 Complexity Analysis . 87

4.6 Numerical Results . 87

4.6.1 Parameters Setup . 89

4.6.2 DQN-based Computation Offloading Scheme 90

4.7 Summary . 94

5 MARL for Multiuser Computation Offloading in IoT Networks 96

x

5.1 Motivation and Contributions . 97

5.2 System Model . 98

5.2.1 Local Computing Model . 100

5.2.2 Edge Computing Model . 100

5.3 Problem Formulation with Stochastic Game 103

5.3.1 Problem Formulation . 103

5.3.2 Stochastic Game . 106

5.3.3 Computation Offloading Game Formulation 107

5.4 MARL based Computation Offloading Algorithm 110

5.4.1 MARL Framework for Multiuser Computation Offloading 110

5.4.2 IL-based MA-Q learning Algorithm 114

5.5 Simulation Results . 116

5.6 Summary . 121

6 Conclusions and Future Work 122

6.1 Conclusions . 122

6.2 Future Work . 125

6.2.1 Federated Learning for Edge Intelligence 125

6.2.2 Distributed Intelligence . 126

6.2.3 Embedded Intelligence for IoT Applications 126

Bibliography 126

References . 127

xi

List of Figures

1.1 The diagram of the intelligent IoT system . 4

2.1 The learning process of RL framework. 29

2.2 The comparisons of Q-learning and deep Q-learning algorithm. 30

2.3 The framework of multi-agent RL framework. 31

2.4 The diagram of computation offloading in IoT networks. 32

3.1 The system model of wireless powered IoT networks. 42

3.2 The proposed timeslot structure for each wireless powered IoT user. 42

3.3 Comparison of minimal transmission rates. 62

3.4 The optimal power policy π∗ over the time slots. 62

3.5 Performance comparison of the optimal and offline scheme. 63

3.6 The network throughput comparison under different energy harvesting rates. . . 64

3.7 The optimal policies for different users allocated to the same channel. 64

3.8 The optimal policies under different pre-defined power threshold. 65

3.9 The convergence performance of Q-learning based power allocation algorithm. . 66

3.10 The network throughput performance comparison of DP-based and Q-learning

based power allocation algorithm . 66

4.1 The framework of IoT system. 72

4.2 Illustration of the timeslot structure for the computation offloading scheme. . . . 73

4.3 The RL framework for computation offloading in IoT networks 81

xii

4.4 Priority-driven user clustering and the optimal cluster number validation 88

4.5 Convergence performance of the proposed DQN-based computation offloading

algorithm measured by the loss function, the weight factor β = 100. 91

4.6 Performance comparison of the cumulative system cost Ci with the proposed

DQN-based computation offloading scheme and the other three baseline schemes

versus the time slots, β = 100. 91

4.7 Performance comparison of cumulative energy consumption Ei with the proposed

DQN-based task offloading scheme and the other three baselines versus the time

slots. β = 100 . 92

4.8 Performance comparison of cumulative task execution delay Di with the proposed

DQN-based task offloading scheme and the other three baselines versus the time

slots. β = 100 . 93

4.9 Performance comparison of average cost under different edge server computation

capacity versus time slots k. β = 50 . 94

5.1 Multiuser computation offloading model in IoT networks. 99

5.2 The timeslot structure of the multiuser computation offloading scheme. 103

5.3 The MARL framework for multiuser computation offloading in IoT networks. . . 111

5.4 Convergence performance of the proposed IL-based MA-Q learning algorithm

measured by the average Cost Cave, achieved by u1, Ag = 30. 117

5.5 Performance comparison with different number of users U measured by the aver-

age Cost Cave, achieved by u1, ε = 0.2. 118

5.6 Access channels allocation with LoRa and WiFi access technologies, Ag = 30, ε =

0.2. 118

5.7 Comparisons for average cost Cave, with different IoT users under algorithms

Centralized, IL-based MA-Q and Random. 120

xiii

List of Tables

4-A Simulation Parameters . 89

5-A Simulation Parameters . 116

xiv

List of Notations

U the number of users

U ,L user set, channel set

lm, ui, Bm channel m, user i, the bandwidth of channel lm

F, k,K time frame, timeslot index, maximum timeslot index

Kh,Kd the set of timeslot for energy harvesting and data transmission

P th,km,i required power threshold

PA,km,i , P
A
max the available power, the capacity of the battery

PH,km,i , P
k
m,i the harvested power, the transmit power

hkm,i, g
k
m,i channel gain, small-scale fading factor

dm,i distance between user and gatewa

ηm, a path loss related constant, path loss exponent

αm,i indicate if lm is assigned to ui

ykm, σ
2
m the received signal power at gateway, , noise power

Im, γ
k
m,i the number of users assigned to lm, the uplink SINR

Rm,i, R
uti
ui , R

uti
lm

the transmission rate, the utility function of ui and lm

Φ,SU a many-to-one matching, user set in the matching game

ski , a
k
i , r

k
i , π

k the system state, action state, reward, policy

P transition probability matrix

CLi,j , C
E
i,j cost of task execution in local computing, edge computing

δ penalty function of failed task execution

xv

tki Ti,j task queue state, the generated jth at user ui

eLi , e
E
i energy consumption per CPU cycle of user, server

Ik, Ik task generation set, indicator

fi, f computation capacity of user, server

di,j task size

ρki the remaining computation capacity state

Ok, O users’ decisions set, indicator

DL
i,j ,D

E
i,j ,D

T
i,j delay of local, edge task execution, task transmission

ELi,j ,E
E
i,j energy consumption of task execution in local, edge computing

β weight factor

Ri, h
k
i , σ

2 transmission rate, channel gain and noise power

PTi transmit power set

Dth
i,j task execution latency requirement of jth task

xi user priority

h, H cluster number index, cluster number

Ch, ch cluster h, cluster centroid of Ch

SSE, SCi performance index of elbow method, Silhouette Coefficient of user ui

Gh channel gain set of Ch

di, Pi distance from gateway to user, task offloading probability of user

δm,iz indicates if uz takes up the same channel or not

Ks duration of the time slot

ω,$ waiting cost of the user, penalty of failed offloading

Wall, W̄ the computation requirements, capacity of the server

xvi

List of Abbreviations

ADR Adaptive Data Rates

AI Artificial Intelligence

AWGN Additive White Gaussian Noise

AP Access Point

AR Augmented Reality

BP Blocking Pair

BS Base Station

CSI Channel State Information

CSS Chirp Spread Spectrum

CPU Central Processing Unit

CC Cloud Center

dB deciBel

DQN Deep Q-Network

DL Deep Learning

DNN Deep Neural Network

DRL Deep Reinforcement Learning

DP Dynamic Programming

ECAA Efficient Channel Allocation Algorithm

IL-based MA-Q Independent Learners based Multi-Agent Q-learning

IoT Internet of Things

xvii

LoRa Long Range

LoRaWANs Long Range Wireless Area Networks

LPWA Low-Power Wide-Area

LTE-advanced Long Term Evolution Advanced

MINLP Mixed Integer Nonlinear Program

MDP Markov Decision Process

MARL Multi-Agent Reinforcement Learning

MEC Mobile Edge Computing

NE Nash Equilibrium

NLP Natural Language Processing

NB-IoT Narrow Band IoT

NP-hard Non-deterministic Polynomial-time hard

PCP Poisson Cluster Process

QoE Quality-of-Experience

QoS Quality of Service

RL Reinforcement Learning

RAT Radio Access Technology

RF Radio Frequency

RFH RF Energy Harvesting

ReLUs Rectified Linear Units

SF Spreading Factors

SINR Signal-Interference-to-Noise Ratio

SSE Sum of Squared Errors

SC Silhouette Coefficient

TD Temporal Difference

VR Virtual Reality

WSN Wireless Sensor Network

5G the fifth Generation

3GPP 3rd Generation Partnership Project

xviii

2ES Two-Sided Exchange-Stable

xix

Chapter 1

Introduction

Along with the fifth Generation (5G) communication being deployed around the world,

the 3rd Generation Partnership Project (3GPP) Release 17 and Release 18 would deal

with the key technologies and features of beyond 5G networks [1]. The beyond 5G com-

munications will revolutionise the current wireless communication by a range of new

services relying on higher capacity, e.g., with peak throughput reaching a gigabits per

second and ultra low latency below 1 millisecond, by leveraging the benefits of the Inter-

net of Things (IoT) and big data analysis. This can be achieved by adopting machine

learning techniques to analyse the generated massive data and to optimize the network

structure of the IoT system. Besides, an ever-growing complexity due to the massive

connected devices and time sensitive applications will be overcome by the evolution of

network and service infrastructures from cloud computing to distributed orchestration

and management paradigms, i.e., edge or fog computing. This motivates the end users

(e.g., devices, sensors) to offload their data to the edge server (e.g., IoT gateway and

WiFi router) for data analysis, which allows the users to meet their key performance

indicators in terms of ultra low latency and low power consumption because they are

geometrically closer to the edge server. The successful uplink data transmission, known

as computation offloading, depends on no-collision channels achieved by efficient chan-

1

Chapter 1. Introduction 2

nel access allocation, as well as reliable transmit power allocation especially in wireless

powered IoT users.

With the current end devices becoming more computationally powerful, they are

able to process some data locally with their local processors while only send the inten-

sive computation tasks to the edge server for improving data analysis performance. This

means the IoT users have to decide which task is offloaded, where to offload the task

and how to offload the task, which raises the challenge of jointly optimizing the com-

putation offloading decisions and resource allocation solutions. This joint optimization

problem was studied to maximize the system gain measured by a weighted sum of task

execution time and energy consumption, which is conventionally formulated as a Mixed

Integer Non-Linear Program (MINLP) problem and solved by decomposing it into two

separate subproblems of computation offloading and resource allocation [2]. However,

along with the increasing network scale, this method faces higher complexity or even

becomes infeasible. The learning methods with the ability to efficiently solve dynamic,

complex and large-scale computation offloading problems are needed.

Machine learning technique with its success in Natural Language Processing (NLP),

robot control and speech recognition, has also been explored to solve Channel State Infor-

mation (CSI) prediction and modulation recognition in wireless networks and received

good performance [3]. For instance, to solve the challenges in IoT networks, unsupervised

learning, like clustering can extract structures and features of raw data and be adapted

to big data analysis of the data generated by the IoT devices. Specifically, Reinforce-

ment Learning (RL) with the ability to enable an agent to learn how to take actions to

maximize a long-term cumulative reward under dynamic environment, has been explored

to solve decision making problems by generally describing them as a Markov Decision

Process (MDP). Moreover, RL algorithms were exploited to learn the optimal strategy of

computation offloading, edge server selection under uncertain wireless environment con-

ditions, as well as transmit power allocation with the dynamic energy harvesting process

[4, 5]. Here, the classical model-free RL algorithm, Q-learning, relying on a Q-table for

Chapter 1. Introduction 3

training is most adopted but faces the curse of dimensionality. Deep Learning (DL),

such as Deep Neural Network (DNN) has been exploited for function approximation,

which has been demonstrated to efficiently approximate Q-value function of Q-learning,

known as Deep Q-Network (DQN) algorithm. Subsequently, a DQN-based computa-

tion offloading algorithm was demonstrated to learn the optimal computation offloading

policy without having a prior knowledge of the dynamic environment. However, the

computation resource of both edge server and end user is limited and precious so that

it needs to be allocated efficiently. Therefore, a joint strategy of computation offloading

and efficient computation resource and transmit power allocation requires revolutionary

design with distributed learning.

To deal with multiuser computation offloading, where multiple users are performing

offloading simultaneously and competing for the limited resource from the edge server,

learning the distributed computation offloading mechanism becomes more challenging.

Here, each user’s computation offloading decision not only depends on the environmental

dynamics but also on the decisions made by other users. [6] formulated the multiuser

computation offloading process under dynamic environment as a stochastic game because

the selfish users take self-interested actions to maximize their own payoffs. In this case,

each user independently adjusts its offloading strategy according to its currently received

payoff, and [6] demonstrated the formulated game has at least one Nash Equilibrium

(NE). The stochastic game is a dynamic game with probabilistic transitions played by

one or more players, which is the generalization of MDP and repeated games, also called

Markov game, such that it has Markov property. Multi-Agent RL (MARL) framework,

in which all the agents learn how to take actions to maximize their long-term cumulative

rewards over the environment, can be used to model this multiuser computation offload-

ing problem. Compared to the single-agent RL, the big difference resides in the fact

that the agents’ actions are coupled and each agent’s observed reward is decided by the

joint action taken by all the agents, this matches the non-cooperative stochastic game

problem. Therefore, MARL algorithms attract more attention to distributively learn the

Chapter 1. Introduction 4

Edge Servers

Gateway

R
F

 e
n
e

rg
y

h
a

rv
e

s
ti
n
g

BS

Router

Local IoT devices

Computation

Offloading

Cloud Platform

Figure 1.1: The diagram of the intelligent IoT system

optimal strategy of each user for multiuser computation offloading scenario.

1.1 Overview of IoT Networks

As shown in Fig. 1.1, an IoT system is a network of different kinds of networks. It is

envisioned to be automated and intelligent, and to achieve secure and massive connectiv-

ity from end devices to the central server and until the cloud. Recently, edge computing

was emerged to push the computation and communication resource physically and logi-

cally closer to users and to provide distributed data processing by introducing an extra

layer, i.e., the edge layer, between the local layer and the cloud layer. Therefore, from

Fig. 1.1, the IoT system has a three-layer architecture, including the cloud platform

which is geometrically far from the IoT devices, edge servers which are more distributed

and closer to the IoT devices. The IoT system is widely applied to smart home, smart

Chapter 1. Introduction 5

agriculture, smart city, smart transportation and etc. All the applications have high

requirements on low-power transmission due to the energy-limited batteries of the IoT

devices [7]. Recently, there have been several main schemes to help form the IoT net-

works: radio frequency identification, Wireless Sensor Network (WSN), mobile networks

and etc. Since the advance in low power circuit and wireless communication, WSN has

attracted more attention due to its large-scale network structure which can sense and

analyze a large amount of data [8], while mobile networks have the advantage to connect

the IoT network with the core internet. As shown in Fig. 1.1, the available communica-

tion technologies for IoT networks include Low Power Wide Area (LPWA) technologies

such as Long Range (LoRa) [9], Sigfox [10] and Narrow Band-IoT (NB-IoT) [11], Blue-

tooth and WiFi, as well as Long Term Evolution advanced (LTE-advanced). Based on

these technologies, the IoT system is operating on different frequencies, such as LPWA

exploring around sub-1 GHz, LTE-advanced operating on 690-960 MHz and 1710-2690

MHz.

1.1.1 Enabled Technologies

1.1.1.1 Low Power Communication Technologies

A relatively new class of communication protocols, described as LPWA, are coming

to the fore as they consume lower power at the IoT device while their transmission

scope covers geographically larger areas. Moreover, LPWA offers a trade-off among

data transmission rate, network coverage and power consumption, to meet more various

requirements on IoT applications [12–16]. LPWA systems achieve this balance of power

and distance at the cost of low data transmission rate which makes it more appropriate for

latency-tolerant IoT applications with smaller data requirements. The existing LPWA

technologies contain LoRa, NB-IoT and Sigfox. Specially, LoRa is considered as one of

the most potential LPWA techniques, and has drawn much attention from both academia

and industry [17–21]. LoRa technology achieves a big success mainly because it adopts

Chirp Spread Spectrum (CSS) modulation. The CSS technology contributes to flexible

long range communications with low power consumption by using different Spreading

Chapter 1. Introduction 6

Factors (SF) [22]. Specifically, in LoRa Wide Area Networks (LoRaWANs), the gateway

server configures different SFs for users and there exists a mechanism to allow Adaptive

Data Rates (ADR). The server adjusts the SF and increases (reduces) the transmit

power of the users according to its received Signal-Interference-to-Noise Ratio (SINR) to

optimize different metrics of the network including data transmission rate, airtime, and

power consumption.

1.1.1.2 RF Energy Harvesting

Since the devices in IoT networks aim to achieve self-sustainable and long-term commu-

nications but have energy-limited batteries, energy harvesting was emerged as a promis-

ing method for the proactive energy replenishment of the next generation wireless net-

works [23, 24]. Specially, RF energy Harvesting (RFH) draws much attention because it

considers readily available transmitted energy, such as TV (radio) broadcasters, mobile

BSs and handheld radios as important energy resources, which is low cost and small

form factor implementation.

These ambient RF sources can be classified into static and dynamic resources. The

TV signals are static RF resources since the power of the TV signal is relatively sta-

ble over time. They are promising energy resources with high transmission power [25].

In [26], the researchers designed a novel broadband Yagi-Uda antenna to harvest ambi-

ent RF power from digital TV broadcasting signals. A RFH wireless sensor network

prototype was designed by harvesting signals from TV tower in [27]. Although static

RF sources can provide predictable RF energy, there could be long-term and short-term

fluctuations due to service schedule [28]. Moreover, TV signals are broadcasted without

interruption at all the hours of day and night by the TV towers. And TV towers can

transmit up to 1 milliwatt effective radiated power and can serve locations more than

100 miles away from the tower in very flat terrain and up to 45 miles in denser terrain.

Dynamic ambient RF resources (e.g., WiFi router) are produced by RF transmitters

that work periodically or change transmit power over time. Therefore, making use of

Chapter 1. Introduction 7

ambient RF resources has to be adaptive and possibly intelligent to search for available

opportunities in a certain frequency range. As shown in Fig. 1.1, the edge servers

can provide wireless power transfer for the IoT devices through the RF signals. Hence,

the IoT devices can harvest energy from the RF signals, and adopt store-then-transmit

protocol to offload the sensing data or perform local data processing.

1.1.2 Resource Management Issues in IoT Networks

1.1.2.1 Spectrum Resource

According to Ericsson mobility report, there will be 24.9 billions IoT connections by

2025 [29], which means the number of devices served by a central server will become

huge. When the massive devices try to access the wireless channels simultaneously, it

overloads the channel (e.g., physical random access channel in LTE networks). From

study [30], to support the massive IoT connections for an exclusive spectrum use, it

needs around 76 GigaHertz (GHz) spectrum resource, which is impossible to be satisfied.

Therefore, efficient spectrum resource management is important due to the scarcity of

spectrum resource. A few potential solutions are identified: 1) spectrum sharing [31],

including licensed cellular spectrum (e.g., enhanced machine type communication and

NB-IoT) and unlicensed spectrum (e.g., Bluetooth and Zigbee, LoRaWAN and SigFox),

as well as exploring more available spectrum resource (e.g., millimeter wave), 2) edge

computing, relying on re-designing the architecture of the network with edge devices

providing distributed channel access and also reducing network congestion, as well as

efficient radio resource access providing alternative spectrum choices and efficient channel

allocation management reducing the network congestion probability.

1.1.2.2 Energy Resource

Since most of IoT devices are powered by energy-limited battery and charging facilities,

efficient energy resource allocation is essential to provide satisfactory Quality of Service

(QoS) in IoT networks. Energy harvesting provides a promising solution to power those

IoT devices continuously without the need of changing the batteries frequently. However,

Chapter 1. Introduction 8

the dynamic energy arrival process brings new challenges for energy allocation. Besides,

the interference problems among users are crucial when they are trying to access to

the limited channels, and coupled with the time changing physical channel and network

conditions, the sophisticated dynamic transmit power allocation is required and full of

challenges.

1.1.2.3 Computation Resource

With the trend of compute-intensive applications, like Apple Siri, Google Microsofts

Cortana [32], the IoT devices cannot support the complicated models with their limited

computation and energy resource, so the applications have to rely on cloud computing

which is generally assumed to have infinite resource. However, when billions of IoT

devices generate or collect data and then send to the centralized cloud center, it causes

serious network congestion and unacceptable latency for IoT applications. Since the

massive generated data is distributed at the network edge, edge computing is emerged

with many edge servers providing distributed data processing. Compared to cloud com-

puting, it has finite resource to support limited IoT devices requesting for computation

resource simultaneously, so efficient computation resource allocation is needed for edge

server. On the other hand, the increasingly powerful IoT devices are developed to have

larger but still limited computation capacity, so the coordinative computation resource

management between edge server and IoT devices is important.

1.2 Literature Review

1.2.1 Matching Theory for Resource Allocation

In wireless networks, the rational and selfish users are interacting with a natural propen-

sity to solicit their maximum benefit from the network without caring about other users.

To model such competitive behaviors of those players in the networks, matching theory

[33] is particularly effective in developing high performance, low complexity, decentral-

ized, and practical solutions, which can overcome some limitations of game theory and

Chapter 1. Introduction 9

optimization. Recently, matching theory has been extensively studied to handle wireless

resource allocation problems in wireless networks, such as in cognitive radio networks

[34], heterogeneous cellular networks [35] and device-to-device (D2D) networks [36].

The researchers in [34, 36, 37] studied applying matching theory in wireless commu-

nications by modelling the resource allocation problems as a one-to-one marriage prob-

lem or a many-to-one matching problem. The authors in [34] studied stable spectrum

allocation based on one-to-one matching framework by matching users and channels in

cognitive networks, the authors proved the uniqueness of the stable matching. In [36], a

context-aware resource allocation problem in wireless networks is formulated as a one-

to-one matching game, which was proven to converge to a two-sided stable matching

between uses and resource blocks. In [37], the authors extended the matching theory

of many-to-one matching to solve the resource allocation problem in wireless commu-

nications, based on [38] that first studied stable matchings by proposing the deferred

acceptance algorithm, they first developed a general framework to find stable matchings

of users and resources.

In wireless networks, due to the limited resources including time, spectrum and space,

resource allocation problems are extensively studied [39]. In [40, 41], matching theory

was exploited to address resource allocation problems in wireless networks by assuming

the users and resources as the matching players. However, the peer effects caused by the

interference from other users due to channel reuse or non-orthogonal resources have not

been considered. Hence, [36] implemented matching theory with peer effects to address

this problem. The authors discussed a one-to-one matching model with peer effects to

match users with Resource Blocks (RBs) in D2D communications.

In IoT networks, a variety of users collect data from the environment and then trans-

mit the data to the gateway for data processing, which poses the challenges of multiple

users competing for the limited wireless channels. Here, each user is taking up one

channel at a time while each channel can be accessed by many users using code domain

multiplexing. However, each user can be affected by the other users using the same

Chapter 1. Introduction 10

channel (e.g., the imperfect SF orthogonality in LoRa [42] and imperfect orthogonal

multiplexing with Code Division Multiple Access (CDMA) [43]). Therefore, matching

theory with peer effects will be a potential way to address those challenges.

1.2.2 Dynamic Power Allocation

With the appearance of more advanced applications at IoT devices, e.g., navigation,

face recognition and interactive online gaming, more embedded sensors and on-device

cameras are deployed so that more powerful processors and sustainable resource supply

are required [44]. However, currently resource-limited devices cannot provide satisfac-

tory Quality of Experience (QoE) for those applications, so computation offloading was

emerged to overcome this issue by migrating computation to more resourceful cloud plat-

form or edge server [45]. Unfortunately, the conventional battery-powered devices might

lead to compromised computation performance because of insufficient battery energy for

computation offloading. [46, 47] explored energy harvesting technologies to continuously

power mobile devices and achieved satisfactory computation performance.

Energy harvesting techniques have been proposed in IoT networks where the IoT

devices can harvest energy from the RF signals and use it to transmit the collected data

[48–51]. [49] has proposed a harvest-then-transmit protocol, in which a hybrid Access

Point (AP) provides the users with wireless energy in the downlink transmission and then

users transmit their data in the uplink by using the harvested energy before. Here, the

sum of network throughput maximization problem was studied by exploring the optimal

time allocation for the communication links and data transmission. In [50], the max-min

problem of network throughput has been discussed, in which users harvest energy from a

multi-antenna AP and transmit their data to the same AP in the uplink. The downlink-

uplink time allocation, downlink energy beamforming and uplink transmit power were

jointly optimized using the non-negative matrix theory. In [51], the sum throughput

rate maximization problem was analyzed where mobile stations with energy harvesting

capabilities communicate with a full duplex multi-antenna AP. A joint optimization

Chapter 1. Introduction 11

problem has been formulated with optimizing channel assignment, time allocation and

transmit power allocation simultaneously.

In [52], an online resource allocation algorithm has been proposed, which adopted

MDP to model the stochastic environment. It considered a system which contained

a single source node and multiple destination nodes, then MDP was used to model

the harvested energy and channel gain guaranteeing the QoS of users. To address the

throughput maximization problem, [53] has introduced a first-order MDP to model the

stochastic energy arrival, and then an optimal policy of transmit power allocation was

obtained by using DP method. An expected data transmission maximization problem

has been investigated in [54] with the constraints of energy harvesting rate, available

battery energy, buffer queue and channel gain. An infinite-horizon discounted MDP was

proposed to formulate this problem and it was solved by an optimal energy allocation

algorithm. In [55], online learning algorithms were adopted to exploit the MDP problem

in which the rewards expectation and the state-action pairs were unknown, and then the

algorithms were used to learn these rewards and develop their own policies over time.

However, the dynamic power allocation while harvesting energy to achieve sustainable

power supply for data transmission has not yet been addressed using both DP method

and RL algorithms.

1.2.3 Computation Offloading

Edge computing has been proposed as promising solutions to handle the large volume

of security-critical and time-sensitive data processing distributively [56, 57]. Compared

to using distant and centralized cloud resources, edge computing employs decentral-

ized resources which are typically limited, heterogeneous and dynamic, thereby making

resource management in wireless networks more challenging that needs more effective

and efficient methods [58, 59]. The IoT devices are resource-constrained, for instance,

the battery capacity and local CPU computation capacity are limited [58]. Offloading

computation tasks to relatively resource-rich edge computing devices can meet the QoS

Chapter 1. Introduction 12

requirements of IoT applications and can augment the capabilities of IoT devices for

running resource-demanding applications [60].

Computation offloading scheme has first been investigated to access to multiple

resources efficiently in Mobile Edge Computing (MEC) networks [61–63]. Energy con-

sumption and task execution latency are two main considerations when designing the

optimal offloading scheme. The authors in [46, 64] formulated the computation offload-

ing problem with the objective of minimizing the execution delay by proposing one-

dimensional search algorithm to find the optimal offloading decision policy [64], and by

proposing Lyapunov optimization-based dynamic computation offloading algorithm to

jointly make the decisions on offloading strategy, the CPU-cycle frequencies for mobile

execution, and the transmit power [46]. In [45, 65], the joint computation offloading

and resource allocation problem with minimizing the energy consumption of the mobile

device have been investigated. The online learning and pre-calculated offline solutions

were proposed to solve the optimization problem [45]. And two offline solutions, deter-

ministic and randomized, were proposed to find the optimal radio scheduling offloading

policy [65].

In the aforementioned studies, the users offload all the collected raw data to the

edge server for processing, which requires large bandwidth and consumes much transmit

power. In [66], the authors presented that the applications could be achieved by dividing

the computation task into a non-offloadable part and N offloadable parts, and then

processing them locally or offloading to the edge server. The computation offloading

problem is formulated as a 0− 1 programming model, where 0 represents the offloading

decision and 1 indicates local computation at the user. For instance, it has been discussed

in the MEC networks, in which the mobile user makes a binary decision to either offload

the computation tasks to the edge device or not [67]. Moreover, an optimized trade-off

between energy consumption and execution time delay was analyzed with joint allocation

of radio and computation resources for partial offloading decision using the multiple

input multiple output communication models [68]. Based on [68], the authors gave more

Chapter 1. Introduction 13

in-depth theoretical analysis on a trade-off between energy consumption and execution

delay in [69]. The authors in [70] formulated a power consumption minimization problem

with task buffer stability constraints to investigate the power-delay trade-off.

Multiuser computation offloading is a practical problem in wireless networks and

needs to be addressed properly. The authors in [61, 65, 71] extended their researches

from the single-user computation offloading to the multiuser scenario. In [72], the authors

provided the solutions to select the users for scheduling, hence offloading, and make deci-

sions for the other users to either locally process or stay idle. In [62], the authors jointly

optimized the radio and computation resources for multiuser MEC system. In [73], the

authors jointly optimized the offloading decisions of all the users, the allocation of com-

putation and communication resources for the multiuser multitask offloading problem.

Moreover, they also studied the multiuser computation offloading problem in a multi-

channel wireless environment by considering a trade-off between the energy consumption

and the execution delay in [74]. The authors in [75, 76] considered the computation

offloading problem in the multiuser scenario based on the time division multiple access

system, the computation tasks of the users were separated into small parts such that

they might be able to offload one part in each time slot by considering their channel con-

ditions, local energy consumption and the fairness among users. The authors in [77] also

addressed the trade-off between execution delay and energy consumption in multiuser

computation offloading scenario.

1.2.4 RL for Computation Offloading

Recently, the increase of computation capacity at edge devices contributes to a new

research area, called edge learning, which crosses and revolutionizes two disciplines:

wireless communication and machine learning [78–80]. Machine learning with its achieve-

ments in many disciplines provides promising solutions to solve the complicated and

dynamic problems in wireless networks by exploiting different machine learning algo-

rithms. To address these issues, RL techniques provide effective solutions in an intel-

Chapter 1. Introduction 14

ligent manner to design joint computation offloading strategy and resource allocation

method [81–85], which basically can be modeled as an MDP. Then it could be solved by

a classical single-agent Q-learning algorithm, and to break the curse of high dimension-

ality, DL is used to approximate the Q-value function in Q-learning. Therefore, DRL

was widely adopted to learn the optimal policy by solving the formulated computation

offloading problem in MEC systems.

For example, DRL has been exploited to optimize resource allocation and computa-

tion task offloading schemes in MEC networks [5, 84–91]. The authors in [5, 84, 86] jointly

optimized computation offloading, computation resource and transmit power allocation

based on DRL algorithms by considering wireless charging users. In [87], the optimal

task offloading policy with computation and communication resource allocation by the

proposed intelligent resource allocation framework based on a multitask DRL algorithm

is explored, while in [88], DRL is exploited to jointly manage the spectrum, computation

and storage resources to support delay-sensitive applications in the MEC-based vehicular

network. In [90], a joint optimization problem of task offloading decisions and transmis-

sion time allocation for multiuser scenario is solved in wireless powered mobile edge

computing networks by the proposed DRL-based algorithm. And a DRL-based compu-

tational resource allocation policy has been addressed for edge computing network with

multiple users in [91].

However, when many users in the IoT networks have collected data and require

data processing, the heterogeneity of computation resource, channel gain and intensive

computation tasks at users makes them have distinct offloading decisions. In [75], an

offloading priority function which defined the priorities for users according to their chan-

nel gains and local computing energy consumption was derived, and the optimal policy

was proved to have a threshold-based structure with respect to this defined function.

This work means that the users could be classified into different groups with different

priorities above or below a given threshold and perform complete and minimum offload-

ing, respectively. It enlightened that user clustering could be performed as a pre-step to

Chapter 1. Introduction 15

make the computation offloading decisions for a variety of users in IoT networks. Clus-

tering algorithms, such as K-means [92], known to cluster data set into different clusters

according to the characteristics of each data point, make the way for user clustering.

1.2.5 MARL for Computation Offloading

With the increasing number of IoT devices in IoT networks, the joint problem of com-

putation offloading and resource allocation becomes challenging since it’s more trendy

that multiple users are simultaneously competing for the limited resources from the IoT

system. RL techniques have been exploited to effectively develop computation offload-

ing scheme with efficient resource allocation solutions in single user scenario [5, 84, 86].

Moreover, the authors in [93, 94] investigated resource allocation in IoT edge comput-

ing networks, and proposed computation offloading algorithm based on Q-learning and

DQN to obtain the optimal computation offloading strategy while considering single

user scenarios. However, when multiple users are trying to offload their tasks to the edge

server together, each user’s decisions on offloading strategy and resource management is

affected by other users’ decisions.

The multiuser computation offloading problem in uncertain environment has been

investigated with considering power allocation, radio and spectrum resource allocation

as well as computation resource allocation in [46, 76, 95–103]. The authors in [46, 95]

investigated the trade-off between the power consumption of mobile devices and the

execution delay of computation tasks in multiuser MEC systems, an online algorithm

based on Lyapunov optimization was proposed to obtain the computation offloading

strategy. Generally, the joint multiuser computation offloading and resource allocation

is formulated as a non-convex optimization problem, and then different methods were

tried to solve this problem, like alternating direction method of multipliers decomposi-

tion technique [96], iterative heuristic resource allocation [97] and converting to convex

optimization problem [76]. Those algorithms are operated relying on the centralized

controller, which will cause high system implementation complexity when the network

Chapter 1. Introduction 16

size grows. Hence, the distributed algorithm is preferred and necessary. In [98–100],

the authors have presented distributed computation offloading algorithms to investigate

the multiuser computation offloading problem. A distributed greedy maximal scheduling

algorithm was proposed to solve the multitask offloading schedule problem in multiuser

scenario, while requiring all the mobile devices to report their true energy link weights to

the wireless devices [98]. In [99], the authors formulated the multiple users’ decision mak-

ing problem of whether to offload or not as a prospect theory based on non-cooperative

game, and proposed a distributed computation offloading algorithm to reach the NE

of the game, with the need of edge server summarizing each user’s threshold value and

users making decisions one by one. In [100], a two-tier game-theoretic greedy offload-

ing scheme was proposed to study the computation offloading problem in ultra dense

IoT networks, while sharing messages with other devices. Besides, [102, 103] explored

non-orthogonal multiple access-enabled multiuser computation offloading scheme such

that the users were able to simultaneously offload their tasks to the BS over the same

time/frequency resources.

Moreover, the joint optimization problem of computation offloading and resource

allocation becomes aggravated when considering the randomness and dynamics of wire-

less networks, such as user mobility, uncertain channel quality, random task-arrival and

energy resources (if considering dynamic energy harvesting). By invoking Lyapunov opti-

mization, the authors in [46, 95, 104] studied dynamic computation offloading strategy

and resource allocation, to investigate power-delay trade-off under time-varying wireless

environment. Even though Lyapunov optimization was used to solve these problems, it

needs to decompose the optimization problem into different suboptimal problems and

solve them separately, besides that, it ignores the long-term consequences of the current

decisions. To address these challenges, the authors in [6, 74, 105] studied distributed

multiuser computation offloading problem by formulating it as a computation offload-

ing game using game theory, and then to solve the formulated game problem, iterative

algorithms were proposed to reach a NE. Moreover, a distributed scheme for each Cloud

Chapter 1. Introduction 17

Center (CC) to determine its data offloading and resource allocation strategy indepen-

dently based on MARL was proposed [106], where each CC is self-motivated to learn the

explicit models of other CCs.

MARL is focused on formulating models of multiple agents learning optimal strategies

while interacting with the dynamic environment. Compared to a single agent scenario

that the environment changes its state only based on the action of one agent, the new

environment state depends on the joint action of all the agents in multi-agent scenario.

The MARL has a few benefits: 1) Agents learn their strategies in distributed manners

with observing local environment information; 2) Agents can share experience by com-

municating with each other; 3) MARL is more robust if some agents fail to operate in the

multi-agent system, the rest agents can take over some of their tasks. The MARL was

popularly adopted to perform resource allocation in different wireless communication

networks [107, 108]. In [107], an MARL approach was proposed to explore stochastic

power adaption in cognitive wireless networks. A multi-agent dynamic resource alloca-

tion algorithm based on MARL has been proposed for multi-UAV downlink networks to

jointly design user, power level and sub-channel selection strategies [108].

1.3 Motivations and Contributions

Along with edge computing envisioned intelligent IoT networks, my PhD spans machine

learning based computation offloading and resource management for intelligent IoT net-

works with particular emphasis on RL techniques. The proposed algorithms are capable

of improving the efficiency of resource allocation with low complexity at IoT users and

achieving distributed learning. The detailed motivations and contributions of my PhD

research works are summarized as following.

1.3.1 Computation Offloading in Wireless Powered IoT Networks

To extract information from the collected data, the resource-constrained IoT devices

choose to offload all the collected data to the edge server for data processing, where the

Chapter 1. Introduction 18

number of IoT devices is always more than the access channels owned by the edge server

so that multiple IoT users have to compete for one access channel. Moreover, the IoT

devices are wireless powered by the RF signals to obtain continuous power supply, but

the dynamic energy arrival process brings another challenge for transmit power allocation

of the IoT users to offload their data. Therefore, how to allocate the access channels

to IoT users is important and the dynamic transmit power allocation along with the

dynamic energy arrival and environmental dynamics is needed.

Motivated by this, computation offloading in the wireless powered IoT networks is

formulated into a joint optimization problem of channel allocation and dynamic power

allocation. To make the formulated non-convex problem traceable, it is decomposed into

two phases including assigning the IoT users with the available channels and optimizing

transmit power allocation of the IoT users for its computation offloading to get solved

separately. In the first phase, an ECAA algorithm is proposed to assign access channels

to users, which is achieved by enabling the users to self-match with the available channels

based on matching theory. A many-to-one game is adopted to solve this channel allo-

cation problem, where each channel can be accessed by more than one user while each

user can only match with no more than one channel at a time. In the second phase, the

RL-based power allocation mechanism is proposed to learn the optimal transmit power

strategy for each IoT user since the dynamic power allocation process under the environ-

mental dynamics can be modeled as an MDP. Hence, both DP method and Q-learning

algorithm are exploited to learn the transmit power allocation strategy for the IoT user.

1.3.2 Computation Offloading in IoT Networks via Machine Learning

With the increasing of more powerful IoT devices, they can process some simple tasks

locally with their own processors and transmit the intensive computation tasks to the

edge server for better processing. In IoT networks, the heterogeneity of computation

resource, channel gain and intensive computation tasks at users makes them have distinct

offloading decisions. Since the edge sever has limited computation and communication

Chapter 1. Introduction 19

resource compared to the conventional cloud center, each IoT device has to make proper

computation offloading decisions by accounting for its remaining computation capacity

and the competition for resources from the edge server.

Inspired by the success of machine learning in NLP, gaming and robot control etc.,

machine learning techniques were also explored to deal with CSI prediction in wireless

networks and received good performance. Hence, this joint optimization problem of com-

putation offloading and resource allocation in the IoT networks is explored via machine

learning approaches. A centralized K-means based clustering algorithm is first proposed

to pre-process the computation offloading decisions of all the users, which is achieved

by grouping the users into different clusters according to user priorities. The clusters

with the highest and lowest user priority can be directly assigned as offloading cluster

and local computing cluster, respectively. For the other clusters, the users belonging

them then need more accurate computation offloading strategies and resource allocation

solutions. To address this, the decision making process of each user under dynamic task

arrival, its remaining computation capacity and environmental dynamics can be mod-

eled as an MDP. Therefore, a DQN-based computation offloading algorithm is proposed

to learn the computation offloading strategy and resource allocation solutions with the

objective to minimize the long-term system cost.

1.3.3 MARL for Multiuser Computation Offloading in IoT Networks

Along with exploring resource management schemes and computation offloading strate-

gies in IoT networks, both centralized algorithm and distributed algorithm are needed

to address this joint problem but only works by separating resource allocation of the

edge server. Another challenge of multiuser making computation offloading decisions

simultaneously and competing for limited resources (e.g., spectrum and computation

resource) from the edge server needs to be paid more attention. In this case, except for

the environmental dynamics, the decision making process of each user is also influenced

by the other users in the considered IoT network and their resource requests are coupled

Chapter 1. Introduction 20

at the edge server.

In order to investigate this multiuser computation offloading problem, my research

formulates it as a non-cooperative stochastic game where multiple selfish users are mak-

ing their own computation offloading decisions simultaneously to obtain the payoffs.

Then an MARL framework is exploited to provide intelligent computation offloading

and resource management solutions for users with distributed learning, where each user

is considered as a learning agent to learn its computation offloading strategy distribu-

tively by observing its local environment information without exchanging experience with

other users. Specifically, the observed reward of the user is defined by aggregating the

action effect of all the other users. Hence, an Independent Learners based Multi-Agent

Q learning (IL-based MA-Q) algorithm is proposed for each user to independently run

a Q-table to learn the optimal computation offloading strategy. Besides, an iterative

algorithm is proposed to obtain the computation offloading strategy by learning the idea

of the algorithm proposed in [6].

1.4 Thesis Outline

Chapter 2 provides an overview of the intelligent IoT networks, mainly focusing on

basic mathematical techniques including matching theory and machine learning, and the

basic knowledge of computation offloading schemes.

Chapter 3 investigates spectrum and power allocation for computation offloading in

wireless powered IoT networks. Here, an ECAA based on matching theory is proposed

to provide effective channel access schemes for IoT users. And then RL-based power

allocation mechanism is explored to learn the optimal transmit power strategy for the IoT

user under dynamic energy arrival and uncertain wireless communication environment.

Chapter 4 addresses the joint computation offloading and resource management

problem in IoT networks, where the IoT users make decisions on computation offloading

to offload the intensive computation tasks to the edge server while the rest simple tasks

Chapter 1. Introduction 21

can be processed locally at the IoT user. Here, the centralized K-means based clustering

algorithm is proposed to pre-process the computation offloading decisions of all the IoT

users by grouping them into different clusters according to user priorities. Then the

decision making process of each IoT user is considered in terms of the computation

capacity of the IoT user and the environmental dynamics, which is described as an MDP

so that a DQN-based computation offloading algorithm is proposed as the solution.

Chapter 5 focuses on the challenges of simultaneous multiuser computation offload-

ing because the IoT users are competing for communication and computation resource

in IoT networks, and formulates the simultaneous decision making process of multiple

users as a non-cooperative stochastic game with each user observing its local informa-

tion to minimize its long-term system cost. Then an MARL framework is presented to

solve this stochastic game and an IL-based MA-Q computation offloading algorithm is

proposed for each user to learn its optimal computation offloading strategy and resource

allocation solutions with its reward function defined by aggregating the action effect of

all the other users.

Chapter 6 draws the conclusions of this thesis and gives the possible future research

directions.

Chapter 2

Background

In this chapter, the basic mathematical techniques for resource allocation in IoT networks

are presented, including matching theory and machine learning techniques. Then, edge

computing with the benefits of distributed data processing, less network congestion and

less time delay in IoT networks are stated by introducing computation offloading schemes

and machine learning for computation offloading.

2.1 Matching Theory

2.1.1 The Preliminaries

Matching theory was first proposed in economics as a mathematical framework to describe

the mutually beneficial relationships of matching players in two distinct sets, depend-

ing on the individual information and preference of each player [109], which discussed

the matching problems in the following three classifications, one-to-one marriage prob-

lem, many-to-one college admissions problems [38] and many-to-many firms and workers

problem [110]. Matching theory can provide mathematically tractable solutions for the

combinatorial problem of matching players in two distinct sets.

The classical matching problem is a stable marriage problem. In this problem, a

22

Chapter 2. Background 23

set of women and a set of men are assumed to be the matching players. Each player

in the women (men) set builds an ordered preference list based on the preferences over

the men (women) set of players who she (he) finds acceptable. A matching is defined

as a marriage between one woman and one man. The notion of stability is essential to

the matching model, which refers to the case that no Blocking Pair (BP) exists in a

matching. A BP is defined as a pair (man, woman), in which both prefer to leave their

current partners and form a new marriage with each other. The Gale-Shapley algorithm

was first proposed to find the stable matching of the marriage problem, which is widely

deployed and has been customized to generate stable matchings in many other models.

According to the preferences of the players, matching problems can be formulated

into different type of matching models. The detailed descriptions are given as follows:

• Bipartite matching problems with two-sided preferences: the participating players

are divided into two distinct sets, in which the players in one set need to be matched

with the players in the other set, and each player has preferences over possible

matches. The example applications include labor market and new doctors in the

hospital.

• Bipartite matching problems with one-sided preferences: similarly, dividing the

participating players into two distinct player set, but this time only one set of

players rank the subsets of the members in the other set in order of preferences.

For instance, the applications include dormitory assignment and places in a public

school.

• Non-Bipartite matching problems with preferences: all the participating players

are forming a homogeneous set, in which any player ranks a subset of all the others

in order of preferences and it can be matched with any other. This is applied in

the chess tournaments and kidney exchanges.

Chapter 2. Background 24

2.1.2 Matching Theory for Wireless Resource Allocation

In wireless networks, the resource allocation problem can be formulated as a matching

problem between resources (e.g., power, channels and etc.) and users (e.g., devices, BSs

and etc) [111], which can be formulated into one-to-one, many-to-one or many-to-many

matching model. There is a limit on the maximum number of RBs (users) can be matched

for each user (RB). By given their individual objectives and learned information, e.g.,

transmission rate, it aims to optimally match RBs and users. Then each player (user

or RB) builds a preference list in order which represents the preferable player set of the

other set. Due to the uncertain and dynamic environment, applying matching theory in

wireless resource management is full of challenges. According to the characteristics of

the wireless environment, resource allocation problems based on matching theory can be

categorized into three classes as follows:

• Canonical matching: the player (e.g., RB or user) in one player set builds its

preference list only depending on the information of this player and the players

that it is intending to match. This can be used to match users with the orthogonal

RBs.

• Matching with externalties: here, the matching problem is formulated with “exter-

nalities”, which indicates the interdependence among the players’ preferences. For

instance, in an IoT network, when a user is matched with one channel, the other

users’ preference will change since the user can cause interference to the other users

using the same channel. Therefore, each user’s preference depends not only on its

own information but also on the other players matched to the same place. This is

highlighted as “peer effects”.

• Dynamic matching: in this case, the matching model with dynamics can solve the

dynamic problem that adapts the matching processes to the dynamic environment,

such as fast fading, mobility or time-varying traffic. Here, the preference of the

players might change over time. Hence, the time dimension has to be considered

Chapter 2. Background 25

to find the matching solutions. The dynamic matching can be considered as a

repeated matching game with the matching problem at each time epoch either

belonging to canonical matching or matching with externalties.

2.2 Machine Learning

2.2.1 Supervised and Unsupervised Learning

Supervised learning aims to build a mathematical model by analyzing a set of labelled

data that contains both the inputs and the desired outputs. With the supervised learning

algorithm, the mathematical model is inferred by analyzing the known training data set

in which each data sample is labeled. Hence, the learned mathematic model can be

applied to predict future events on new data set. Each training data sample, known

as the labeled sample, contains one or more inputs and the desired output. Generally,

the data samples are presented as an array or a vector, also called feature vector, then

the training data set is presented as a matrix. Through iterative optimization of an

objective function, supervised learning algorithms can learn an approximate mathematic

function that can be used to predict the output associated with new inputs. The classical

supervised learning algorithms includes active learning, classification and regression.

In contrast, unsupervised learning aims to extract structure from a set of data that

only contains inputs, such as clustering or grouping data points, here the data set is raw

data and not labeled, classified or categorized. It focuses on identifying commonalities in

the data and reacting based on the presence or absence of such commonalities in each new

piece of data. Some common unsupervised learning algorithms are including clustering,

anomaly detection, neural networks and etc. Cluster analysis is used to group or segment

datasets with shared attributes in order to extrapolate algorithmic relationships.

Clustering is the task that aims to group a set of objects into different clusters, where

the objects grouped into the same cluster have more similar features to each other than

those objects in other clusters. Clustering represents the process of the general task to be

Chapter 2. Background 26

solved, it does not denote one specific algorithm. It can be achieved by various algorithms

that differ significantly in their understanding of what constitutes a cluster and how to

efficiently find them. As listed above, clustering algorithms can be categorized based on

their cluster model, including hierarchical clustering, centroid-based clustering (k-means

clustering), distribution-based clustering and etc.

K-means clustering aims to group N observations (x1, x2, ..., xN) into H ≤ N clusters

C = {C1, C2, ..., CH}, in which each observation is a d-dimensional vector belonging to

the cluster with the nearest mean (e.g., cluster centers or cluster centroid), serving as

a prototype of the cluster. This is achieved by minimizing the within-cluster sum of

squares (i.e., variance), which is to find

arg min
C

H∑
h=1

∑
x∈Ch

‖x− ch‖2 = arg min
C

H∑
h=1

|Ch|VarCh, (2.1)

where ch indicates the mean of data points in cluster Ch.

2.2.2 The Preliminaries of RL Techniques

In this section, the basic theory of RL techniques is presented. RL is a branch of machine

learning algorithms, which enables agents to learn how to take actions in an interactive

process with the environment so as to maximize some notion of cumulative rewards.

The interactive process of agent and the dynamic environment can be described by the

mathematical framework, MDP, and almost all the RL problems can be formalized using

MDPs.

Specifically, a classical model-free RL algorithm, Q-learning, can deal with the stochas-

tic problems with no need of the explicit model of the environment. Q-learning combined

with function approximation makes it possible to adapt to problems with large state

action space. One popular solution is to use DNN as the function approximator, known

as DQN. To consider multiple agents learning, Markov games are used to formulate the

multi-agent problem instead of MDPs. A significant part of the research on multi-agent

Chapter 2. Background 27

learning concerns the RL techniques and raises the MARL framework.

2.2.2.1 MDP

An MDP is a stochastic control process under discrete time horizon, which provides a

mathematical framework for modeling decision making problems in situations where the

outcomes are partly random and partly under the control of a decision maker. It is

an extension of Markov chains with the characteristics of the probability of each event

depending only on the state attained in the previous event. The MDPs are appropriate

to formulate the optimization control problems under dynamic environment.

An MDP problem can be described by a 4-tuple (S,A,P, r), which includes a few key

parameters, S is a finite set of states, A is a finite set of actions, P(sk, sk+1) = Pr(sk+1 |

sk, ak) is the probability that the agent takes action ak in state sk at time slot k will lead

to state sk+1 at time slot k + 1, and r is the immediate reward received after transition

from state sk to state sk+1 taking action ak. The focus of the MDP problem is to find

an optimal policy π∗ that maximizes the expected long-term discounted sum of rewards

given as

E[

∞∑
k=0

λkr(sk, sk+1)], (2.2)

where λ is the discount factor satisfying 0 ≤ λ ≤ 1, which is usually close to 1. The

classical method used to solve the MDP problems is DP method.

2.2.2.2 DP Methods

There are two types of DP algorithms to solve the MDP problems: value iteration and

policy iteration.

Value iteration: known as backward induction, iteratively approximates the opti-

mal state value function V ∗(s). In each iteration k, it updates an approximation Vk(s)

Chapter 2. Background 28

of V ∗(s) by applying the following operation to each state s,

Vk+1 = max
a∈A

[r(sk, a) + λ
∑
sk∈S

P(sk, sk+1)Vk(sk+1)]. (2.3)

Policy iteration: it produces a sequence of policies that converge to an optimal

policy. It starts with an arbitrary initial policy, π0, and computes its value function

V π0 . Then the process repeats starting with π1 until it converges. Policy iteration’s

computational bottleneck is the necessity to evaluate a policy at each step, which requires

solving a system of |S| linear equations.

It is clear that these algorithms require a complete model of the MDP problem,

including the transition probabilities and the rewards. However, in practice, it is hard to

obtain the complete and accurate transition probability model, the agent only knows the

possible state and action set but is able to observe the current state from the environment.

In this case, the agent can actively learn the optimal policy through the experience of

interactions with the environment.

2.2.3 RL Algorithms

As mentioned before, if the transition probabilities and the rewards are unknown, the

agent has to learn the optimal policy through successively interacting with the environ-

ment. RL algorithms are superior to solve the MDP problems without assuming the

advanced knowledge of an exact mathematical model of the MDP. Moreover, the RL

framework can be modelled as an MDP problem with a 4-tuple (S,A,P, r). The learn-

ing process of the agent interacting with the environment in discrete time steps is shown

in Fig. 2.1. In time slot k, the agent observes a state sk and receives a reward rk from

the environment. It then chooses an action ak from the set of available actions, which is

subsequently sent to the environment. The environment moves to a new state and gener-

ates a new reward rk+1 associated with the transition (sk, ak, sk+1) is determined. There

are two categories of RL algorithms: model-based learning and model-free learning.

Chapter 2. Background 29

Environment

Agent

ActionRewardState

+1k
r

+1k
s

k
s

k
r k

a

Figure 2.1: The learning process of RL framework.

Model-based Learning: the agent interacts with the environment and obtains

experience from its interactions, then the agent tries to approximate the state transition

and reward models. Afterwards, given the models it learnt, the agent can use value-

iteration or policy-iteration to find an optimal policy.

Model-free Learning: the agent will not try to learn explicit models of the state

transition and reward functions. However, it directly derives an optimal policy from the

interactions with the environment.

2.2.3.1 Q-Learning Algorithm

Q-Learning is a classic model-free RL algorithm. It aims to learn a policy that tells an

agent to take actions under different environmental states. In this case, the agent does

not know anything about the model of the environment, and it focuses on learning what

are the good or bad actions to take by using trial and error experience. The basic idea of

Q-Learning is to approximate the state-action pairs, i.e., Q-function, from the samples of

Q(s, a) which is observed by interacting with the environment. During learning process,

Q(s, a) is initialized to be a possibly arbitrary fixed value. Then, at time step k, the

agent takes an action ak, observes a reward rk from the environment, and transits to a

new state s(k+1), so Q(s, a) is updated by calculating from the received reward rk. The

core of the algorithm is a simple value iteration update, using the weighted average of

Chapter 2. Background 30

State

Action

Q-value

Q-table

State-Action

--

--

--

--

--

--

--

Value

0

0

0

0

0

0

0

Q-learning

State

Deep Q-learning

Q-value action 1

Q-value action 2

Q-value action N

...

...

Figure 2.2: The comparisons of Q-learning and deep Q-learning algorithm.

the old value and the new information,

Qnew(sk, ak)← (1− α)Q(sk, ak) + α(rk + λmax
a

Q(sk+1, a)), (2.4)

where rk is the reward received by the agent when moving from the state sk to the state

sk+1, and α is the learning rate (0 < α ≤ 1). Q-learning is trained depending on building

a Q-table, which restricts it to adapt to the high dimensional problems with large state

action space. Therefore, more efficient techniques, such as function approximation and

distributed learning, are needed to address the curse of high dimensionality in Q-learning.

2.2.3.2 DRL Algorithm

DRL algorithm combines DL and RL techniques to explore efficient learning algorithms

that can be applied to many practical scenarios. Specifically, deep Q-learning, defined by

using DNN to approximate the Q-value function in Q-learning, is able to break the curse

of high dimensionality in Q-learning. The comparison of Q-learning and deep Q-learning

framework is shown in Fig. 2.2. But it is unstable with the nonlinear approximator,

DNN, due to the correlations presented in the sequence of observations. Hence, the

experience replay is used to remove the correlations by using a random sample of prior

Chapter 2. Background 31

Environment

Agent 1

+
1

1

1k
s

+
1

1

1k
r

+
2

2

1k
s

+
2

2

1k
r

+
2
1

N

k
s

+
1
1

N

k
r

Agent 2

1
k
s

1

1

k
r

Agent N

2

2

k
r

2

2

k
s

2

N
k
r

2

N
k
s

. . .

...

2

1

k
a

1

N
k
a

k
a

1

1

k
a

Figure 2.3: The framework of multi-agent RL framework.

actions instead of the most recent action to proceed.

2.2.3.3 MARL Algorithm

As mentioned above, an MDP is used to describe the decision making process of single-

agent scenario. However, in reality, there are generally multiple users interactively mak-

ing decisions together under uncertain system, this dynamic process can be described by

a stochastic game, also known as Markov game, which is a general extension of single

agent MDP. The RL techniques have been witnessed to be sensational in many prominent

sequential decision-making problems by solving the formulated MDP problem. There-

fore, to address the Markov game that including a multiuser decision making process,

an MARL framework is introduced. MARL can address the sequential decision-making

problem of multiple agents that operate in a common environment, each of which aims to

optimize its own long-term return by interacting with the environment and other agents

[112]. Compared to the single-agent scenario that the environment changes its state only

based on the action of one agent, the new environment state depends on the joint action

of all the agents in the multi-agent scenario as shown in Fig. 2.3. The MARL framework

is exploring the multiuser decision making problem under the following three settings,

• Cooperative setting- a fully cooperative setting is the case that all the agents share

Chapter 2. Background 32

Edge

Devices

Edge server Gateway

Data
Model

parameters

...

Computation

offloading

RL brain

Figure 2.4: The diagram of computation offloading in IoT networks.

a common reward function, r1 = r2 =, ...,= rN = r.

• Competitive setting- a fully competitive setting is typically modeled as a zero-sum

Markov game, i.e.,
∑

i∈N ri(s, a, s′) = 0 for any (s, a, s′).

• Mixed setting- a mixed setting is usually modeled as a general-sum game, where

no restriction is imposed on the goal and the relationship among the agents.

2.3 Edge Computing

Compared to a centralized cloud server, edge computing with its distributive charac-

teristics can support latency-critical services and a variety of IoT applications, which

requires the need of computation offloading schemes design. The diagram of computa-

tion offloading in IoT networks is presented in Fig. 2.4, the IoT devices could offload

their raw data to the edge for better data processing or offload machine learning model

parameters to the edge for model aggregation (e.g., federated learning). To obtain effi-

cient computation offloading, the computation offloading schemes with efficient resource

allocation need to be developed, which can be achieved by conventional optimization

and machine learning techniques.

Chapter 2. Background 33

2.3.1 Computation Offloading Schemes

The increasingly intelligent applications, like autonomous driving, seamless Virtual Real-

ity (VR) and Augment Reality (AR), surveillance and facial recognition, have high

demands on computation capacity, but most of these applications are operating on

resource-limited end devices, such as mobile phones are power-limited, sensors are in

small sizes and have slow processors and small amount of storage. Computation offload-

ing provides an alternative solution to enhance the end devices’ capabilities by migrating

computation tasks (e.g., programs) to more resourceful servers (e.g., edge servers and

cloud servers) [113]. Prior to 2000, researches were mainly focused on making offload-

ing feasible since it would take up extra bandwidth. Then time moves to early 2000s,

researchers moved the focus to develop algorithms for making offloading decisions, i.e.,

decide whether offloading would benefit mobile users. Therefore, cloud computing with

its elastic resources and multiple servers was the first enabler for computation offloading.

Moreover, the development of wireless communication technology and the exploration of

wideband frequency are another enablers for computation offloading by coping with the

bandwidth problem. However, cloud computing imposes huge overhead on radio resource

and backhaul of mobile networks, and introduces high latency since a large amount of

raw data needs to be transmitted to more powerful cloud servers that are, in terms of

network topology, far away from the end devices [114].

To address the problem of high time delay and network congestion, edge computing

was emerged to move resourceful devices (i.e., cloud servers) closer to users, i.e., to the

edge of the network. Compared to cloud computing where the cloud server is accessed

by internet connection, in the case of edge computing, the edge servers that support the

computation and storage resource are in proximity of the end users. Hence, edge comput-

ing can provide lower transmission delay. Moreover, cloud computing is fully centralized

with the cloud server usually placed at one or few locations, edge computing with many

edge servers placed at different locations is deployed in fully distributed manner. On the

other hand, edge servers can only provide limited computation and storage resource with

Chapter 2. Background 34

respect to cloud server. In this regard, the computation offloading brings a few chal-

lenges, such as, making decisions on computation offloading (e.g., offloading or not, when

and where to offload, what to offload), accurately estimating the energy consumption,

efficient resource management for simultaneous multiuser computation offloading.

To address the challenges imposed by computation offloading, computation offloading

scheme has been investigated to find the right decisions, i.e., to decide whether to offload

or not. Basically, a decision on computation offloading may result in different computing

model.

Local execution-all the computation tasks are executed locally at the end users. So

the offloading to the edge server is not performed.

Full offloading-users choose to offload all of their computation tasks.

Partial offloading-a part of computation tasks are executed locally while the others

are offloaded to the edge server according to the wireless environment, the available

resources of the system and the task complexity.

Furthermore, offloading computation tasks of the end users requires abundant spec-

trum resources or it might bring about the congestion of wireless channels [115]. There-

fore, resource allocation, such as computation, power and spectrum resource allocation,

is quite important for such types of resource-constrained networks. The current end users

are increasingly powerful and are able to process some simple computation tasks locally,

so the coordinative data processing between the end users and the edge servers needs to

be addressed. This relies on the design of dynamic computation offloading scheme for

the end users, i.e., the end users decide where to execute the computation tasks, at the

end users or the edge server.

Computation offloading problems have been explored by exploring the offloading

decisions for the users with the objective to minimize the execution delay, to minimize

the energy consumption at the end user while the pre-defined delay constraint is satisfied,

Chapter 2. Background 35

or to find a proper trade-off between both the energy consumption and the execution

delay.

2.3.1.1 Execution Delay Minimization

Offloading computation tasks to the edge server can meet the response time and real

time constraints, for instance, more complex applications are required and the processor

of the end user is too slow or even impossible to support the high demand for computa-

tion capacity. Moreover, when the applications that only can be achieved by analysing

multiple streams of data from different sources, computation offloading is irreplaceable.

Suppose the end user has m amount of computation for offloading, and let sl be the

computation speed of the end user, so the execution time delay of those computation

tasks at the end device is m
sl

.

If the computation task is offloaded to an edge server, the input data di from the

end user ui needs di
R seconds with the transmission rate as R to be transmitted to the

edge server. Let se be the computation speed of the edge server, so in this case, the time

delay includes two parts, the transmission time delay and the execution time delay1, is

given as di
R + m

se
.

The computation performance is improved by offloading only when this inequality is

satisfied,

m

sl
>
di
R

+
m

se
, (2.5)

when (2.5) is satisfied, the better choice for the end user is to fully offload data to the

edge server.

2.3.1.2 Energy Minimization

Since most of the end users are battery-powered, and with the emergence of energy

consuming applications, like VR, AR and video streaming, they are not able to support

1The transmission time delay of the downlink transmission from the edge server to the end device is
neglected since the computing result is in a small size and the transmit power of the BS is large.

Chapter 2. Background 36

those applications on their own. Computation offloading may extend the battery life by

migrating the compute-intensive computation tasks to the edge servers. Suppose P is

the operating power of the end user, so the energy consumed by executing task locally

is P × m
sl

.

Let Pt be the transmit power required to transmit data from the end user to the edge

server, after receiving data, the edge server processes it with the power Pe, so the total

energy consumption of computation task execution in this case is Pt × di
R + Pe × m

se
.

Similarly, the computation offloading saves energy only when the inequality is satisfied

P × m

sl
>Pt ×

di
R

+ Pe ×
m

se
, (2.6)

when (2.6) is satisfied, the user chooses to offload its computation tasks to the edge

server.

Moreover, the execution delay and energy minimization can be considered together as

the objective function of the computation offloading problem. A weighting factor is used

to balance the preference of minimizing the execution delay or minimizing the energy

consumption.

2.3.2 Machine Learning for Computation Offloading

Computation offloading has been investigated as a joint optimization problem of com-

putation offloading decision and resource allocation under the constraints of energy,

execution delay and computation capacity in dynamic wireless environment. This kind

of problem is generally formulated as a non-convex or an Non-deterministic Polynomial-

time hard (NP-hard) problem. The traditional methods, like decomposing the problem

into sub-problems and converting it to convex problem, as well as Lyapunov optimiza-

tion, have been tried to solve this problem. However, they have to solve the formulated

problem separately and only construct an approximately optimal solution or are infeasi-

ble for large-scale problem (e.g., massive users, fast-changing environment). Hence, the

Chapter 2. Background 37

learning methods with their successful performance in the areas, like NLP and speech

recognition etc. have drawn a lot of attention to be used to solve the dynamic and

complex computation offloading problem.

2.3.2.1 DL for Computation Offloading

In edge computing networks, the users can generate the random and exhaustive-based

optimal offloading strategies from its experience, which builds up the dataset with each

data sample recorded as the network state and its corresponding optimal offloading

strategy. Therefore, DL (e.g., DNN) could learn the optimal policy by training on

the labelled dataset, like the supervised learning. Moreover, in the multiuser scenario,

multiple parallel DNNs can be used to learn the offloading decisions for users with each

user generating its own labelled dataset distributively.

2.3.2.2 RL for Computation Offloading

The design of computation offloading strategies in IoT edge computing networks should

account for the wireless environmental dynamics, such as the time-varying channel qual-

ity, the task arrival and energy status of the end users, the limited computation resource

of both edge server and users, as well as the limited spectrum and radio resource. More-

over, this dynamic computation offloading process is frame-based, which can be viewed

as an MDP. Consequently, RL technique can enable the end user or the edge server to

become an intelligent agent that learns the optimal computation offloading decisions and

resource allocation solutions via a large number of trial and error interactions. Generally,

the classic model-free RL algorithm, Q-learning is adopted with no need of the explicit

models of the environment to solve the formulated computation offloading problem by

exploring its trail and error mechanism. It’s achieved by building and training the Q-

table to find the optimal computation offloading strategy. However, with the increase

of the network scale, like the user number and the considering resource dimensions, the

large Q-table training will be inefficient or even this RL algorithm won’t be able to cope

with.

Chapter 2. Background 38

DNN with its ability of function approximation has been demonstrated to efficiently

approximate Q-values of Q-learning algorithm, known DQN. Compared to DL-based

computation offloading, DRL-based computation offloading can exploit the context of

users and networks, and explore adaptive strategies to maximize the long-term system

performance (e.g., network throughput, or the negative reward, system cost). Moreover,

when the users want to independently take actions according to their own interests, the

design of an efficient distributed multiuser computation offloading mechanism can be

formulated as a Markov game. Then, the formulated multiuser computation offloading

game can be solve by using the MARL framework, where all the users are considered as

self-interested agents to learn their own computation offloading strategies by interacting

with the environment with the goal of maximizing their individually cumulative long-

term rewards.

2.3.3 Summary

This chapter presents the preliminaries of matching theory and its application in wireless

networks, and machine learning techniques including RL, DRL and MARL algorithms.

Moreover, the design of computation offloading schemes in IoT edge computing networks

are introduced, as well as machine learning for computation offloading is presented.

Chapter 3

Computation Offloading in

Wireless Powered IoT Networks

As mentioned in Chapter 2, computation offloading is a potential way to perform massive

data processing on the edge (cloud) server that is believed to have sufficient computation

resources. Here, the resource-limited IoT users can transmit all the collected data to

the central server for data processing (i.e., full computation offloading). Therefore, the

transmission process of all the IoT users has high demand on spectrum resource and the

available power. The successful computation offloading (e.g., uplink data transmission) is

essentially depending on efficient resource management, including spectrum, energy and

computation resource management. In this chapter, the spectrum and transmit power

allocation is investigated for computation offloading in wireless powered IoT networks.

An ECAA based on matching theory is proposed to provide effective channel access

schemes for the IoT users, which is superior to random channel assignment, and has

much lower computational complexity than the brute-force exhaustive search. Moreover,

the transmit power allocation is explored by both DP-based and RL-based algorithms to

obtain the optimal transmit power strategy, which achieves online power allocation and

has better performance than the offline scheme. The work presented in this chapter has

39

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 40

been published as a conference paper in 2019 IEEE/CIC ICCC [116] and as a journal

paper in IEEE Internet of Things Journal [117].

3.1 Objectives and Contributions

In [36], a one-to-one matching model with peer effects was discussed to match users with

RBs in D2D communications. Inspired by [36], due to data transmission of computation

offloading suffering limited channel access in IoT networks, matching theory could be

a potential way to address the channel allocation problem. In this scenario, each user

is taking up one channel at a time while each channel can be accessed by many users

using code domain multiplexing, but imperfect orthogonality will cause inference among

users. Therefore, many-to-one matching with peer effects could be used to address this

challenge. Moreover, the data transmission requires continuous power supply at the IoT

users, energy harvesting could provide promising solutions but pose new challenges due

to the dynamic energy arrival process. Even though the authors in [53] introduced a

first-order MDP to model the stochastic energy arrival and then obtained an optimal

policy of transmit power allocation by using DP method, the online optimal policy for

users to decide either on energy harvesting or data transmission with dynamic power

allocation has not been addressed. The main contributions of this chapter are stated as

following:

1. To address resource allocation problem of computation offloading in wireless pow-

ered IoT networks, the optimization problem of channel allocation and dynamic

power allocation is formulated. To make it traceable, the considered problem is

decoupled into two phases: i) assigning the IoT users to the available channels;

ii) optimizing transmit power allocation of the IoT users with dynamic energy

harvesting.

2. In the first phase, an ECAA is proposed to assign the access channels to the users,

which is achieved by enabling users to self-match with the proper channels based

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 41

on many-to-one matching theory with peer effects.

3. Within each channel, power allocation schemes are proposed to find the optimal

transmit power strategy for each IoT user, which uses MDP to model the transitions

of the available power in the battery and channel uncertainties, and then the MDP

problem is solved by both DP and RL approaches.

4. Numerical results demonstrate that the proposed ECAA achieves 80% of the opti-

mal performance while it has much lower computational complexity than the

exhaustive search approach. Moreover, the proposed power allocation scheme

achieves online transmit power allocation with higher throughput performance than

an alternative offline scheme.

3.2 Resource Allocation of Computation Offloading in Wire-

less Powered IoT Networks

3.2.1 System Model

In this chapter, an IoT network is considered, in which the IoT users transmit all the col-

lected data to the gateway for data processing (i.e., full computation offloading), where

the gateway is assumed to be able to provide sufficient computation resources for data

processing. Assuming there are M channels can be accessed by UT IoT users. Each

user is assumed to be equipped with RF energy harvester and it is configured with a

finite-capacity rechargeable battery. The user is assumed to harvest energy from ambi-

ent environment, such as wireless power beam or broadcasting TV signals, as shown

in Fig. 3.1. Each user wakes up for data transmission when it starts sensing data and

requests for data processing. The number of active users is U , and the users are dis-

tributed uniformly in a circle in the coverage area of the gateway. The channel set and

the IoT user set are denoted as L = {l1, . . . , lm, . . . , lM} and U = {u1, . . . , ui, . . . , uU},

respectively. The bandwidth of each channel lm is set as Bm Hz.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 42

1 2 M...

Phase 1: channel assignment Phase 2: power allocation

Data transmission
LoRa users are equipped with

rechargeable battery

Figure 3.1: The system model of wireless powered IoT networks.

1

..
.

k

..
.

K

..
.

..
.

Communication or energy harvesting timeslot

Preserved timeslot

, ,

, ,

A k th k

m i m i
P P�

2
F

Yes

No

Data

transmission

Energy

harvesting

Figure 3.2: The proposed timeslot structure for each wireless powered IoT user.

In the considered scenario, both the gateway and the IoT user are equipped with a

single antenna as defined in [9]. Each time frame F is partitioned into different time

slots which are used for channel allocation, energy harvesting and data transmission as

shown in Fig. 3.2. The considered IoT system is working on time frame structure, and all

the users adopt the harvest-then-transmit protocol. Specifically, each frame is assumed

to have K slots, indexing k from 1 to K. In each frame F , assuming there are t time

slots used for data transmission. Except for the first several time slots used for channel

allocation, the remaining slots are dynamically assigned to users for data transmission

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 43

or energy harvesting.

The available battery power of user ui in time slot k is set as PA,km,i , ∀m, the required

power threshold for data transmission is denoted by P th,km,i . It is noted that only when

PA,km,i > P th,km,i , the user starts transmitting data, otherwise it is harvesting energy in time

slot k. Let PH,km,i denote the amount of power harvested by user ui in time slot k, which

is varying over time, so it is defined that PH,km,i can randomly get a value from a set

PH,k = [PH,k1 , ...PH,kq ..., PH,kQ] including Q possible values. Denote the battery capacity

as PAmax with the transmit power of ui satisfying P km,i ≤ PAmax < +∞. Then the available

battery power in time slot k is presented as

PA,k+1
m,i = min(PA,km,i − P

k
m,i + PH,km,i , P

A
max). (3.2.1)

Since the time slots are discretized and used for data transmission or energy harvesting

as shown in Fig. 3.2, the update of available power at each time slot as given by (3.2.1) is

reformulated into two cases. When the time slot k is used to harvest energy, the transmit

power is P km,i = 0, (3.2.1) can be expressed as

PA,k+1
m,i = min(PA,km,i + PH,km,i , P

A
max). (3.2.2)

But when it is used for data transmission, the harvested power becomes PH,km,i = 0, (3.2.1)

can be expressed as

PA,k+1
m,i = min(PA,km,i − P

k
m,i, P

A
max). (3.2.3)

3.2.2 Problem Formulation

In the considered IoT network, there are U active IoT users trying to transmit their data

to the gateway. The channel gain hkm,i over the time slot k in channel lm is given by

hkm,i = gkm,iηm‖dm,i‖
−a, (3.2.4)

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 44

where gkm,i presents the small-scale fading parameter of the channel lm which is assumed

to be Rayleigh fading channel, ηm is a constant related to the path loss of communication

link in lm. The distance between the gateway and IoT user, ui, is denoted by dm,i, and

it will not change over different time slots because all the users are assumed static in the

network. The path loss exponent a is decided by the carrier frequencies and environment

conditions. Therefore, the signal power received at the gateway over lm is presented as

ykm =
U∑
i=1

αm,iP
k
m,ih

k
m,i + σ2m, (3.2.5)

where the noise is assumed to be Additive White Gaussian Noise (AWGN) with the

power as σ2m, P km,i denotes the uplink transmit power of user ui when transmitting over

channel lm. αm,i indicates whether lm is assigned to user ui, which can be defined as

αm,i =

1, ui occupies lm,

0, otherwise.

(3.2.6)

Let Im denote the number of users assigned to lm, i.e., Im =
U∑
i=1

αm,i. The uplink SINR

for user ui transmitting over channel lm in time slot k can be calculated as

γkm,i =
P km,ih

k
m,i

σ2m +
Im∑

z=1,z 6=i
P km,zh

k
m,z

, ∀ m, i, k, (3.2.7)

where the interference is introduced due to imperfect orthogonal code domain multiplex-

ing (e.g., adopting different SFs in LoRa).

Given any user, ui, its achievable accumulative data rate in lm over the time slot k

can be given by

Rkm,i = Bmlog2

(
1 + γkm,i

)
, ∀ m, i. (3.2.8)

The objective is to maximize the network throughput while increasing resource allocation

efficiency for wireless powered IoT networks under dynamic environment. Then the

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 45

problem can be formulated as

(P3.1) max
αm,i, t, Pk

m,i

t∑
k=1

U∑
i=1

αm,iR
k
m,i(P

k
m,i), (3.2.9a)

s.t. C1 : 0 ≤ P km,i ≤ P
A,k
m,i , ∀ m, i, k, (3.2.9b)

C2 : t ∈ {1, ...,K}, (3.2.9c)

C3 : αm,i ∈ {0, 1} , ∀ m, i, (3.2.9d)

C4 :
∑
m

αm,i ≤ D, ∀ i, (3.2.9e)

C5 :
∑
i

αm,i ≤ 1, ∀ m, (3.2.9f)

where C1 denotes value range of the transmit power for any user ui over lm in time slot

k, PA,km,i is the available battery power at the beginning of time slot k, and it is decided

by (3.2.1). In C2, t is the number of time slots allocated to transmit data in the time

frame F . In C3, αm,i is either 0 or 1. There are at most D users can be assigned to the

same channel lm, which is shown in C4, and C5 restricts that one user at most can be

allocated to one channel.

It is noted that the problem (P3.1) involves integer programming as shown in C2,

the binary constraints as well as stochastic constraint in the objective function, so it

is obviously a non-convex problem. As a result, there is no efficiently computational

approach to solve the optimization problem (P3.1) directly. Thus, from Fig. 3.1, this

optimization problem is decomposed into two phases and then solved separately. In the

channel allocation phase, all the IoT users are self-matched with the available channels.

For simplicity, the matching game is considered static in each time frame, which is

performed in the beginning of the frame and is independent of the time slot k in each

time frame. Then, the dynamic power allocation algorithms are proposed for the wireless

powered users, in which the user either transmits data or harvests energy in the rest time

slots until the end of the time frame F . In the next time frame F +1, the active users for

data transmission are changed, then the channel-user matching problem will be explored

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 46

again. This can be achieved by formulating a new matching game or modifying the

current matching [118].

3.3 Matching based Channel Allocation

From Fig. 3.2, assuming the matching based channel allocation is performed in time

slot k = 0. For simplicity, in this section, the time slot index is removed. Each user is

assumed to transmit data to the gateway using the same transmit power. To guarantee

the fairness of all the users, the sub-problem of channel allocation is converted to a

max-min problem, which is presented as

(P3.2) max
αm,i

min Rm,i, subject to C3, C4, and C5. (3.3.1)

Noted that (P3.2) is NP-hard, so an ECAA is proposed with low complexity based

on matching theory to solve it. The proposed ECAA reduces the probability of re-

transmission since channel conflicts between any two users are eliminated, which extends

the battery life of users. In the proposed algorithm, the IoT user set, U , and the channel

set, L, are considered as two disjoint sets of selfish players which only focus on maximizing

their own utilities. Moreover, assuming the CSI is known 1, that is, each user is aware

of the CSI of other users. More details of the proposed algorithm will be discussed in

Section 3.3.2.

The utility of user ui, R
uti
ui , is defined as the minimal transmission rate among those

channels it occupies Ji at time slot k, which is expressed as

Rutiui = min
(
Bmlog2(1 + γkm,i)

)
, ∀ m ∈ Ji. (3.3.2)

Similarly, the utility of lm, Rutilm denotes the minimal transmission rate from the set of

1The CSI is recorded at the gateway after it receives the requests from users and it is broadcasted to
all the users in the next downlink data package.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 47

users, Im, which share the same channel lm at time slot k, can be described as

Rutilm = min
(
Bmlog2(1 + γkm,i)

)
, ∀ i ∈ Im. (3.3.3)

3.3.1 Many-to-One Matching

The basic theory of the many-to-one matching model is introduced to address channel

allocation problem [119] in this section.

3.3.1.1 Matching Pair

In this chapter, a matching game can be considered to match channels in the channel

set L with users in the user set U , the formal definition is given in the following.

Definition 3.1. By giving two disjoint sets, the channel set L and the user set U , a

many-to-one matching Φ is defined to map the channel set L to the user set U including

all subsets of L ∪ U so that for each lm ∈ L and ui ∈ U :

1) Φ (lm) ⊆ U ;

2) Φ (ui) ⊆ L;

3) |Φ (ui)| ≤ 1;

4) |Φ (lm)| ≤ D;

5) lm ∈ Φ (ui)⇔ ui ∈ Φ (lm).

The meanings of the aforementioned conditions are as follows: 1) lets each channel, lm,

match with a subset of users, U ; 2) lets each user, ui, match with a subset of channels, L.

3) implies that at most one channel can be allocated to each user; 4) restricts the number

of users assigned to one channel cannot exceed D; 5) denotes the defined matching pair.

Remark 1. From Definition 3.1, the formulated matching game is a many-to-one

problem with peer effects.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 48

Proof. In the considered IoT network, each user can only be assigned to no more than

one channel, and each channel can be assigned with more than one users, so this is a

many-to-one matching game. Due to the interference component in (3.2.7), the date

rate achieved by an arbitrary user, ui, over its occupied channel, lm, related to the set of

other users sharing the same channel. Thus, each user cares not only about the channel

it is matched with, but also the set of users that are assigned into the same channel.

Similarly, for each channel it not only manages the individual user with which to match

with, but also the subset of users that have inner-relationships through code domain

multiplexing. Thus, this can be formulated as a many-to-one matching game with peer

effects, in which each player tries to maximize their own utilities [120].

3.3.1.2 Preference Relations

In this part, a preference relation, �, is defined to illustrate competition behaviors and

decision making for both users and channels. Particularly, given any user, ui ∈ U , its

preference �ui between any two channels, lm ∈ L and lm′ ∈ L with m 6= m′, is presented

as

(lm,Φ)�ui
(
lm′ ,Φ

′)⇔ Rm,i (Φ) > Rm′,i
(
Φ′
)
, (3.3.4)

where lm ∈ Φ (ui), lm′ ∈ Φ′ (ui). This definition implies that user ui prefers lm in Φ to

lm′ in Φ′ if lm can provide higher transmission rate than lm′ . Likewise, given any channel

lm, its preference �lm between any two set of users, SU ∈ U and SU ′ ∈ U , is derived as

(SU ,Φ)�lm
(
SU ′ ,Φ′

)
⇔ Rm,i (Φ) > Rm,i′

(
Φ′
)
, (3.3.5)

where SU ∈ Φ (lm) and SU ′ ∈ Φ′ (lm).

3.3.1.3 Swap Matching

From the matching game, the swapping behaviours of players are defined as that each

pair of players is supposed to swap their matching but do not change any other players’

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 49

assignment. Therefore, the detailed concept of swap-matching to better explain the

interdependency of players’ preference is given as in the Definition 3.2.

Definition 3.2. Given a matching Φ with lm ∈ Φ (ui), lm′ ∈ Φ (ui′), lm /∈ Φ (ui′), and

lm′ /∈ Φ (ui), a swap matching Φ′ = {Φ\ {(ui, lm) , (ui′ , lm′)}} ∪ {(ui, lm′) , (ui′ , lm)} is

defined by lm ∈ Φ′ (ui′), lm′ ∈ Φ′ (ui), lm /∈ Φ′ (ui), and lm′ /∈ Φ′ (ui′).

It is noticed that the swap matching defines a matching generated by a swap oper-

ation. For example, two users exchange their matched channels while keeping all other

users’ channel assignment the same. Based on the definition of swap matching, the

swap-blocking pair is defined as follows.

Definition 3.3. Given a user pair (ui, ui′) that is matched for a given matching Φ, if

there is lm ∈ Φ (ui) and lm′ ∈ Φ (ui′) such that ∀n ∈ {ui, ui′ , lm, lm′}, Rutin (Φ′) ≥ Rutin (Φ)

and ∃n ∈ {ui, ui′ , lm, lm′} such that Rutin (Φ′) > Rutin (Φ), so the swap matching Φ′ is

defined, and (ui, ui′) is defined as a swap-blocking pair in Φ.

The success of a swap matching operation implies that the utility of an arbitrary

player, i.e., Rutiui or Rutilm as shown in (3.3.2) and (3.3.3), does not decrease, moreover, at

least the utility of one player is increased. Noted that both the users and the gateway

can initialize the swap operation because the utilities of them are directly relevant to the

data transmission rate.

Definition 3.4. If a matching Φ is not blocked by any swap-blocking pair, it is defined

as two-sided exchange-stable (2ES) [120].

3.3.2 Efficient Channel Allocation Algorithm

In this section, an ECAA based on matching theory is proposed, which has low complex-

ity and is able to match the users with the available channels. The ECAA aims to look

for a 2ES matching used for channel allocation after finishing a few swap operations.

Furthermore, the battery life of users is extended since the ECAA has low computation

complexity.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 50

Algorithm 3.1: Efficient channel allocation algorithm

Initialization
Generate the initial matching Φ0 by Algorithm 3.2.

Optimal algorithm
1: while ∃ (ui, ui′) blocks current matching do
2: for ∀ui ∈ U do
3: for ∀ui′ ∈ {U\ui} with lm ∈ Φ (ui) and lm′ ∈ Φ (ui′) do
4: if (ui, ui′) is a swap-blocking pair and C2 − C4 are satisfied then
5: ui exchanges its match lm with ui′ ’s match lm′ .
6: Update Φ.
7: end if
8: end for
9: end for

10: end while
11: return final matching Φ.

Algorithm 3.2: Initial matching algorithm

Initialization Set of unmatched users	UM = U , αm,i = 0, proposal indicator βm,i = 0,
∀ m, i.

1: Calculate preference list of each user PLui , ∀ ui ∈ U .
2: Calculate preference list of each channel PLlm , ∀ lm ∈ L.
3: while 	UM 6= ∅ do
4: for ∀ui ∈ U do
5: ui proposes to its first preferred channel that it has not been rejected before.
6: Update βm,i = 1 if ui proposes to lm.
7: end for
8: for ∀ lm ∈ L do
9: if

∑
i

(αm,i + βm,i) ≤ D then

10: lm accepts all proposals from LoRa users.
11: else
12: lm accepts proposals from the D most preferred users.
13: end if
14: Update 	UM by removing all the matched ui.
15: Remove lm from PLui if βm,i = 1.
16: Update Φ0 with αm,i = 1 for all the matched ui.
17: end for
18: end while
19: if there are vacant channels, lm then
20: Match lm with its first preferred user.
21: Update Φ0.
22: end if
23: return Φ0.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 51

From Algorithm 3.1, the ECAA is proposed including initialization algorithm and

swap matching algorithm. In the initialization step, an initialization algorithm is pro-

posed to generate the initial matching, Φ0, which is illustrated in Algorithm 3.2.

Assuming each user transmits data using the same transmit power. The preference list,

i.e., the available channels, of each user is constructed based on the CSI. For example,

given ui, the channel lm with the best CSI, i.e., m = arg max
∀m

hm,i is defined as the

user’s first preference. The preference list is initialized at the gateway for each user by

calculating the distance between them and the gateway, that is, the highest preferred

user is the closest one. This is because in the considered IoT networks, the achieved

transmission rate is mainly affected by the large-scale channel fading. Therefore, each

user chooses its first preferred channel from its preference list, and only the proposals

of the first D users in the preference list are accepted by each channel. Only when all

the users are matched with a channel, this process can be stopped. Specifically, if the

channel is not matched with any user, we force it to match with its first preferred user,

which is used to improve the minimal achievable data transmission rate. We return the

initial matching Φ0 and consider it as an input for Algorithm 3.1.

In the swap-matching algorithm, users keep looking for swap-blocking pairs, while

the utilities of both players are guaranteed not to decrease and at least the utility of

one player, i.e., the user or the channel, will increase. The swap operation carries out

if only one swap-blocking pair appears in the present matching game. The process of

searching and swap operation is stopped when reaching the ultimate matching state.

Then after Algorithm 3.1 returning the channel access decision, the preferred channel

lists of active users are renewed.

A few theorems have been derived from the proposed ECAA, which are as follows.

Theorem 1. Stability: in the ECAA, the ultimate matching is a 2ES matching.

Proof. For the proposed ECAA, if the final matching Φ contains at least one more swap-

blocking pair, at least the utility of one player can be reformative and the utilities of

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 52

other arbitrary players will not be reduced. Nevertheless, if any pair of players blocks

the current matching, Φ, the ECAA will not stop, that is, Φ can not be considered as the

final matching, so it will cause conflicts between players. As a result, the final matching

Φ is defined as 2ES .

Theorem 2. Convergence: after performing swap operations a finite number of times,

ECAA is converged to the final matching, 2ES .

Proof. For the proposed ECAA, it performs finite swap operations since there are lim-

ited number of players and each channel is restricted to accept finite number of users.

Furthermore, each swap operation will make the achieved minimal transmission rate of

each channel increase. The stop condition of the swap operations is defined as when the

transmission rate is satisfied in the worst case. This is because there is an upper bound

for the achievable transmission rate of each channel since the spectrum resources is lim-

ited. As a result, the proposed ECAA is converged to the stable state after performing

swap operations a finite number of times.

Theorem 3. Complexity: there exists an upper bound of the computational complex-

ity for the proposed ECAA, which is calculated by O
(
MU + 1

2IDU (M − 1)
)
.

Proof. From Algorithm 3.1 and 3.2, the ECAA is proposed including the initial match-

ing as well as the swap operations, so its computational complexity is made up of two

parts. In the first part, the worse case that all the users are proposed to all the avail-

able channels is considered. In this case, the computational complexity is calculated by

O (MU).

In the second step, both the number of iterations in the algorithm, ECAA, and

the swap operations in each iteration are contributed to the computational complexity.

Nevertheless, it takes finite iterations, I, to reach the final matching 2ES though there

are no closed-form expressions, which is proved in Theorem 2. In each iteration, given

any user ui, M − 1 possible swap-blocking pairs are generated since the gateway has M

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 53

channels to access and each user only occupies one channel at most. There are at most

D users are allocated to the selected channel lm. Thus, there are at most D (M − 1)

possible combinations of a swap matching Φ giving any user ui. The proposed ECAA

needs to consider at most 1
2DU (M − 1) swap matchings in each iteration. As a result,

the upper bound of the complexity in the second step is denoted by O
(
1
2IDU (M − 1)

)
.

In conclusion, the upper bound of the computational complexity of our proposed

ECAA is calculated as O
(
MU + 1

2IDU (M − 1)
)
.

It is easily noticed that the ECAA has much lower complexity than the brute force

exhaustive-search approach in which the computation becomes more and more compli-

cated, even is increasing exponentially with the increasing number of active users, U .

3.4 RL-based Power Allocation

After performing the ECAA, the users are matched with one of the available channels.

For those users allocated to the same channel, the optimal orthogonal code domain mul-

tiplexing scheme is performed to eliminate the interference among them [121]. Therefore,

the interference component is removed from (3.2.7), so the SNR of the uplink transmis-

sion for user ui can be computed as

γkm,i =
P km,ih

k
m,i

σ2m
, ∀ m, i, k. (3.4.1)

Then, the optimization problem (P3.1) is converted as

(P3.3) max
Pk
m,i, t

t∑
k=1

U∑
i=1

Rm,i(P
k
m,i), (3.4.2a)

s.t. C1 : 0 ≤ P km,i ≤ P
A,k
m,i , ∀m, i, k, (3.4.2b)

C2 : t ∈ {1, ...K}. (3.4.2c)

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 54

Since there is no interference for the uplink data transmission of the users, the network

throughput maximization can be converted to maximize the achievable rate of each indi-

vidual user. Take ui as an example, to maximize its transmission rate, the dynamic

power allocation considering both uncertain channel conditions and random energy har-

vesting process is explored. The data transmission and energy harvesting process are

assumed to be performed separately in different time slots, that is, the transmit power

P km,i = 0 when the time slot k ⊆ Kh is allocated to harvest energy; correspondingly,

the harvested power PH,km,i = 0 when the time slot k ⊆ Kd is used to transmit data.

Moreover, Kh∪Kd = K, where K presents the set of all the time slots in each time frame

F except for the reserved time slots for channel allocation. In this chapter, the transmit

power allocation is optimized over all the time slots while the time slot used for energy

harvesting can be considered as fixed power allocation with the transmit power P km,i = 0.

A pre-defined transmit power threshold P thm,i is used to enable data transmission at the

user. So the optimization problem is converted into

(P3.3.1) max
Pk
m,i

Rm,i(P
k
m,i), (3.4.3a)

s.t. C1 : P thm,i ≤ P km,i ≤ P
A,k
m,i , ∀m, i, k ⊆ Kd, (3.4.3b)

C2 : P km,i = 0, ∀m, i, k ⊆ Kh, (3.4.3c)

where C1 indicates the value range of the transmit power when the time slot is used

for data transmission, and C2 denotes the case that the time slot is used to harvest

energy. Since it is hard to know the complete information about channel conditions and

available battery power in the future time slots, here, assuming that only some stochastic

information of the harvested power PH,km,i and the channel gain hkm,i for future time slots

are available. In this case, the IoT user makes decisions on data transmission or energy

harvesting as well as how much power for data transmission over time slots, during this

process, the transitions of channel conditions and available battery power have Markov

property. Therefore, a finite-horizon MDP is used to model the joint random process of

PH,km,i and hkm,i, and then two power allocation algorithms are proposed by exploiting DP

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 55

method and Q-learning algorithm.

Assuming the channel information is only available in current time slot, that is, hkm,i

is known at time slot k. Note that the amount of harvested energy in time slot k is

unavailable until the end of the time slot, i.e., it will be known at time slot k+ 1. Thus,

the channel gain and the energy arrival process are modelled by first order Markov model.

The transition probabilities of them are defined as Pr(P
H,k
m,i |P

H,k−1
m,i) and Pr(h

k
m,i|h

k−1
m,i),

respectively. Since the energy harvesting process and the channel gain transition are

independent, the joint probability density function is given by

P(PH,k−1m,i , hkm,i) = Pr(P
H,k−1
m,i |PH,k−2m,i)Pr(h

k
m,i|h

k−1
m,i). (3.4.4)

As shown in (3.2.1), the available power PA,km,i in time slot k depends on its last state

PA,k−1m,i , which also can be modelled as a first order Markov model. Then, the system

states in time slot k is defined as

skm,i = (PA,km,i , P
H,k−1
m,i , hkm,i), (3.4.5)

where skm,i indicates the state of user, ui, assigned into channel, lm, it consists of the

available battery power, PA,km,i , and the channel gain, hkm,i, in the current time slot k,

as well as the harvested power, PH,k−1m,i , in the previous time slot k − 1. Based on the

current state, skm,i, at time slot k, the user decides to transmit data with power P km,i.

That is an action taken at time slot k from its feasible set Am,i

Am,i = {P thm,i ≤ P km,i ≤ P
A,k
m,i and P

k
m,i = 0}, ∀m, i, k. (3.4.6)

The threshold power P thm,i is set to enable data transmission at user ui, which makes the

action space reduced. This means the time slots that are waiting for data transmission

become available for energy harvesting. And the action P km,i = 0 means the user ui

chooses to harvest energy in time slot k.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 56

The objective is to obtain an optimal policy π∗ that maximizes the accumulative

expected network throughput over the K time slots for each user. By giving an initial

state, s0m,i, the optimal value function can be calculated as

V ∗ = max
π∈

∏
K∑
k=1

E{Rkm,i|s0m,i, π}, (3.4.7)

where E indicates the statistical expectation of channel gain and the harvested energy

under the transition probabilities. Then the optimization problem is represented as

(P3.3.2) max
πk

E{[
K∑
k=1

Rkm,i]|P}, (3.4.8a)

s.t. C1 : P thm,i ≤ P km,i ≤ P
A,k
m,i , ∀m, i, k ⊆ Kd, (3.4.8b)

C2 : P km,i = 0, ∀m, i, k ⊆ Kh, (3.4.8c)

where P is the state transition probability matrix. In general, this optimization prob-

lem is impossible to be solved independently in each time slot because of the causality

constraints on the variables. Then, the DP method is used to solve this problem in the

next section.

3.4.1 DP-based Power Allocation Algorithm

In practice, the state transition probability matrix P can be obtained by experiments,

which is assumed to be known here. Therefore, the optimization problem (P3.3.2)

can be solved by formulating it as a DP problem. To solve the DP problem, Bellman’s

equations are introduced [122]. Then it is expressed as the backward recursive equations,

which starts from k = K to k = 1.

For k = K,

VK(sKm,i)) = max
aKm,i

RKm,i, (3.4.9)

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 57

and for k = K − 1, ..., 1,

Vk(s
k
m,i)) = max

akm,i

rkm,i + V̄k+1(s
k
m,i, P

k
m,i), (3.4.10)

where the second term contains the future reward information from the time slot k + 1

to K, which is presented as

V̄k+1(s
k
m,i, P

k
m,i) = Eskm,i

{Vk+1(s
k+1
m,i)|P, skm,i}, (3.4.11)

where Eskm,i
presents the statistical expectation of all the possible states in future time

slot k + 1 given the current state skm,i and the transition probability matrix P. (3.4.11)

is considered as the optimal system throughput obtained from the future time slots. It

means this problem is to maximize the cumulative network throughput from the current

time slot to the last time slot resulted from the current state and the current policy.

In order to solve this problem, the backward induction method based on the Bellman’s

equations is adopted. Then, a DP-based power allocation algorithm is developed for each

IoT user. In Algorithm 3.3, the initialization phase initializes user set allocated to the

same channel according to the ECAA. Then the DP-based power allocation algorithm

is performed, which includes two steps: planning step and transmission step. In the

planning step, a look up table is built up to record the optimal policy π∗, that is, the

optimal sequence of transmission power from the time slot K to 1 over all the possible

states skm,i = (PA,km,i , P
H,k−1
m,i , hkm,i). By using backward induction method, it starts

from the final time slot K, in which all the available power in the battery should be

used, i.e., PKm,i = PA,Km,i . Then (3.4.9) is solved for all the possible values of PA,Km,i , h
K
m,i.

Afterwards, for k = {K − 1, ..., 2, 1}, the (3.4.10) is calculated recursively for all the

possible states. In the transmission phase, the current state skm,i is known at time slot k,

then comparing the available battery power with the pre-defined threshold to determine

if the data transmission is enabled in this time slot. As a result, the optimal policy π∗

during the time frame is obtained, that is, each user knows the optimal transmit power

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 58

Algorithm 3.3: DP-based power allocation algorithm

Inputs:
IoT users are assigned with one of the available channels according to ECAA.

Optimal algorithm
1: Planning phase

2: Set k = K, calculate VK(sKm,i),

∀sKm,i = {PA,Km,i , P
H,K
m,i , h

K
m,i}, using (3.4.9)

3: for k = K − 1 : 1 do
4: Calculate Vk(s

k
m,i) using (3.4.10), ∀PA,km,i , P

H,k
m,i

5: end for
6: Transmission phase

Initializing PA,km,i , hkm,i, P
H,k−1
m,i

7: for k = 1 : K do
8: if PA,km,i > P thm,i then

9: Finding ak∗m,i ∈ Am,i that maximizes Vk(s
k
m,i) from the planning phase, that is,

PH,km,i = 0
10: else
11: The user harvests PH,km,i amount of power, and the optimal policy in time slot k

ak∗m,i = 0
12: end if
13: IoT user ui consumes transmit data to the gateway with the transmit power from

π∗ in time slot k
14: Update the available power PA,k+1

m,i in the battery through (3.2.1)
15: end for
16: return π∗, ∀k

at each time slot.

3.4.2 Q-Learning based Algorithm

To solve MDP problem, RL techniques can find the optimal policies without knowing an

explicit model of the environmental dynamics, that is, the state transition probability

P(sk+1
m,i |skm,i, P km,i) is unknown or even non-stationary. Therefore, the agent, each IoT

user can learn from the interactions with the environment to make decisions on transmit

power, data transmission or energy harvesting in each time slot. The formulated dynamic

power allocation problem is a classic single-agent finite-horizon MDP problem. In the

last section, the optimization problem is solved by DP method using backward induction

method which has to know the explicit model of the environment dynamics in advance.

In this section, a classic model-free RL algorithm, Q-learning algorithm, is considered to

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 59

explore the dynamic power allocation under uncertain channel conditions and dynamic

energy harvesting process by maximizing the long-term network throughput.

The Q-value, Q(s, a), is defined as the expected cumulative discounted throughput

when taking an action ak ∈ A following a policy π for a given state-action pair (s, a).

Therefore, the action-value function Q(s, a) is given by

Q(s, a) = Eπ[rk+1 + λQπ(sk+1, ak+1)|sk = s, ak = a]. (3.4.12)

To solve the dynamic power allocation problem with Q-learning algorithm, let Rkm,i

denote the obtained reward in time slot k, and Q(skm,i, a
k
m,i) denote the calculated

throughput for any given state skm,i and action akm,i. A Q-table is built up to save

all the possible Q(skm,i, a
k
m,i). And Q(skm,i, a

k
m,i) is updated in each time slot if the

new Qnew(skm,i, a
k
m,i) is larger than the current value. The Q(skm,i, a

k
m,i) is updated

incrementally based on the current throughput and the cumulative discounted Q-value

Q(sk+1
m,i , am,i),∀am,i ∈ Am,i in the next time slot k + 1.

The one-step Q-update equation is given by

Qnew(skm,i, a
k
m,i)← (1− α)Q(skm,i, a

k
m,i) + α(Rkm,i + λmax

Pm,i

Q(sk+1
m,i , am,i)), (3.4.13)

where Rkm,i is the throughput calculated from the current state, α is the learning rate

(0 < α ≤ 1). Q-learning is an online action-value function learning with an off-policy,

in each time slot, the Q-value in the next time slot is calculated with all the possible

actions that it can take, then the maximum Q-value is chosen that can obtain and record

the corresponding action.

Therefore, the optimization problem (P3.3.2) is solved by using Q-learning algo-

rithm, and to explore the unknown states instead of trusting the learning values of

Q(skm,i, a
k
m,i) completely, the ε-greedy Q-learning algorithm is proposed, where the agent

picks a random action with a small probability ε, or with 1− ε it chooses an action that

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 60

Algorithm 3.4: Q-Learning based power allocation algorithm

InPut
Initialization parameters: discount factor λ, learning rate α, exploration rate ε,
QSm,i×Am,i table

Initialize states: set h1m,i, P
H,1
m,i randomly, pick PA,1m,i from PAm,i, k = 1,

Procedure
1: while k ≤ K do
2: hkm,i, P

H,k
m,i is changed according to a random matrix.

3: e← random number from [0,1]
4: if e < ε then
5: Choose action akm,i randomly.
6: else
7: Choose action akm,i according to arg min

akm,i∈Am,i

Q(skm,i, a
k
m,i)

8: end if
9: Set sk+1

m,i = (hk+1
m,i , P

H,k+1
m,i , PA,k+1

m,i), where

PA,k+1
m,i = PA,km,i − P km,i + PH,km,i .

10: calculate the reward Rkm,i
11: update Q(skm,i, a

k
m,i) by (4.5.6)

12: Set k = k + 1
13: end while

maximizes the Q(sk+1
m,i , am,i) as shown in (3.4.13) in each time slot. Then the Q-learning-

based power allocation algorithm is proposed as shown in Algorithm 3.4.

3.5 Numerical Results

In this section, the proposed ECAA is verified with simulations and comparing it with

the baseline approaches. After performing ECAA, the performance of the proposed

DP-based and RL-based power allocation algorithms are shown versus the number of

time slots. LoRa communication technology is simulated to demonstrate the proposed

algorithms. The simulations are conducted on the MATLAB and use the MDP toolbox.

In the simulations, the LoRa users are randomly distributed around the gateway, and

they are located in a circle with the radius rc = 10 km. The LoRa technology works

at 868 MHz with M = 3 available channels, and the bandwidth of each channel is set

the same Bm = 125 KHz. Each channel allows at most D = 6 users with different SFs

ranging from 7 to 12. The noise is set as σ2 = −174+10log10 (Bm) dBm . The path loss

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 61

exponent is set as α = 3.5 for all the communication links. From Algorithm 3.3, the

maximum battery capacity is PAmax = 30 dBm, and the pre-defined threshold to enable

data transmission is P thm,i = 12 dBm. A three-state Markov chain is considered to model

the channel gain of the uplink transmission between the LoRa users and the gateway,

that is, the channels have three possible values: “good”, “normal” and “bad”. Then the

channel gain set is hm,i = {0.5× 10−4, 1× 10−4, 1.5× 10−4}, with the transition matrix

Ph =

0.3 0.7 0

0.25 0.5 0.25

0 0.7 0.3

. (3.5.1)

For simplicity, the energy arrival process is modelled as a finite-horizon MDP with

four states, the possible values are taken from {0, aHe, bHe, cHe}. Let one possible value

be 0, which is the value of the harvested power of the LoRa user when the time slot k is

used to transmit data. He is the energy harvesting rate with the value of 15 dBm. The

transition probability matrix [54] is given as

Pe =

PH1H1 PH1H2 PH1H3 PH1H4

PH2H1 PH2H2 PH2H3 PH2H4

PH3H1 PH3H2 PH3H3 PH3H4

PH4H1 PH4H2 PH4H3 PH4H4

,

=

0.3 0.7 0 0

0.25 0.5 0.25 0

0 0.25 0.5 0.25

0 0 0.7 0.3

.

(3.5.2)

where PHiHj , i, j ∈ {1, 2, 3, 4} indicates the transition probability of the harvested energy

state from state Hi to state Hj .

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 62

3 4 5 6 7 8 9 10 11 12

Number of active LoRa users, U

2

2.5

3

3.5

4

4.5

5

M
in

im
al

 ra
te

 o
f L

oR
a

us
er

s,
 m

in
 R

m
,i (b

ps
) 105

ECAA
Exhaustive search
Random assignment

Figure 3.3: Comparison of minimal transmission rates.

2 4 6 8 10 12 14 16 18 20
Time slots k

0

0.05

0.1

0.15

0.2

0.25

0.3

Tr
an

sm
is

si
on

 p
ow

er
 P

m
,i (W

)

Optimal policy
Offline scheme
Available power in battery

EH
process

EH
slots

Figure 3.4: The optimal power policy π∗ over the time slots.

In Fig. 3.3, the feasibility of the proposed ECAA is validated with different numbers

of active LoRa users. For comparison, another two baseline approaches are considered

as well, including random channel assignment and brute-force exhaustive search. In this

case, each LoRa user has fixed transmit power which is set as PAmax, which can remove the

effects of different transmit power. It is observed that the proposed algorithm, ECAA,

achieves 80% of the optimal performance in exhaustive search. However, ECAA has

much lower computational complexity as illustrated in Theorem 3.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 63

10 20 30 40 50
Time slots k

4.6

4.65

4.7

4.75

4.8

4.85

Th
ro

ug
hp

ut
 R

m
,i (b

ps
)

106

Optimal scheme
Offline scheme

Figure 3.5: Performance comparison of the optimal and offline scheme.

3.5.1 DP-based Power Allocation

Given the transition probability matrix in (3.5.1) and (3.5.2), the power allocation prob-

lem can be solved by the DP method. Fig. 3.4 shows the optimal policy over the time

slots obtained by the DP-based power allocation algorithm. The energy harvesting rate

is set as {0, 2He, 5He, 8He}. The optimal policy for each LoRa user presents the optimal

transmission power in each time slot, moreover, LoRa user switches to energy harvesting

when the transmit power P km,i = 0. The offline scheme is presented for comparison, here,

the LoRa user harvests energy in the first few time slots, then uses all the energy stored

in the battery to transmit data in the remaining time slots. As a comparison, the number

of time slots used for energy harvesting is set the same as the proposed optimal scheme

as shown in the Fig. 3.4. It is demonstrated that the dynamic transmit power allocation

is achieved over time slots by updating the available battery power in real time through

the proposed algorithm.

Fig. 3.5 shows the performance comparison of the proposed optimal scheme and the

offline scheme in terms of the achieved network throughput. It is noted that the network

throughput of the optimal scheme is increasing with the increasing number of time slots.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 64

10 20 30 40 50 60
Time slots k

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

Th
ro

ug
hp

ut
 R

m
,i(b

ps
)

106

He3
He2
He1

Figure 3.6: The network throughput comparison under different energy harvesting rates.

0

0.05

0.1

0.15

0.2

0.25

Tr
an

sm
is

si
on

 p
ow

er
 P

m
,i (W

)

2 4 6 8 10 12 14 16 18 20
Time slots k

uer1
uer2
uer3

Pm,i=0

EH

Figure 3.7: The optimal policies for different users allocated to the same channel.

However, the network throughput of the offline scheme only increases before the number

of the time slots reaches 20, then it remains the same. This is because that the battery

capacity is limited, that is, the maximum amount of the harvested power cannot exceed

the battery capacity, i.e., the total available power for the rest time slots are equal to

the battery capacity. In Fig. 3.6, the three energy harvesting value vectors are set as:

He1 = [0, 5He, 8He, 11He], He2 = [0, 4He, 7He, 10He], He3 = [0, 2He, 5He, 8He]. It

is observed that the network throughput increases with the increasing of the energy

harvesting rate value vectors.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 65

2 4 6 8 10 12 14 16 18 20

Time slots k (Pm,i
th =18dBm)

0

0.1

0.2

0.3

0.4

Tr
an

sm
is

si
on

 p
ow

er
 P

m
,i (W

)

2 4 6 8 10 12 14 16 18 20
Time slots k (Pm,i

th =15dBm)

0

0.1

0.2

0.3
Optimal policy
Avaibale power

Figure 3.8: The optimal policies under different pre-defined power threshold.

Fig. 3.7 illustrates the optimal policies for different LoRa users allocated to the same

channel. The different energy harvesting value vectors are used to distinguish different

LoRa users while their channel gains are taken from the same channel gain value vector.

In Fig. 3.7, energy harvesting value vectors for different LoRa users are set as user1 =

[0, 1He, 4He, 7He], user2 = [0, 2He, 5He, 8He], user3 = [0, 3He, 6He, 9He], respectively.

Noted that there are at most 6 users transmitting data at the same channel as the SF

ranges from 7 to 12. In this work, by enabling LoRa users to start performing their

optimal policies in different time slots, The capacity of each channel is increased by

including more users in the same channel. This is because the extra users are allowed to

harvest energy which will not cause interference to the users that are transmitting data.

In Fig. 3.8, it shows that the optimal power policy with different pre-defined power

threshold is obtained. It is noted that the battery will not run out of its power with

increasing the power threshold. This means that the rechargeable battery do not have to

discharge all of its power frequently, which will help extend its operation life. Moreover,

the maximum transmit power will increase as shown at the bottom figure of Fig. 3.8 after

13th time slot. This is because the user starts transmitting data with more available

battery power.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 66

0 100 200 300 400 500
iterations

4.35

4.40

4.45

4.50

4.55

4.60

4.65

Th
ro
ug

hp
ut
 (b

ps
)

1e6

Figure 3.9: The convergence performance of Q-learning based power allocation algorithm.

10 20 30 40 50 60
Time slots k

3.6

3.8

4

4.2

4.4

4.6

4.8

Th
ro

ug
hp

ut
 (b

ps
)

106

Q-learning
DP

Figure 3.10: The network throughput performance comparison of DP-based and Q-learning
based power allocation algorithm

3.5.2 Q-learning based Power Allocation

Q-learning algorithm is a popular model-free RL approach which can interact with the

environment to maximize the reward of the system. Here,it does not need any explicit

models of the dynamic environment, that is, the transition matrices of channel gain and

energy harvesting are no longer needed. At first, the Q table and states are initiated,

then to train the Q-table following the Q-update function in (3.4.13), the convergence

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 67

performance of the Q-learning based power allocation algorithm is obtained in Fig. 3.9.

To train the Q-table, let K = 15 steps in each iteration and run 5000 iterations. There-

fore, the convergence performance of the network throughput is obtained.

In Fig. 3.10, the network throughput performance comparison of both DP-based and

Q-learning based power allocation algorithm is presented. It is noted that Q-learning

based power allocation algorithm has achieved approximate 90% network throughput

performance comparing to the DP-based algorithm that is optimal with the need of

transition probability model. Moreover, the Q-learning algorithm needs less environment

information, which is superior for the practical implementation.

3.6 Summary

In this chapter, the resource allocation problem in wireless powered IoT networks has

been investigated to extend the network lifespan and maximize the network through-

put. At first, an ECAA was proposed with low complexity to match the IoT users with

the available channels. Then, the transmit power allocation problem under dynamic

energy harvesting conditions coupled with uncertain channel conditions was formulated

as MDPs, so that both DP method and RL techniques were exploited to solve this prob-

lem by proposing DP-based and Q-learning based power allocation algorithms. Simu-

lations have demonstrated that the proposed ECAA achieves 80% of the optimal per-

formance in brute-force exhaustive search but with much lower complexity, and better

network throughput performance than the random channel assignment. The DP-based

algorithm has achieved dynamic power allocation for each user by maximizing the accu-

mulative network throughput over finite time slots, which has been proved to outper-

form the offline scheme. Moreover, Q-learning algorithm has been demonstrated to have

approximate 90% network throughput performance of the DP-based algorithm with no

need of environmental information model. Therefore, the proposed resource allocation

methods have achieved a good performance considering system performance and com-

putational complexity.

Chapter 3. Computation Offloading in Wireless Powered IoT Networks 68

In this chapter, efficient channel allocation and power allocation have been considered

in wireless powered IoT networks. This causes heavy network congestion with all the

IoT users trying to transmit all the collected data to the central server, especially for

increasingly data-intensive IoT networks. In the next chapter, data processing in IoT

networks will be explored with edge computing.

Chapter 4

Computation Offloading in IoT

Networks via Machine Learning

As discussed in chapter 3, matching based efficient channel allocation and RL-based

power allocation have been investigated to address the challenge of spectrum scarcity

and learn the optimal transmit power strategy for the users in wireless powered IoT net-

works. Here, the IoT users transmit all the collected data to the central server for data

processing, which puts heavy burden on the spectrum resource and is very challenging for

data-intensive IoT networks. Moreover, compared to the conventional cloud platform,

the edge server has finite computation and power resource. Recently, the development of

smart chips has given the IoT devices powerful computation capabilities, which means

some simple computation tasks can be processed locally at the IoT users such that par-

tial computation offloading is emerged. However, this raises the challenges of which

task is processed locally, how to allocate power resource while offloading computation

tasks, how to manage spectrum resource for multiuser computation offloading and how

to manage the limited computation resource of IoT users. In this chapter, the joint

problem of computation offloading and resource allocation in IoT edge computing net-

work is investigated to find the efficient computation offloading strategies for IoT users

69

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 70

by deciding which user should offload, which task should offload and how much transmit

power should be allocated while offloading through machine learning approaches. At

first, the centralized user clustering algorithm is explored to group the IoT users into

different clusters according to user priorities. The cluster with the highest priority is

assigned to offload computation tasks and perform task execution at the gateway, while

the lowest priority cluster is selected to execute tasks locally. For the other clusters, the

computation offloading process of each IoT user under dynamic environment is formu-

lated as a RL framework, where each IoT user is considered as an agent which makes a

series of decisions on computation offloading by minimizing the long-term system cost.

Moreover, this RL framework can be modelled as an MDP, which can be solved by classi-

cal model-free RL algorithm, Q-learning. To deal with the curse of high dimensionality,

DQN algorithm is adopted to learn the computation offloading strategy in which the

DNN is used to approximate the Q-table in Q-learning algorithm. The work presented

in this chapter has appeared in IEEE ICC [93] and IEEE Internet of Things Journal [94].

4.1 Objectives and Contributions

The authors in [90, 91] adopted DRL algorithms to address the computation offloading

with resource allocation problem, which needs to frequently communicate with the users

to train the agent. Inspired by the threshold-based structure of the optimal task offload-

ing policy [75], in this chapter, a centralized clustering algorithm is developed to group

the users in IoT networks into different user clusters corresponding to different compu-

tation offloading decisions, with defining user priority as the clustering feature. For each

user, its computation offloading scheme with resource allocation could be investigated

by using RL and DRL algorithms in [84, 85]. However, the computation resource of

the edge server and the users was not considered, moreover, the computation offloading

scheme was designed to minimize either the energy consumption or the time delay. The

major contributions of this paper are stated as following:

1. The joint optimization problem of computation offloading and resource allocation

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 71

is addressed for the IoT edge computing networks via machine learning approaches,

which is cooperatively solved by centralized user clustering and designing dis-

tributed computation offloading strategies.

2. In the user clustering algorithm, the clustering feature is defined by user priority,

and based on it, the IoT users are grouped into different clusters by proposing the

K-means based clustering algorithm. The clusters with the highest and lowest user

priority are assigned as edge computing and local computing model, respectively.

3. Considering a typical IoT user in the remaining clusters, its dynamic computation

offloading process while interacting with the uncertain environment is modeled as

an MDP, where the objective is to minimize the long-term system cost. Moreover,

a DQN-based computation offloading algorithm is proposed for the IoT user to

learn the efficient computation offloading strategy.

4. Numerical results show that the IoT users are grouped into different user clusters

and the optimal cluster number is validated. Also, the DQN-based computation

offloading scheme is demonstrated to be superior to the other baseline schemes in

terms of system cost.

4.2 System Model

As shown in Fig. 4.1, an IoT framework is consisted of a variety of independent IoT

networks, which has a three-layer hierarchical architecture including the cloud layer

(e.g., cloud platform), the edge layer (e.g., the edge server and the IoT gateway) and

the local layer (e.g., the IoT users). Each independent IoT network provides services for

a large number of IoT users, which is achieved by the gateway collecting data from the

IoT users in its coverage area and processing it with its equipped edge server or sending

compute-intensive tasks to the cloud layer for further data processing.

An IoT network is considered as an example to explore the joint problem of com-

putation offloading and resource allocation between the local and edge layer. Here, the

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 72

Gateway with edge server

… …

: Local computing device

: Edge computing device

: Offload to cloud

: Offload to edge server

: Computation tasks generating

1 2 M...

Channels

…

1
u

2
u

3
u

U
u

4
u

5
u

6
u

7
u

1U
u

-

…

1
T

2
T 3
T

4
T

1T
T

- T
T

D
a

ta
 s

iz
e

Computation tasks

Computation

offloading

Task generating

…

Power levels

1
P ...

2
P

M
P

Cloud

Edge

Local

Computation capacity

...

…

Edge

Local

Figure 4.1: The framework of IoT system.

location distribution of the users U = {u1, ..., uU} in the considered IoT network is mod-

elled by a Poisson Cluster Process (PCP). From Fig. 4.1, the computation tasks can be

either executed locally at the IoT user or offloaded to the gateway and executed at the

edge server. However, it is hard for the IoT users to make decisions on computation

offloading since it cannot know the perfect knowledge of the environment, like channel

gains and other users’ decisions. Machine learning algorithms are exploited to design

the computation offloading schemes by learning the stochastic model of the dynamic

environment. The computation offloading scheme is designed with two steps: central-

ized user clustering and distributed computation offloading strategy design. Hence, the

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 73

...

time

Frame F Frame F+1Frame F-1

...

Initial data

collecting

Centralized

clustering
DQN-based distributed

computation offloading

1 2 ...3 k ... K-1 K

Figure 4.2: Illustration of the timeslot structure for the computation offloading scheme.

proposed scheme is assumed to operate on the time slot structure presented in Fig. 4.2,

and the time horizon is discretized into time slots with each time slot indexed by k in

each time frame F .

In the considered IoT network, the offloading users transmit their data to the gateway

by accessing to a limited number of channels with the bandwidth of each channel denoted

by Bm. Assuming each IoT user continuously generates independent computation tasks

in different sizes. Each IoT user can store a task queue with the maximum number of

tasks not exceeding T . Hence, the possible number of tasks stored at each IoT user in

time slot k, i.e., the possible length of task queue tki , is denoted by tki ∈ {T1, ..., TT }. The

task generation is assumed to be an independent and identically distributed sequence

of Bernoulli random variables with a common parameter τk ∈ [0, 1]. The indicator

of task generation is presented as Ik = {0, 1}, where Ik = 1 indicates the jth task

Ti,j(di,j , D
th
i,j) is generated at user ui with the task size as di,j and the task execution

delay as Dth
i,j ; otherwise, Ik = 0 means there is no task generated at current time slot k.

Here, τk = Pr{I = 1} = 1− Pr{I = 0}.

4.3 Problem Formulation

The benefits of distributively processing computation tasks are releasing the computa-

tion burden on the cloud server, shrinking the task execution latency and reducing the

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 74

waste of spectrum resource. Edge computing harnesses these benefits by distributing the

powerful computation devices to closer to the IoT devices in the IoT networks. More-

over, the more powerful smart chips are deployed in IoT devices, which makes it possible

for the users to perform local computing and run machine learning algorithms. In this

section, two possible computing models to execute the computation tasks generated in

IoT networks are first presented, and then the system cost under each computing model

is calculated.

The computation offloading decision and transmit power allocation are jointly con-

sidered for each IoT user. Firstly, the possible decisions of each IoT user on computation

offloading in time slot k are Ok = {1}∪{0}, which indicates whether the task is offloaded

or not. Secondly, if the IoT user is selected to offload its computation task, its transmit

power level is selecting from a discrete set PT = {P1, ..., PX}. Noted that the IoT user

does not offload the computation task when Ok = 0, then the system cost only contains

local computation energy consumption and local task execution latency, and the trans-

mit power is defined as P T,k = 0 in this case. In contrast, Ok = 1 indicates that the IoT

user decides to offload the computation task to the gateway, with the transmit power

P T,k ∈ PT . In both cases, the computation task is executed successfully, but there is a

possibility that the task execution is failed. For example, the task transmission might

suffer from communication outage between the IoT user and the gateway, so a penalty

function is introduced to cope with this situation.

4.3.1 Local Computing Model

Let Ok = 0 if the computation task is executed locally at the IoT user. And let ν denote

the fixed CPU frequency of the device, which presents the number of CPU cycles required

to compute 1 bit of input data. The energy consumption of per CPU cycle is denoted

by eLi . Then νeLi indicates the energy consumption of per bit data at the IoT user.

The total energy consumption of executing the computation task Ti,j at the IoT user is

denoted by ELi,j = νeLi di,j . Moreover, let fi denote the computation capacity of the IoT

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 75

user, which is measured by the number of CPU cycles per second. The remaining CPU

resource of the IoT user ui is denoted by the remaining percentage of its computation

resource ρi ∈ [0, 1]. The local computation latency DL
i,j at the IoT user is defined as

DL
i,j = (νdi,j)/fi. The system cost of choosing the local computing model is defined as

CLi,j = ELi,j + βDL
i,j , (4.3.1)

where β indicates the weight factor between the energy consumption and the task exe-

cution latency, which combines different types of functions with different units into a

universal cost function.

4.3.2 Edge Computing Model

Let hi denote the channel gain from the IoT user to the gateway, which is assumed to

be constant during each time slot. P Ti is the transmit power of the IoT user. Then

the achievable transmission rate (bit/s) of the user ui by transmitting the task Ti,j is

denoted by

Ri = Bmlog2(1 +
P Ti hi
σ2

), (4.3.2)

where σ2 indicates the power of the AWGN noise. Then the energy consumption of

the IoT user consumed by the data transmission is calculated as P Ti D
T
i,j , where the

transmission delay is given by DT
i,j = di,j/Ri. Similarly, let ν denote the CPU frequency

and eE denote the energy consumption per CPU cycle at the gateway. f indicates

the computation capacity of the gateway. The computation energy of the IoT user at

the gateway is given by EEi,j = di,jνe
E , and the computation latency is calculated by

DE
i,j = (di,jν)/f . Therefore, the system cost of choosing the edge computing model can

be derived as

CEi,j = EEi,j + P Ti D
T
i,j + β(DE

i,j +DT
i,j). (4.3.3)

As discussed above, the task execution is assumed to be successful in both cases. But

there is a possibility that the task execution is failed, like the task transmission might

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 76

suffer transmission outage. Then a penalty value δ is defined as the cost when the task

execution fails. Therefore, the system cost is reformulated into a piece-wise function as

Cki =

CLi,j if local,

CEi,j if edge, not failed,

δ if edge, failed.

(4.3.4)

4.4 Centralized User Clustering

4.4.1 User Priority Initialization

The considered IoT network is consisted of a set of IoT users as U = {u1, ..., ui..., uU},

where users are requesting for computation services from the resource-constrained gate-

way, but it is noted that those users have different priorities of task execution. In this

section, a centralized user clustering method is investigated to group the IoT users into

different user clusters according to user priorities which are then assumed to have sim-

ilar values across users in the same cluster. Here, the user priority of the IoT user ui

is defined by its channel gain hi (mainly depending on the large-scale fading) to the

gateway and its computation offloading probability Pi. The definition of computation

offloading probability Pi for IoT user ui is given in Definition 4.1.

Each task is generated with its requirement on task execution delay at the IoT user

ui, if the local computing at the user cannot meet the delay requirement, the task has to

be offloaded to the gateway for execution. An initial process is allocated in the clustering

algorithm for the gateway to initialize the users’ priorities, which is shown in Fig. 4.2.

It contains that the users calculate and send their computation offloading probabilities

to the gateway, and then the gateway records the channel gain of all the users. After

that, the gateway performs the clustering algorithm to group the IoT users into a bunch

of clusters based on the initialized user priorities..

Definition 4.1. Considering the IoT user ui, the task Ti,j is generated with its task

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 77

execution delay requirement as Dth
i,j. Assuming there are MT tasks are generated in each

time frame F . The task execution delay with the local computing model at the IoT user ui

is calculated as DL
i,j = di,jν/fi. In time frame F , the computation offloading probability

of user ui is defined as the frequency of offloading tasks from time frame ι = 1 until time

frame ι = F − 1,

Pi = Pr(D
L
i > Di) = Pr(

F−1∑
ι=1

MT∑
j=1

DL
i,j,ι >

F−1∑
ι=1

MT∑
j=1

Dth
i,j,ι). (4.4.1)

Here, the generated tasks are independent. This is calculated in the initial process in the

clustering algorithm shown in Fig. 4.2, and later it’s improved and updated in each time

frame F .

4.4.2 Priority-driven Clustering based on K-means

As discussed above, let xi indicate the user priority of user ui, which is defined by

the feature vector including the channel gain hi from user ui to the gateway and the

computation offloading probability Pi, so that xi = {hi,Pi}. Therefore, a priority-

driven user clustering algorithm based on the standard K-means algorithm is proposed

to group IoT users into H clusters according to user priorities by minimizing the sum of

squared error

min
Ch,ch

H∑
h=1

∑
xi∈Ch

‖xi − ch‖22, (4.4.2)

where H is the initial number of clusters, Ch indicates the cluster h, xi is the user priority

feature of user ui. Here, the centroid of the cluster Ch is calculated as

ch =
1

|Ch|
∑
xi∈Ch

xi, (4.4.3)

where |·| is the cardinality and the detailed description is provided in Algorithm 4.1.

It is noted that the optimal cluster number Hop is hard to get. One good method to

validate the optimal cluster number is called the elbow method. The basic idea is to run

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 78

Algorithm 4.1: Priority-driven Clustering based on K-means

1: Input:
2: The number of observed tasks J , clusters H and clustering feature vectors, user

priorities X = {x1,, xi, ..., xU}
3: Initialization:
4: Randomly initialize H cluster centroids c1, ..., cH
5: Repeat:
6: for i = 1 : U do
7: for ĥ = 1 : H do
8: Calculate cluster index ĥi for xi as :

ĥi = arg min
ĥ
‖xi − ch‖22

9: end for
10: end for
11: for ĥ = 1 : H do
12: Update the cluster centroids by

ch :=
∑U

i=1 1{ĥi=ĥ}xi∑U
i=1 1{ĥi=ĥ}

13: end for
14: Until: No change of the cluster centroids

K-means clustering algorithm on the dataset for a range values of cluster number H. If

the selected cluster number H ′ is smaller than the real cluster number H, the sum of

squared errors (SSE) is reduced dramatically when the cluster number increases by 1.

Inversely, the SSE does not have obvious changes. Then the optimal cluster number is

located at the turning point of the curve, known as the elbow point. The performance

index of the elbow method, i.e., SSE, is defined as

SSE =

H′∑
h=1

∑
dist(xi, ch)2, (4.4.4)

where the SSE indicates the sum of squared errors between the sample point xi and the

cluster centroid ch.
∑
dist(xi, ch)2 denotes the distoration of cluster h, the smaller the

distoration is, the closer the sample points in the cluster h are; otherwise the looser the

sample points are. The distoration is decreasing with increasing the number of clusters,

but it will receive significantly decrease at a turning point, and then it decreases slowly.

However, the elbow method is sometimes ambiguous. The average silhouette method

can be an alternative to validate the optimal cluster number jointly. This method defines

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 79

a Silhouette Coefficient to measure the similarity of a user to its own cluster compared

to its neighboring clusters, its Silhouette Coefficient is calculated by

SCi =
bi − ai

max{ai, bi}
, if |Ch| > 1, (4.4.5)

where ai indicates the mean distance between the user ui and all the other users in the

same cluster Ch, bi is the mean distance between the user ui and all the users in its

closest neighboring cluster Cl which is given by

Cl = arg min
Ch

1

q

∑
xl∈Ch

|xl − xi|2, (4.4.6)

where q indicates the number of users in the cluster Ch. Then the average Silhouette

Coefficient is obtained by calculating the mean of SCi over all the users. The average

Silhouette Coefficient is in the range [−1, 1], the higher value means the cluster number

is more appropriate for the clustering algorithm.

Noted that the proposed priority-driven user clustering algorithm is the first method

to cluster IoT users by defining user priority of user’s task execution; other explorations

could be done in the future with different features, such as radio propagation, usage, user

mobility pattern, etc. Moreover, the user clustering algorithm is performed periodically

based on the coverage of users’ location changes and the monitored task type changes.

4.4.3 Complexity Analysis

Finding an optimal solution to the clustering problem for observations in N dimensions

(feature vector) is an NP-hard problem. If the cluster number H and the dimension

size N are fixed, the computational complexity can be exactly calculated as O(UNH+1),

where U is the number of users that need to be clustered and N is the dimension of the

cluster feature vector. It depends on the two main steps: calculate the cluster index and

update the cluster centroids. There are many heuristic algorithms that can be used to

find the optimal solution, like Lloyd’s algorithm which has the complexity as O(IUNH).

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 80

Here, I is the iteration number until the algorithm has converged and it has I = 2O(
√
U)

iterations in the worst case.

4.5 DRL-based Computation Offloading

After running the centralized user clustering algorithm, the IoT users are grouped into

different clusters by the gateway according to their unique features, user priorities. Here,

the cluster with the highest priority is directly designated as edge computing while the

cluster with the lowest priority assigned as local computing. In each cluster, all the IoT

users are assumed to have the same priorities to offload their tasks. For the remaining

clusters, the computation offloading scheme is further explored by DRL techniques in

this section. First, the basic formulations of RL are presented and then the dynamic

computation offloading process of the IoT user is modelled by an MDP. At last, a DQN-

based computation offloading algorithm is proposed to learn the efficient computation

offloading strategy, which can address the curse of dimensionality while solving the MDP

problem.

4.5.1 The RL Preliminaries

As shown in Fig. 4.3, RL is a dynamic process where the agent continuously learns

optimal actions to take by interacting with the environment. In this scenario, each

IoT user is considered as an agent and everything else in the IoT network is made up

of the environment. In this work, through the centralized user clustering, the scale of

the computation offloading problem in the IoT network is reduced. The computation

offloading process is discretized into time slots with the time slot structure shown in

Fig. 4.2. From Fig. 4.3, each agent, i.e., the IoT user ui, observes a state ski from state

space Si at time slot k, and then an action aki is taken from the action space Ai, that is,

decides which computing model and how much transmit power are taken based on the

policy πi. Therefore, the environment changes with the taken action, then the new state

sk+1
i is observed and a reward rki is obtained by the user. In this scenario, the reward

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 81

…
1
u

U
u

1U
u

-

…
1
T

2
T

3
T

4
T

1T
T

- T
T

...

Agent , IoT user

Environment
state

reward

action

k

i
s

k

i
r

k

i
a

i
u

Figure 4.3: The RL framework for computation offloading in IoT networks

is designated as a negative reward, the system cost Cki , i.e., the weighted sum of energy

consumption and task execution delay.

In a RL problem, the few key elements are {Action, State,Reward,Environment},

and which can be formulated as an MDP problem.

Action

The computation offloading decision and the transmit power of the IoT user are combined

as the action space, so the action set is denoted by Ai = {0,PTi }. Here, in time slot

k, P Ti = 0 indicates choosing the local computing model while PTi is the discretized

transmit power set in edge computing model 1.

State

The possible states observed by the agent represent the exploration information from

the environment. Here, the channel gain hki , task queue tki stored at the IoT user and

its remaining computation resource ratio ρki are consisted of the state, which presents

the exploration information of the IoT user. Hence, the observed state of the user at the

time step k is given as

ski = {hki , tki , ρki }, (4.5.1)

where ski ∈ Si, hki ∈ Gh. Gh is the channel gain set of IoT users in the cluster Ch that has

1Assume that the transmit power is larger than 0 while offloading tasks to the edge

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 82

not been assigned any direct decisions on computation offloading yet, which is obtained

after performing the centralized user clustering algorithm.

Reward

The function of the reward signal is to encourage the learning algorithm to reach the goal

of the optimization problem. In this chapter, the negative reward is adopted to minimize

the long-term system cost while making the right decisions on computation offloading

and transmit power allocation. Here, the system cost is measured by the weighted sum

of energy consumption and task execution latency as derived in (4.3.1) and (4.3.3). To

make it clear, the reward function is defined as a piece-wise function. Therefore, the

reward function of each IoT user at time slot k is given by

rki =

CLi,j , if local,

CEi,j , if edge, 1− p,

δ, if edge, p,

(4.5.2)

where p is the failure rate of task transmission (considering the possibility of failed task

transmission) in the edge computing model, for simplicity, which is set as a fixed value

in this work, and δ is the penalty value of failed task execution. Here, the objective

function is given as a negative reward, i.e., the system cost shown in (4.3.4).

In addition, the state transitions of the computation offloading process are stochastic

and can be modelled as an MDP problem, where the state transition function and the

reward only depend on the environment and the obtained policy. The transition prob-

ability P = (sk+1
i , rki |ski , aki) is defined as the transition from state ski to sk+1

i with the

obtained reward rki when the action aki is taken according to the policy πi. Generally, the

MDP problem is solved by finding an optimal strategy that will maximize some cumu-

lative function of the random rewards. In this case, the expected long-term cumulative

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 83

discounted reward over a finite horizon is given by

Vi(si, πi) = E

[
+∞∑
τ=0

λτri(k + τ)

∣∣∣∣∣ski = si, πi

]
, (4.5.3)

where λ ∈ [0, 1] is the discount factor and E indicates the statistical conditional expec-

tation with transition probabilities.

Basically, the conventional solutions, like policy iteration and value iteration [123]

belonging to dynamic programming can be used to solve the MDP optimization problem

with the known state transition function. But it is hard for the agent to know the prior

information of the state transition function, which is determined by the environment.

Therefore, a model-free RL approach is proposed to investigate this decision-making

problem since the agent cannot make predictions about what the next state and cost

will be before it takes each action.

In this scenario, the IoT user is trying to obtain an optimal computation offloading

strategy and transmit power allocation solutions according to some stochastic infor-

mation, such as the possible channel conditions, the possible remaining computation

resource of the user and the possible task queue, observed from the environment. Par-

ticularly, the user is finding the optimal policy π∗i that minimizes the long-term reward

V (si, πi). This means for any given network state si, the optimal policy π∗i can be

obtained by

π∗i = arg min
πi

V (si, πi), ∀si ∈ Si. (4.5.4)

The problem of jointly designing computation offloading strategy and transmit power

allocation for the IoT user can be formulated as a classic single-agent finite-horizon MDP

problem. The classic model-free RL approach, Q-learning algorithm, is an effective way

to learn the optimal computation offloading strategy by minimizing the expected long-

term accumulated discounted reward, V (si, πi). Q(si, ai) denotes the Q-value that is

the expected accumulated discounted reward when taking an action aki ∈ Ai following a

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 84

policy πi for a given state-action pair (si, ai). Thus, the action-value function Q(si, ai)

is defined as

Q(si, ai) = Eπi [r
k+1
i + λQπi(s

k+1
i , ak+1

i)|ski = si, a
k
i = ai]. (4.5.5)

In the proposed algorithm, Q(si, ai) indicates the value calculated from cost function

(4.3.4) for any given state si and action ai, it is stored in the Q-table which is built

up to save all the possible accumulative discounted reward. And the current Q(ski , a
k
i)

is updated during the time slot k if the new Q(sk+1
i , ak+1

i) is smaller than the current

Q(ski , a
k
i). The Q(ski , a

k
i) is updated incrementally based on the current reward function

rki and the discounted Q(sk+1
i , ai),∀ai ∈ Ai in the next time slot. This is achieved by

the one-step Q-update equation

Q(ski , a
k
i)← (1− α)Q(ski , a

k
i) + α(rki + λmin

ai
Q(sk+1

i , ai)), (4.5.6)

where rki is the reward obtained in the current state, α is the learning rate. Q-learning

is a model-free and off-policy solution to solve the MDP problem, in each time slot, the

Q-value in the next time slot is calculated with all the possible actions that it can take,

then it chooses the minimum Q-value and records the corresponding action.

Moreover, to explore the unknown states instead of trusting the learned values of

Q(si, ai) completely, the ε-greedy approach is used in the Q-learning algorithm, where

the agent picks a random action with small probability ε, or with 1 − ε it chooses an

action that minimizes the Q(sk+1
i , ai) as shown in (4.5.6) in each time slot.

4.5.2 Optimality and Approximation

The agent in the RL algorithm aims to solve sequential decision-making problems by

learning an optimal policy. In practice, the requirement for Q-learning to obtain the

correct convergence performance is that all the state action pairs Q(s, a) keep to be

updated. Moreover, if the policy is explored infinitely, the Q-value Q(s, a) has been

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 85

validated to converge with possibility 1 to Q∗(s, a) , which is given by

lim
n→∞

Pr(|Q∗(s, a)−Q(s, a)n| ≥ ς) = 0, (4.5.7)

where n is the index of the obtained sample, and Q∗(s, a) is the optimal Q-value while

Q(s, a)n is one of the obtained samples. Therefore, Q-learning can identify an optimal

action selection policy based on infinite exploration time and a partly-random policy for

a finite MDP model.

4.5.3 DQN-based Computation Offloading Algorithm

As mentioned above, the classical Q-learning algorithm can find the optimal strategy

when the state-action space is small, and it depends on a Q-table to store the Q-values

and has to look up for every state in the table while training. If the state-action space

becomes huge, it takes a long time for the Q-table to converge. The reason is that the

states will be visited infrequently and the corresponding Q-values are updated rarely

for a large number of states. In the considered problem, multiple state dimensions and

continuous environment variations generate a large state space. To solve this problem,

a neural network is used to approximate the Q-function, which can predict the Q-values

based on the input (states), that is, once the weight vector θ is obtained through training,

we can get the output Q-values Q(ski , a
k
i). Specifically, DNN has achieved successful

performance in approximating the Q-table, known as DQN. DNN can be applied to the

larger scale problems, and it’s appropriate to address sophisticate mappings from states

to the desired Q-values output.

The DQN follows the rule of neural network to update its weight vector θ at each

iteration by minimizing the loss function,

Loss(θ) = E[(Q′(ski , a
k
i)−Qtarget(ski , aki ;θ))2], (4.5.8)

where Qtarget(s
k
i , a

k
i ;θ) is the target output Q-value, and the current Q-value Q′(ski , a

k
i)

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 86

is the prediction information which is given by

Q′(ski , a
k
i) = rki + min

ai∈Ai

Q(ski , ai,θ), (4.5.9)

where rki is the corresponding negative reward, i.e., the system cost.

Here, the agent uses a replay memory with finite size to store state transitions

(ski , a
k
i , r

k
i , s

k+1
i). The experience replay technique is adopted to sample a mini-batch

from the memory pool, which is then used to train the DQN in the direction of minimiz-

ing the loss function (4.5.8). The detailed process of training the DQN-based computa-

tion offloading algorithm is presented in Algorithm 4.2. After the algorithm training is

finished, given an initial state, the IoT user selects each action that has the minimum esti-

mated Q(ski , ai,θ
∗) to obtain the optimal computation offloading strategy and transmit

power allocation. Hence, the test algorithm is proposed as a DQN-based computation

offloading algorithm shown in Algorithm 4.3.

Algorithm 4.2: DQN training for computation offloading

Initialization
Initialize the size of replay memory and the mini-batch,
Initialize Q-network with random weight vector θ,
Initialize parameters: discount factor λ, learning rate α, exploration rate ε, and the
channel gain set Gh in the clusters Ch

Procedure
1: while i′ ≤ iteration do
2: Observe initial state ski = (hki , t

k
i , ρ

k
i)

3: Select an action aki according to ε-greedy policy.
4: After taking action aki , calculate the cost rki by (4.5.2), and new state sk+1

i =
(hk+1
i , tk+1

i , ρk+1
i) is observed.

5: Store the state transition (ski , a
k
i , r

k
i , s

k+1
i)in the replay memory

6: Randomly sample a mini-batch of transitions from the experience pool
7: Update weight vector θ by minimizing (4.5.8)
8: Every C steps update the Q-network
9: Update time epoch: k = k + 1

10: end while

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 87

Algorithm 4.3: DQN-based computation offloading algorithm

Initialization
Given an initial state s1i = (h1i , t

1
i , ρ

1
i)

1: while tki > 0 do
2: Select an action aki = min

ai∈Ai

Q(ski , ai,θ
∗).

3: State sk+1
i = (hk+1

i , tk+1
i , ρk+1

i) is observed.
4: end while

4.5.4 Complexity Analysis

In this section, the complexity of the proposed DQN-based computation offloading algo-

rithm is analyzed, which is mainly determined by the training algorithm shown in

Algorithm 4.2. For Q-learning algorithm, its time complexity depends on the episodes

I and the steps Hs in each episode, denoted as O(IHs). In DQN, DNN is used to approx-

imate the Q-value function in Q-learning algorithm. Hence, its time complexity mainly

comes from training the DNN, which can be calculated as O(Hi·H1+H1·H2+...+Hn·Ho).

Moreover, how many times required for training the DNN relies on the total episodes

I and the replay memory size D, denoted by W = b(I/D)c. Here, the input layer of

the DNN is determined by the batch size B and state space S, i.e., Hi = BS, while

the output layer depends on the action space A. Therefore, the time complexity of the

proposed algorithm is O(W × (BS ·H1 +H1 ·H2 +H2 ·H3 +H3 · A)).

4.6 Numerical Results

In this section, the joint design of computation offloading strategy and transmit power

allocation is analyzed via the simulations. The proposed computation offloading scheme

is achieved by user clustering and DRL-based computation offloading design. Here, user

clustering is based on K-means clustering algorithm according to users’ unique features,

user priorities. After running centralized user clustering algorithm, the users are grouped

into different user clusters where the cluster with the highest user priority is designated

as edge computing while the cluster with the lowest user priority is specified as local

computing. For the remaining clusters, a DQN-based computation offloading algorithm

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 88

0 20 40 60 80 100x
0

20

40

60

80

100

y

User clustering
C1
C2
C3
C4
BS

(a) Priority-driven user clustering

1 2 3 4 5 6 7 8
h

1

2

3

4

5

6

SS
E

(b) optimal cluster number by SSE

2 3 4 5 6 7 8
h

0.45

0.46

0.47

0.48

0.49

0.50

Si
lh
ou

et
te
 C
oe

ffi
cie

nt

(c) optimal cluster number by SC

Figure 4.4: Priority-driven user clustering and the optimal cluster number validation

is proposed for each user to learn the optimal computation offloading strategy and power

allocation solutions distributively.

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 89

4.6.1 Parameters Setup

In the simulations, the location distribution of the IoT users is modelled by PCP with

the parameter λPossion = 50. The small scale fading of the channels between users and

the gateway is set as Rayleigh fading, and the path-loss parameter is a = 2.5. The

input cluster number of priority-driven user clustering algorithm is 4, the result of user

clustering and the validation of the optimal cluster number are shown in Fig. 4.4.

For DQN training, the DNN with three fully-connected feed forward hidden layers is

used to approximate the Q-function, the neurons of each hidden layer is 256, 256 and

512, respectively. The activation function of the first two hidden layers are rectified

linear units (ReLUs), and the final hidden layer employs tanh function as the activation

function. The replay memory is set to have the capacity of 1000 recent transitions due to

the dramatically changing environment, and the mini-batch size is B = 300. The action

exploration is following the ε-greedy policy with ε = 0.9, and it’s linearly decreasing with

the iteration number. The possible channel gain values between the IoT user and the

gateway are set as the channel gain set obtained in the clustering algorithm. For the user

ui ∈ Ch, the channel gain hi is selecting possible values from Gh. The other simulation

parameters of the proposed DQN-based computation offloading algorithm are shown in

Table 4-A. The experiments are conducted by using Tensorflow for machine learning

library.

Table 4-A: Simulation Parameters

Parameters Values

γ, α 0.9, 0.5

Bm, σ 106Hz,−174 + 10log10Bm
Channel gain set Gh
Task queue set T = [0, 19]

Task size set M = [10, 30]Kbits

ν 600 cycles/bit

eEi 10−8 Joule/CPU cycle

eLi 10−7 Joule/CPU cycle

f , fi 4GHz, 500 MHz

β 100

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 90

4.6.2 DQN-based Computation Offloading Scheme

In this section, the performance of the distributed computation offloading strategy

learned by the DQN-based computation offloading algorithm is quantified. For com-

parison, the three benchmarks: local computing, edge computing and greedy scheme are

also studied,

1. Local computing: the computation tasks are locally executed at the IoT user in

each time slot whatever the size of the generated task is.

2. Edge computing: all the computation tasks generated at the IoT user are offloaded

to the gateway and then processed there.

3. Greedy scheme: when the task queue is not empty and the remaining computation

resource of the user is still enough, the IoT user decides to execute the task locally or

offload it to the gateway while minimizing the system cost, that is, min{CLi,j , CEi,j}.

Through the centralized user clustering, the IoT users are grouped into different

clusters corresponding to different user priorities. A typical IoT user in the cluster Ch

(except the cluster with the highest and lowest user priority) is considered as an example

to explore the computation offloading strategy and power allocation solution learned by

the DQN-based algorithm Algorithm 4.2.

First, the convergence performance of the DQN-based computation offloading algo-

rithm is validated. The possibility of task generation is set as τk = 0.5. From Fig. 4.5,

it is observed that the training loss is converged to a stable value by simulating the loss

function (4.5.8). Based on the convergence performance of the proposed DQN-based

computation offloading algorithm, the following simulation results are analyzed from the

trained DQN running for 2× 104 iterations.

With the trained DQN, the computation offloading scheme is tested through the

proposed algorithm in Algorithm 4.3. The task queue is initialized as 15 and the

terminal state is set as the task queue equalling to zero in the first time. The per-

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 91

0 2 4 6 8 10
Iterations

10-1

100

101

102

103

x103

Figure 4.5: Convergence performance of the proposed DQN-based computation offloading algo-
rithm measured by the loss function, the weight factor β = 100.

2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

Figure 4.6: Performance comparison of the cumulative system cost Ci with the proposed DQN-
based computation offloading scheme and the other three baseline schemes versus the time slots,
β = 100.

formance of the cumulative system cost Ci over the experienced time slots is analyzed

in Fig. 4.6. Moreover, it demonstrates the comparisons of the cumulative system cost

among local computing, edge computing, greedy scheme and DQN-based computation

offloading scheme over the time slots. The proposed DQN-based computation offloading

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 92

2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

Figure 4.7: Performance comparison of cumulative energy consumption Ei with the proposed
DQN-based task offloading scheme and the other three baselines versus the time slots. β = 100

scheme has lower cumulative system cost than the other three schemes. The reason is

that the proposed DQN-based scheme can learn the computation offloading strategy to

select the computing model and transmit power by minimizing the long-term system

cost while the greedy scheme only considers the current minimum system cost. Here,

the higher task generation probability, τk = 0.5 means more computation tasks are

generated and executed at the user compared to τk = 0.3, so the system cost is higher.

Fig. 4.7 shows the comparisons of the energy consumption Ei among edge computing,

local computing, greedy scheme and the proposed DQN-based computation offloading

scheme over the time slots. It is shown that the edge computing has the highest energy

consumption because the IoT user consumes transmit power to offload the computation

task to the gateway. But for the local computing model, it consumes the least energy

since all the energy consumption only comes from the task execution. In the proposed

DQN-based scheme, the decisions on computation offloading are made by observing envi-

ronment information. Compared to local computing, it has higher energy consumption

because it may choose edge computing model according to the learned computation

offloading strategy. Here, the greedy scheme has the lowest energy consumption since it

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 93

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 4.8: Performance comparison of cumulative task execution delay Di with the proposed
DQN-based task offloading scheme and the other three baselines versus the time slots. β = 100

considers the current minimum system cost, the energy consumption.

The performance of the task execution delay Di among the three baseline schemes

and the proposed DQN-based computation offloading scheme is shown in Fig. 4.8. Local

computing has the highest execution delay since the computation ability of the IoT

user is much weaker than the gateway. Specifically, the task with large task size takes

long time to be executed locally. However, the computation task can be executed more

quickly when it is offloaded to the gateway for execution. Similarly, the computation

offloading strategy learned by the proposed DQN-based scheme includes both actions:

local computing model and edge computing model, hence it has neutral performance of

task execution delay.

Fig. 4.9 presents the performance comparisons over different computation capacity

Ds of the gateway in terms of the average cost. It is demonstrated that the average cost

is smaller when the gateway has larger computation capacity Ds = 20 GHz compared

to Ds = 4 GHz. This is because more powerful computation capacity can provide faster

task execution, that is, smaller task execution delay by executing tasks at the gateway.

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 94

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 4.9: Performance comparison of average cost under different edge server computation
capacity versus time slots k. β = 50

4.7 Summary

In this chapter, the joint problem of computation offloading scheme and resource allo-

cation has been explored in IoT edge computing networks by considering the statistics

information of environment, including the time-varying channel conditions, the dynamic

task queue and the remaining computation resource of the IoT users via machine learning

approaches. This problem was solved by two steps: centralized user clustering and dis-

tributed computation offloading strategy. The centralized user clustering was achieved by

the proposed priority-driven clustering algorithm by defining user priorities as the cluster-

ing features. By running user clustering algorithm, the users were grouped into different

clusters, where the clusters with the highest and lowest user priority were assigned as

edge computing model and local computing model, respectively. For the users in the

remaining clusters, a DQN-based computation offloading algorithm was proposed for

each user to distributively learn the computation offloading strategy and power alloca-

tion solutions by using DQN framework with minimizing the long-term system cost. The

simulations demonstrate the priority-driven user clustering algorithm and the optimal

cluster number was validated. Moreover, the DQN-based computation offloading algo-

Chapter 4. Computation Offloading in IoT Networks via Machine Learning 95

rithm has been simulated, it has lower system cost compared to the other three baseline

schemes and a neutral performance was obtained with separately considering energy

consumption and task execution delay.

In this chapter, the computation offloading problem of users in IoT edge computing

networks was investigated from the aspect of user clustering and distributed computa-

tion offloading scheme. Here, the distributed computation offloading scheme was learned

only considering single user computation offloading scenario. In the next work, the mul-

tiuser computation offloading scenario where multiple users making their computation

offloading decisions together will be discussed, which can be formulated as a stochastic

game that makes it more suitable for practical applications.

Chapter 5

MARL for Multiuser

Computation Offloading in IoT

Networks

As discussed in Chapter 3 and 4, edge computing provides a front-end distributed com-

puting archetype of centralized cloud computing with low latency, but where the edge

server has finite resources to support all the users offloading their computing tasks.

Therefore, the joint optimization problem of computation offloading and resource allo-

cation in IoT edge computing network was studied in Chapter 4, where the computation

offloading scheme adopting machine learning techniques has been proposed. A cen-

tralized user clustering was first investigated to pre-process the computation offloading

decisions for users, and then a DQN-based computation offloading algorithm was devel-

oped for the user to learn efficient computing offloading strategies and resource alloca-

tion solutions distributively with considering single user computing offloading scenario.

However, the challenges of multiple users offloading their computation tasks simultane-

ously need to be addressed since the uses are competing for spectrum, computation and

radio access technologies resources during the offloading process. In this Chapter, the

96

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 97

computation offloading mechanism of multiple selfish users is investigated in IoT edge

computing network by formulating it as a non-cooperative stochastic game. Each user

is a learning agent observing its local network environment to learn optimal decisions

on either local computing or edge computing and optimal resource allocation solutions

including transmit power level, radio access technology and sub-channel with a goal of

minimizing long-term system cost while without knowing any information from the other

users. Since the users’ decisions are coupling at the gateway, the reward function of each

user is defined by considering the aggregated effect of other users. Therefore, an MARL

framework is developed to solve the stochastic game by proposing an IL-based MA-Q

algorithm. The convergence of the proposed IL-based MA-Q algorithm is shown under

different learning parameters by the simulations, and then this algorithm is tested to be

feasible to solve the formulated problem and achieve distributed computation offload-

ing decision making. Finally, compared with the benchmark algorithms, including the

random and the iterative algorithm studied from [6], it has lower system cost perfor-

mance. Moreover, it achieves around 80% performance of the centralized algorithm but

has less complexity. The work presented in this chapter has been published in China

Communications [124].

5.1 Motivation and Contributions

In IoT edge computing networks, due to its characteristics of distributed nature and

random channel conditions, as well as limited spectrum resource, to find the computation

offloading scheme with efficient resource allocation solutions for simultaneous multiuser

computation offloading problem is full of challenge. To address these challenges, the

authors in [6, 74, 105] formulated this problem as a computation offloading game using

game theory and then the iterative algorithm was proposed and proved to reach a NE

[6]. To the best of my knowledge, multiuser computation offloading problems have not

been well investigated with MARL that can provide promising solutions for intelligent

resource management with distributed learning. The major contributions of this chapter

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 98

are presented as:

1. The joint optimization problem of multiuser computation offloading and resource

allocation aiming to minimize the long-term system cost is investigated in IoT edge

computing network by jointly selecting the transmit power level, the sub-channel

and the radio access technology.

2. The multiuser computation offloading problem with resource allocation is formu-

lated as a stochastic game, where each user becomes a self-interested learning agent

to learn its computation offloading strategy and resource allocation solutions dis-

tributively under the dynamic wireless environment.

3. The MARL framework is exploited to develop intelligent computation offloading

scheme and resource management solutions with distributed learning for users.

Specifically, each user’s reward function is defined by considering the aggregated

effect of other users.

4. an IL-based MA-Q algorithm is proposed to explore the optimal computation

offloading strategy with efficient resource allocation solutions for users. Here, each

user runs an independent Q-learning algorithm with considering other users as part

of the environment, and there is no information exchange among users.

5. Numerical results demonstrate that the proposed IL-based MA-Q computation

offloading algorithm is superior to the random and the iterative algorithm proposed

in [6]. Moreover, it achieves around 80% performance of the centralized algorithm

but has less complexity, and it is more energy efficient without extra cost on channel

estimation.

5.2 System Model

As shown in Fig. 5.1, considering a multiuser IoT edge computing network, which

includes U single antenna IoT users and one single antenna edge server. Here, the IoT

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 99

1 2 M...

Channels

…

1
u

2
u

3
u

U
u

4
u

5
u

6
u

7
u

1U
u

-

…

1
T

2
T 3
T

4
T

1T
T

- T
T

D
a
ta

 s
iz

e

Computation tasks

Task generating

B
lu

e
to

o
th

…

Edge

Local

: Edge computing device : Local computing device

Gateway with edge server

Radio access

technologies

Computation

offloading

...

Computation resource

Figure 5.1: Multiuser computation offloading model in IoT networks.

users (e.g., sensors or mobile devices) can process some small computation tasks, while

the edge device (e.g., gateway or the access point) can provide data processing for more

intensive computation tasks from the IoT users with its higher computation capacity.

Assuming that the IoT users are stationary and randomly distributed around the gate-

way, they collect data and process it with two possible ways: 1) local computing: process

computation tasks locally at the IoT users; 2) edge computing: offload computation tasks

to the gateway and process them at the edge server. The IoT users have limited computa-

tion capacity and the generated computation tasks are delay-constrained, so to improve

the performance of data processing, they may choose to offload some compute-intensive

computation tasks to the gateway by selecting the possible radio access technologies

denoted by RA = {RA1, ..., RAN} with each radio access technology having M orthog-

onal sub-channels, denoted by CH = {CH1, ..., CHM}. Noted that each radio access

technology is operated on different radio frequencies. From Fig. 5.1, different computa-

tion tasks are continuously generated at each IoT user. The gateway in the considered

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 100

IoT edge computing network serves a set of IoT users U = {u1, ..., uU}. Each IoT user

ui continuously generates computation tasks with the jth task denoted as Ti,j(di,j , D
th
i,j),

where di,j is the task size and Dth
i,j is the delay constraint of executing the task Ti,j at

user ui. The generated task sequence at each user is indicated by {T1, T2, ...TT } shown

in Fig. 5.1

This chapter is focused on dynamic multiuser computation offloading with efficient

resource allocation in the considered IoT edge computing network by selecting transmit

power levels, radio access technologies and sub-channels distributively without sharing

information among users. Here, each IoT user only can observe its local information, such

as the CSI between the IoT user and the gateway, and the feedback from the gateway.

The system is assumed to operate on a time slotted structure with discretized time slots

indexed by an integer k ∈ K = {1, 2, ...,K}. At each time slot k, each IoT user makes its

own decisions on computation offloading and resource allocation solutions distributively

according to the observed local environment information.

5.2.1 Local Computing Model

In the considered multiuser IoT edge computing network, each IoT user is possible to

execute its tasks locally or offload to the edge server and perform task execution there.

Let the IoT user ui choose to execute its task locally in time slot k. ν presents the

number of CPU cycles required to process 1 bit data, and eLi denotes the computing

energy consumption of each CPU cycle at the IoT user. Hence, the computing energy

consumption of the task Ti,j is ELi,j , and the time delay of local execution is DL
i,j .

5.2.2 Edge Computing Model

Compared to the IoT user, the gateway has much more powerful computation capacity

f and more stable power supply. Then the computation time delay of the task execu-

tion at the edge server is DE
i,j , and the energy consumption by processing the offloaded

computation task Ti,j is EEi,j .

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 101

As mentioned before, the IoT users could offload their computation tasks to the gate-

way and which is able to support efficient computation task execution with its powerful

computation ability. Assuming that the channels between each IoT user and the gateway

follow Rayleigh fading distribution, each user can select one radio access technology from

RA and one sub-channel from CH in the selected RA to offload the computation task

Ti,j to the gateway. The transmission rate can be presented as

Rm,ni = Bm,nlog2(1 +
P Ti h

m,n
i

σ2 +
Z∑

z=1, z 6=i
δm,nz hz→oP Tz

), (5.2.1)

where P Ti is the transmit power of the user ui, h
m,n
i is the channel gain of the radio

access technology RAn in sub-channel CHm,n
1, and hz→o, z ∈ Z is the channel gain

from the user uz to the gateway O. The noise is assumed to be AWGN with its power

as σ2 and P Tz is the interference from the IoT user uz that chooses the same channel

CHm,n, and δm,nz indicates if the user uz takes up the channel CHm,n or not, which is

defined as

δm,nz =

1, uz in CHm,n,

0, otherwise.

(5.2.2)

Then the transmission delay of offloading the task Ti,j of user ui to the gateway is

given by

DT
i,j = di,j/R

m,n
i . (5.2.3)

Moreover, the consumed energy for offloading the task Ti,j is calculated as

ETi,j = P Ti ·DT
i,j . (5.2.4)

Here, the observed SINR from user ui to the gateway over channel CHm,n by offload-

1For simplicity, let CHm,n indicate the channel CHm of radio access technology RAn.

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 102

ing task Ti,j is given by

γm,ni =
P Ti h

m,n
i

σ2 +
Z∑

z=1, z 6=i
δm,nz hz→oP Tz

. (5.2.5)

In this chapter, each IoT user adopts discrete transmit power control, with the trans-

mit power values discreted as in a set PTi = {P1, ..., PX}. At time slot k, each IoT

user selects its transmit power P Ti = Px,∀x = {1, ..., X} from PTi when it chooses edge

computing model; otherwise, P Ti = 0 indicates the user chooses local computing model.

Hence, the possible transmit power levels can be selected by the IoT user ui are defined

as a finite set,

PTi = {P0, P1, ..., PX}, Px 6= 0,∀x = {1, ..., X},∀i ∈ U , (5.2.6)

where P0 = 0 indicates the user chooses to execute task locally. Similarly, the pos-

sible radio access technologies and the possible sub-channels under each radio access

technology can be selected by the IoT user ui are defined as the finite sets, respectively.

RAi = {RA1, RA2, ..., RAN},∀i ∈ U ,

CHi = {CH1, CH2, ..., CHM},∀i ∈ U .
(5.2.7)

The considered multiuser IoT edge computing network is assumed to operate on the

discrete time horizon with each time slot equalization and non-overlapping. Moreover,

assuming that the communication parameters keep unchanged during each time slot.

The timeslot structure is shown in Fig. 5.2, with each time slot lasting Ks duration.

During the time slot k, each IoT user executes its computation tasks according to the

computation decisions made in the last time slot k−1, and then receives some feedbacks

from the gateway, at last, it has to make decisions on computation offloading and resource

allocation by the end of time slot k, i.e., k = (k − 1) +Ks.

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 103

Offloading

/Local

... ...

Feedback
Decision

making

Ks

Figure 5.2: The timeslot structure of the multiuser computation offloading scheme.

5.3 Problem Formulation with Stochastic Game

In this section, the joint problem of computation offloading and resource allocation for

multiuser IoT edge computing network is firstly formulated, and then the stochastic

game is used to model the formulated problem with multiple self-interested users simul-

taneously choosing computing model, transmit power level, radio access technology and

sub-channel.

5.3.1 Problem Formulation

In IoT edge computing networks, energy consumption and time delay are two main

concerns for successful computation task execution. If the IoT user chooses to offload

its computation task, it has to request spectrum and computation resource from the

gateway, which in turn reduces the resource that other users can be allocated. Moreover,

from (5.2.5), larger transmit power means higher transmission rate, smaller transmission

delay, but causes more interference to other IoT users. Therefore, it is necessary to

design a joint computation offloading scheme with efficient resource allocation for the

IoT users. Here, the system cost, defined as the weighted sum of energy consumption and

time delay, is considered as an index to evaluate the decisions on computation offloading

and resource allocation made by the IoT user ui, given by

Ci = Ei + βDi, (5.3.1)

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 104

where Ei is the energy consumption, and Di is the time delay. Specifically, the system

cost is considered as a negative reward function in the formulated problem, which can

indicate what are good or bad decisions for the user.

At the time slot k, the IoT user ui has two possible computing models, executing

task locally or transmitting task to the gateway for execution. Based on the observed

state from the environment, each IoT user selects its transmit power level, radio access

technology and sub-channel. Then it receives a reward to evaluate the performance

of the selected actions. Hence, the design of the reward function directly guides the

learning process. In this chapter, the reward function rki of each IoT user ui is defined

by considering the aggregated effect of other users, which is given by

rki =

(a) CLi,j , γm,ni = 0,

(b) CEi,j + CTi,j , γm,ni > γ̄n, Wall < W̄ ,

(c) CEi,j + CTi,j + ω, γm,ni > γ̄n, Wall > W̄ ,

(d) CTi,j +$, γm,ni < γ̄n,

(5.3.2)

where (a) indicates user ui chooses local task execution and receives the reward CLi,j ,

which obviously indicates that the gateway will not receive any data transmission from

this user, γm,ni = 0. (b) indicates user ui chooses to offload task to the gateway for

execution and gets the reward CEi,j +CTi,j , which means the offloaded task is successfully

received by the gateway, that is, γm,ni > γ̄n, where γ̄n denotes the threshold of the SINR.

Also, the offloaded task from user ui can be successfully executed, that is, Wall < W̄ ,

which means the computation capacity of the gateway is enough to support the data

processing of all the offloaded tasks, Wall indicates the required computation capacity of

all the offloaded tasks while W̄ is the computation capacity of the gateway. (c) presents

that user ui chooses edge task execution and the offloaded task is successfully received

by the gateway, but the computation capacity requirements from all the offloading users

exceed the computation capacity of the gateway, that is, Wall > W̄ , so the obtained

reward is CEi,j + CTi,j + ω, where ω denotes the waiting cost received by the offloading

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 105

users. (d) means the user ui chooses edge task execution, but due to the interference

from other users, the computation offloading process fails (e.g., the SINR is smaller than

the SINR threshold). Therefore, it receives the reward CTi,j + $, where $ denotes the

received penalty because of failed computation offloading process. CLi,j , C
E
i,j , and CTi,j

present the cost of local task execution, edge task execution and computation offloading,

which are calculated by

CLi,j = ELi,j + βDL
i,j ,

CEi,j = EEi,j + βDE
i,j ,

CTi,j = ETi,j + βDT
i,j .

(5.3.3)

Noted that the instant reward of the IoT user ui in any time slot k mainly relies on

its observed information. 1) the available information: the taken actions including the

transmit power level P T,ki , the radio access technology RAki and the sub-channel CHk
i ,

and it relates to the current channel gain hm,n,ki and the remaining computation capacity

of the edge server. 2) the unavailable information: the actions taken by the other IoT

users in the same IoT network and the channel gains between them and the gateway.

Next, to consider the long-term system cost, which is given by

vki =

+∞∑
τ=0

λτrk+τi , (5.3.4)

where λ ∈ [0, 1] is the discount factor. vki presents the discounted sum of future rewards

from the time slot k, which can be used to measure the taken action by IoT user ui.

And τ is the time slot index from the time slot k.

The action space of each IoT user contains the set of possible transmit power level

PTi , radio access technologies RAi and sub-channels CHi, which can be denoted as

Ai = PTi × RAi × CHi. Moreover, at any time slot k, the goal of each IoT user is to

take an optimal action a∗i (k) = (P T∗i , RA∗i , CH
∗
i) ∈ Ai with maximizing the long-term

reward in (5.3.4). Specifically, the reward function is defined by the system cost, which

is a negative reward, so it converts to minimize the long-term reward here. Therefore,

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 106

the optimization computation offloading problem of the IoT user ui can be formulated

as

ak∗i = arg min
ai∈Ai

vki . (5.3.5)

However, the design of multiuser computation offloading scheme for the considered

IoT edge computing network consists of U sub-problems as discussed above, which cor-

responds to U IoT users. Moreover, each IoT user has no information of other IoT

users and it is hard or even impossible to share their local information, like the taken

actions and the received rewards, to each other. It is difficult to get a direct tool to solve

this problem accurately, so a non-cooperative stochastic game is exploited to model this

problem, and then an MARL framework is proposed as the solution.

5.3.2 Stochastic Game

In this section, a stochastic game is investigated to model the design of multiuser com-

putation offloading strategies while minimizing the long-term system cost. In the con-

sidered IoT edge computing network, each IoT user is considered as a player to take

actions including computation offloading decisions and resource allocation solutions to

maximize its own payoff by interacting with the environment. This is an n-player game,

in which multiple self-interested and selfish users learn their own computation offloading

strategies without any cooperation with the other IoT users. Each player observes its

local environment state ski ∈ Si, then independently takes the action aki ∈ Ai. Conse-

quently, each player receives a reward rki = ri(s
k
i , a

k
1, ...a

k
U), and observes a new state

sk+1
i ∈ Si depending on the actions of all the involved players.

A stochastic game is the generalization of MDP in the multi-agent case, also named

as a Markov game, which is denoted by a tuple < S, U,A,P,R >.

• S is the environment states that include the states of each player, and S = S1 ×

S2 · · · × SU ;

• U is the player number;

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 107

• A is the joint action set A = A1 ×A2 · · · × AU ;

• P : S ×A× S ∈ [0, 1] is the state transition probability function;

• R = {r1, · · · rU} contains all the reward functions of the players.

5.3.3 Computation Offloading Game Formulation

Based on the definition of the stochastic game, the considered multiuser computation

offloading problem can be formulated as a stochastic game with each item presented as

follows.

5.3.3.1 Action

In the considered IoT edge computing network, each IoT user ui is considered as an

intelligent agent, at any time slot k, it takes an action including selecting transmit

power level P T,ki , radio access technology RAki and sub-channel CHk
i to complete task

execution. aki ∈ Ai = PTi × RAi × CHi is denoted as the IoT user ui’s action at time

slot k. Hence, the action space of the computation offloading game is A =
∏
i∈U Ai.

5.3.3.2 State

There is no cooperation among the competitive IoT users, so the environment state is

defined based on each IoT user’s local observations. At time slot k, the state observed

by the IoT user ui is given by

ski = (Lki , Iki ,J ki), (5.3.6)

where Lki ∈ {0, 1} indicates the user ui chooses local computing or edge computing

model, that is, whether the transmit power P T,ki of the user ui is equal to zero or not,

denoted as

Li(k) =

0, if P T,ki = P0 = 0,

1, otherwise.

(5.3.7)

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 108

Iki ∈ {0, 1} indicates whether the ui’s computation offloading can be recognized by the

gateway, that is, the received SINR γm,n,ki of user ui is above or below the SINR threshold

γ̄n,

Iki =

1, if γm,n,ki (aki ,a

k
−i) > γ̄n,

0, otherwise,

(5.3.8)

where ak−i = (ak1, ..., a
k
i−1, a

k
i+1, ..., a

k
U) ∈ A−i = A1× ...×Ai−1×Ai+1× ...×AU indicates

the action vector of the other IoT users.

Moreover, J ki ∈ {0, 1} denotes the broadcast information from the gateway that

presents if the gateway’s computation capacity is enough to support the offloaded com-

putation tasks from users at time slot k, given by

J ki =

1, if Wall ≤ W̄ ,

0, otherwise.

(5.3.9)

5.3.3.3 Reward

The reward rki (ski , a
k
i ,a

k
−i) of IoT user ui in state ski presents the immediate return by

user ui taking action aki while the other IoT users taking actions ak−i at time slot k. It’s

rewritten as

rki (ski , a
k
i ,a

k
−i) =

CLi,j , if Lki = 0,

CEi,j + CTi,j , if (Lki , Iki ,J ki) = (1, 1, 1),

CEi,j + CTi,j + ω, if (Lki , Iki ,J ki) = (1, 1, 0),

CTi,j +$, if (Lki , Iki) = (1, 0).

(5.3.10)

Here, the reward function of user ui is defined by considering the aggregated effect

of other users’ actions on user ui. Since only the users that choose edge comput-

ing model may have coupling actions including sub-channels selection and computa-

tion resource competition at the gateway, the reward function r(ski , a
k
i ,a

k
−i) (hereinafter

shorten rki (ski , a
k
i ,a

k
−i) as r(ski , a

k
i ,a

k
−i)) depends on the actions taken by the users choos-

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 109

ing edge computing model. This means that the user ui requesting for the computation

resource from the gateway is affected by the other users that have the same requests at

the same time slot k, also, its channel access is affected by the users competing for the

same channel. For these considerations, two different penalties, ω and $, are defined

in the reward function to mitigate the completely unknown information from the other

offloading users.

Recall that a policy, πi(si, ai), is a mapping from each state, si ∈ Si and ai ∈ Ai

to a probability πi(si, ai) = Pr(at = a | st = s) ∈ [0, 1]. It gives the probability of

taking action ai in state si. Specifically, for IoT user ui in the state si, it has mixed

strategy as πi(si) = {πi(si, ai) | ai ∈ Ai}. Hence, in a stochastic game, a joint strategy

for U agents is defined as a strategy vector π = (π1(s1), π2(s2), ..., πU (sU)) with each

strategy belonging to each agent. Based on the probabilistic policies, we formulate the

optimization goal of each IoT user ui in (5.3.4) into its expected discounted form as

Vi(si,π) = E

[
+∞∑
τ=0

λτri(k + τ)

∣∣∣∣∣ski = si,π

]
, (5.3.11)

where E[·] is the expectation operation, which calculates the state transition under strat-

egy π in state si. The state transition from the state ski to the new state sk+1
i is deter-

mined by the joint strategy of all the IoT users. Moreover, in the non-cooperative game,

at each time slot k, each IoT user ui chooses its strategy πi(s
k
i) independently in state ski

to maximize its discounted reward Vi(si,π), and then it receives its current individual

reward based on the joint strategy π. Here, the goal of each IoT user is to learn the

optimal strategy π∗i from any state si ∈ Si, i.e., the optimal strategies of other IoT users

are learned as π∗−i = (π∗1, ..., π
∗
i−1, π

∗
i+1, ..., π

∗
U), and the expected reward is reformulated

as

Vi(si, πi,π−i) = E
[
+∞∑
τ=0

λτri(s
k+τ
i , πi(s

k+τ
i),π−i(s

k+τ
i))

∣∣∣∣ski = si

]
,

π−i(s
k
i) = (π1(s

k
1), ..., πi−1(s

k
i−1), πi+1(s

k
i+1),πU (skU)).

(5.3.12)

Hence, the solution of the multiuser computation offloading game may reach a Nash

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 110

equilibrium (NE) at one stage, which is defined by Definition 5.1.

Definition 5.1. A Nash equilibrium is a set of U optimal strategies (π∗1, ..., π
∗
U), in which

no IoT user can receive any lower reward by only changing their own strategies. That

is, for each IoT user ui ∈ U in each state si ∈ Si,

Vi(si, π
∗
i ,π

∗
−i) ≤ Vi(si, πi,π∗−i), ∀πi ∈ Πi, (5.3.13)

where Πi is the set of possible strategies can be taken by IoT user ui.

Definition 5.2. 1) Every finite stochastic game has a Nash equilibrium if it has a finite

number of players, U , finite action set, A, and set of states, S.

2) A game with infinite stages if the total payoff is the discounted sum, Vi(si, πi,π−i).

This means, there always exists a NE in our formulated computation offloading game.

In a NE, each IoT user has obtained its optimal strategy, no IoT user can get any better

strategies by changing only their own strategies. Therefore, in this chapter, each IoT

user ui is aiming to find an NE strategy for any state si.

5.4 MARL based Computation Offloading Algorithm

In this section, the multiuser computation offloading in IoT edge computing network is

formulated by the MARL framework. Then a MA-Q learning based computation offload-

ing algorithm is proposed to address the formulated multiuser computation offloading

game.

5.4.1 MARL Framework for Multiuser Computation Offloading

Fig. 5.3 illustrates an MARL framework for a multiuser computation offloading problem

in the IoT edge computing network. Here, in time slot k, each IoT user ui at state ski

takes the action aki ∈ πi(si), and then the environment is changed to a new joint state

Sk+1 = {sk+1
1 , ..., sk+1

i , ..., sk+1
U } based on the joint action Ak = {ak1, ..., aki , ..., akU} taken

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 111

IoT-U 1

IoT-U i

IoT-U U

..
.

..
.

Environment:

CSI,

IoT network,

edge server

1

k
a

k

i
a

k

U
a

1

k
o

k

i
o

k

U
o

1

k
r

k

i
r

k

U
r

Joint

action

k
A

Joint state Reward k
S

k
R

Figure 5.3: The MARL framework for multiuser computation offloading in IoT networks.

by all the IoT users. Finally, each IoT user observes its local information oki as the

new state sk+1
i and gets its own reward rki . Since the future state Sk+1 only depends

upon the present state Sk and the taken action Ak, this dynamic MARL process has

Markov property such that it can be formulated into a stochastic game, i.e., Markov

game. Specifically, the stochastic game with a single player is modelled as an MDP,

moreover, the decision problem faced by a player in a stochastic game when all the other

players choose a fixed profile of stationary strategies is equivalent to an MDP [125].

In the non-cooperative game, each IoT user ui chooses the strategy πi(si) indepen-

dently to maximize its total expected discounted reward, defined in the value function,

from (5.3.12). The value function can be decomposed into two parts as shown in the

Bellman equation:

Vi(si, πi,π−i) = E[ri(si, πi(si),π−i(si)) +
+∞∑
τ=1

λτri(s
′
i, πi(s

′
i),π−i(s

′
i)) | ski = si],

(5.4.1)

where for simplicity, let ski = si and sk+1
i = s′i, so the Bellman equation is formulated as

Vi(si, πi,π−i) = E[ri(si, πi(si),π−i(si)) + λVi(s
′
i, πi,π−i) | ski = si]

= E[ri(si, πi(si),π−i(si))] + λE[Vi(s
′
i, πi,π−i)],

(5.4.2)

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 112

where the expectation of the immediate reward is defined as

E[ri(si, πi(si),π−i(si))] =
∑

(ai,a−i)∈Ai

ri(si, ai,a−i)
∏
z∈U

πz(sz, az), (5.4.3)

where πz(sz, az) denotes the probability of the IoT user uz choosing action az in state

sz. Moreover, the expectation of the discounted value of successive state is calculated

with the state transition function

E[Vi(s
′
i, πi,π−i)] =

∑
s′i∈Si

Psis′i
(πi(si),π−i(si))Vi(s

′
i, πi,π−i). (5.4.4)

Therefore, at the state ski = si, the IoT user takes action aki and then gets the expectation

value of the cumulative return under policy π defined as the state-action value function

Qπ
i (si, ai) = E[

+∞∑
τ=0

λτri(si, ai,π−i(si)) | ski = si, a
k
i = ai]

= E[ri(si, ai,π−i(si)) + λQπi (s′i, a
′
i) | ski = si, a

k
i = ai],

(5.4.5)

similarly, the first part of the Q-value function presents the current return of the IoT

user by taking action ai in state si, which is defined as

E[ri(si, ai,π−i(si))] =
∑

a−i∈A−i

ri(si, ai,a−i)
∏

z∈U\{i}
πz(sz, az). (5.4.6)

Hence, (5.4.5) is reformulated as

Qπi (si, ai) = E[ri(si, ai,π−i(si))] + λ
∑
s′i∈Si

Psis′i
(ai,π−i(si))Vi(s

′
i, πi,π−i)

= E[ri(si, ai,π−i(si))] + λ
∑
s′i∈Si

Psis′i
(ai,π−i(si))

∑
a′i

πi(s
′
i, a
′
i)Q

π
i (s′i, a

′
i).

(5.4.7)

As discussed in Section III, there always exists an NE in the formulated computation

offloading game. Hence, the optimal strategy satisfies the Bellman’s optimality equation,

given as

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 113

Vi(si, π
∗
i ,π

∗
−i) = max

ai∈Ai

{E[ri(si, ai,π
∗
−i(si))] + λ

∑
s′i∈Si

Psis′i
(ai,π

∗
−i(si))Vi(s

′
i, π
∗
i ,π

∗
−i)}.

(5.4.8)

Similarly, the optimal Q-value function Q∗ is the maximal action-value function over

all the possible strategies, that is, when all the IoT users follow the NE strategies given

by

Qi
∗(si, ai) = E[ri(si, ai,π

∗
−i(si))] + λ

∑
s′i∈Si

Psis′i
(ai,π

∗
−i(si))Vi(s

′
i, π
∗
i ,π

∗
−i). (5.4.9)

By combining (5.4.8) and (5.4.9), the optimal Q-function is reformulated as

Qi
∗(si, ai) = E[ri(si, ai,π

∗
−i(si))] + λ

∑
s′i∈Si

Psis′i
(ai,π

∗
−i(si)) max

a′i∈Ai

Q∗i (s
′
i, a
′
i). (5.4.10)

From (5.4.10), the optimal strategy means each IoT user ui chooses the optimal

action which maximizes the corresponding Q-value function for the current state si,

which forms an optimal policy over each time step. Moreover, the optimal Q-function is

determined by the joint policy of all the users π, which makes it difficult to obtain the

optimal strategy. In this chapter, independent learning is used to solve the formulated

computation offloading game. Each IoT user is considered as an independent learner

to learn its individual strategy without sharing information with other IoT users, that

is, for the IoT user ui, the other users are just forming of one part of the environment.

Actually, it is more practical because it is hard for the IoT user to be aware of the

existence of the other IoT users, or to reduce complexity, it may choose to ignore the

action information from the other IoT users.

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 114

5.4.2 IL-based MA-Q learning Algorithm

In this section, Q-learning is applied to solve the independent MDP problems, and an

IL based MA-Q learning algorithm is proposed to solve the joint problem of multiuser

computation offloading and resource allocation in the IoT edge computing network. In

the proposed algorithm, each IoT user runs an independent Q-learning algorithm and

simultaneously learns an individual optimal strategy for their own MDPs. Specifically,

the selection of an optimal action depends on the Q-function, by following (5.4.10), the

optimal Q-function is defined as the optimal expected value of state si when taking action

ai and then proceeding optimally. Since the state transition probability function Psis′i

and the reward function rsis′i are hard or even impossible to be obtained in practice,

the mean return with multiple sampling is used to approximately calculate the expected

cumulative reward. This is achieved by using Monte-Carlo (MC) Learning method, with

sampling the same Q-function Qi(si, ai) over different strategies. However, MC learning

is complicated by calculating mean return with sampling complete episodes, so Temporal

Difference (TD) learning is used to recursively update Q-value function with learning

the estimates on the basis of the old values, which is presented as

Q′i(si, ai)← Qi(si, ai) + α(r′i + λ min
a′i∈Ai

Q(s′i, a
′
i)−Qi(si, ai)), (5.4.11)

where r′i + λ min
a′i∈Ai

Q(s′i, a
′
i) indicates the optimal cumulative returns at time slot k + 1,

which is called TD target. α is the learning rate (0 < α ≤ 1), for ensuring the convergence

of Q-learning, the learning rate αk is set as

αk = αk−1 ∗ (
αend
αini

)
1

episodes , (5.4.12)

where αini, αend are the given initial and last values of α, respectively, and episodes is

the maximum iterations of the learning algorithm.

In this chapter, an IL-based MA-Q learning algorithm is proposed for multiple users

to independently learn their optimal computation offloading strategies for the formulated

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 115

computation offloading game. In the proposed algorithm, each IoT user runs a Q-learning

procedure independently, and it only maintains its own Q-table. The detailed process of

the proposed algorithm is shown in Algorithm 5.1.

Algorithm 5.1: IL-based MA-Q learning computation offloading algorithm

Initialization:
Initialize parameters: discount factor λ, learning rate parameters αini, αend, explo-
ration rate ε.
Set k = 0.

1: for i to U do
2: Initialize action-value function Qki (si, ai)
3: Initialize the resource allocation strategy πki (si, ai)
4: Initialize the state ski
5: end for

Learning:
6: while k ≤ K do
7: for i to U do
8: Choose an action ai according to the strategy πi(si)
9: Measure the received SINR γm,ni at the receiver and the computation capacity

of the gateway by identifying the transmit power, radio access technology and
sub-channel

10: Observe the current state sk+1
i

11: Obtain a reward rki according to the measured information
12: Update Qk+1

i (si, ai) by (5.4.11)
13: Update the strategy πk+1

i (si, ai) according to ε-greedy method
14: Set k = k + 1
15: end for
16: end while

In the proposed learning algorithm, the ε-greedy method is adopted as the strategy

of action selection, which focuses on solving the important problem of reinforcement

learning, the trade-off between exploration and exploitation. This gives a guide that the

agent reinforces the best decision given information or explores new actions to gather

more information. With the ε-greedy method, the agent selects the optimal action

corresponding to the largest Q-function with probability 1 − ε, and chooses a random

action with probability ε ∈ [0, 1].

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 116

Table 5-A: Simulation Parameters

Learning parameters

αini, αend 0.9, 0.001

λ, β 0.9, 5

Channel parameters

BL
m,n, σ

L 1.25 ∗ 105Hz,−174 + 10log10BL
m,n

BW
m,n, σ

W 5 ∗ 106Hz,−160 + 10log10BW
m,n

γ̄L, γ̄W −15dB, 10dB

CHL, CHW 10, 13

PL,PW [0.05, 0.3]W , [0.1, 1]W

Computation parameters

di,j [10K, 4M]bits

ν 500 cycles/bit

eE , eLi 10−7, 10−8 W/CPU cycle

f , fi 10GHz, [500MHz, 1GHz]

5.5 Simulation Results

In this section, the performance of the proposed IL-based MA-Q learning algorithm

for multiuser computation offloading with the resource allocation problem is presented

in the simulations. In the considered IoT network, each IoT user runs a Q-table and

independently interacts with the environment to learn its own optimal computation

offloading strategy and resource allocation solutions. The distances between the IoT

users and the gateway are following the normal distribution with µ = 1000, ξ = 3,

that is, the users are located in a circle with its radius rc = 1km. The small scale fading

between the users and the gateway is set as Rayleigh fading, and the path-loss parameter

is set as a = 2.5. Two radio access technologies, WiFi and LoRa, are considered as an

example to illustrate the proposed algorithm. The detailed simulation parameters are

given in Table 5-A. The experiments are conducted by using Tensorflow for machine

learning library.

Here, the maximum iteration episode for all the simulation experiments is set as

episodes = 10000. To verify the proposed IL-based MA-Q learning algorithm, without

loss of generality, an IoT user u1 is considered as an example. As shown in Fig. 5.4, it

shows the convergence performance of the proposed algorithm under different exploration

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 117

0 100 200 300 400 500
Iterations

100

200

300

400

500

600

700

Av
er

ag
e

C
os

t C
av

e

Figure 5.4: Convergence performance of the proposed IL-based MA-Q learning algorithm mea-
sured by the average Cost Cave, achieved by u1, Ag = 30.

rates ε. The average cost per time slot is converged with the iterations increasing, which

indicates the Q-table of user u1 has been trained stably. Moreover, it is observed that

the larger ε = 0.9 causes the worse average cost, that is, the user explores too many

random actions instead of exploiting the optimal action. From Fig. 5.4, the user has to

pay more attention to exploiting its optimal action in the considered scenario.

Fig. 5.5 shows the convergence performance comparison over different number of

users. It is observed that the average cost, Cave, per time slot of user u1 is higher with

more users in the considered IoT network. This is because with more users, it is harder

for each user to access the gateway due to the limited number of channels. Furthermore,

with the trained Q-tables, the IoT users can make their computation offloading decisions

simultaneously. Considering there are 30 IoT users in the IoT network with 23 available

channels including 10 LoRa channels and 13 WiFi channels. From Fig. 5.6, 20 users

choose to offload their computation tasks while the other 10 users choose to execute their

computation tasks locally. Here, 8 users offload their computation tasks using the LoRa

channels while the others access to the gateway with WiFi channels. It is noted that the

IoT users can access the channels reasonably without collisions.

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 118

0 100 200 300 400 500
Iterations

0

100

200

300

400

500

600

700

Av
er

ag
e

C
os

t C
av

e

Figure 5.5: Performance comparison with different number of users U measured by the average
Cost Cave, achieved by u1, ε = 0.2.

30

20/23

8/10

12/13

Figure 5.6: Access channels allocation with LoRa and WiFi access technologies, Ag = 30, ε =
0.2.

Moreover, the average cost per time slot per IoT user under different computation

offloading algorithms is investigated: the proposed IL-based MA-Q, Centralized, Iterative

presented in Algorithm 5.2 and Random. Here, Centralized, Iterative and Random

algorithm are proposed as three benchmark algorithms for the proposed algorithm.

1. IL-based MA-Q computation offloading: each user independently runs its own Q-

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 119

Algorithm 5.2: Iterative computation offloading algorithm

Initialization:
Set k = 0

1: for i to U do
2: Initialize the strategy selection probability of user ui as 1

U+1 ∈ wk
i = (1

U+1 , ...,
1

U+1)
3: end for

Learning:
4: for k to K do
5: for i to U do
6: User ui selects an offloading strategy πki according to wk

i

7: Measure the received SINR γm,ni at the receiver and the computation capacity
of the gateway by identifying the transmit power, radio access technology and
sub-channel. Evaluate a reward rki .

8: Update wk
i by wk+1

i = wk
i + boki (eπk

i
− wk

i) where 0<b<1 is the learning step

size, eπk
i

is (U + 1)-dimensional unit vector with the πki -th element equal to 1,

oki = 1− ζirki , ζi is a scaling factor and ζi ≤ 1
max
k

rki

9: Until all the users do not change their offloading strategies.
10: end for
11: end for

table to learn the efficient computation offloading strategy by interacting with the

environment.

2. Centralized computation offloading: first, the gateway makes channel estimation

over each user to obtain their channel information and computation task sizes, then

it allocates users for local computing, or offloading computation tasks with LoRa

channels or WiFi channels.

3. Iterative computation offloading: it is based on the multi-agent stochastic learning

algorithm proposed in [6] to solve the multiuser computation offloading problem,

which initializes a strategy selection probability vector wk
i as a uniform distribu-

tion for each user, then performs a loop by a) each user updates its computation

strategy according to wk
i ; b) each user measures its instantaneous payoff; c) each

user updates its wk
i with an updating rule. The loop ends until all the users do not

adjust their respective computation offloading strategies. The detailed procedure

is illustrated in Algorithm 5.2.

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 120

10 20 30 40 50
IoT users

0

100

200

300

400

500

600

Av
er

ag
e

C
os

t C
av

e

Figure 5.7: Comparisons for average cost Cave, with different IoT users under algorithms Cen-
tralized, IL-based MA-Q and Random.

4. Random computation offloading: each user randomly chooses to offload its com-

putation tasks using LoRa channels or WiFi channels, or locally execute its com-

putation tasks.

Fig. 5.7 shows that the average cost is increasing with the number of IoT users

increasing. However, the centralized algorithm does not show obvious upward trend,

this is because it gets the solution with knowing the complete information of the envi-

ronment, that is, there is no competition among users such that the interference will not

increase with the increasing number of users. The proposed IL-based MA-Q algorithm

has lower average cost than the random and iterative based computation offloading, and

the iterative algorithm takes a long time to converge with a large action space. It is

observed that even though the centralized algorithm has around 20% less cost than the

proposed algorithm, it has higher complexity. Moreover, the proposed algorithm can be

achieved in a distributed way, which reduces the computation burden on the gateway,

and it saves the extra cost with no need of performing channel estimation.

Chapter 5. MARL for Multiuser Computation Offloading in IoT Networks 121

5.6 Summary

Towards addressing the multiuser computation offloading problem with limited resources,

like power, computation and spectrum, in IoT edge computing networks, a joint prob-

lem of multiuser computation offloading and resource allocation is formulated. Then, a

non-cooperative multiuser computation offloading game is formulated with multiple self-

ish and self-interested users making decisions on computation offloading simultaneously

while competing for resources from the gateway. Moreover, an IL-based MA-Q algorithm

was developed to solve the formulated problem. The proposed algorithm enabled each

IoT user to independently learn their computation offloading strategies by considering

the aggregated effect of the other users in the defined reward function. The feasibility

of the proposed IL-based MA-Q algorithm applied to different scale of IoT networks has

been verified by simulation results. Compared to the iterative and random benchmark

algorithms, it achieved less system cost, and improved computation performance for the

multiuser IoT edge computing networks with distributed learning.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis focused on solving the resource allocation problem of computation offload-

ing in the Internet of Things (IoT) networks by adopting efficient resource management

methods and especially exploiting machine learning techniques, which is considered as

one of the biggest challenges in the future intelligent IoT networks aiming to achieve

connected intelligence. To deal with data processing in the intelligent IoT networks,

compared to the conventional cloud computing, edge/fog computing with its distributive

property can reduce network congestion and shrink communication latency by exploring

intelligent computation offloading mechanisms based on Artificial Intelligence (AI). By

invoking machine learning techniques, like clustering and Reinforcement Learning (RL)

algorithms, the complex and dynamic computation offloading problem can be converted

to the data-driven framework or formulated by the Markov Decision Process (MDP),

which is of great significance in IoT edge computing networks since the conventional

approaches are restricted by large scale problem and specific application scenarios. Dur-

ing my PhD study, the fundamental research was carried out to design optimal resource

allocation schemes and computation offloading strategy by exploiting matching theory

and machine learning algorithms, with particular effort to achieve distributed learning

122

Chapter 6. Conclusions and Future Work 123

to improve network throughput, energy efficiency and data processing latency.

It has been an effective way for the resource-limited IoT users to transmit their

collected data to a central server for data processing. In this case, the IoT users offload

all the collected data to the central server to get data processing, but which raises

the challenge of spectrum allocation. Besides, the IoT users need sufficient power to

transmit the collected data to the gateway. The use of energy harvesting techniques

provides continuous power supply for data transmission but makes the power allocation

more challenging. Therefore, these challenges were addressed in chapter 3 by proposing

matching theory based Efficient Channel Allocation Algorithm (ECAA) and online power

allocation framework. The proposed ECAA efficiently assigned the IoT users to the

available access channels without collisions, achieved 80% of the optimal performance but

with much lower complexity and achieved better performance than the random channel

assignment. Moreover, the online power allocation framework achieved dynamic transmit

power control for each IoT user by the proposed Dynamic Programming (DP) and RL

based power allocation algorithms. The comparison of network throughput performance

between both proposed power allocation algorithms and the offline power allocation

scheme was carried. The DP-based power allocation has highest network throughput,

and Q-learning-based algorithm could reach 90% of the highest performance but with

no need of pre-known network state transition probability function.

However, offloading all the data to a central server consumes large communication

bandwidth and transmit power. Moreover, compared to cloud computing, edge server

has finite computation and power resource. The development of more powerful chips

enables the IoT users to execute partial computation tasks locally, so partial compu-

tation offloading is more reasonable to be considered in practical IoT networks. Nev-

ertheless, it brings the concern that which task should be offloaded and how it should

be offloaded, how many users should be chosen to offload their tasks. To address these

issues, machine learning approaches with two steps were explored in chapter 4. Firstly,

a centralized K-means based clustering algorithm was proposed to group IoT users into

Chapter 6. Conclusions and Future Work 124

different clusters in IoT edge computing network, which roughly decided the computa-

tion offloading strategies for the IoT users in the clusters with highest and lowest user

priority. Next, for the users in the remaining clusters, a distributed computation offload-

ing strategy was learned by exploiting Deep Q-Network (DQN) algorithm to minimize

the long-term system cost by considering the single user computation offloading scenario.

It was demonstrated that the clustering algorithm could eliminate redundant processing

for those users with relatively obvious decisions on computation offloading. Moreover,

the DQN-based computation offloading mechanism achieved lower system cost than the

other three benchmark schemes and had a neutral performance separately considering

energy consumption and execution latency.

Machine learning approaches have received good performance to learn computation

offloading strategy and efficient resource allocation schemes for IoT users from chapter

4. The distributed computation offloading strategy based on DQN was learned by only

considering the single user scenario and ignoring other users’ interference and resource

competition. In reality, multiple users are likely offloading computation tasks simulta-

neously, which causes competition for limited system resources and interference among

users. Chapter 5 investigated this problem as a joint computation offloading and resource

allocation optimization problem, and formulated it as a non-cooperative stochastic game.

Next, a Multi-Agent Reinforcement Learning (MARL) framework was explored to solve

the formulated problem and then an Independent Learners based Multi-Agent Q-learning

(IL-based MA-Q) algorithm was developed to learn the efficient computation offload-

ing strategy and resource allocation solutions, with special effort on the design of each

user’s reward function by aggregating the effect of all the other users. Simulations have

demonstrated the feasibility of the proposed IL-based MA-Q learning algorithm applied

to different scale of IoT networks, and it achieved lower system cost compared to the

iterative and random benchmark algorithms. Moreover, it was shown 20% more cost

than the centralized algorithm but with less complexity. Consequently, it achieved effi-

cient resource management and improved computation performance for the users in IoT

Chapter 6. Conclusions and Future Work 125

edge computing networks with distributed learning.

To sum up, in this thesis, the efficient resource allocation methods and computation

offloading mechanisms have been proposed for computing offloading in IoT networks

based on matching theory and machine learning techniques with an emphasis on improv-

ing network throughput, energy efficiency and network latency, as well as achieving dis-

tributed learning. An amount of simulations have been performed. It demonstrated the

feasibility of the proposed matching theory-based channel allocation algorithm, the joint

RL-based computation offloading strategies and resource allocation schemes. Moreover,

they were proved to be superior to the benchmark algorithms and have less complexity

than the optimal scheme, and have achieved distributed learning.

6.2 Future Work

A few research issues have been identified and will be addressed in the future work, for

achieving edge intelligence enabled IoT networks which contributes an important part

in 6G networks.

6.2.1 Federated Learning for Edge Intelligence

Based on the research work in chapter 4, each IoT user has to run an independent

deep Q-network to learn the optimal computation offloading strategy and resource allo-

cation solutions. However, each user has limited data source, and is always resource-

constrained, including power-limited battery and capacity-limited processor. Federated

learning enables collaborative training with the master-slave architecture where multiple

IoT devices are slavery to the edge server by offloading their local training model param-

eters and then getting the global training model update from the edge server, which has

received much attention recently. As mentioned in section 2.3, edge intelligence requires

the edge server to provide both machine learning enabled data processing and distributed

AI model integration. This raises the challenge in computation offloading, i.e., the joint

design of data offloading and model parameters offloading, especially for offloading data

Chapter 6. Conclusions and Future Work 126

and the model parameters of the learning model for computation offloading scheme itself.

6.2.2 Distributed Intelligence

As mentioned before, federated learning generally enhanced distributed AI model train-

ing with a central parameter server to integrate the local AI models from the IoT devices.

In this case, network congestion is still challenging because many users need to offload

their model parameters to the central server. The partially/fully decentralized AI model

training method, in which users might rely on their closest neighbours or more powerful

devices to support their AI model training, is attracting the attention from researchers.

Moreover, according to research in chapter 5, to deal with the non-cooperative multiuser

computation offloading game, each user has to learn the actions taken by the other users

since it is observing local information from the varying environment due to the joint

action of all the users. Therefore, the design of fully distributed learning method when

it is hard or impossible to know the coupled actions from other users and the environ-

mental changes is full of challenges, at the same time it is essential to be addressed for

6G networks.

6.2.3 Embedded Intelligence for IoT Applications

Along with the development of AI services in our lives, like augmented reality and virtual

reality, and autonomous driving, they require data-driven machine learning methods to

analyse the massive amount of data and then make real-time decisions. More critical and

efficient communication technologies via machine learning algorithms are needed to sat-

isfy the extreme requirements, including ultra-low latency and ultra-low energy consump-

tion. Specifically, embedding machine learning algorithms into the resource-constrained

IoT devices raises a big challenge for algorithm design and hardware implementation.

Here, the design of machine learning algorithm needs to focus on low complexity and

easily ported. In contrast, the hardware design has to be put more attention on more

powerful and integrated AI chips.

References

[1] T. Taleb, “White paper on 6G networking,” 6G research visions, No.6, Jun. 2020.

[2] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation for multi-

server mobile-edge computing networks,” IEEE Trans. Veh. Technol., vol. 68,

no. 1, pp. 856–868, Jan. 2019.

[3] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel estimation

and signal detection in ofdm systems,” IEEE Wireless Commun. Lett., vol. 7,

no. 1, pp. 114–117, 2017.

[4] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and autoscaling in

energy harvesting mobile edge computing,” IEEE Trans. Cognitive Commun. and

Netw., vol. 3, no. 3, pp. 361–373, Sep. 2017.

[5] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-based

computation offloading for IoT devices with energy harvesting,” IEEE Trans. Veh.

Technol., vol. 68, no. 2, pp. 1930–1941, Feb. 2019.

[6] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation offloading for mobile

cloud computing: A stochastic Game-Theoretic approach,” IEEE Trans. Mobile

Comput., vol. 18, no. 4, pp. 771–786, Apr. 2019.

[7] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Inter-

net of things: A survey on enabling technologies, protocols, and applications,”

IEEE Commun. Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A

vision, architectural elements, and future directions,” Future generation computer

127

Chapter 6. Conclusions and Future Work 128

systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[9] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O.Hersent, “LoRaWAN

specification,” LoRa Alliance, Jan. 2015. [Online]. Available: https://www.

lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf

[10] “Sigfox”, accessed Oct. 2016. [Online]. Available: https://www.sigfox.com/

[11] 3GPP, “Narrowband IoT,” 3rd Generation Partnership Project (3GPP), TS 151621,

Sep. 2016.

[12] X. Xiong, K. Zheng, R. Xu, W. Xiang, and P. Chatzimisios, “Low power wide area

machine-to-machine networks: key techniques and prototype,” IEEE Commun.

Mag., vol. 53, no. 9, pp. 64–71, Sep. 2015.

[13] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and

L. Ladid, “Internet of Things in the 5G era: Enablers, architecture, and busi-

ness models,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 510–527, Mar.

2016.

[14] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks:

An overview,” IEEE Commun. Surveys Tutorials, vol. PP, no. 99, pp. 1–1, 2017.

[15] Z. Qin, F. Y. Li, G. Li, J. A. McCann, and Q. Ni, “Low-power wide-area networks

for sustainable IoT,” IEEE Wireless Commun., 2018.

[16] Z. Qin and J. A. McCann, “Resource efficiency in low-power wide-area networks

for IoT applications,” in in Proc. IEEE Global Commun. Conf. (GLOBECOM),

Dec. 2017, pp. 1–7.

[17] S. Kartakis, B. D. Choudhary, A. D. Gluhak, L. Lambrinos, and J. A. McCann,

“Demystifying low-power wide-area communications for city IoT applications,”

in Proc. of Int. Workshop Wireless Netw. Testbeds, Experimental Evaluation,

Characterization, (WiNTECH’16). New York, NY, USA: ACM, Sep. 2016, pp.

2–8.

[18] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-power wide-area

networks scale?” in Proc. of ACM Intl. Conf. Modeling, Analysis and Simul.

Wireless and Mobile Systems, (MSWiM’16), Nov. 2016, pp. 59–67.

[19] M. Bor, J. Vidler, and U. Roedig, “LoRa for the Internet of Things,” in Proc.

Chapter 6. Conclusions and Future Work 129

of Intl. Conf. Embedded Wireless Syst. Netw. (EWSN’16), Graz, Austria, Feb.

2016, pp. 361–366.

[20] M. Haghighi, Z. Qin, D. Carboni, U. Adeel, F. Shi, and J. A. McCann, “Game

theoretic and auction-based algorithms towards opportunistic communications in

LPWA LoRa networks,” in IEEE World Forum Internet of Things (WF-IoT’16),

Dec. 2016, pp. 735–740.

[21] O. Georgiou and U. Raza, “Low power wide area network analysis: Can LoRa

scale?” IEEE Wireless Commun. Lett., vol. PP, no. 99, pp. 1–1, 2017.

[22] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and

T. Watteyne, “Understanding the limits of LoRaWAN,” IEEE Commun. Mag.,

vol. 55, no. 9, pp. 34–40, Sep. 2017.

[23] Y. He, X. Cheng, W. Peng, and G. L. Stuber, “A survey of energy harvesting

communications: Models and offline optimal policies,” IEEE Commun. Mag.,

vol. 53, no. 6, pp. 79–85, Jun. 2015.

[24] D. Mishra, S. De, S. Jana, S. Basagni, K. Chowdhury, and W. Heinzelman, “Smart

rf energy harvesting communications: Challenges and opportunities,” IEEE Com-

mun. Mag., vol. 53, no. 4, pp. 70–78, Apr. 2015.

[25] N. Harpawi et al., “Design energy harvesting device of UHF TV stations,” in 8th

Intl. Conf. Telecom. Systems Services and Applications (TSSA), pp. 1–6, Oct.

2014.

[26] S. Keyrouz, H. Visser, and A. Tijhuis, “Ambient RF energy harvesting from DTV

stations,” Antennas and Propagation Conference (LAPC), Loughborough, pp. 1–4,

Nov. 2012.

[27] H. Nishimoto, Y. Kawahara, and T. Asami, “Prototype implementation of wireless

sensor network using TV broadcast RF energy harvesting,” in Adjunct Proc. of

12th ACM Int. conf. on Ubicomp’10., pp. 373–374, Sep. 2010.

[28] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks with RF

energy harvesting: A contemporary survey,” IEEE Commun. Surveys Tutorials,

vol. 17, no. 2, pp. 757–789, Apr. 2015.

[29] Ericsson, “Ericsson mobility report,” Ericsson, https://www.ericsson.com/4acd7e/assets/local/mobility-

Chapter 6. Conclusions and Future Work 130

report/documents/2019/emr-november-2019.pdf, Tech. Rep., 2019.

[30] E. Union, “Identification and quantification of key socio-economicdata to support

strategic planning for the introduction of 5G in Europe -SMART,” 2014/0008,

Tech. Rep., 2016.

[31] L. Zhang, Y.-C. Liang, and M. Xiao, “Spectrum sharing for internet of things: A

survey,” IEEE Wireless Commun., vol. 26, no. 3, pp. 132–139, Jun. 2019.

[32] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, and P. Hui, “A survey on edge intelligence,”

arXiv preprint arXiv:2003.12172, 2020.

[33] A. E. Roth, “Deferred acceptance algorithms: History, theory, practice, and open

questions,” International Journal of game Theory, vol. 36, no. 3, pp. 537–569,

2008.

[34] A. Leshem, E. Zehavi, and Y. Yaffe, “Multichannel opportunistic carrier sensing

for stable channel access control in cognitive radio systems,” IEEE J. Sel. Areas

Commun., vol. 30, no. 1, pp. 82–95, 2011.

[35] S. Bayat, R. H. Louie, Z. Han, B. Vucetic, and Y. Li, “Distributed user associ-

ation and femtocell allocation in heterogeneous wireless networks,” IEEE Trans.

Commun., vol. 62, no. 8, pp. 3027–3043, 2014.

[36] O. Semiari, W. Saad, S. Valentin, M. Bennis, and H. V. Poor, “Context-aware

small cell networks: How social metrics improve wireless resource allocation,” IEEE

Trans. Wireless Commun., vol. 14, no. 11, pp. 5927–5940, 2015.

[37] E. A. Jorswieck, “Stable matchings for resource allocation in wireless networks,”

in 2011 17th International Conference on Digital Signal Processing (DSP), 2011,

pp. 1–8.

[38] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The

American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[39] Z. Han and K. Liu, Resource allocation for wireless networks: basics, techniques,

and applications. Cambridge university press, 2008.

[40] Y. Gu, Y. Zhang, M. Pan, and Z. Han, “Matching and cheating in device to device

communications underlying cellular networks,” IEEE J. Sel. Areas Commun.,

vol. 33, no. 10, pp. 2156–2166, 2015.

Chapter 6. Conclusions and Future Work 131

[41] R. Mochaourab, B. Holfeld, and T. Wirth, “Distributed channel assignment in cog-

nitive radio networks: Stable matching and walrasian equilibrium,” IEEE Trans.

Wireless Commun., vol. 14, no. 7, pp. 3924–3936, 2015.

[42] A. Waret, M. Kaneko, A. Guitton, and N. El Rachkidy, “LoRa throughput analysis

with imperfect spreading factor orthogonality,” IEEE Wireless Commun. Lett.,

vol. 8, no. 2, pp. 408–411, 2018.

[43] A. Muqattash and M. Krunz, “CDMA-based MAC protocol for wireless ad hoc

networks,” in Proceedings of the 4th ACM international symposium on Mobile ad

hoc networking & computing, 2003, pp. 153–164.

[44] M. Othman, S. A. Madani, S. U. Khan et al., “A survey of mobile cloud computing

application models,” IEEE Commun. Surveys Tutorials, vol. 16, no. 1, pp. 393–

413, Jul. 2013.

[45] M. Kamoun, W. Labidi, and M. Sarkiss, “Joint resource allocation and offloading

strategies in cloud enabled cellular networks,” in 2015 IEEE International Con-

ference on Communications (ICC). IEEE, Jun. 2015.

[46] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobile-

edge computing with energy harvesting devices,” IEEE J. Sel. Areas Commun.,

vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[47] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-based

computation offloading for iot devices with energy harvesting,” IEEE Trans. Veh.

Technol., vol. 68, no. 2, pp. 1930–1941, Jan. 2019.

[48] S. Bi, Y. Zeng, and R. Zhang, “Wireless powered communication networks: An

overview,” IEEE Wireless Commun., vol. 23, no. 2, pp. 10–18, Apr. 2016.

[49] H. Ju and R. Zhang, “Throughput maximization in wireless powered communica-

tion networks,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 418–428, Jan.

2014.

[50] L. Liu, R. Zhang, and K.-C. Chua, “Multi-antenna wireless powered communi-

cation with energy beamforming,” IEEE Trans. Commun., vol. 62, no. 12, pp.

4349–4361, Dec. 2014.

[51] D. K. P. Asiedu, S. Mahama, and K.-J. Lee, “Joint beamforming and resource

Chapter 6. Conclusions and Future Work 132

allocation for multi-user full-duplex wireless powered communication networks,”

in Proc. IEEE Vehicular Technology Conference (VTC Spring), Jun. 2018, pp.

1–5.

[52] R. A. Loodaricheh, S. Mallick, and V. K. Bhargava, “QoS provisioning based

resource allocation for energy harvesting systems,” IEEE Trans. Wireless Com-

mun., vol. 15, no. 7, pp. 5113–5126, Jul. 2016.

[53] M. R. Zenaidi, Z. Rezki, and M.-S. Alouini, “Performance limits of online energy

harvesting communications with noisy channel state information at the transmit-

ter,” IEEE Access, vol. 5, pp. 1239–1249, Mar. 2017.

[54] S. Mao, M. H. Cheung, and V. W. Wong, “Joint energy allocation for sensing

and transmission in rechargeable wireless sensor networks,” IEEE Trans. Veh.

Technol., vol. 63, no. 6, pp. 2862–2875, Jul. 2014.

[55] P. Sakulkar and B. Krishnamachari, “Online learning schemes for power allocation

in energy harvesting communications,” IEEE Trans. Inf. Theory, vol. 64, no. 6,

pp. 4610–4628, Jun. 2018.

[56] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,

J. Kong, and J. P. Jue, “All one needs to know about fog computing and related

edge computing paradigms: A complete survey,” arXiv preprint arXiv:1808.05283,

Sep. 2018.

[57] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado,

L. Villas, L. da Silva, C. Lee, and O. Rana, “The internet of things, fog and cloud

continuum: Integration and challenges,” IEEE Internet Things J., Oct. 2018.

[58] C.-H. Hong and B. Varghese, “Resource management in fog/edge computing: A

survey,” arXiv preprint arXiv:1810.00305, Sep. 2018.

[59] D. T. Nguyen, L. B. Le, and V. Bhargava, “A market-based framework for multi-

resource allocation in fog computing,” arXiv preprint arXiv:1807.09756, Jul. 2018.

[60] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and

computation offloading,” arXiv preprint arXiv:1702.05309, Mar. 2017.

[61] Y. Mao, J. Zhang, and K. B. Letaief, “Joint task offloading scheduling and transmit

power allocation for mobile-edge computing systems,” in Wireless Commun. and

Chapter 6. Conclusions and Future Work 133

Networking Conf. (WCNC 2017). San Francisco, CA: IEEE, Jan. 2017, pp. 1–6.

[62] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and

computational resources for multicell mobile-edge computing,” IEEE Trans. Signal

Inf. Process. Over Netw., vol. 1, no. 2, pp. 89–103, Jun. 2015.

[63] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation for mobile

edge computing-based augmented reality applications,” IEEE Wireless Commun.

Lett., vol. 6, no. 3, pp. 398–401, Jun. 2017.

[64] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task

scheduling for mobile-edge computing systems,” in 2016 IEEE International Sym-

posium on Information Theory (ISIT). IEEE, Jul. 2016.

[65] W. Labidi, M. Sarkiss, and M. Kamoun, “Energy-optimal resource scheduling and

computation offloading in small cell networks,” in 2015 22nd International Con-

ference on Telecommunications (ICT). IEEE, Apr. 2015.

[66] S. Cao, X. Tao, Y. Hou, and Q. Cui, “An energy-optimal offloading algorithm of

mobile computing based on HetNets,” in 2015 International Conference on Con-

nected Vehicles and Expo (ICCVE). IEEE, Oct. 2015.

[67] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered

mobile-edge computing with binary computation offloading,” IEEE Trans. Wire-

less Commun., vol. 17, no. 6, pp. 4177–4190, Apr. 2018.

[68] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Joint allocation of radio and compu-

tational resources in wireless application offloading,” in 2013 Future Network &

Mobile Summit. IEEE, Jul. 2013, pp. 1–10.

[69] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and computa-

tional resources for energy efficiency in latency-constrained application offloading,”

IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4738–4755, Oct. 2015.

[70] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay tradeoff in multi-

user mobile-edge computing systems,” in 2016 IEEE Global Communications Con-

ference (GLOBECOM). IEEE, Dec. 2016.

[71] M.-H. Chen, B. Liang, and M. Dong, “A semidefinite relaxation approach to mobile

cloud offloading with computing access point,” in 2015 IEEE 16th International

Chapter 6. Conclusions and Future Work 134

Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

IEEE, Jun. 2015.

[72] W. Labidi, M. Sarkiss, and M. Kamoun, “Joint multi-user resource scheduling and

computation offloading in small cell networks,” in 2015 IEEE 11th International

Conference on Wireless and Mobile Computing, Networking and Communications

(WiMob). IEEE, Oct. 2015.

[73] M.-H. Chen, B. Liang, and M. Dong, “Multi-user multi-task offloading and resource

allocation in mobile cloud systems,” IEEE Trans. Wireless Commun., vol. 17,

no. 10, pp. 6790–6805, Oct. 2018.

[74] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for

mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24,

no. 5, pp. 2795–2808, Oct. 2016.

[75] C. You and K. Huang, “Multiuser resource allocation for mobile-edge computation

offloading,” in in Proc. Global Communication Conf.(GLOBECOM), Washington,

DC USA, Dec. 2016, pp. 1–6.

[76] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource allocation

for mobile-edge computation offloading,” IEEE Trans. Wireless Commun., vol. 16,

no. 3, pp. 1397–1411, Mar. 2017.

[77] O. Munoz, A. P. Iserte, J. Vidal, and M. Molina, “Energy-latency trade-off for mul-

tiuser wireless computation offloading,” in 2014 IEEE Wireless Communications

and Networking Conference Workshops (WCNCW). IEEE, Apr. 2014.

[78] G. Zhu, D. Liu, and Y. Du, “Towards an intelligent edge: Wireless communication

meets machine learning,” arXiv preprint arXiv:1809.00343, Sep. 2018.

[79] Y. Du and K. Huang, “Fast analog transmission for high-mobility wireless data

acquisition in edge learning,” arXiv preprint arXiv:1807.11250, Jul. 2018.

[80] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network intelligence

at the edge,” Proceedings of the IEEE, vol. 107, no. 11, pp. 2204–2239, Nov. 2019.

[81] W. Zhan, C. Luo, J. Wang, G. Min, and H. Duan, “Deep reinforcement learning-

based computation offloading in vehicular edge computing,” in 2019 IEEE Global

Communications Conference (GLOBECOM), Dec. 2019.

Chapter 6. Conclusions and Future Work 135

[82] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based on deep

reinforcement learning in IoT edge computing,” IEEE J. Sel. Areas Commun., pp.

1–1, Apr. 2020.

[83] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized computation

offloading performance in virtual edge computing systems via deep reinforcement

learning,” IEEE Internet Things J., vol. 6, no. 3, pp. 4005–4018, Jun. 2019.

[84] ——, “Performance optimization in mobile-edge computing via deep reinforcement

learning,” arXiv preprint arXiv:1804.00514, Mar. 2018.

[85] C. Zhang, Z. Liu, B. Gu, and etc., “A deep reinforcement learning based approach

for cost-and energy-aware multi-flow mobile data offloading,” IEICE Trans. on

Commun., pp. 1625–1634, Jan. 2018.

[86] X. Chen, H. Zhang, and C. Wu, “Optimized computation offloading performance

in virtual edge computing systems via deep reinforcement learning,” IEEE Internet

Things J., Jun. 2018.

[87] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iRAF: a deep reinforce-

ment learning approach for collaborative mobile edge computing IoT networks,”

IEEE Internet Things J., Apr. 2019.

[88] H. Peng and X. S. Shen, “Deep reinforcement learning based resource management

for multi-access edge computing in vehicular networks,” IEEE Trans. Netw. Scien.

and Engin., pp. 1–1, Jun. 2020.

[89] Z. Zhang, F. R. Yu, F. Fu, Q. Yan, and Z. Wang, “Joint offloading and resource

allocation in mobile edge computing systems: An actor-critic approach,” in 2018

IEEE Global Communications Conference (GLOBECOM). IEEE, Dec. 2018.

[90] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning for online com-

putation offloading in wireless powered mobile-edge computing networks,” IEEE

Trans. Mobile Comput., Jul. 2020.

[91] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink, and R. Mathar, “Deep reinforcement

learning based resource allocation in low latency edge computing networks,” in

2018 15th International Symposium on Wireless Communication Systems (ISWCS).

IEEE, Aug. 2018.

Chapter 6. Conclusions and Future Work 136

[92] D. Borthakur, H. Dubey, and N. Constant, “Smart fog: Fog computing framework

for unsupervised clustering analytics in wearable internet of things,” in in Proc.

Global Conf. Signal Inf. Process. (GlobalSIP), Montreal, Canada, Nov. 2017, pp.

472–476.

[93] X. Liu, Z. Qin, and Y. Gao, “Resource allocation for edge computing in IoT

networks via reinforcement learning,” in Proc.IEEE Int. Conf. Communication

(ICC), Shanghai, China, May 2019, pp. 1–6.

[94] X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource allocation with edge computing in

IoT networks via machine learning,” IEEE Internet Things J., Feb. 2020.

[95] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint radio and com-

putational resource management for multi-user mobile-edge computing systems,”

IEEE Wireless Commun., vol. 16, no. 9, pp. 5994–6009, Sep. 2017.

[96] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered

mobile-edge computing with binary computation offloading,” IEEE Trans. Wire-

less Commun., vol. 17, no. 6, pp. 4177–4190, Jun. 2018.

[97] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial computation offload-

ing scheme for mobile edge computing enabled internet of things,” IEEE Internet

Things J., vol. 6, no. 3, pp. 4804–4814, Jun. 2019.

[98] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation offloading in

green mobile edge cloud computing,” IEEE Trans. Serv. Comput., vol. 12, no. 5,

pp. 726–738, Sep. 2019.

[99] L. Tang and S. He, “Multi-user computation offloading in mobile edge computing:

A behavioral perspective,” IEEE Netw., vol. 32, no. 1, pp. 48–53, Jan. 2018.

[100] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge computation offload-

ing for ultradense IoT networks,” IEEE Internet Things J., vol. 5, no. 6, pp. 4977–

4988, Dec. 2018.

[101] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource allocation

in mobile-edge computation offloading,” IEEE Trans. Wireless Commun., vol. 17,

no. 8, pp. 5506–5519, Aug. 2018.

[102] Y. Wu, L. P. Qian, K. Ni, C. Zhang, and X. Shen, “Delay-minimization nonorthog-

Chapter 6. Conclusions and Future Work 137

onal multiple access enabled multi-user mobile edge computation offloading,” IEEE

J. Sel. Signal Process., vol. 13, no. 3, pp. 392–407, Jun. 2019.

[103] F. Wang, J. Xu, and Z. Ding, “Multi-antenna NOMA for computation offloading

in multiuser mobile edge computing systems,” IEEE Trans. Commun., vol. 67,

no. 3, pp. 2450–2463, Mar. 2019.

[104] C.-F. Liu, M. Bennis, and H. V. Poor, “Latency and reliability-aware task offload-

ing and resource allocation for mobile edge computing,” in 2017 IEEE Globecom

Workshops (GC Wkshps), Dec. 2017.

[105] S. Ranadheera, S. Maghsudi, and E. Hossain, “Mobile edge computation offloading

using game theory and reinforcement learning,” arXiv preprint arXiv:1711.09012,

Nov. 2017.

[106] Y. Zhang, B. Di, Z. Zheng, J. Lin, and L. Song, “Joint data offloading and

resource allocation for multi-cloud heterogeneous mobile edge computing using

multi-agent reinforcement learning,” in 2019 IEEE Global Communications Con-

ference (GLOBECOM), Dec. 2019.

[107] X. Chen, Z. Zhao, and H. Zhang, “Stochastic power adaptation with multiagent

reinforcement learning for cognitive wireless mesh networks,” IEEE Trans. Mobile

Comput., vol. 12, no. 11, pp. 2155–2166, Nov. 2012.

[108] J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement learning based

resource allocation for UAV networks,” IEEE Trans. Wireless Commun., Feb.

2020.

[109] A. E. Roth, “The economics of matching: Stability and incentives,” Mathematics

of operations research, vol. 7, no. 4, pp. 617–628, 1982.

[110] F. Echenique and J. Oviedo, “A theory of stability in many-to-many matching

markets,” 2004.

[111] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory for future

wireless networks: fundamentals and applications,” IEEE Commun. Mag., vol. 53,

no. 5, pp. 52–59, May 2015.

[112] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective

overview of theories and algorithms,” arXiv preprint arXiv:1911.10635, 2019.

Chapter 6. Conclusions and Future Work 138

[113] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation offloading

for mobile systems,” Mobile Networks and Applications, vol. 18, no. 1, pp. 129–140,

Apr. 2012.

[114] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and

computation offloading,” IEEE Commun. Surveys Tutorials, vol. 19, no. 3, pp.

1628–1656, Feb. 2017.

[115] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile edge computing:

Survey and research outlook,” arXiv preprint arXiv, vol. 1701, Jan. 2017.

[116] X. Liu and Y. Gao, “Reinforcement learning approaches for iot networks with

energy harvesting,” in 2019 IEEE/CIC International Conference on Communica-

tions in China (ICCC). IEEE, 2019, pp. 85–90.

[117] X. Liu, Z. Qin, Y. Gao, and J. A. McCann, “Resource allocation in wireless powered

iot networks,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4935–4945, 2019.

[118] Y. Gu, C. Jiang, L. X. Cai, M. Pan, L. Song, and Z. Han, “Dynamic path to

stability in LTE-unlicensed with user mobility: A matching framework,” IEEE

Trans. Wireless Commun., vol. 16, no. 7, pp. 4547–4561, 2017.

[119] S. Bayat, Y. Li, L. Song, and Z. Han, “Matching theory: Applications in wireless

communications,” IEEE Signal Process. Mag., vol. 33, no. 6, pp. 103–122, Nov.

2016.

[120] E. Bodine-Baron, C. Lee, A. Chong, B. Hassibi, and A. Wierman, “Peer effects

and stability in matching markets,” in International Symposium on Algorithmic

Game Theory. Springer, 2011, pp. 117–129.

[121] B. Su, Z. Qin, and Q. Ni, “Energy efficient uplink transmissions in LoRa networks,”

IEEE Transactions on Communications, vol. 68, no. 8, pp. 4960–4972, 2020.

[122] D. P.Bertsekas, Dynamic programming and optimal control, 2nd ed. Athena sci-

entific Belmont, MA, 1995, vol. 1 and 2.

[123] M. L. Puterman, Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.

[124] X. Liu, J. Yu, and Y. Gao, “Multi-agent reinforcement learning for resource alloca-

tion in iot networks with edge computing,” arXiv preprint arXiv:2004.02315, Apr.

Chapter 6. Conclusions and Future Work 139

2020.

[125] A. Neyman, “From markov chains to stochastic games,” in Stochastic Games and

Applications. Springer, 2003, pp. 9–25.

