
School of Electronic Engineering and Computer Science
Queen Mary University of London

PhD Thesis

Bounded Verification of
Higher-Order Stateful Programs

Yu Yang Lin Hou

supervised by

Dr Nikos Tzevelekos

May, 2021
Submitted in partial fulfillment of the requirements of the Degree of

Doctor of Philosophy

2

3

I, Yu Yang Lin Hou, confirm that the research included within this thesis is my
own work or that where it has been carried out in collaboration with, or supported by
others, that this is duly acknowledged below and my contribution indicated. Previously
published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original,
and does not to the best of my knowledge break any UK law, infringe any third party’s
copyright or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check
the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree
by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or
information derived from it may be published without the prior written consent of the
author.

Signature:

Date:

Details of collaboration and publications:

• Chapter 3 references published work in collaboration with Dr. Nikos Tzevelekos,
“A Bounded Model Checking Technique for Higher-Order Programs”, in the pro-
ceedings of The Symposium on Dependable Software Engineering Theories, Tools
and Applications, SETTA 2019.

• Chapter 4 references published work in collaboration with Dr. Nikos Tzevelekos,
“Symbolic Execution Game Semantics”, in the proceedings of Formal Structures
for Computation and Deduction, FSCD 2020.

4

To my parents, for their love, care and encouragement;
and to all the teachers who guided me along the way.

5

6

Abstract

In this thesis we explore bounded verification techniques for higher-order stateful pro-
grams. We consider two settings: open and closed higher-order, which are defined by
the type-order of free variables present in each. Closed higher-order programs allow free
variables only if they are of ground type, whereas open higher-order programs generalise
this by allowing free variables of arbitrary order. We elaborate on the challenges involved
in reasoning within said settings, and define a higher-order stateful language—an ML-like
λ-calculus with recursion and higher-order global state—as our vehicle of study. We
define a Bounded Model Checking technique for closed higher-order programs via de-
functionalization using nominal techniques, and a Symbolic Execution Game Semantics
to perform Bounded Symbolic Execution of open higher-order programs. Contributions
presented in this thesis involve theoretical and experimental results. On the theoretical
side, all approaches defined herein are sound and bounded-complete in the sense that
they report errors if and only if errors are reachable up to the given bound—all results
necessary to show this are included. For the experimental side, we implemented prototype
tools for each technique, collected and created benchmarks to test each higher-order
setting, and measured the performance of our tools to compare them to other relevant
existing tools. Results presented herein for closed and open higher-order programs have
been published in SETTA 2019 and FSCD 2020 respectively.

7

8

Acknowledgements

First, I would like to thank my supervisor, Nikos Tzevelekos—the work presented here is
a result of his constant support and patience. He guided me through my research studies
with dedication and exemplary academic character and integrity. I greatly appreciate
the time and effort he spent supervising me.

I would also like to thank my PhD progression review committee members, Professor
Edmund Robinson and Dr. Greta Yorsh, for their advice, feedback and administrative
work. In particular, I want to thank them for forcing me to start writing this thesis.

I likewise appreciate my colleagues in the School of Electronic Engineering and
Computer Science at Queen Mary, especially my friends in the Theory Group.

Finally, I would like to thank my family for their unwavering support and faith in me.

9

10

Contents

1 Introduction 19

1.1 Thesis Outline . 20

1.1.1 Main Contributions . 21

1.2 Higher-Order Stateful Programs . 21

1.2.1 Open and Closed Higher-Order Programs 22

1.2.2 Higher-Order Libraries . 23

1.3 Software Verification and Bounded Verification 24

1.3.1 Bounded Model Checking . 25

1.3.2 Symbolic Execution . 27

1.3.3 State Merging: BMC vs BSE . 30

1.4 Game Semantics . 32

1.5 Related Work . 33

1.5.1 BMC and Closed Higher-Order Verification 34

1.5.2 Games, SE and Open Higher-Order Verification 35

2 Motivating Examples and Background Definitions 39

2.1 Reasoning About Higher-Order Programs 39

2.1.1 Closed Higher-Order Examples 39

2.1.2 Open Higher-Order Examples . 43

2.2 HOLi: A Language for Higher-Order Libraries 46

11

12 CONTENTS

2.2.1 Syntax and typing rules . 47

2.3 Operational Semantics . 48

2.3.1 Nominal Defunctionalisation . 51

2.3.2 Bounding the Semantics and Nominal Determinacy 51

2.3.3 Expressivity of Higher-Order Assertions 52

3 Bounded Model Checking Closed Higher-Order Programs 53

3.1 HORef: Closed Fragment of HOLi . 53

3.2 A Bounded Translation for HORef . 55

3.2.1 The BMC translation . 58

3.2.2 BMC via the Translation . 61

3.2.3 Briefly on Complexity . 61

3.3 Soundness of the BMC Procedure . 62

3.4 A Points-to Analysis for Names . 73

3.4.1 Comparison with Conventional Points-to Analyses 74

3.4.2 The Optimised BMC Translation 75

3.4.3 Briefly on Complexity Once Again 76

3.5 Implementation . 76

3.5.1 Tool Architecture and Usage . 77

3.6 Benchmarks . 79

3.7 Evaluation . 79

3.7.1 Comparison with MoCHi . 81

3.7.2 Comparison with Rosette for Racket 82

4 Symbolic Games for Open Higher-Order Programs 85

4.1 A Trace Semantics for HOLi . 85

4.2 ML-like References . 89

CONTENTS 13

4.3 Boundedness of Games . 90

4.4 Soundness and Completeness of Games 95

4.4.1 Semantic Composition . 96

4.4.2 Composite Semantics and Internal Composition 96

4.4.3 Bisimilarity of Semantic and Internal Composition 99

4.4.4 Library-Client Compositionality 103

4.4.5 Definability . 104

4.5 Symbolic Semantics . 109

4.6 Bounded Analysis for Libraries . 112

4.7 Soundness of Symbolic Games . 112

4.7.1 Bisimilarity of Concrete and Symbolic Configurations 113

4.7.2 Extensional Equivalence of O-Refreshing Moves 118

4.8 Implementation . 120

4.8.1 The K Framework . 120

4.8.2 Example Usage of HOLiK . 121

4.9 Experiments . 123

4.9.1 Results and Evaluation . 124

4.9.2 Comparison with Racket Contract Verification 127

5 Conclusions 131

5.1 BMC for Closed Higher-Order Programs 131

5.2 Symbolic Games for Open Higher-Order Programs 132

5.3 Limitations and Further Directions . 132

5.3.1 Further Developing and Optimising BMC-2 133

5.3.2 Theoretical and Practical Directions for Symbolic Games 134

14 CONTENTS

List of Figures

1.1 Applying mainstream BMC to a C-like program. 26

1.2 Execution tree constructed by applying classic SE. 29

1.3 State-space graph of SE (left) and BMC (right) on the same program. . . 31

2.1 Syntax and typing rules of HOLi. 47

2.2 Library build (top); operational semantics (bottom). 49

3.1 Canonical forms for HORef (top) and their semantics (bottom). 54

3.2 Control flow of BMC on Example 3.1. 56

3.3 The BMC translation. 60

3.4 The points-to analysis algorithm. 74

3.5 Average execution time(s) for BMC-2 vs. bounds k = 1..15. 80

3.6 Execution time(s) for Rosette (left) and BMC-2 (right) vs. search depth. 82

3.7 Execution time(s) for BMC-2 and Rosette vs. program size. 83

4.1 Trace (game) semantics rules for HOLi. 86

4.2 The client Cτ,P,A. 105

4.3 Symbolic trace (game) semantics rules. 111

4.4 Errors (top) and time(s) (bottom) per file per k, l-bound in HOLiK . . . 125

4.5 Error distribution vs ranges of file size (LoC) in HOLiK 127

15

16 LIST OF FIGURES

List of Tables

3.1 Execution time(s) for BMC-2 (k = 4..15) and MoCHi. 81

3.2 Execution time(s) for BMC-2 (left) and Rosette (right) vs. program size. 83

4.1 Table recording performance of HOLiK on our benchmarks 124

4.2 Comparison of HOLiK (left) and SCV (right). 129

17

18 LIST OF TABLES

Chapter 1

Introduction

Higher-order languages provide significant advantages in the form of higher levels of
abstraction over their first-order counterparts. Compared to first-order programs, higher-
order programs, especially in a functional setting, are often shorter and more modular [39].
For instance, higher-order functions such as foldr and map provide abstractions that
enable modular manipulation of recursive data structures such as lists and trees. The
expressive power provided by higher-order features is desirable considering the complexity
of modern software, making these features widespread over a variety of languages. At
the level of functions, languages such as Python, Scala, Clojure, Haskell and OCaml all
provide lambda abstractions (anonymous functions) of arbitrary order. Since Java 8 and
the C++14 standard, both C++ and Java have similarly allowed the use of higher-order
functions more easily and directly than previously possible. At the level of programs,
languages that use libraries can all be considered higher-order in the sense that they
allow the use of undefined code in programs.

With higher-order features prominent in many programming languages, it is easy to
see why techniques to automatically reason about higher-order programs are desirable.
However, the expressive power provided by higher-order languages introduces many
challenges not present in a first-order setting and comes at a cost to formally reasoning
about program correctness. With the increase in power of abstraction, higher-order
behaviours, especially when combined with higher-order state, can very quickly become
intractable. In contrast to the spread of higher-order programming features, techniques to
statically check general higher-order behaviours are fewer relative to first-order approaches
available. This is what we address herein. In this thesis, we aim to develop static depth-
bounded verification techniques for higher-order programs that exhaustively report
errors, and prove their correctness with respect to sound safety errors, meaning that
the techniques we shall present do not report false positives. We shall also empirically
evaluate said techniques and provide comparisons for each.

19

20 CHAPTER 1. INTRODUCTION

1.1 Thesis Outline

This thesis includes theoretical and empirical results on verifying higher-order software.
On the theoretical side, we device techniques and prove properties that these have. The
empirical aspect covers implementation, benchmarking, and comparison of our techniques
with prior work. The contents of this thesis are divided into chapters as follows.

Chapter 1 introduces the questions addressed, as well as the relevant literature and
concepts in verification, open and closed higher-order programs, and game semantics.
Related work will also be presented here.

Chapter 2 defines a context for all the contributions presented in this thesis. Here
we present the syntax and semantics of the higher-order language (and variants) we shall
be using in the chapters that follow. We also provide all the motivational examples and
background theoretical content that will be referenced throughout the thesis.

Chapter 3 presents a Bounded Model Checking technique based on defunctional-
isation and points-to analysis for closed higher-order programs. The Bounded Model
Checking procedure is described in detail, which includes our Bounded Model Checking
algorithm, theoretical results in terms of a proof of soundness and correctness of the
technique, an optimisation based on points-to analysis, and a preliminary implementation
of the algorithm in a prototype tool called BMC-2, which we benchmark and compare
with related tools and techniques.

Chapter 4 presents a Symbolic Execution technique for open higher-order programs,
which generalises the question of verifying higher-order programs. In this chapter we
discuss a symbolic technique based on operational game semantics. Contributions
include a presentation of a game semantics suitable for verification, theoretical results
in terms of proofs of soundness and completeness of the semantics, a symbolic version
of the game semantics necessary for symbolic reasoning, a proof of soundness for the
symbolic technique, and an implementation of the technique, which we test with a custom
higher-order benchmark inspired by real-world errors.

Chapter 5 evaluates and summarises the contributions in this thesis and presents
future work. This includes tools and techniques similar to ours, and possible future
directions, such as unbounded verification, further development of the techniques, and
real-world application.

Results presented in Chapter 3 and Chapter 4 have been published in collaboration
with Nikos Tzevelekos in [48] and [49] respectively.

1.2. HIGHER-ORDER STATEFUL PROGRAMS 21

1.1.1 Main Contributions

The main contributions presented in this thesis can be organised into two parts:

• Closed higher-order programs; published in [48]:
– a Bounded Model Checking technique based on defunctionalisation and points-

to analysis;
– a proof of soundness and correctness of the technique;
– and a preliminary implementation of the technique and benchmarks.

• Open higher-order programs; published in [49]:
– a Game Semantics for higher-order libraries;
– a proof of soundness and completeness of the Game Semantics;
– a Symbolic Execution technique based on our Game Semantics;
– a proof of soundness of the Symbolic Execution;
– and a prototype implementation of the technique and benchmarks.

1.2 Higher-Order Stateful Programs

Let us start by defining the stateful higher-order setting in which all work presented
herein shall be examined. Programs we shall be considering will be higher-order, meaning
that we shall focus on languages with features that manipulate methods of arbitrary
order as they would values. In particular, we shall investigate programs with higher-order
methods, higher-order store and lambda abstractions. Respectively, these refer to methods
that may take one or more methods as arguments, or may themselves return a method;
references that may point at methods of arbitrary order; and the ability to dynamically
create new methods. The specific syntax and semantics of the languages used will be
provided in the next chapter. One can consider these languages to be extensions of a
lambda calculus with references, and can be thought of as idealisations of languages such
as Python and OCaml. We shall be using the term “method” to emphasize the use of
stateful functions, but the terms are interchangeable.

As we shall be focusing solely on static verification approaches, programs considered
are allowed to be open with undefined input variables. For instance, consider the following
program (where we regard inputs to be open):

1 let main n =
2 let f = λ x. x + 1 in
3 assert(f n > n)

Statically verifying that the assertion holds requires reasoning about the input variable n,
which is undefined. To handle input variables, we shall be analysing programs like main

symbolically, and will assign free variables such as n a symbolic value. These symbolic
values are special free variables of ground type which act as placeholders for concrete

22 CHAPTER 1. INTRODUCTION

values. This will be made clearer in the chapters that follow.

1.2.1 Open and Closed Higher-Order Programs

The techniques considered herein shall all be symbolic, meaning that terms can be
characterised as being “open” by the presence of symbolic values. To avoid confusion
in our terminology, we make a distinction between normal free variables and symbolic
values:

We shall only refer to terms as being “open” in the higher-order sense, that
is, higher-order terms are open if they contain free variables of higher-order
type, while closed terms are allowed to contain symbolic values but no free
variables of higher-order type.

We thus consider two cases herein: what we call closed higher-order programs
and, more generally, open higher-order programs. Intuitively, closed higher-order
programs only ever expect a ground-type input at a top level, while open higher-order
programs include the general case that allows undefined methods expected as input. To
illustrate this, consider the following closed (but ground-type open) program:

1 let mainClosed n =
2 let f = λ x. x n in
3 assert(f (λ y. y) == n)

in contrast to the following open higher-order program:

1 let mainOpen g n =
2 let f = λ x. x n in
3 assert(f g == n)

While reasoning about mainClosed only requires the symbolic value for n, reasoning
about mainOpen additionally requires the semantics of g, which has been left undefined.
In other words, mainClosed is higher-order by the presence of the higher-order function
f, whereas mainOpen is additionally higher-order in that it expects a function g. Here
lies the main difficulty in statically reasoning about open programs, that is, they are
allowed to call code with undefined semantics. One has to consider the behaviour of an
unknown environment that is able to call the main method and provide the program
with a method to once again call back said unknown environment. As can be expected,
this introduces a primary source of intractability as all programs need to be verified
while taking into consideration all possible call contexts in which the main is called, and
all the possible behaviours of calling g that result from being called in said contexts.
Exhaustive generation and enumeration of these contexts will be the focus of Chapter 4,
whereas the focus of Chapter 3 is in keeping track of the symbolic higher-order semantics
occurring internally in terms.

1.2. HIGHER-ORDER STATEFUL PROGRAMS 23

1.2.2 Higher-Order Libraries

So far, programs given in the examples above could all be defined as single terms. That
is, they are defined by a main method that defines a term to be evaluated. For instance,
consider the program introduced above:

1 let mainClosed n =
2 let f = λ x. x n in
3 assert(f (λ y. y) == n)

Excluding the boilerplate main method declaration, to statically reason about mainClosed
we are required to examine the term

1 let f = λ x. x n in
2 assert(f (λ y. y) == n)

where n is free. Similarly, the open case requires examining the term

1 let f = λ x. x n in
2 assert(f g == n)

where n and g are both free. One can see here that symbolic analysis of higher-order
programs depends on how we fill in the semantics for the free variables and symbolic
values present. Considering that one needs the call contexts for the main method, and also
the context for behaviour occurring during the call to g, any approach to verifying open
higher-order programs has to handle a scenario where the term to evaluate is undefined.
That is, the term currently being evaluated might be defined by the environment and is
not available as it is part of the unknown context in which the program runs.

Since in general the open case does not care if a term is present to evaluate to start
with, we shall be considering the case where the program is simply a set of method
definitions to be called in some unknown environment. We call these higher-order
libraries. To illustrate this, consider the following higher-order library:

1 import g,h
2 public f1 = λ x. g x
3 private f2 = λ x. h (g x)
4 public f3 = λ x. f2 x

where the import keyword states that g and h are undefined and are to be provided
by the environment, the public keyword qualifying f1 and f3 means that both these
methods are available and known to the environment, and the private keyword means
f2 is for internal use only and is unknown to the environment. Reasoning about programs
in a client-library paradigm, where the client is unknown, requires one to consider all
possible clients (calling contexts) with which any of the public methods of the library
may be called. As with the prior examples, the syntax for libraries here is for illustration.

24 CHAPTER 1. INTRODUCTION

The actual syntax used in the rest of this thesis will be more precisely presented in the
next chapter.

The client-library paradigm can be thought of a generalisation of the open environment
problem as it requires the known fragment to exist in an unknown higher-order context to
begin with. However, it is an equivalent problem as the client and library are symmetric:
a client is equivalent to a library that is currently evaluating a term. Note that in
our usage of the client-library paradigm the client encompasses the entire environment,
meaning that there cannot be external components to the client besides the library
and vice-versa (i.e. they close each other). This makes it sufficient to have a 2-part
compositional technique to handle this setting: being able to compose the independent
analysis of two components, but not generally for arbitrary many parts, is enough for
reachability in our setting. This will be explained in more detail in Chapter 4.

1.3 Software Verification and Bounded Verification

In formal software verification, the main question asked is whether a program M satisfies
its specifications α, written M � α. While the question, in a high-level sense, simply
asks for a measure of quality for M , the breadth of research makes a discussion of every
approach infeasible within this introduction. As such, we shall limit the discussion
here to what shall be the focus of this thesis, that is, to formal methods that are
static, check specifications of correctness in terms of safety, and output counterexamples
that are sound. The first point describes techniques that are applied at compile-time,
meaning directly on the source code of M without executing it, in contrast to run-time
approaches. The second point—correctness—qualifies techniques that use specifications
which may be violated by the reachability of errors. In particular, we shall be using
specifications defined through assertions, which we range over α and variants. The final
point distinguishes bounded correctness techniques from total correctness approaches.
While total correctness is sound when one can prove errors are exhaustively unreachable
within every execution of M , bounded correctness is sound when one reports all errors
that are reachable in M up to a given depth. Finally, it should be noted that we shall
only consider mathematically rigorous techniques and any methods we introduce herein
will have proofs of soundness attached.

Remark 1.1. The difference between pure bug-finding and bounded correctness (bounded
verification) is that bug-finding techniques may not guarantee anything besides the feasi-
bility of the bugs reported, whereas bounded verification guarantees that all bugs up to
the depth have been reported, with the program proven bounded-correct if no bugs have
been found up to the given depth.

Due to the undecidable nature of exhaustively checking programs, total verifica-
tion techniques are usually over-approximations, while bounded approaches are under-

1.3. SOFTWARE VERIFICATION AND BOUNDED VERIFICATION 25

approximations. In practice, total correctness is too expensive, so real-world tools are
restricted to specific properties checked totally, or, most commonly, falling entirely to
bug-finding [27]. A common theme in under-approximation techniques is to bound the
depth of analysis, which is the main kind of approach we shall be presenting in this thesis.
Two widely-used techniques for under-approximation are Bounded Model Checking (BMC)
and Symbolic Execution (SE). While Symbolic Execution is not bounded in principle
and can even be used for total correctness [37], in practice, search is often bounded as
computation can be infinite.

For our approaches herein, both BMC and SE return counterexamples, and should
do so soundly. Additionally, one may consider our approaches to be model checking
techniques, as we shall be checking the program M indirectly through a model φ of its
behaviour. More precisely, in model checking, a model φ that captures the semantics ofM
is exhaustively checked against α for satisfiability, written φ � α, where a violation of α
exists in φ if and only if a corresponding error exists inM . While the approach is typically
an unbounded depth (total-verification) technique based on finite-state automata [9] where
the behaviour φ and properties α of M are expressed as finite-state automata, we shall
be focusing on bounded SAT/SMT-based verification techniques, where φ and α are
captured by first-order (quantifier-free) formulas. We define an execution of M to be a
finite sequence of transitions, called a trace or path, taken from some initial configuration.
This will be made more precise in Chapter 2. We also say M fails if an assertion
violation is reachable in some path of M . Additionally, a counterexample of M is either
ground-type, that is, an input value that causes M to fail; or higher-order, that is, a
trace proving that an error is reachable in the semantics of M . This will be made more
precise in Chapter 3 and Chapter 4. In the next sections, we shall describe Bounded
Model Checking and Symbolic Execution in more detail.

1.3.1 Bounded Model Checking

Bounded Model Checking [11] is a model checking technique that allows for highly auto-
mated and scalable SAT/SMT-based verification that has been widely and successfully
used to find errors in C-like languages since the early 2000s [20, 52, 27, 6]. BMC amounts
to bounding the executions of programs by unfolding loops only up to a given bound,
and model checking the resulting execution graph. Since the advent of CBMC [20], the
mainstream approach additionally proceeds by symbolically executing program paths
and gathering the resulting path conditions in propositional formulas which can then be
passed on to SAT/SMT solvers. Thus, BMC performs a syntactic translation of program
source code into a propositional formula, and uses the power of SAT/SMT solvers to
check the bounded behaviour of programs.

Being a Model Checking technique, BMC has the ability to produce counterexamples,
which in this case are inputs that lead to the violation of desired properties with the

26 CHAPTER 1. INTRODUCTION

1 if (x>z) {
2 y:=x;
3 } else {
4 y:=z+1;
5 }
6 w:=2*y;
7

8 assert(w>2*z);

1 if (x0>z0) {
2 y1:=x0;
3 } else {
4 y2:=z0+1;
5 }
6 y3:=(x0 >z0)?y1:y2;
7 w1:=2*y3;
8

9 assert(w1 >2*z0);

φ = (y1 = x0) ∧
(y2 = z0 + 1) ∧
(y3 = (x0 > z0)?y1 : y2) ∧
(w1 = 2 ∗ y3)

α = (w1 > 2 ∗ z0)

Figure 1.1: Applying mainstream BMC to a C-like program.

corresponding execution traces. While it still suffers from the combinatorial nature of
model checking, an advantage of BMC over unbounded techniques is that it avoids the
full effect of state-space explosion at the expense of full verification by bounding the
length of counter examples considered. Since BMC is often inconclusive if the formula is
unsatisfiable, it is generally regarded as a bug-finding or underapproximation technique.
It is, however, still a verification technique since programs are exhaustively checked up
to the bound, which lets it avoid spurious errors. Empirically, BMC is one of, if not the
most effective approach for “shallow" bugs [27, 6], whilst having a major weakness with
bugs in deep loops and recursion. Additionally, despite being a bounded technique, it is
still possible to prove complete correctness with BMC if bounds for loops and recursion
are determinable.

Figure 1.1 illustrates how the mainstream BMC translation might be applied on a
C-like language. The approach takes a program M and a bound k, and computes the
formulas JM,kK = (φ, α) by recording the effect of each command on the store. The
translation to SAT, as described by its authors in [20], is done in the following steps.

1. Control simplification. All control constructs are translated to while loops,
goto statements, and if statements.

2. Loop unwinding. while loops are globally unwound k times: the body of the
loop is duplicated k times and every while guard is replaced with an if statement;
each copy nested within the previous loop body. On the last copy, the original
loop condition is negated and added as an assertion called the unwinding assertion.
This last step is needed to maintain soundness of errors found, as it limits search by
excluding errors beyond the bound, which may have been caused by the bounding.

3. Goto unwinding. All backward goto statements are unwound as with while

loops. Everything between the goto statement and the label it points at is
duplicated k times and guarded at the end.

4. Function call inlining. All function calls are expanded by replacing each call
with its respective function body. Recursive calls are unwound as while loops
were.

5. Static Single Assignment (SSA). The program is then translated to SSA,

1.3. SOFTWARE VERIFICATION AND BOUNDED VERIFICATION 27

where each variable can only be assigned to once; traditionally done by pointer
analysis [7, 76]. The SSA transformation can be described as a counter that keeps
track of the times a variable x has been assigned, and renames x to xn at every
assignment, where n is the number of previous assignments. Each use of x within its
scope is then replaced with xn. Wherever branching occurs, a guarded assignment,
also called a Φ function, is inserted after the branch.

6. Building the SAT formula. The formula is built by accumulating all assignments
into a formula via conjunction. This results in a formula that is in Conjunctive
Normal Form (CNF), meaning that it is a first-order quantifier-free formula of
top-level conjunctions of atomic disjunctions. After translating the program into
a CNF formula, the negation of all assertions are then added via conjunction. In
other words, if a program produces constraints φ, and contains properties α, then
the final CNF is φ ∧ ¬α. By doing so, we check for the existence of a configuration
in our bounded program such that the property is violated. As this only uses
assertions, the method described here will only handle safety properties.

The aim of the BMC translation is to compute the formula φ ∧ ¬α, which is then fed
to a SAT/SMT solver. This formula is explained by the underlying goal to ensure that
the execution constraints φ meet the specifications α, that is, to ensure that φ =⇒ α

holds. To achieve this, we want to show that no counterexample that proves the opposite
exists: that ¬(φ =⇒ α) does not hold. Since ¬(φ =⇒ α) ⇐⇒ (φ ∧ ¬α), we can
reduce finding counterexamples to SAT/SMT by proving satisfiability of φ ∧ ¬α, thus
exhaustively checking M up to k.

It should be noted that mainstream BMC is a monolithic technique in that it
requires all of the analysis to not just fit in memory, but to come from a defined source.
While compositional BMC techniques exist [18], the approach still typically requires
dependencies to be defined, and is thus not immediately suitable for open higher-order
bug finding.

1.3.2 Symbolic Execution

Symbolic Execution was conceptually introduced in the mid 1970s [12, 21, 43] as a
technique to statically reason about program inputs. While the key concepts have been
around for over four decades, SE received renewed popularity in the late 2000s due to
significant developments in satisfiability solving [17]. Symbolic Execution amounts to
using symbolic values in place of input variables. Given a program M , the aim is to
explore the execution tree (or computation tree) of M , that is, the set of all concrete
execution paths of M . This is done by keeping track of a symbolic environment (σ) and
a path condition (pc) for each path in the execution tree. The symbolic environment is
a function from variables in the path to symbolic expressions that constrain the value
for said variables, while the path condition pc, given some ith position pi in the current

28 CHAPTER 1. INTRODUCTION

path, is a first-order quantifier free formula over symbolic expressions that accumulates
the conditions that must have been satisfied in order to reach pi.

More precisely, a Symbolic Execution for a term M would classically construct the
computation tree of M by case analysis on its topmost redex r, which includes the
following fundamental cases:

• If r is an assignment x := M ′ where M ′ contains variables y, then x in σ is updated
to point at the closure of σ over every y in M ′, i.e. σ := σ[x 7→ σ(M ′)].
• If r is a conditional statement if c then M1 else M0, then we split the current
path into two paths P1 and P0, where P1 symbolically evaluates term M1 with
path condition pc ∧ σ(c), and P0 symbolically evaluates M0 with path condition
pc ∧ ¬σ(c), both using the same symbolic state σ. P1 and P0 are then added to
the set of paths to symbolically explore in order to build the execution tree.

As one might have noticed, these symbolic evaluation cases are similar to evaluation
rules typically seen in an operational semantics. In fact, the complete set of symbolic
evaluation rules which forms the SE routine should be a sound symbolic abstraction of
the concrete semantics. In order to build the execution tree, these symbolic transitions
are recursively applied to every path in the set of paths to explore until the terms in
the paths cannot be reduced further. Thus, the classical Symbolic Execution routine on
a term M produces an execution tree TM which contains the set of paths symbolically
reachable by M . Each path Pi in TM can be seen as a triple (Mi, σi, pci) that holds a
final term Mi that cannot be reduced further, the symbolic environment σi computed
to reach Mi, and the path condition pci that must be satisfiable for Pi to be a valid
concrete path of M .

We can observe in the SE routine that all path conditions pci are of the form

pci =
n∧
j=1

cj

for all n path conditions cj seen in the process of evaluating Pi. Thus, in order to produce
the set of valid concrete paths of M , we can feed each pci to a SAT/SMT solver and keep
every Pi where pci is satisfiable. A model ψ � pci therefore assigns to the input variables
the necessary values for M to concretely execute Pi. Note that paths may be pruned
on the fly by discarding any path produced with an unsatisfiable path condition. Since
the number of paths explodes combinatorially on the number of conditional statements
reached, pruning paths at the cost of multiple calls to the solver is usually beneficial.

To illustrate the basic SE procedure, consider the following stateful program where x

and y are input variables, assert(z) fails if z = 0, and if c then M1 else M0 evaluates
to M0 if c = 0 and M1 otherwise:

1 if x then r := x+y else
2 if y then r := x-y else

1.3. SOFTWARE VERIFICATION AND BOUNDED VERIFICATION 29

σ1 = ∅ pc1 = > START

1 if k1 then r := k1+k2 else
2 if k2 then r := k1-k2 else
3 if k1 then assert (0)
4 else r := k1*k2;
5 assert (!r == 0)

σ1 = ∅
pc1 = (k1 6= 0)

1 r := k1+k2

σ1 = {r = (k1 + k2)}
pc1 = (k1 6= 0)

M1 = () path:P1

σ2 = ∅ pc2 = (k1 = 0)

1 if k2 then r := k1-k2 else
2 if k1 then assert (0)
3 else r := k1*k2;
4 assert (!r == 0)

σ2 = ∅
pc2 = (k1 = 0) ∧ (k2 6= 0)

1 r := k1-k2

σ2 = {r = (k1− k2)}
pc2 = (k1 = 0) ∧ (k2 6= 0)

M2 = () path:P2

σ3 = ∅ pc3 = (k1 = 0) ∧ (k2 = 0)

1 if k1 then assert (0)
2 else r := k1*k2;
3 assert (!r == 0)

σ3 =∅
pc3 =(k1 = 0) ∧ (k2 = 0)

∧ (k1 6= 0)

1 assert (0)

σ3 =∅
pc3 =(k1 = 0) ∧ (k2 = 0)

∧ (k1 6= 0)

M3 = error path:P3

σ4 =∅
pc4 =(k1 = 0) ∧ (k2 = 0)

∧ (k1 = 0)

1 r := k1*k2;
2 assert (!r == 0)

σ4 ={r = k1 ∗ k2}
pc4 =(k1 = 0) ∧ (k2 = 0)

∧ (k1 = 0)

1 assert (!r == 0)

σ4 ={r = k1 ∗ k2}
pc4 =(k1 = 0) ∧ (k2 = 0)

∧ (k1 = 0) ∧ (k1 ∗ k2 = 0)

M4 = () path:P4

σ5 ={r = k1 ∗ k2}
pc5 =(k1 = 0) ∧ (k2 = 0)

∧ (k1 = 0) ∧ (k1 ∗ k2 6= 0)

M5 = error path:P5

Figure 1.2: Execution tree constructed by applying classic SE.

30 CHAPTER 1. INTRODUCTION

3 if x then assert (0)
4 else r := x*y;
5 assert (!r == 0)

Figure 1.2 is the execution tree produced by applying a classic SE routine to the program
above. On the execution tree we can observe five paths: P1 to P5, each with their
corresponding term Mi, symbolic state σi, and path condition pci. On this tree we can
see that there are two paths that lead to errors: P3 and P5. Checking their corresponding
path conditions, we would know that both pc3 and pc5 are unsatisfiable, meaning that
neither P3 or P5 is reachable. Since no other errors are reachable in the execution tree,
and the tree exhaustively lists all possible paths, we have successfully verified the program
for total correctness.

Using Symbolic Execution, model checking of a term M can be achieved by checking
the following formula for satisfiability:

PC =
∨

pc∈Error(TM)
pc

where TM is the execution tree of M computed through SE and Error(TM) is the set of
paths Pi where Mi = error. Thus, PC holds a disjunction of all path conditions that
may reach an assertion violation, and any satisfying assignment ψ � PC proves that an
error is reachable in M . Note that we present the general idea here, but variants that
achieve the same effect still fall under Symbolic Execution. For instance, on-the-fly path
pruning allows one to verify M by checking whether Error(TM) is empty. Similarly,
variants that accumulate program behaviour separately from assertions may end up
checking pc ∧ ¬α for satisfiability instead.

1.3.3 State Merging: BMC vs BSE

It is easy to imagine a procedure for bounded-depth Symbolic Execution where each
path is expanded up to a fixed number of steps determined by some bounding condition.
Taking this idea of a Bounded SE (BSE) into consideration, BMC and SE appear to
be equivalent as both amount to bounded symbolic explorations of program executions.
Still, while the techniques are not mutually exclusive and extensions of each may in fact
blur the difference between them, in their classic presentation they can be fundamentally
distinguished by whether they perform state merging. On one end, the mainstream
BMC approach performs full state merging, meaning that it always inserts a Φ function
after branching. This results in a string of merged states that captures the program
behaviour monolithically, and is a result of the unoptimised SSA transformation used in
the original technique. In other words, taking M as the input term, BMC encodes in the
behaviour formula φ the entire execution tree of M in the form of a control-flow graph
with fully merged states (i.e. the number of paths is at most two at any point), whereas

1.3. SOFTWARE VERIFICATION AND BOUNDED VERIFICATION 31

S

A B

CA DA CB DB

S

A B

A+B

CA+B DA+B

C +DA+B

Figure 1.3: State-space graph of SE (left) and BMC (right) on the same program.

SE classically explores every path of the execution tree separately and independently. To
illustrate this distinction, consider the following program consisting of two conditional
statements chained one after the other:

1 (if x then A else B);
2 (if y then C else D)

Performing BMC and SE independently on this program, the resulting state space for
each is as shown in Figure 1.3. In these state-space graphs we write XY for an expansion
on tern X within the context having computed Y , where one can think of Y as the
trace computed so far. We can observe on the state-space graph for SE that individual
exploration of each path results in an exponential increase in the size of the state space,
resulting in an exponential number of total paths explored with respect to the depth
of the tree, and exponential on the branching factor of the program; in this case 2.
In contrast, BMC always merges the paths, and thus keeps a constant upper bound
on the number of paths to consider equal to branching factor of the program—again
2—which results in a state space that is linear on the depth of exploration. Comparing
the state-spaces, we can see that SE will eventually have exponentially many more
instances to explore than BMC, but each instance is smaller compared to BMC. This is
due to the fact SE keeps track only of the information seen so far in each path per path,
whereas BMC carries around a single big instance that keeps track of all the traces seen
so far.

In terms of the impact of state merging on modularity, the mainstream approach
of always merging states makes BMC a monolithic technique by nature, while SE is
more easily modular due to path independence. An example of the modularity that
path independence allows can be observed in [64], where the authors parallelise SE by
concurrently running the exploration and constraint solving of each path. In terms
of performance, state merging creates trade-offs in memory usage, compilation speed,
solving difficulty, and total execution time. For memory, a bounded branching factor
provides BMC with a state space that is linear in the exploration depth, which results in
significantly lower memory usage during exploration compared to SE. This in turn makes

32 CHAPTER 1. INTRODUCTION

BMC faster at compiling from source to a SAT/SMT instance [79]. The advantage in
faster compilation, however, may be offset by a SAT/SMT instance built that is harder
to solve and, in extreme cases, may not even fit in memory. In contrast, while SE has
exponentially many instances, each is much smaller and thus easier to solve. However,
the smaller paths in SE also involve redundancy that is not present in BMC. More
specifically, given a program with a branch at position pi, the prefix p1 . . . pi−1 will be
shared by all paths up until they diverge at pi. This makes paths in SE highly redundant,
which adds repeated clauses that accumulate over exponentially many instances. As
such, state merging is still desirable in SE, and can be seen in [79], where the authors
perform SE with type-driven state merging in order to improve compilation speed and
reduce memory usage. However, full state merging, while more memory efficient, comes
at a potential cost to total execution time. Explicit exploration of every path means
that SE will encounter every opportunity where concretisation is possible, whereas BMC
avoids them all. Compared to concrete execution, symbolic evaluation may be several
orders of magnitude slower. For instance, [81] records the Symbolic Execution tool
KLEE being three orders of magnitude slower than native execution for many real-world
programs. For this reason, concretisation is also desirable and, while a direct extensive
comparison is not in the scope of this thesis, the trade-offs in performance suggest that
a balance in state-merging is desired. These developments of BMC and SE, however,
further blur the line between them, and may lead to them being considered ends of
the same spectrum. In this thesis, however, we shall consider BMC and SE distinct
techniques as they fundamentally approach and encode problems differently.

1.4 Game Semantics

Game Semantics [5, 31] is an approach to formal semantics that, when used to model
computation, models the interaction between a term and its environment as a game
between two players. As a model of computation, it has been successfully applied to
programming language semantics [30], particularly as a denotational semantics, and has
become a fundamental concept in the Theory of Computation. Game Semantics was
first established as a key concept in programming language semantics in the early 1990s,
when it was used independently by three teams of researchers [4, 40, 59] to show full
abstraction of PCF (Programming with Computable Functions) [67]—a simply-typed
λ-calculus with basic arithmetic and higher-order recursion, alike the functional fragment
of languages presented herein. Its ability to model an undefined environment explicitly
distinguishes Games Semantics from other models computation [2] and, most notably,
provides the means to model higher-order interaction, which is of particular interest
when higher-order references are involved [3]. This makes Game Semantics a powerful
concept for language semantics, which has lead to its use in software verification on
multiple occasions [53, 25, 10, 36].

1.5. RELATED WORK 33

In Game Semantics for computation, two players are involved: a Proponent, in
this case representing the program we want to verify, and an Opponent, depicting
the environment in which the program runs. Interaction between the two players is
represented as a sequence of moves made alternately by each player. As the theory can
be formulated operationally in terms of a trace semantics for open terms [41, 47, 33], we
shall be presenting games in an operational setting and shall refer to these sequences
of moves as “traces”. Moves in these games define the capability of each player; that is,
the set of moves available to each player at any point in the game exhaustively captures
all possible ways in which a given program can interact with its environment and vice
versa. This capability is succinctly presented by two sets of actions available to each
player: Questions, the ability to query the other player, and Answers, the ability to
reply to a query of the other player. In addition to playing moves that interact with
the other player, each player may also compute internally until action from the other
player is required. Note that two-player games suffice to adequately model multi-party
interaction [2]: players are symmetric in that, from the point of view of each player in
a multi-party game, the behaviour of every other player can be captured by a single
hypothetical player where any interaction between opponents is indistinguishable from
an unobservable action the hypothetical player is playing internally.

In this thesis, we shall be using Game Semantics to model higher-order programs;
more specifically, we shall be modelling the undefined context of open higher-order
programs previously described. The use Game Semantics is easily explained by its
ability to model a program in isolation from a concrete context, which is necessary for
higher-order libraries. Higher-order interaction shall be modelled via two-player games
as sequences of computational moves—representing method calls and returns—between
the modelled program and its hypothetical environment. The power of the technique
lies in its use of combinatorial conditions to precisely allow only those game plays
that can be realised by including the program in a concrete environment. We shall
discuss these games more formally in Chapter 4, where we present the games we devised
for higher-order libraries and construct a symbolic variant thereof to—via Symbolic
Execution—symbolically check said libraries for errors.

1.5 Related Work

In this section we mention existing related research, extant techniques that tackle
programs similar to those in our setting, and provide a comment on the originality and
innovation of our work in comparison to other approaches. We shall start with work
related to closed higher-order verification, and continue with the general case next.

34 CHAPTER 1. INTRODUCTION

1.5.1 BMC and Closed Higher-Order Verification

Defunctionalisation [69] is a transformation that replaces higher-order functions with
special first-order application functions at compile-time. In our BMC approach, we shall
use an equivalent transformation in the operational semantics that replaces method
application with first-order calls to a repository. While defunctionalisation is common in
symbolic evaluation, and is often paired with points-to analysis, to our knowledge, it has
not been used to translate entire general higher-order programs into SAT/SMT-based
BMC encodings. As such, we believe we are contributing a sound alternative to model
checking closed higher-order terms.

Being a common technique, there exist several BMC encodings similar to ours.
For example, [29, 26, 24] are bounded approaches based on relational logic that verify
Java programs using SAT/SMT solvers. Since they are applied to Java, however, and
particularly prior to Java 8, these approaches do not cope with terms and store of
arbitrary order. In every case, methods are inlined statically, which is not always possible
with lambda abstractions. In [24] the authors define a method application that selects
method bodies based on their type. This is similar to our concept of exhaustive method
application that we shall be presenting later, but is only applied in [24] to resolve dynamic
dispatch. Additionally, in contrast to all bounded approaches mentioned above, the
technique we present shall be more general, as we shall handle all higher-order behaviours
occurring internally within the term, including dynamic method creation and higher-order
store.

Verification tools for closed higher-order programs that are based on a direct syn-
tactical BMC encoding are less common. Instead, two main techniques followed are
Higher-Order Recursion Schemes (HORS) modelling [44, 62], and Symbolic Execu-
tion [13, 38, 42]. In the first category, tools related to MoCHi [45, 72] perform full
verification of purely functional OCaml programs by translating them into higher-order
recursion schemes checked with tools specialised for checking HORS. More specifically,
MoCHi is based on predicate abstraction and CEGAR using refinement types to con-
struct higher-order terms that can be checked with HORS model checkers. While BMC
approaches and MoCHi are incomparable, since MoCHi performs total correctness verifi-
cation, an important difference in scope exists in that MoCHi aims to handle only pure
programs, whereas we additionally cover stateful programs. In the second category, tools
like Rosette [79] and Rubicon [56] respectively implement Bounded Symbolic Execution
for Racket and Ruby, and thus check functional and imperative higher-order programs
for correctness. This makes these approaches similar to our technique in application,
and a comparison shall be made to put our BMC technique into perspective relative
to extant BSE approaches. Another approach worth noting is presented in [58], which
performs a symbolic execution for Racket using software contracts to define correctness.
Their symbolic semantics allows evaluation of arbitrarily open higher-order programs
by generating relatively complete higher-order counterexamples. This approach uses

1.5. RELATED WORK 35

Symbolic Execution to tackle a more general problem than closed programs, as it is
handling the open higher-order case. We shall discuss this in more detail in the next
section, under work related to open higher-order verification. From these approaches,
we shall choose MoCHi and Rosette as representatives for a comparison in Chapter 3.
Particularly, Rosette was selected because Racket fits the setting of a stateful higher-
order language written in a functional style, and additionally allows us to implement our
bounding mechanism to use with their symbolic execution of Racket, which provides a
more direct comparison of the underlying techniques.

Intensionally, tools based on CBMC [52, 52, 68, 70] are inherently similar to our BMC
encoding and procedure since we are taking inspiration from the CBMC translation in
first place. However, being primarily applied to C-like languages means BMC encodings
are less often used to tackle higher-order behaviours. In fact, CBMC itself partially
tackles the problem of higher-order control flow in a fashion not unlike our own exhaustive
method application, but is set apart by dynamic method creation, which CBMC does not
handle. Given the fact C and C++ syntax does not encourage higher-order programming
as naturally as functional languages, the lack coverage for higher-order behaviours in
C-like languages is self-explanatory. In contrast, tools based on SE are more often
used for functional languages and are able to produce the most extensionally similar
implementations. This can be explained by how SE explores paths independently: at
the expense of memory usage, SE encodes control-flow explicitly, which concretises the
flow of higher-order terms (inside each path) and facilitates reasoning about higher-order
terms. While SE may seem like a more obvious choice than BMC for higher-order terms,
it is not strictly so due to the theoretical advantages in memory consumption and faster
compilation that BMC often enjoys. A more detailed comparison of our BMC encoding
and SE will be presented in Chapter 3, when we compare Rosette to our own approach.

1.5.2 Games, SE and Open Higher-Order Verification

In software verification, Game Semantics techniques are traditionally applied to the
problem of program equivalence. The algorithmic games approach reduces program
equivalence to language equivalence in a decidable automata class [32, 1]. Equivalence
tools can be used for reachability but, as they perform full verification, they can only
cover lower-order recursion-free language fragments to remain decidable. For example,
the Coneqct [53] tool can verify the simplified DAO attack [28], a problem that requires
reasoning about an unknown environment, but cannot check higher-order or recursive
functions (e.g. the “file lock" and “flat combiner" examples in Chapter 2), and operates
on integers concretely. Related to our approach is also Symbolic GameChecker [25],
which performs symbolic model checking by using a representation of games based on
symbolic finite-state automata. The tool works on recursion-free Idealized Algol with
first-order functions, which supports only integer references. On the other hand, it is
complete (not bounded) on the fragment that it covers.

36 CHAPTER 1. INTRODUCTION

Being a symbolic execution for games, our approach is related to tools such as
KLEE [16] and jCUTE [74]. These are able to find first-order counterexamples, but
are unable to produce higher-order traces that require a model for unknown code.
Particularly, KLEE and jCUTE are only able to handle symbolic calls provided these can
be concretised, which is insufficient to handle the environment problem; concretisation
of calls is often impossible with libraries, since control may be passed to unknown code.
Again, CBMC [20, 46] can be compared our technique considering it partially handles
calls to unknown code by returning a non-deterministic value to such calls. This is
equivalent to a game where the environment may only play by answering questions. This
restriction allows CBMC to find some bugs caused by the environment, but misses errors
that arise from transferring control to the environment, such as reentrancy and the side
effects involved. As with before, since CBMC is generally applied to C-like languages,
the mainstream BMC approach also misses bugs involving disclosure of names, e.g. the
“file lock" example in Chapter 2, which involves a second-order method.

A related field of study is that of verifying smart contracts in the Ethereum Platform,
which provides a practical use for higher-order techniques that handle errors related
to unknown code, particularly focussing on reentrancy. Considering the immutable
nature of smart contracts—meaning they only have one attempt at publishing bug-free
code—and considering the high monetary risk involved, automated techniques for these
are highly desirable. However, the semantics of the Ethereum Virtual Machine involves
higher-order behaviours that result in control being passed to undefined clients. As
such, preventing reentrancy due to undefined semantics is a key focus of smart contract
verification. Tools like Oyente [51] and Majan [61] use pre-defined patterns and symbolic
execution to find bugs related to transaction order and reentrancy, but are not sound
or complete. ReGuard [50] is a tool that finds sound reentrancy bugs using a fuzzing
engine to generate random transactions to check against a reentrancy automaton. In
principle, it may detect reentrancy faster than direct symbolic execution due to the
nature of fuzzers [81], but, in exchange, is incomplete even in a bounded setting. More
closely related to our approach, [34] describes an implementation in the EtherTrust
static analyser of a small-step semantics that accounts for reentrancy. They consider
the possibility of an unknown contract c? calling the known contract c∗ at each higher
call level since c? can only modify the internal state of c∗ by reentering it. This concept
can be generalised in our game semantics as abstract and public names calling each
other, which we have shown here to be a sound way to generate calling contexts. It is
possible EtherTrust implements a form of game semantics, however, as a tool targeting
smart contracts, the focus is on modelling reentrancy, while we handle the full range of
higher-order behaviours.

Finally, also mentioned previously under work related to the closed case, [58] and its
development [57] describe an approach that is very closely related to our games-based
technique. The problem presented by the authors is that of verifying Racket contracts
in a higher-order (stateful in [57]) setting similar to ours. Software contracts generalise

1.5. RELATED WORK 37

higher-order pre and post conditions, which allows one to express program invariants and
thus specify safety. To verify said contracts, the authors develop a symbolic semantics
for higher-order terms to perform Symbolic Execution of open higher-order programs.
This is further developed in [57] for total verification, and to cover stateful programs, via
a abstract interpretation of their symbolic semantics though finitisation. Their symbolic
semantics is based on what they call demonic context in prior work [78], which handles a
potentially unknown environment through a method application case AppOpq. It does
this by either returning a symbolic value to the call, or by performing a call to a known
method (given an unknown argument) while inside some unknown context. It thus
approximates all the possible behaviours of the environment and appears to be equivalent
to the role of the opponent in our games. Considering this, the approach the authors
present may seem extensionally similar to ours, since both amount to Symbolic Execution
of a higher-order symbolic semantics that handles an unknown environment in some
way. However, it should be noted that the techniques have been developed in complete
independence from each other, and are based on different theoretical foundations and
are thus very different intensionally. Additionally, we shall be handling assertions that
specify correctness within the term, whereas [57] uses contracts, which can be seen as
specifying correctness at the level of types. As for theoretical results, in [58] the authors
prove soundness and completeness but do not prove completeness in [57] when state
is added. In contrast, our approach is proven sound and complete in the higher-order
stateful setting. We shall provide in Chapter 4 an empirical comparison of the techniques
based on the implementations of each.

38 CHAPTER 1. INTRODUCTION

Chapter 2

Motivating Examples and
Background Definitions

In this chapter we provide background definitions that shall be useful in the chapters
that follow. This includes motivating examples for open and closed program verification,
and the syntax and operational semantics for HOLi and HORef.

2.1 Reasoning About Higher-Order Programs

We start this chapter by illustrating some of the nuances involved in reasoning about
higher-order programs. We shall start with what we call closed higher-order programs,
that is, programs which involve higher-order computation internally, but do not expect
higher-order input, and follow up with open higher-order programs, where the focus is
on libraries.

2.1.1 Closed Higher-Order Examples

The main challenge associated with statically analysing (closed) higher-order terms is
that it is easy to loose track of the method body to use in method application. This is a
primary question in Control Flow Analysis, particularly for functional languages [60]. To
illustrate this, we shall provide a series of examples, written in sugared HORef, starting
with the simplest case. We will provide a formal description of HORef later in this
chapter.

Consider an example taken from [60]:

1 let f = λ x. x 1 in
2 let g = λ y. y+2 in
3 let h = λ z. z+2 in

39

40CHAPTER 2. MOTIVATING EXAMPLES AND BACKGROUND DEFINITIONS

4 (f g) + (f h)

It is a closed program that defines a higher-order method f. The challenge in reasoning
about f is that we cannot immediately tell what the body of x is. In isolation, analysis
of f becomes that of open higher-order programs. However, within a closed higher-order
term like this one, f is defined in a context that also defines its usage, which is all we
need to reason about f. In this example, we can tell from (f g) + (f h) that f can
only ever transfer control to the bodies of g and h. Indeed, the precise body to choose is
known at the location where it shall be used.

However, programs we are interested in can be stateful and thus are allowed to use
higher-order references. Consider the following program:

1 let f = λ x. x 1 in
2 r1 := λ y. y+2;
3 r2 := λ z. z+2;
4 (f (!r1)) + (f (!r2))

This time, the challenge involves keeping track of references r1 and r2. Here, the term
states that f is may only be applied to r1 and r2, which are not modified in the term,
so the analysis proceeds by simply following the added layer of indirection. However,
while superficially similar to the previous problem, the layer of indirection added by
references introduce a challenge, as these may change dynamically (at runtime) and
without explicit record of the change. For example, consider the following program:

1 let f = λ x. x 1 in
2 let g = λ (). (r := λ y. y+2) in
3 let h = λ (). (r := λ z. z+2) in
4 (g (); f (!r)) + (h (); f (!r))

Here, a layer of indirection is added in the side effects of methods g and h. The analysis
of x thus now depends on that of !r, which in turn depends on whether it is g () or
h () which appears immediately before !r. To handle these cases, we combine standard
techniques in Data Flow Analysis [60] with a nominal presentation of defunctionalisation.
We shall describe this in more detail in Chapter 3. In particular, we will make use of
Static Single Assignment (SSA) and a simple Points-to Analysis [7] to keep track of the
flow of higher-order terms.

One might have noticed that all the examples given in this section so far are concrete,
meaning, they can be simply executed. In contrast, the “closed” higher-order programs
we shall be considering are allowed to be open with symbolic values (ground-type free
variables). It is this addition of symbolic values to higher-order terms which will be
making up the bulk of the challenge. To illustrate this, consider the following program:

1 let f = λ x. x 1 in
2 let f’ = if i then λ y. y + 2
3 else λ z. z + 3 in

2.1. REASONING ABOUT HIGHER-ORDER PROGRAMS 41

4 f f’

The program defines a method f’ whose body depends on a ground-type free variable i,
which, intuitively, can be considered an input value to be provided by the environment.
This time, looking at the term is not sufficient to tell, at the location where f’ is called,
which body to choose; in fact, without a concrete value for i, it is impossible to tell in
general. Thus, all bodies which may be bound to f’ must be exhaustively considered,
that is, when evaluating x 1, a path for λy.y + 2 and one for λz.z + 3 must be explored.
We shall be calling this case exhaustive method application. As can be expected,
exhaustive method application contributes a significant source for combinatorial explosion,
which is exacerbated with conditional nesting. Take, for instance, the following program:

1 let f = λ x. x 1 in
2 let f’ = if i1 then λ y. y + 2
3 else
4 if i2 then λ z. z + 3
5 else
6 if i3 then λ w. w + 4
7 else
8 λ v. v + 5 in
9 f f’

Here, f′ can take four possible bodies, the choice of which depends on symbolic values
i1, i2 and i3. With no insight on these symbolic values, the simplest solution is to
branch on every method seen so far that matches the type of f′, which, naturally, does
not scale well. As shall be described in Chapter 3, it is here that Data Flow Analysis
makes the biggest impact.

Finally, to illustrate the approach to be presented in Chapter 3, let us consider a simple
program that showcases the expressiveness of closed higher-order stateful programs:

1 let f = λx.λg.λh.if x then g else h
2 in
3 r := f n (λx.x-1) (λx.x+1)
4 assert (!r n >= n)

where n is an input variable. As a BMC technique, the aim is to produce a single formula
that tells us if any assertion violations are reachable. Thus, the main interest is in
whether line 4 holds, where, because of the challenges previously discussed, it is not
immediately obvious which body to use when dereferencing r in the assertion. Let us
start by transforming the code according to the semantics of let bindings.

1 r := if n then (λx.x-1) else (λx.x+1)
2 assert (!r n >= n)

Using defunctionalisation, the assignment in line 1 can now be facilitated with the help of
a return variable ret and method names m1 and m2 for λx.x− 1 and λx.x + 1 respectively,

42CHAPTER 2. MOTIVATING EXAMPLES AND BACKGROUND DEFINITIONS

which we shall remember externally.

1 let ret = if n then m1 else m2
2 r := ret
3 assert (!r n >= n)

Our use of the return variable ret to keep track of intermediate operations is an addition
to the mainstream BMC approach. In C-like languages, programs are typically defined
by a chain of commands. That is, given commands C1 and C2, a program C1;C2 chains
the commands to occur one after the other. In a functional setting, this is equivalent
to running two terms C1 and C2 of unit type by chaining the terms in a let binding
that forgets the about return of the first term (i.e., let _ = C1 in C2). As such, in
mainstream BMC, the return of each command in a chain is not usually recorded. In
contrast, a functional setting (with let bindings) like ours requires keeping track of the
result of each let binding, which is where ret comes in.

Looking at the program above, the main challenge is now to decide how to symbolically
dereference r. In this case, the best we can do is to match it with all existing methods
that match the type, namely m1 and m2. We thus have two paths to consider:

• if ret = m1:

4 let ret ’ = m1 n in
5 assert(ret ’ >= n)

• if ret = m2:

4 let ret ’ = m1 n in
5 assert(ret ’ >= n)

Substituting in the bodies for each method we have:

• if ret = m1:

4 let ret ’ = (n - 1) in
5 assert(ret ’ >= n)

• if ret = m2:

4 let ret ’ = (n + 1) in
5 assert(ret ’ >= n)

We can now read off the following formula to check for the falsity of the assertion:

(ret′ < n) ∧ (r = m1⇒ ret′ = n− 1) ∧ (r = m2⇒ ret′ = n+ 1) ∧ (r = ret)
∧ (n <= 0⇒ ret = m1) ∧ (n > 0⇒ ret = m2)

The formula above is satisfiable, e.g., for n = 0, proving that the code is not safe.

These ideas underpin the core of our BMC procedure, which is presented in Chapter 3
and proven sound and correct. The language we shall examine, called HORef is described

2.1. REASONING ABOUT HIGHER-ORDER PROGRAMS 43

later in this chapter. Our Points-to Analysis algorithm is also presented in Chapter 3, as
an optimisation necessary for scalability.

With the challenges involved in analysis of closed higher-order programs stated, let
us now continue with the case for open higher-order programs.

2.1.2 Open Higher-Order Examples

So far, we have been looking at programs in a closed higher-order symbolic setting. Let
us now look at a few more examples, this time considering a fully open setting. The
key challenge in reasoning about open higher-order terms is that we have to model
the interaction between the term and its unspecified environment. As such, we must
generate all possible contexts in which the term can be called. In a stateful setting
like ours, this is especially important as higher-order stateful interaction leads to a
range of subtle behaviours. We will be looking at libraries that exhibit errors due to
high-order behaviours, for which we provide four examples: a simplified version of the
DAO attack [28], a file lock example, a double deallocation example, and an unsafe
implementation of flat-combining. Again, we choose a presentation using higher-order
libraries as reasoning about these requires, by definition, considering a client which is left
unspecified. The libraries presented below will be written in a sugared form of HOLi: a
language we shall be using to study bounded verification of higher-order stateful libraries.
We provide a formal description of this language in the next section.

To showcase the importance and challenges presented by the environment problem,
following is a simplified implementation of “the DAO” smart contract, a failed decen-
tralised autonomous organisation on the Ethereum blockchain platform. It should be
noted that, while the semantics of Solidity is much more involved than the simplification
presented here, the example still captures the control-flow of the original attack, and is
still beyond first-order tools and closed higher-order tools.

1 import send:(int → unit)
2 int balance := 100;
3

4 public withdraw (m:int) :(unit) = {
5 if (not (! balance < m)) then
6 send(m);
7 balance := !balance - m;
8 assert(not(! balance < 0))
9 else ()

10 };

While we are not going to focus specifically on smart contracts, the DAO is presented
here for illustration as a simple and practical example of open higher-order code. In the
DAO, a reentrancy bug in an external call, modelled here by the send method provided

44CHAPTER 2. MOTIVATING EXAMPLES AND BACKGROUND DEFINITIONS

by the environment, caused damages worth over $100m and resulted in a fork that split
the Ethereum platform [28]. Reentrancy in higher-order stateful programs is a primary
source of errors due to the nature of side-effects dynamically affecting the conditions
in which methods can be called. In this example, when the send method is called, the
environment is allowed to take control and call any method in the library. If a client were
to call withdraw within its send method, the recursive reentrant call would drain all the
funds available, which is simulated in this example by a negative balance. This happens
because the method is manipulating a global state, and is updating it after the external
call. Thus, the check for sufficient funds is accessed before update and never fails. In
Chapter 4 we model this kind of higher-order interaction as a sequence of moves, where
the environment and library are described by an opponent and proponent respectively.
Any resulting sequence of moves is a trace providing a counter example.

Running the example in HOLiK, our implementation of the symbolic game semantics
for HOLi in the K Semantic Framework [71]—which shall be presented in Chapter 4—the
following minimal symbolic trace is automatically found:

call〈withdraw, x1〉 · call〈send, x1〉 · call〈withdraw, x2〉
· call〈send, x2〉 · ret〈send, ()〉 · ret〈withdraw, ()〉 · ret〈send, ()〉

where x1 is the original call parameter, and x2 is the parameter for the reentrant call,
satisfiable with values x1 = 100 and x2 = 1. A fix would be to swap line 6 and 7, to
update internal state before passing control.

Following is our file lock example, which simulates a scenario where the library makes
it possible for the client to update a hypothetical file without first reacquiring the lock
for it. The library contains an empty private method updateFile that simulates file
access. The library also provides a public method openFile, which locks the file, allows
the user to update the file indirectly, and then releases the lock.

1 import userExec :((unit → unit) → unit)
2 int lock := 0;
3

4 private updateFile(x:unit) :(unit) = { () };
5 public openFile (u:unit) :(unit) = {
6 if (!lock) then () else (lock := 1;
7 let write =
8 fun (x:unit) :(unit) →
9 (assert (!lock); updateFile ())

10 in
11 userExec(write);
12 lock := 0)
13 };

The bug here is that openFile creates a write method, which it then passes to the client,
via userExec(write), to use whenever they want. This provides the client indirect

2.1. REASONING ABOUT HIGHER-ORDER PROGRAMS 45

access to the private method updateFile, which it can call without first acquiring the
lock. Indeed, running this example in HOLiK we obtain the following minimal trace:

call〈openFile, ()〉 · call〈userExec,m2〉 · ret〈userExec, ()〉
· ret〈openFile, ()〉 · call〈m2, ()〉

where m2 is the method name generated by the library and bound to the variable write.
This example serves as a representative of a class of bugs caused by revealing methods to
the environment, a higher-order problem, in this case involving the second-order method
userExec revealing m2.

Next, we simulate double deallocation using a global reference addr as the memory
address. The library defines private methods alloc and free to simulate allocation
and freeing. The empty private method doSthing serves as a placeholder for internal
computation that does not free memory.

1 import getInput :(unit → int)
2 int addr := 0; // 0 means address is free
3

4 private alloc (u:unit) :(unit) = {
5 if not(!addr) then addr := 1 else ()
6 };
7 private free (u:unit) :(unit) = {
8 assert (!addr); addr := 0
9 };

10 private doSthing (i:int) :(unit) = { () };
11 public run (u:unit) :(unit) = {
12 alloc ();
13 doSthing(getInput ());
14 free()
15 };

The error occurs in line 13, which calls the client method getInput. This passes control
to the client, who can now call run again, thus causing free to be called twice. Again,
executing the example in HOLiK, we obtain the following trace:

call〈run, ()〉 · call〈getInput, ()〉 · call〈run, ()〉 · call〈getInput, ()〉
· ret〈getInput, x1〉 · ret〈run, ()〉 · ret〈getInput, x2〉

As with the DAO attack, this is a reentrancy bug.

Finally, we have an unsafe implementation of a flat combiner. The library defines two
public methods: enlist, which allows the client to add procedures to be executed by the
library, and run, which lets the client run all procedures added so far. The higher-order
global reference list implements a list of methods.

1 private empty(x:int) : (unit) = { () };

46CHAPTER 2. MOTIVATING EXAMPLES AND BACKGROUND DEFINITIONS

2 fun list := empty;
3 int cnt := 0; int running := 0;
4

5 public enlist(f:(unit → unit)) :(unit) = {
6 if (! running) then ()
7 else
8 cnt := !cnt + 1;
9 (let c = !cnt in

10 let l = !list in
11 list := (fun (z:int) :(unit) → if (z == c) then f() else l(z)))
12 };
13 public run(x:unit) :(unit) = {
14 running := 1;
15 if (0 < !cnt) then
16 (!list)(! cnt);
17 cnt := !cnt - 1;
18 assert(not (!cnt < 0));
19 run()
20 else (list := empty; running := 0)
21 };

The bug here is also due to a reentrant call in line 16. However, this is a much tougher
example as it involves a higher-order reference list, a recursive method run, and a
second-order method enlist that reveals client names to the library. With HOLiK, we
obtain the following minimal counterexample:

call〈enlist,m1〉 · ret〈enlist, ()〉 · call〈run, ()〉 · call〈m1, ()〉
· call〈run, ()〉 · call〈m1, ()〉 · ret〈m1, ()〉 · ret〈run, ()〉 · ret〈m1, ()〉

where m1 is a client name revealed to the library. In the trace above, enlist reveals the
method m1 to the library. This name is then added to the list of procedures to execute.
In run, the library passes control to the client by calling m1. At this point, the client is
allowed to call run again before the list is updated.

We now proceed with the syntax and semantics of the languages used.

2.2 HOLi: A Language for Higher-Order Libraries

Since closed higher-order terms are included in open higher-order terms, we start by
introducing a language for open higher-order programs. We define HOLi, a language for
higher-order libraries with higher-order store. Libraries defined in HOLi are collections
of method definitions to be used by an external client, which in turn may require the
client to provide definitions for external methods. HOLi is a stateful language in that
it contains higher-order global store, that is, store accessible from any point in the

2.2. HOLI: A LANGUAGE FOR HIGHER-ORDER LIBRARIES 47

Libraries L ::= B | abstract m;L
Blocks B ::= ε | public m = λx.M ;B | m = λx.M ;B

| global r := i;B | global r := λx.M ;B
Terms M ::= assert(M) | m | i | () | x | λx.M | r := M | !r |M ⊕M

| 〈M,M〉 | π1M | π2M |MM | if M then M else M
| letrec x = λx.M in M | let x = M in M

Clients C ::= L; main = M

() : unit i : int
x ∈ Varsθ
x : θ

m ∈ Methsθ,θ′

m : θ → θ′
M,M ′ : int
M ⊕M ′ : int

M : int M1,M0 : θ
if M then M1 else M0 : θ

M : θ1 M ′ : θ2
〈M,M ′〉 : θ1 × θ2

〈M,M ′〉 : θ1 × θ2

πi〈M,M ′〉 : θi
r ∈ Refsθ

!r : θ
r ∈ Refsθ M : θ
r := M : unit

M ′ : θ → θ′ M : θ
M ′M : θ′

M : θ′ x : θ
λx.M : θ → θ′

x,M : θ M ′ : θ′
let x = M in M ′ : θ′

x, λy.M : θ → θ′′ M ′ : θ′
letrec x = λy.M in M ′ : θ′

M : int
assert(M) : unit

Figure 2.1: Syntax and typing rules of HOLi.

term. We give in HOLi an operational semantics for terms that integrates a counter
for the depth of nested calls that a program phrase can make. This will be described
in more detail in the following sections when addressing the operational semantics for
HOLi. Our decision to focus on a client-library paradigm in HOLi is explained by the
inherent open nature of libraries. Unlike terms, which may run in a first-order context,
libraries are always expected to run in a context in which they are being called by the
environment (a client). In addition, libraries in HOLi being higher-order means that the
unknown higher-order context can provide them with undefined methods. This makes
HOLi suitable as a vehicle of study for higher-order open behaviour.

2.2.1 Syntax and typing rules

A library in HOLi is a collection of typed higher-order methods. A client is simply a
library with a main body. Types are given by the grammar:

θ ::= unit | int | θ × θ | θ → θ

We use countably infinite sets Meths, Refs and Vars for method, global reference
and variable names, ranged over by m, r and x respectively, and variants thereof; while i
is for ranging over the integers. We use ⊕ to range over a set of binary integer operations,
which we leave unspecified. Each set of names is typed, that is, it can be expressed as a

48CHAPTER 2. MOTIVATING EXAMPLES AND BACKGROUND DEFINITIONS

disjoint union as follows:

Meths =
⊎

θ,θ′
Methsθ,θ′ , Refs =

⊎
θ 6=θ1×θ2

Refsθ, Vars =
⊎

θ
Varsθ.

The full syntax and typing rules are given in Figure 2.1. Thus, a library consists
of abstract method declarations, followed by blocks of public and private method and
reference definitions. A method is considered private unless it is declared public. Each
public/private method and reference is defined once. Abstract methods are not given
definitions: these methods are external to the library. Public, private and abstract
methods are all disjoint.

Libraries are well typed if all their method and reference definitions are well typed
(e.g. public m = λx.M is well typed if m : θ and λx.M : θ are both valid for the same
type θ) and only mention methods and references that are defined or abstract. A client
L; main = M is well typed if M : unit is valid and L; m = λx.M is well typed for some
fresh x,m.

Remark 2.1. By typing variable, reference and method names, we do not need to
provide a context in typing judgements. Note that the references we use are of non-
product type and, more importantly, global to the library: a term can use references
but not create them locally or pass them as arguments (we discuss how to include local,
scope extruding references in Appendix 4.2).

Example 2.2. For demonstration, the DAO-attack example from the Introduction can
be written in HOLi as:

abstract send; global bal := 100;

public wdraw =

λx. if !bal ≥ x
then send(x); bal := !bal − x; assert(!bal ≥ 0)

else ()

where send,wdraw ∈ Methsint,unit, bal ∈ Refsint, and we use the usual abbreviation
M ;M ′ for let _ = M in M ′. ♦

2.3 Operational Semantics

We provide a call-by-value operational semantics for HOLi. A library L builds into a
configuration that includes its public methods according to the rules in Figure 2.2 (top).
More precisely, a built configuration (ε,R, S,P,A) consists of:

• R is a method repository mapping method names to their bodies;

2.3. OPERATIONAL SEMANTICS 49

(abstract m;L,R, S,P,A) bld−−→ (L,R, S,P,A] {m})
(public m = λx.M ;B,R, S,P,A) bld−−→ (B,R] {m 7→ λx.M}, S,P] {m},A)

(m = λx.M ;B,R, S,P,A) bld−−→ (B,R] {m 7→ λx.M}, S,P,A)
(global r := i;B,R, S,P,A) bld−−→ (B,R, S] {r 7→ i},P,A)

(global r := λx.M ;B,R, S,P,A) bld−−→ (B,R] {m 7→ λx.M}, S] {r 7→ m},P,A)

(E[assert(i)], R, S, k)→ (E[()], R, S, k) (i 6= 0)
(E[r := v], R, S, k)→ (E[()], R, S[r 7→ v], k)
(E[!r], R, S, k)→ (E[S(r)], R, S, k)
(E[πj〈v1, v2〉], R, S, k)→ (E[vj], R, S, k)
(E[i1 ⊕ i2], R, S, k)→ (E[i], R, S, k) (i = i1 ⊕ i2)
(E[if i then M1 else M0], R, S, k)→ (E[Mj], R, S, k) (j = 1 iff i 6= 0)
(E[λx.M], R, S, k)→ (E[m], R] {m 7→ λx.M}, S, k)
(E[let x = v in M], R, S, k)→ (E[M{v/x}], R, S, k)
(E[letrec f = λx.M in M ′], R, S, k)

→ (E[M ′{m/f}], R] {m 7→ λx.M{m/f}}, S, k)

(E[mv], R, S, k)→ (E[LM{v/x}M], R, S, k + 1) (R(m) = λx.M)
(E[LvM], R, S, k + 1)→ (E[v], R, S, k)

Values v ::= m | i | () | 〈v, v〉 Terms (extended) M ::= · · · | LMM
Eval.Contexts E ::= • | assert(E) | r := E | E ⊕M | v ⊕ E | 〈E,M〉 | 〈v,E〉 | πjE

| EM | mE | let x = E in M | if E then M else M | LEM

Figure 2.2: Library build (top); operational semantics (bottom).

• S is a store mapping reference names to their stored values; and
• P,A ⊆ Meths are (disjoint) sets of public and abstract method names.

We say that (a well typed) L builds to (ε,R, S,P,A) if (L, ∅, ∅, ∅, ∅) bld−−→
∗

(ε,R, S,P,A).
If L builds to (ε,R, S,P,A) then the client L; main = M builds to (M,R, S,P,A).

We say that library L and client C are compatible if L builds to some (ε,R, S,P,A)
and C builds to some (M,R′, S′,P ′,A′) such that:

• P ⊇ A′ and A ⊇ P ′ (complementation);
• dom(S) ∩ dom(S′) = ∅ (disjoint state); and
• dom(R) ∩ dom(R′) = ∅ (unique method ownership).

For a library L, we let L̂ be L with all its abstract method declarations and public

keywords removed; and similarly for Ĉ.

Definition 2.3. Given compatible library L and client C, we let their syntactic
composition be the client: L;C = L̂; Ĉ.

50CHAPTER 2. MOTIVATING EXAMPLES AND BACKGROUND DEFINITIONS

A built library contains public methods that can be called by a client. On the other
hand, a client contains a main body that can be executed. These two scenarios constitute
the operational semantics of HOLi. Both are based on evaluating (closed) terms, which
we define next. Term evaluation requires: the closed term being evaluated; method
definitions, provided by a method repository; reference values, provided by a store; and
a call-depth counter (a natural number). Since method application is the only source of
infinite behaviour in HOLi, bounding the depth of nested calls is enough to guarantee
termination in program analysis. Hence we provide a mechanism to keep track of call
depth.

Thus, the operational semantics involves configurations of the form (M,R, S, k),
where R is a repository, S is a store and k is a natural number. M is closed term taken
from a syntax extending terms of Figure 2.1 with the rule:

M ::= · · · | LMM

which defines evaluation boxes, i.e. points inside a term where a method call has been
made and has not yet returned. Evaluation boxes interplay with the counter k in the
semantics: they mark places where the depth has increased because of a nested call. The
operational semantics of closed terms is given in Figure 2.2 (bottom). Here, E defines
the evaluation contexts for the call-by-value evaluation. The last two rules in the figure
are the ones keeping track of call depth, and illustrate the utility of evaluation boxes:
making a call increases the counter and leaves behind an evaluation box; returning form
the call removes the box and decreases the counter again.

We can use the operational semantics to evaluate linked library-client pairs.

Definition 2.4. Given compatible L,C, the semantics of L;C is:

JL;CK = {ρ | L;C builds to (M,R, S, ∅, ∅) ∧ (M,R, S, 0)→∗ ρ}

We say that JL;CK fails if it contains some (E[assert(0)], · · ·).

Example 2.5. To illustrate how libraries and clients are used, consider the DAO example
again as a library LDAO. We can define a client Catk:

abstract wdraw;

global wlet := 0;

public send = λx.wlet := !wlet+ x;wdraw(x);

main = wdraw(1)

to produce the following linked client LDAO;Catk:

global bal := 100;

wdraw = λx. if !bal ≥ x

2.3. OPERATIONAL SEMANTICS 51

then send(x); bal := !bal − x; assert(!bal > 0)

else ();

global wlet := 0;

send = λx.wlet := !wlet+ x;wdraw(x);

main = wdraw(1)

We can see how LDAO is vulnerable to an attacker such as Catk after linking them. Using
the operational semantics defined here, we observe that main body defines an infinitely
recursive call to wdraw, which we can bound for analysis. ♦

2.3.1 Nominal Defunctionalisation

Our use of names as method identifiers stems from the use of nominal techniques in
operational semantics, such as in [55]. The purpose is to flatten higher-order terms
during computation by identifying every method with a unique value (a name). These
names are then called via a method repository. This allows us to automatically reason
about higher-order terms, for example, in SAT/SMT instances. The process of flattening
higher-order structure with the aid of a call function (as we do with the repository) makes
this a form of defunctionalisation. This nominal presentation of defunctionalisation is
theoretically beneficial in operational semantics as it captures equivalence classes for
α-equivalence of programs via permutation [66], independently of local scope and tree
structure. Names will additionally be useful to define a notion of privacy between
components with respect to a library and its environment. The properties gained in
using nominal sets are foundational to the theoretical results given in this thesis.

2.3.2 Bounding the Semantics and Nominal Determinacy

The purpose of providing a call counter k is to eventually use it to bound the semantics.
Provided an upper bound k0 to k, the plan is to reach a stuck configuration if k were
to exceed k0, thus bounding the depth of method application. However, even if the
operational semantics is bounded in depth, the reduction tree of a given term can still
be infinite because of the non-determinacy involved in evaluating λ-abstractions: the
rule non-deterministically creates a fresh name m and extends the repository with m
mapped to the given λ-abstraction. This kind of non-determinism, which can be seen as
determinism up to fresh name creation, is formalised below.

Let us consider permutations π : Meths → Meths such that, for all m, if m ∈
Methsθ→θ′ then π(m) ∈ Methsθ→θ′ . We call such a permutation π finite if the set
{a | π(a) 6= a} is finite. Given a syntactic object X (e.g. a term, repository, or store)
and a finite permutation π, we write π ·X for the object we obtain from X if we swap
each name a appearing in it with π(a). Put otherwise, the operation · is an action from

52CHAPTER 2. MOTIVATING EXAMPLES AND BACKGROUND DEFINITIONS

finite permutations of Meths to the set of objects X. Given a set ∆ ⊆ Meths and objects
X,X ′, we write X ∼∆ X ′ whenever there exists a finite permutation π such that:

π ·X = X ′ ∧ ∀a ∈ ∆. π(a) = a

and say that X and X ′ are nominally equivalent up to ∆.

In the following lemma we write �n for the n-step composition of →.

Lemma 2.6 (Nominal determinacy). Let (T,R, S, k) be a valid configuration, (T,R, S, k)�n

(T ′, R′, S′, k′), and let ∆ = dom(R) ∪ dom(S). Then, for all (T ′′, R′′, S′′, k′′) we have
(T,R, S, k)�n (T ′′, R′′, S′′, k′′) iff (T ′, R′, S′, k′) ∼∆ (T ′′, R′′, S′′, k′′).

2.3.3 Expressivity of Higher-Order Assertions

While a full formalised discussion is not in scope of this thesis, one may question whether
our assertion language is expressive enough to capture higher-order properties and what
these properties actually mean. Since the notion of higher-order assertions has no single
definition, let us consider expressing properties expressible with a higher-order logic; i.e.
assertions over predicates of arbitrary order.

Firstly, unlike in first-order languages, assertions in our higher-order setting are
able to appear in and contain higher-order terms. Since an assertion over higher-order
terms is allowed to express properties on free variables of arbitrary order present in said
term, assertions in our language are indeed allowed to express properties on higher-order
relations—i.e. higher-order predicates. There are, however, a few caveats since we
inherit the limitations of using assertions. For instance, we are limited to reachability,
which means we may only express safety properties. Moreover, assertions are implicitly
universally quantified over the free variables present in them—where the domain is
defined by the path—which is similar to the notion of global properties in linear temporal
logics; analogous to ∀~x ∈ FV (pc).pc(~x) =⇒ �P (~x) for some path condition pc and its
free variables FV (pc), and some predicate P . This differs from branching-time logics in
that a notion for the existence of a path does not appear to be expressible with assertions
alone. Finally, since assertions apply a single top-level universal quantification over all
free variables present in them, and since assertions cannot be negated, we are limited
in the degree of arithmetic hierarchy expressible—it appears we are limited to a single
top-level non-negative universals with no existential quantifiers, which rules out a Skolem
normal form conversion. Notice also that nesting assertions is no different to sequencing
them at the top level, since properties in assertions can be independently accumulated.

Chapter 3

Bounded Model Checking Closed
Higher-Order Programs

In this chapter, we present a BMC technique for closed higher-order programs, that
is, higher-order programs which may only have input variables of ground type, but
allow for free variables of arbitrary order during computation. This chapters focusses on
HORef, the ground-type fragment of HOLi. The technique presented here is a syntactic
translation that encodes a given higher-order program into a SAT instance that captures
its behaviour. For the encoding, we obtain inspiration from operational semantics in the
form of a presentation of defunctionalization using nominal techniques. We also make
use of a points-to analysis to improve performance of our BMC procedure.

3.1 HORef: Closed Fragment of HOLi

Before we proceed with our BMC approach, let us present HORef, the closed fragment
of HOLi we shall be using as our higher-order stateful setting. As already mentioned in
Chapter 2, closed higher-order programs do not contain free variables of higher order,
but may still internally reason about higher-order terms. For this, the syntax is that of
terms in HOLi, which is a call-by-value λ-calculus with global higher-order references.
As before, its types are given by the grammar:

θ ::= unit | int | θ × θ | θ → θ

The syntax given in Figure 3.1 (top) is that of the canonical forms for HORef. We use
terms in canonical form as it simplifies the presentation of our BMC algorithm without
loosing generality. This shall also simplify the proof of correctness, and can be obtained
linearly from terms in general syntax through a standard transformation.

53

54CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

CForms 3 M ::= assert(v) | v | r := v | !r | v ⊕ v | π1 v | π2 v

| x v | m v | λx.M | if v then M else M

| let x = M in M | letrec x = λx.M in M

(assertj, R, S, k)→ ((), R, S, k)

(!r,R, S, k)→ (S(r), R, S, k)

(r := v,R, S, k)→ ((), R, S[r 7→ v], k)

(πi〈v1, v2〉, R, S, k)→ (vi, R, S, k)

(i1 ⊕ i2, R, S, k)→ (i, R, S, k) (i = i1 ⊕ i2)

(λx.T,R, S, k)→ (m,R[m 7→ λx.T], S, k)

(if j then T1 else T0, R, S, k)→ (T1, R, S, k) (j 6= 0)

(if 0 then T1 else T0, R, S, k)→ (T0, R, S, k)

(mv,R, S, k1)→ (LT{v/x}M, R, S, k − 1) (R(m) = λx.T)

(LvM, R, S, k)→ (v,R, S, k + 1)

(let x = v in T ,R, S, k)→ (T{v/x}, R, S, k)

(letrec f = λx.T in T ′, R, S, k)→ (T ′{m/f}, R[m 7→ λx.T{m/f}], S, k)

(E[T], R, S, k)→ (E[T ′], R′, S′, k′) where (T,R, S, k)→ (T ′, R′, S′, k′)

Figure 3.1: Canonical forms for HORef (top) and their semantics (bottom).

The operational semantics of HORef is equivalent to the term semantics of HOLi
given in Figure 2.2. The presentation for HORef is differs slightly from that of HOLi
because rules are provided for terms in canonical form. This means the evaluation
context is omitted from each rule and replaced by the addition of an extra rule for E[T],
since all evaluation contexts are of the same form (nested let bindings) when operating
within canonical forms. For HORef, we also make a slight change in the convention
for counters in that the direction of call counters is inverted and decreasing k beyond
zero results in k = nil. This is done for a simple presentation of a bounded semantics
that shares conventions with the BMC procedure defined in the next chapter (which in
turn uses conventions inspired by prior BMC techniques). Inverting the call counters
in the operational semantics is easily done by swapping addition for subtraction when
manipulating k in the rules for method application and return. The starting configuration
is also modified to start from the bound k = k0, where k ≥ 0 must hold for method
application to be applicable. This change in convention is harmless as it is equivalent to
counting up to the bound.

In HORef, the usual definition for free variables holds. The difference between HORef
and HOLi is that, unlike libraries, terms in HORef are closed as they do not expect the
input of external methods, making HORef a ground-type fragment of HOLi. As such,
when discussing a symbolic configuration for HORef, we consider only top-level inputs of

3.2. A BOUNDED TRANSLATION FOR HOREF 55

ground type. Note that while HORef is grounded overall, it is still a higher-order language
with higher-order store. Higher-order behaviour occurs internally in the semantics and
must be considered in designing an analysis technique. This will be made clearer in the
next section where we consider HORef symbolically.

3.2 A Bounded Translation for HORef

Let us begin with an example of the procedure we shall be defining. In Example 3.1, we
can observe how our algorithm unrolls the control-flow graph of a given program and
how it explores this graph to accumulate symbolic constraints about its behaviour. The
example also showcases how a solver can be used to check for reachability of errors.

Intuitively, the example involves a stateful higher-order function f that, after a few
recursive calls, produces a function that asserts that the store has been updated an
expected n times for any n. In this case, the example has no reachable errors, meaning
that there is no way in which n may reachably differ from stored counter in the assertion
generated. Note, however, that since reachability only concerns safety properties, we
miss a problem with termination. Specifically, the condition in f only ever checks if x is
0 to stop, meaning that if the starting x is negative, the program would never halt. This
would not be provable by our technique since we are only concerned with reachability.

Example 3.1. Consider the following program, where n is an open variable and the
reference r is initialised to 0.

1 letrec f =
2 λ x. if x then (r++; f (x - 1))
3 else (λ y. assert (y = !r + x))
4 in
5 let g = f n in g n

When applied to this code, using k = 2, the translation follows the steps depicted in
Figure 3.2. Each rectangular box represents a recursive call of the translation. The
code examined is placed on the top half of the box, while the updates in R, k, φ and α
are depicted in the bottom half (e.g. φ : r0 = 0 means that we attach r0 = 0 to φ as a
conjunct). Rounded boxes, on the other hand, represent joining of branches spawned by
conditional statements or by exhaustive method application. In those boxes we include
the updates to φ which encode the joining. The first two rounded boxes (single-lined)
correspond to the joins of the two conditional statements examined. The last rounded
box is where the branches spawned by examining retg n are joined: retg could be either
of m2 or m3.

56CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

Figure 3.2: Control flow of BMC on Example 3.1.

3.2. A BOUNDED TRANSLATION FOR HOREF 57

The program behaviour and assertions are thus captured by the following formulas.

φ = (r0 = 0) ∧ (ret1 = m2) ∧ (r1 = r0 + 1) ∧ (ret2 = m3) ∧ (r2 = r1 + 1) ∧ (ret3 = dval)
∧ ((n− 1 = 0)?((ret4 = ret2) ∧ (r3 = r1)) : ((ret4 = ret3) ∧ (r3 = r2)))
∧ ((n = 0)?((retg = ret1) ∧ (r4 = r0)) : ((retg = ret4) ∧ (r4 = r3)))
∧ (ret5 = ()) ∧ (ret6 = ()) ∧ ((retg = m2) =⇒ (ret = ret6) ∧ (r5 = r4))
∧ ((retg = m3) =⇒ (ret = ret7) ∧ (r5 = r4))

α = (((ret3 = m2) ∧ (n = 0 ∨ (n 6= 0 ∧ (n− 1 = 0)))) =⇒ (n = r4 + n))
∧ (((ret3 = m3) ∧ (n = 0 ∨ (n 6= 0 ∧ (n− 1 = 0)))) =⇒ (n = r4 + n− 1))
∧ (((n+ 0) ∧ (n− 1 6= 0)) =⇒ inil)

♦

Definition 3.2 (BMC translation). Given a valid initial configuration (M,R, S, k), let
the bounded translation of (M,R, S, k) be JM,R, S, kK, where J·K is defined in Figure 3.3,
JM,R, S, kK = Jinit(M,R, S, k)K for some this valid configuration, and init(M,R, S, k)
is defined by the sequence:

(M,R, S, k) init7−−→ (M,R,CS , CS , φS ,>,>, k)

In Definition 3.2 we define the bounded translation for a given initial configuration.
Our algorithm produces a tuple containing (quantifier-free) first-order formulas and
context components that capture its bounded semantics. Without loss of generality, we
define the translation on terms in canonical form, ranged over by M and variants, which
are presented in Figure 3.1. For some valid input configuration (M,R, S, k), where M is
in canonical form and may only contain free variables of ground type, the translation
performs the following sequence of transformations:

(M,R, S, k) init7−−→ (M,R,CS , CS , φS ,>,>, k) J·K7−→ (ret, φ,R′, C,D, α, pc)

The first step is an initialisation step that transforms the tuple in the form appropriate
for the main translation J·K, which is the essence of the entire bounded translation. We
proceed with J·K and will be returning to init later on.

J·K operates on symbolic configurations of the form (M,R,C,D, φ, α, pc, k), where M
and R are a term and a repository respectively, k is the bound, and:

• C,D : Refs ⇀ SSAVars are single static assignment (SSA) maps where SSAVars is
the set of variables of the form ri (for each r ∈ Refs), such that i is the number of
times that r has been assigned to so far. The map C is counting all the assignments
that have taken place so far, whereas D only counts those in the current path; e.g.
C(r) = r5 if r has been assigned to five times so far in every path looked at. We
write C[r] to mean update C with reference r: if C(r) = ri, then C[r] = C[r 7→ ri+1],
where ri+1 is fresh.
• φ is a first-order formula containing the (total) behaviour so far.

58CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

• α is a first-order formula consisting of a conjunction of statements representing
assertions that have been visited by J·K so far.
• pc is the path condition that must be satisfied to reach this configuration.

The translation returns tuples of the form (ret, φ,R,C,D, α, pc), where:

• φ,R,C,D, α, pc have the same reading as above, albeit for after reaching the end
of all paths from the term M .
• ret is a logic variable representing the return value of the initial configuration.

Finally, returning to init, we have that:

• the initial SSA maps CS simply map each r in the domain of S to the SSA variable
r0, i.e. CS = {r 7→ r0 | r ∈ dom(S)};

• φS stipulates that each r0 be equal to its corresponding value S(r), i.e. φS =∧
r∈dom(S)(r0 = S(r));

• since there is no computation preceding M , its α and pc are simply > (true).

3.2.1 The BMC translation

The translation is given in Figure 3.3. In all cases in the figure, ret is a fresh variable
and k 6= nil. We also assume a common domain Π = dom(C) = dom(D) ⊆ Refs, which
contains all references that appear in M and R.

The translation stops when either the bound is nil, or when every path of the given
term has been explored completely. The base cases add clauses mapping return variables
to actual values of evaluating M . Inductive cases build the symbolic trace of M by
recording in φ all changes to the store, and adding clauses for return variables at each
sub-term of the program, thus building a control flow graph by relating said return
variables and chaining them together in the formula. Wherever branching occurs, the
chaining is guarded.

In the translation, defunctionalisation occurs because every method call is replaced
with a call to the repository using its respective name as an argument. Because this
is a symbolic setting, however, it is possible to lose track of the specific name desired.
Particularly, when applying variables as methods (xv, with x : θ), we encode in the
behaviour formula an n-ary decision tree where n is the number of methods to consider.
In such cases, we assume that x could be any method in the repository R. This case
corresponds to exhaustive method application and is fundamental for applying BMC to
higher-order terms with defunctionalisation. To explore plausible paths only, we restrict
R to type θ (denoted R � θ). In Section 3.4 we will be applying a points-to analysis to
restrict this further.

To illustrate the algorithm, we look at a few characteristic cases:

3.2. A BOUNDED TRANSLATION FOR HOREF 59

[nil case] When the translation consumes its bound, we end up translating some
JM,R,C,D, φ, α, pc, nilK. In this case, we simply return a fresh variable ret representing
the final value, and stipulate in the program behaviour that ret is equal to some default
value (the latter is needed to ensure a unique model for ret). Breaching of the bound is
recorded as a possible assertion violation, and a reserved logic variable inil is used for
that purpose: a breach counts as an assertion violation iff inil is false. The returned
path condition is set to false.

[let case] In Jlet x = M inM ′, R, C,D, φ, α, pc, kK, we first compute the translation
of M . Using the results of said translation, we can substitute in M ′ the fresh variable
ret1 for x, and compute its translation. In the latter step, we also feed the updated
repository R1, SSA maps C1 and D1, program behaviour φ1, assertions α1 (actually, a
conjunction of assertions), and the accumulated path condition pc ∧ pc1. To finish, we
return ret2 and the newly updated repository R2, SSA maps, C2 and D2, assertions α2.
The path condition returned is pc1 ∧ pc2, reflecting the new path conditions gathered.

[xv case] In Jxv,R,C,D, φ, α, pc, kK we see exhaustive method application in action.
We first restrict the repository R to type θ to obtain the set of names identifying all
methods of matching type for x. If no such methods exist, this means that the binding
of x had not succeeded due to breaching the bound earlier on, so dval is returned.
Otherwise, for each method mi in this set, we obtain the translation of applying mi to
the argument v. This is done by substituting v for yi in the body of mi. After translating
all method applications, all paths are joined in ψ by constructing an n-ary decision
tree that includes the state of the store in each path. We do this by incrementing all
references in Cn, and adding the clauses C ′n = Di(r) for each path. These paths are then
guarded by the clauses (x = mi). Finally, we return a formula that includes ψ and the
accumulation of all intermediate φi’s, the accumulation of repositories, the final SSA
map, accumulation of assertions and new path conditions. Note that we return C ′n in
the position of both the C and D resulting from translating this term. This is because
all branches have been joined and any term sequenced after this one should have all
updates available to it.

Remark 3.3. The difference between reading (D) and writing (C) is noticeable when
branching. Branching can occur in two ways: through a conditional statement, and by
performing symbolic method application where we have lost track of the concrete method;
more precisely, when M is of the form xv. In the former case, we branch according to the
return value of the condition (denoted by retb), and each branch translates M0 and M1

respectively. In this case, both branches read from the same map Db, but may contain
different assignments, which we accumulate in C. The formula ψ0 ∧ ψ1 then encodes a
binary decision node in the control flow graph through guarded clauses that represent
the path conditions. Similar care is taken with branching caused by symbolic method
application.

60CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

Base Cases:
Jassert v,R,C,D, φ, α, pc, kK = (ret, (ret = ()) ∧ φ,R,C,D, (pc =⇒ (v 6= 0)) ∧ α,>)
JM,R,C,D, φ, α, pc, nilK = (ret, (ret = dval) ∧ φ,R,C,D, α ∧ (pc =⇒ inil),⊥)
Jv,R,C,D, φ, α, pc, kK = (ret, (ret = v) ∧ φ,R,C,D, α,>)
J!r,R,C,D, φ, α, pc, kK = (ret, (ret = D(r)) ∧ φ,R,C,D, α,>)
Jλx.M,R,C,D, φ, α, pc, kK = (ret, (ret = m) ∧ φ,R′, C,D, α,>)

where R′ = R[m 7→ λx.M] and m fresh
Jπi v,R,C,D, φ, α, pc, kK = (ret, (ret = πi v) ∧ φ,R,C,D, α,>)
Jv1 ⊕ v2, R, C,D, φ, α, pc, kK = (ret, (ret = v1 ⊕ v2) ∧ φ,R,C,D, α,>)
Jr := v,R,C,D, φ, α, pc, kK = let C ′ = C[r] in let D′ = D[r 7→ C ′(r)] in

(ret, ((ret = ()) ∧ (D′(r) = v)) ∧ φ,R,C ′, D′, α,>)
Inductive Cases:
Jlet x = M in M ′, R, C,D, φ, α, pc, kK =
let (ret1, φ1, R1, C1, D1, α1, pc1) = JM,R,C,D, φ, α, pc, kK in
let (ret2, φ2, R2, C2, D2, α2, pc2) = JM ′{ret1/x}, R1, C1, D1, φ1, α1, pc ∧ pc1, kK in
(ret2, φ2, R2, C2, D2, α2, pc1 ∧ pc2)

Jletrec f = λx.M in M ′, R, C,D, φ, α, pc, kK =
let m be fresh in
let R′ = R[m 7→ λx.M{m/f}] in JM ′{m/f}, R′, C,D, φ, α, pc, kK

Jmv,R,C,D, φ, α, pc, kK =
let R(m) be λx.N in JN{v/x}, R, C,D, φ, α, pc, k − 1K

Jif v then M1 else M0, R, C,D, φ, α, pc, kK =
let (ret0, φ0, R0, C0, D0, α0, pc0) = JM0, R, C,D, φ, α, pc ∧ (v = 0), kK in
let (ret1, φ1, R1, C1, D1, α1, pc1) = JM1, R0, C0, D, φ0, α0, pc ∧ (v 6= 0), kK in
let C ′ = C1[r1] · · · [rn] (Π = {r1, . . . , rn}) in
let ψ0 = (v = 0) =⇒ ((ret = ret0) ∧

∧
r∈Π

(C ′(r) = D0(r))) in

let ψ1 = (v 6= 0) =⇒ ((ret = ret1) ∧
∧

r∈Π
(C ′(r) = D1(r))) in

(ret, ψ0 ∧ ψ1 ∧ φ1, R, C
′, C ′, α1, ((pc0 ∧ (v = 0)) ∨ (pc1 ∧ (v 6= 0))))

Jxθ v,R,C,D, φ, α, pc, kK =
if R � θ = ∅ then (ret, (ret = dval) ∧ φ,R,C,D, α,⊥) else
let R � θ be {m1, ...,mn} and (R,C, φ, α) be (R0, C0, φ0, α0) in
for each i ∈ {1, ..., n} :

let R(mi) be λyi.N in let (reti, φi, Ri, Ci, Di, αi, pci) =
JNi{v/yi}, Ri−1, Ci−1, D, φi−1, αi−1, pc ∧ (x = mi), k − 1K in

let C ′n = Cn[r1] · · · [rj] (Π = {r1, . . . , rj}) in

let ψ =
n∧
i=1

(
(x = mi) =⇒ ((ret = reti) ∧

∧
r∈Π

(C ′n(r) = Di(r)))
)

in

let pc′n =
n∨
i=1

(pci ∧ (x = mi)) in (ret, ψ ∧ φn, Rn, C ′n, C ′n, αn, pc′n)

Figure 3.3: The BMC translation.

3.2. A BOUNDED TRANSLATION FOR HOREF 61

3.2.2 BMC via the Translation

The steps to do a k-bounded model checking of some initial configuration (M,R, S, k),
where M has free ground-type variables ~x, using the algorithm described previously are:

1. Build init(M,R, S, k) = (M,R,CS , CS , φS ,>,>, k).
2. Compute the translation: JM,R,CS , CS , φS ,>,>, kK = (ret, φ,R′, C,D, α, pc).
3. Check φ ∧ inil ∧ ¬α for satisfiability:

(a) If satisfiable, we have a model for φ ∧ inil ∧ ¬α that provides values for all
open variables ~x and, therefore, a reachable assertion violation.

(b) Otherwise, check φ ∧ ¬inil ∧ ¬α for satisfiability. If satisfiable, the bound
was breached. Otherwise, the program has been exhaustively explored with
no errors, i.e. has been fully verified.

Remark 3.4. Note how bound breaches are regarded as assertion violations only if
inil is false (so inil means: ignore nils). Analysing Example 3.1 for a fixed k = 2, we
obtain φ∧ inil∧¬α unsatisfiable, but φ∧¬inil∧¬α satisfiable: we cannot violate an
assertion, but our analysis is not conclusive as we breach the bound.

3.2.3 Briefly on Complexity

Although a full analysis of the complexity of our BMC technique is not in scope for this
thesis, we will attempt to provide here a brief discussion on how complexity compares to
the mainstream first-order technique.

Recalling Section 1.3.3, complexity of mainstream BMC is often linear on the size
of the bound because state merging maintains a single path, and the branching factor
of first-order programs is constant at two paths per conditional—in contrast to pure
Symbolic Execution, which has an exponential growth in the number of paths. In the
higher-order case, a constant branching factor is no longer the case, as dynamic method
creation coupled with state merging causes information loss along the path, which in
turn requires the [xv case] introduced previously. Thus, in contrast to first-order BMC,
higher-order BMC has a growing branching factor that grows in proportion to the number
of methods dynamically introduced between symbolic method calls. While state merging
still occurs after exhaustive method application, the increasing branching factor means
that, even if a single path is maintained by merging after branching, complexity is no
longer linear on the bound because every symbolic call is able to introduce a number of
paths that is now proportional to some function of the size of the term and the depth of
exploration.

To illustrate this, consider the simple case of a method m that introduces an empty
method when called and then branches conditionally before calling one of the methods
defined so far. The conditional branch and state merging obfuscates the method to

62CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

choose for the call, which triggers exhaustive method application. The branching factor
is thus bounded by the number of methods present in the repository at the call site,
which corresponds to the triangular number on either the depth of recursive calls or
the size of the term. Thus, we have (k2 + 1)/2 paths that need to be explored at each
function call, where k corresponds to the number of symbolic method applications that
have occurred so far along the top-level path. Since every symbolic call involves every
method created so far—including m—every call creates one more method that needs to
be recorded. Generalising this, we have b = (nk2−nk+ 2k)/2, for k method applications
and n methods created per application. This means that the complexity of producing a
formula is dependent on the program we are trying to analyse—specifically, most heavily
in the branching factor b for all the [xv cases] present in the program.

Taking the above into consideration, although the complexity of building the formula
is inherently dependent on the program analysed, one can see that the worst case
would arise from a program where the branching factor b dominates the behaviour—e.g.
creates new methods and triggers exhaustive method application every time the bound
is consumed.

3.3 Soundness of the BMC Procedure

Intuitively, soundness states that, within a given bound, the algorithm reports either an
error or the possibility of exceeding the bound, if and only if a corresponding concrete
execution within that bound exists such that the error is reached or the bound is exceeded
respectively. Soundness of the algorithm depends on its correctness, which states that
every reduction reaching a final value via the operational semantics is captured by the
BMC translation.

We start off with some definitions. An assignment σ : Vars ⇀ CVals is a fi-
nite map from variables to closed values. Given a term M , we write M{σ} for the
term obtained by applying σ to M . On the other hand, applying σ to a method
repository R, we obtain the repository R{σ} = {m 7→ R(m){σ} | m ∈ dom(R)} —
and similarly for stores S. Then, given a valid configuration (M,R, S, k), we have
(M,R, S, k){σ} = (M{σ}, R{σ}, S{σ}, k). Using program variables as logic variables,
we can use assignments as logic assignments. Given a formula φ, we let σ |= φ mean that
the formula φ{σ} is valid (its negation is unsatisfiable). We say σ represents φ, and
write σ ' φ, if σ � φ and φ =⇒ x = σ(x) is valid for all x ∈ dom(σ).

Theorem 3.5 (Soundness). Given a valid configuration (M,R, S, k) whose open vari-
ables are of ground type, suppose JM,R, S, kK = (ret, φ,R′′, C,D, α, pc). Then, for all
assignments σ closing (M,R, S, k), 1 and 2 are equivalent:

1. ∃E,R′, S′.(M,R, S, k){σ}� (E[assert0], R′, S′, k′)
2. ∃σ′ ⊇ σ. σ′ |= φ ∧ inil ∧ ¬α.

3.3. SOUNDNESS OF THE BMC PROCEDURE 63

Moreover, if φ ∧ inil ∧ ¬α is not satisfiable then 3 and 4 are equivalent:

3. ∃M ′, R′, S′.(M,R, S, k){σ}� (M ′, R′, S′, nil)
4. ∃σ′ ⊇ σ. σ′ |= φ ∧ ¬inil ∧ ¬α.

Proof. (1) =⇒ (2) and (3) =⇒ (4) follow directly from Lemma 3.6 below. For the
reverse directions, we rely on the fact that the semantics is bounded so, in every case,
(M,R, S, k){σ} should either reach a value, or a failed assertion, or breach the bound.
Moreover, the semantics is deterministic, in the sense that the final configurations reached
may only differ in the choice of fresh names used in the process. This allows us to employ
Lemma 3.6 also for the reverse directions.

The result above makes use of the lemmas that follow.

Lemma 3.6 (Correctness). Given M,R,C,D, φ, α, pc, k, σ such that σ ' φ,
(M,R,D, k){σ} is valid, and JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′)
there exists σ′ ⊇ σ such that σ′ ' φ′ and:

• if (M,R,D, k){σ}� (v, R̂, Ŝ, k̂) then σ′ � (pc =⇒ (pc′∧(ret = v)))∧((α∧pc) =⇒
α′), R′{σ′} ⊇ R̂ and D′{σ′} = Ŝ

• if (M,R,D, k){σ}� (E[assert0], R̂, Ŝ, k̂) then σ′ � (inil ∧ α ∧ pc) =⇒ ¬α′
• if (M,R,D, k){σ}� (M̂, R̂, Ŝ, nil) then σ′ � (pc =⇒ ¬pc′)∧((inil∧α∧pc) =⇒
α′) ∧ ((¬inil ∧ α ∧ pc) =⇒ ¬α′).

Proof. Consider σ ' φ, a valid configuration (M,R,D, k){σ}, and its corresponding
translation JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′).

Now, by induction on the length of the transition sequence produced by the operational
semantics, and, lexicographically, by induction on the size of the term, we have the
following cases for configurations in canonical form.

Terminal configurations:

• k = nil.
From the operational semantics we have (M,R,D, nil){σ} as a stuck configuration.
From the translation we have

JM,R,C,D, φ, α, pc, kK =

(ret, (ret = dval) ∧ φ,R,C,D, α ∧ (pc =⇒ inil),⊥)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = dval) ∧ φ)) and

σ′ �(pc =⇒ ¬⊥)

64CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

∧ ((inil ∧ α ∧ pc) =⇒ (α ∧ (pc =⇒ inil)))

∧ ((¬inil ∧ α ∧ pc) =⇒ ¬(α ∧ (pc =⇒ inil)))

Let us choose σ′ = σ[ret 7→ dval]. Since σ ' φ, and since ret is the only new
variable in φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ >)∧((inil∧
α∧pc) =⇒ (α∧ (pc =⇒ inil)))∧ ((¬inil∧α∧pc) =⇒ ¬(α∧ (pc =⇒ inil)))
holds.

• M = assert0.
From the operational semantics we have (assert0, R,D, k){σ} as a stuck configu-
ration. From the translation we have

Jassert0, R, C,D, φ, α, pc, kK =

(ret, (ret = ()) ∧ φ,R,C,D, α ∧ (pc =⇒ (0 6= 0)),>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = ()) ∧ φ)) and

σ′ � ((inil ∧ α ∧ pc) =⇒ ¬(α ∧ (pc =⇒ (0 6= 0))))

Let us choose σ′ = σ[ret 7→ ()]. Since σ ' φ, and ret is the only new variable in φ′,
we know that σ′ ' φ′. We also know that σ′ � ((inil∧α∧pc) =⇒ ¬(α∧ (pc =⇒
⊥))) holds.
• M = v.
From the operational semantics we have (v,R,D, k){σ} as a stuck configuration.
From the translation we have

Jv,R,C,D, φ, α, pc, kK =

(ret, (ret = v) ∧ φ,R,C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = v) ∧ φ)) and

σ′ � (pc =⇒ (> ∧ (ret = v))) ∧ ((α ∧ pc) =⇒ α)

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ v]. Since σ ' φ, and ret is the only new variable
in φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (> ∧ (ret =
v))) ∧ ((α ∧ pc) =⇒ α) holds. Additionally, R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}
hold trivially.
• M = LvM. Similar to the case above.

Non-terminal configurations:

• M = asserti where i 6= 0.

3.3. SOUNDNESS OF THE BMC PROCEDURE 65

From the operational semantics we have

(asserti, R,D, k){σ} → ((), R,D, k){σ}

From the translation we have

Jasserti, R,C,D, φ, α, pc, kK =

(ret, (ret = ()) ∧ φ,R,C,D, α ∧ (pc =⇒ (i 6= 0)),>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = ()) ∧ φ)) and, since this
is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = ())) ∧ ((α ∧ pc) =⇒ (α ∧ (pc =⇒ (i 6= 0))))

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ ()]. Since σ ' φ, and ret is the only new variable in φ′,
we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (ret = ())) holds because
σ′ maps ret to (), and σ′ � ((α ∧ pc) =⇒ α) holds. Additionally, R{σ′} ⊇ R{σ′}
and D{σ′} = D{σ′} hold trivially.
• M = r := v.
From the operational semantics we have

(r := v,R,D, k){σ} → ((), R,D[r 7→ v], k){σ}

From the translation we have

Jr := v,R,C,D, φ, α, pc, kK =

let C ′ = C[r] in let D[r 7→ C ′(r)] in

(ret, (ret = ()) ∧ (D′(r) = v) ∧ φ,R,C ′, D′, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = ()) ∧ (D′(r) = v) ∧ φ))
and, since this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = ())) ∧ ((α ∧ pc) =⇒ (α ∧ (pc =⇒ (i 6= 0))))

R{σ′} ⊇ R{σ′} and D[r 7→ C ′(r)]{σ′} = D[r 7→ v]{σ′}

Let us choose σ′ = σ[ret 7→ (), C ′(r) 7→ v]. Since σ ' φ, ret is the only new
variable in φ′, and D′ maps r to C ′(r), which σ′ maps to v, we know that σ′ ' φ′.
We also know that σ′ � (pc =⇒ (ret = ())) holds because σ′ maps ret to (), and
σ′ � ((α ∧ pc) =⇒ α) holds. Additionally, R{σ′} ⊇ R{σ′} holds trivially, and
D[r 7→ C ′(r)]{σ′} = D[r 7→ v]{σ′} holds because σ′ maps C ′(r) to v.
• M = !r.

66CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

From the operational semantics we have

(!r,R,D, k){σ} → (v,R{σ}, D{σ}, k) where v = D{σ}(r) = σ(D(r))

From the translation we have

J!r,R,C,D, φ, α, pc, kK =

(ret, (ret = D(r)) ∧ φ,R,C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = D(r)) ∧ φ)) and, since
this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = v)) ∧ ((α ∧ pc) =⇒ α)

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ D(r)]. Since σ ' φ, and ret is the only new variable in
φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (ret = v)) holds because
σ′ ⊃ σ, σ(D(r)) = v and σ′(ret) = D(r), and we know σ′ � ((α ∧ pc) =⇒ α)
holds. Additionally, R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′} hold trivially.
• M = v1 ⊕ v2.

From the operational semantics we have

(v1 ⊕ v2, R,D, k){σ} → (v,R{σ}, D{σ}, k) where v = σ(v1)⊕ σ(v2)

From the translation we have

Jv1 ⊕ v2, R, C,D, φ, α, pc, kK =

(ret, (ret = (v1 ⊕ v2)) ∧ φ,R,C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = (v1⊕ v2))∧φ)) and, since
this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = v)) ∧ ((α ∧ pc) =⇒ α)

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ v]. Since σ ' φ, and ret is the only new variable
in φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (ret = v))
holds because σ′ ⊇ σ, σ(v1) ⊕ σ(v2) = v and σ′ maps ret to v. Lastly, we know
σ′ � ((α ∧ pc) =⇒ α) holds. Additionally, R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}
hold trivially.
• M = πi v.

From the operational semantics we have

(πi v,R,D, k){σ} → (vi, R{σ}, D{σ}, k) where σ(v) = 〈v1, v2〉

3.3. SOUNDNESS OF THE BMC PROCEDURE 67

From the translation we have

Jπi v,R,C,D, φ, α, pc, kK =

(ret, (ret = (πi v)) ∧ φ,R,C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = (πi v)) ∧ φ)) and, since
this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = vi)) ∧ ((α ∧ pc) =⇒ α)

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ vi]. Since σ ' φ, and ret is the only new variable in φ′,
we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (ret = v)) holds because
σ′ ⊇ σ, σ(πi v) = vi and σ′ maps ret to vi. Lastly, we know σ′ � ((α ∧ pc) =⇒ α)
holds. Additionally, R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′} hold trivially.
• M = λx.N .
From the operational semantics we have

(λx.N,R,D, k){σ} → (m̂,R[m̂ 7→ λx.N]{σ}, D{σ}, k)

From the translation we have

Jλx.N,R,C,D, φ, α, pc, kK =

(ret, (ret = m) ∧ φ,R[m 7→ λx.N], C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = m) ∧ φ)) and, since this
is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = m̂)) ∧ ((α ∧ pc) =⇒ α)

R[m 7→ λx.N]{σ′} ⊇ R[m̂ 7→ λx.N]{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ m]. Since σ ' φ and ret is the only new variable in
φ′, and choosing m̂ such that m̂ = m by Lemma 2.6 (nominal determinism of the
operational semantics), we know that σ′ ' φ′. We also know that σ′ � (pc =⇒
(ret = m̂)) holds because σ′ ⊃ σ, m = m̂ by Lemma 2.6, and σ′ maps ret to m.
Lastly, we know σ′ � ((α ∧ pc) =⇒ α) holds. Additionally, D{σ′} = D{σ′} holds
trivially, and R[m 7→ λx.N]{σ′} ⊇ R[m̂ 7→ λx.N]{σ′}.
• M = mv.
From the operational semantics we have

(mv,R, S, k){σ} → (N{v/x}, R, S, k − 1){σ}

where R(m) = λx.N .

68CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

From the translation we have

Jmv,R,C,D, φ, α, pc, kK = JN{v/x}, R, C,D, φ, α, pc, k − 1K

As such, this case holds directly from the inductive hypothesis.
• M = letrec f = λx.N in M ′.
From the operational semantics we have

(letrec f = λx.N in M ′, R, S, k){σ} → (M ′{m/f}, R[m 7→ λx.N{m/f}], S, k){σ}

where R(m) = λx.N .
From the translation we have

Jletrec f = λx.N in M ′, R, C,D, φ, α, pc, kK =

JM{m/f}, R[m 7→ λx.N{m/f}], C,D, φ, α, pc, kK

We know σ ' φ. As such, this case holds directly from the inductive hypothesis.
• M = (let x = v in M ′). Similar to the case above.
• M = if v then M1 else M0.

From the operational semantics we have

(if v then M1 else M0, R, S, k){σ} → (Mi, R, S, k){σ}

where i = 0 if σ(v) = 0, and i = 1 otherwise.
From the translation we have

Jif v then M1 else M0, R, C,D, φ, α, pc, kK =

let (ret0, φ0, R0, C0, D0, α0, pc0) = JM0, R, C,D, φ, α, pc ∧ (v = 0), kK in

let (ret1, φ1, R1, C1, D1, α1, pc1) = JM1, R0, C0, D, φ0, α0, pc ∧ (v 6= 0), kK in

let C ′ = C1[r1] · · · [rn] (Π = {r1, . . . , rn}) in

let ψ0 = (v = 0) =⇒ ((ret = ret0) ∧
∧
r∈Π

(C ′(r) = D0(r))) in

let ψ1 = (v 6= 0) =⇒ ((ret = ret1) ∧
∧
r∈Π

(C ′(r) = D1(r))) in

(ret, ψ0 ∧ ψ1 ∧ φ1, R, C
′, C ′, α1, ((pc0 ∧ (v = 0)) ∨ (pc1 ∧ (v 6= 0))))

We now have two cases for σ(v):
1. σ(v) = 0.

(1) By the inductive hypothesis we have σ0 ⊇ σ, where σ0 ' φ0, and all
necessary conditions P0 are satisfied.
(2) By Lemma 3.7, we know ∃σ1 ⊇ σ0.(σ1 ' φ1).
Let σ′ = σ1[ret 7→ ret0, C

′(r) 7→ D0(r)]. Since σ′ ⊃ σ1 ⊇ σ0, we know that P0

is also satisfied. Thus, this case holds by (1) and (2).
2. σ(v) 6= 0.

(1) By Lemma 3.7, we know ∃σ0 ⊇ σ.(σ0 ' φ0).

3.3. SOUNDNESS OF THE BMC PROCEDURE 69

By Lemma 3.8, we know R must be preserved in R0, so R0{σ0} ⊇ R. Thus,
by the inductive hypothesis:
(2) we have σ1 ⊇ σ0 ⊇ σ, where σ1 ' φ1, and all necessary conditions P1 are
satisfied.
Let σ′ = σ1[ret 7→ ret1, C

′(r) 7→ D1(r)]. Since σ′ ⊃ σ1, we know that P1 is
also satisfied. Thus, this case holds by (1) and (2).

• M = xv.
From the operational semantics we have

(xv,R, S, k){σ} → (Ni{v/yi}, R, S, k − 1){σ}

where σ(x) = mi and R(mi = λyi.Ni).
Let σ0 = σ.
From the translation we have

Jxθ v,R,C,D, φ, α, pc, kK =

if R � θ = ∅ then (ret, (ret = nil) ∧ φ,R,C,D, α, pc) else

let R � θ be {m1, ...,mn} and (R,C, φ, α) be (R0, C0, φ0, α0) in

for each i ∈ {1, ..., n} :

let R(mi) be λyi.N in

let (reti, φi, Ri, Ci, Di, αi, pci) =

JNi{v/yi}, Ri−1, Ci−1, D, φi−1, αi−1, pc ∧ (x = mi), k − 1K in

let C ′n = Cn[r1] · · · [rj] (Π = {r1, . . . , rj}) in

let ψ =
n∧
i=1

(x = mi) =⇒
((ret = reti)∧∧
r∈Π

(C ′n(r) = Di(r)))

 in

let pc′n =
n∨
i=1

(pci ∧ (x = mi)) in

(ret, ψ ∧ φn, Rn, C ′n, C ′n, αn, pc′n)

Since R � θ = {m1, . . . ,mn}, it must be the case that i ∈ {1 . . . n}.
It must be the case then that either (1) i = 1 or (2) 1 < i ≤ n.
1. (1) By the inductive hypothesis, we have ∃σ1 ⊇ σ0.(σ1 ' φ1), and all necessary

properties P0 hold.
(2) By Lemma 3.7 applied repeatedly, we have ∃σn ⊇ · · · ⊇ σ1.(σn ' φn).
Since σn ⊇ σ1, properties P0 hold, so this case holds by (1) and (2).

2. (1) By Lemma 3.7 applied repeatedly, we know ∃σi−1 ⊇ · · · ⊇ σ0.(σi−1 '
φi−1) ∧ · · · ∧ (σ0 ' φ0).
(2) By Lemma 3.8 applied repeatedly, we also know Ri−1 ⊇ · · · ⊇ R0.
(3) By the inductive hypothesis, we know ∃σi ⊇ σi−1.(σi ' φi) and the
necessary properties Pi hold.

70CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

(4) By Lemma 3.7 again applied repeatedly, we know ∃σn ⊇ · · · ⊇ σi.(σn '
φn) ∧ · · · ∧ (σi ' φi).
Since σn ⊇ σi, properties Pi hold, so this holds by (1), (2), (3) and (4).

• M = (let x = M ′ in M ′′), with M ′ not a value.
Let us write M as E[M ′]. From the operational semantics we have

(E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� . . .

where (M ′, R, S, k){σ} → (M̂, R̂, Ŝ, k̂){σ}.
We now have the following translation.

JE[M ′], R, C,D, φ, α, pc, kK =

let (ret1, φ1, R1, C1, D1, α1, pc1) = JM ′, R, C,D, φ, α, pc, kK in

let (ret2, φ2, R2, C2, D2, α2, pc2) = JE[ret1], R1, C1, D1, φ1, α1, pc ∧ pc1, kK in

(ret2, φ2, R2, C2, D2, α2, pc1 ∧ pc2)

Since E[M ′] can lead to either (1) some value, (2) an assertion assert0, or (3) a
stuck configuration where the bound is nil, we have three cases to consider.
1. (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[v̂1], R̂1, Ŝ1, k̂1).

(1) By the inductive hypothesis: σ1 � (pc =⇒ (pc1 ∧ (ret1 = v̂1))) ∧ ((pc ∧
α) =⇒ α1) and R1{σ1} ⊇ R,D1{σ1} = Ŝ.

(E[v̂1], R̂1, Ŝ1, k̂1)� (v̂′, R̂′, Ŝ′, k̂)′.
(2) By the inductive hypothesis: σ2 � (pc1 =⇒ (pc2 ∧ (ret2 = v̂′))) ∧ ((pc1 ∧
α1) =⇒ α2) and R2{σ2} ⊇ R̂1, D{σ1} = Ŝ.

Since σ2 ⊇ σ, we know σ2 ' φ2.
From (1) and (2), we know σ2 � (pc =⇒ (pc1∧pc2∧(ret = v̂)))∧((pc∧α) =⇒
α2). Case holds.

2. (a) (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[assert0], R̂1, Ŝ1, k̂1).
(1) By the inductive hypothesis: σ1 � ((pc ∧ α ∧ inil) =⇒ ¬α1) such
that σ1 ' φ1.
(2) By Lemma 3.7, we know ∃σ2 ⊇ σ1.σ2 ' φ2

By Lemma 3.9, and (1) and (2), we know α2 =⇒ α1, thus ¬α1 =⇒ ¬α2.
We therefore have σ1 � ((pc ∧ α ∧ inil) =⇒ ¬α2). Case holds.

(b) (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[v̂1], R̂1, Ŝ1, k̂1).
(1) By the inductive hypothesis: σ1 � (pc =⇒ (pc1 ∧ (ret1 = v̂1))) ∧
((pc ∧ α) =⇒ α1) and R1{σ1} ⊇ R,D1{σ1} = Ŝ.

(E[v̂1], R̂1, Ŝ1, k̂1)� (E′[assert0], R̂′, Ŝ′, k̂)′

(2) By the inductive hypothesis: σ2 � ((pc ∧ pc1 ∧ α1 ∧ inil) =⇒ ¬α2)
such that σ2 ' φ2.

3.3. SOUNDNESS OF THE BMC PROCEDURE 71

From (1) and (2) we have σ2 � (pc =⇒ ¬(pc1∧pc2))∧(α∧pc∧inil) =⇒
¬α2. Case holds.

3. (a) (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[M̂1], R̂1, Ŝ1, nil).
(1) By the inductive hypothesis: σ1 � (pc =⇒ ¬pc1)∧((inil∧α∧pc) =⇒
α1) ∧ ((¬inil ∧ α ∧ pc) =⇒ ¬α1) such that σ1 ' φ1.
(2) By Lemma 3.7, we know ∃σ2 ⊇ σ1.σ2 ' φ2.
(3) By Lemma 3.9, we know α2 =⇒ α1, so ¬α1 =⇒ ¬α2.

From (1) we have that σ1 � (pc =⇒ ¬(pc1 ∧ pc2)).
From (1) and (3) we have that σ1 � ((inil∧α∧pc) =⇒ α2)∧ ((¬inil∧
α ∧ pc) =⇒ ¬α2).
From (2) we have that σ2 � (pc =⇒ ¬(pc1 ∧ pc2))∧ ((inil∧α∧ pc) =⇒
α2) ∧ ((¬inil ∧ α ∧ pc) =⇒ ¬α2) such that σ2 ' φ2. Case holds.

(b) (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[v̂1], R̂1, Ŝ1, k̂1).
(1) By the inductive hypothesis: σ1 � (pc =⇒ (pc1 ∧ (ret1 = v̂1))) ∧
((pc ∧ α) =⇒ α1) and R1{σ1} ⊇ R,D1{σ1} = Ŝ.

(E[v̂1], R̂1, Ŝ1, k̂1)� (E′[M̂ ′], R̂′, Ŝ′, nil)′

(2) By the inductive hypothesis: σ2 � ((pc∧pc1) =⇒ ¬pc2)∧((inil∧α1∧
pc∧pc1) =⇒ α2)∧((¬inil∧α1∧pc∧pc1) =⇒ ¬α2) such that σ2 ' φ2.

From (1) and (2) we have σ2 � (pc =⇒ ¬(pc1∧pc2))∧((inil∧α∧pc) =⇒
α2) ∧ ((¬inil ∧ α ∧ pc) =⇒ ¬α2) such that σ2 ' φ2. Case holds.

Lemma 3.7 (Uniqueness of the translation). Given an assignment σ and formula φ
such that σ ∼= φ, and a translation

JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′)

we know there exists some σ′ ⊇ σ such that σ′ ∼= φ′.

Proof. Assuming σ ∼= φ, by induction on k and then by induction on the size of M , we
have the base cases:

1. k = nil: shown by choosing σ′ = σ[ret 7→ dval].
2. M = assert(v) and k 6= nil: shown by choosing σ′ = σ[ret 7→ ()].
3. M = v and k 6= nil: shown by choosing σ′ = σ[ret 7→ v].
4. M =!r and k 6= nil: shown by choosing σ′ = σ[ret 7→ D(r)].
5. M = λx.N and k 6= nil: shown by choosing σ′ = σ[ret 7→ m].
6. M = πi v and k 6= nil: shown by choosing σ′ = σ[ret 7→ πi v].
7. M = v1 ⊕ v2 and k 6= nil: shown by choosing σ′ = σ[ret 7→ v1 ⊕ v2].

72CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

8. M = r := v and k 6= nil: shown by choosing σ′ = σ[ret 7→ (), D′(r) = v].

With base cases done, we have the following inductive cases:

1. M = let x = M ′ in M ′′:
(1) By the inductive hypothesis on JM,R,C,D, φ, α, pc, kK, we have σ1 ' φ1.
(2) By the inductive hypothesis on JM ′{ret1/x}, R1, C1, D1, φ1, α1, pc ∧ pc1, kK, we
have σ2 ' φ2.
This case holds by (1) and (2).

2. M = letrec f = λx.N in M ′:
(1) By the inductive hypothesis on JM ′{m/f}, R′, C,D, φ, α, pc, kK, we have σ1 '
φ1.
This case holds by (1).

3. M = mv:
(1) By the inductive hypothesis on JN{v/x}, R′, C,D, φ, α, pc, kK, we have σ1 ' φ1.
This case holds by (1).

4. M = if v then M1 else M0:
(1) By the inductive hypothesis on JM0, R, C,D, φ, α, pc ∧ (v = 0), kK, we have
σ0 ' φ0.
(2) By the inductive hypothesis on JM1, R0, C0, D0, φ0, α0, pc∧ (v 6= 0), kK, we have
σ1 ' φ1.
We now have two cases on σ1(v):
(a) σ1(v) = 0. Choose σ′ = σ1[ret 7→ ret0, C

′(r) 7→ D0(r)] for all r ∈ Π.
(b) σ1(v) = i 6= 0. Choose σ′ = σ1[ret 7→ ret1, C

′(r) 7→ D1(r)] for all r ∈ Π.
5. M = xv:

(1) By the inductive hypothesis on
JN1{v/y1}, R0, C0, . . .K to JNn{v/yn}, Rn−1, Cn−1, . . .K,
we have ∃σn ⊇ · · · ⊇ σ1 ⊇ σ0.(σn ' φn) ∧ · · · ∧ (σ1 ' φ1) ∧ (σ0 ' φ0).
Since σ(x) ∈ R, let σ(x) = mi for i ∈ {1..n}.
Let σ′ = σn[ret 7→ reti, C

′
n(r) 7→ Di(r)] for all r ∈ Π.

This case holds by (1).

Lemma 3.8 (Preservation of the repository). Given a translation

JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′)

we know the input repository must be preserved; i.e. R′ ⊇ R.

Proof. By inspection of the translation rules.

Lemma 3.9 (Propagation of preconditions). Given a translation

JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′)

3.4. A POINTS-TO ANALYSIS FOR NAMES 73

we know that preconditions φ and α must be propagated and included in φ′ and α′; i.e.
φ′ = ψ ∧ φ and α′ = β ∧ α where JM,R,C,D,>,>,>, kK = (ret, ψ,R′, C ′, D′, β, pc′′)

Proof. By inspection of the translation rules.

3.4 A Points-to Analysis for Names

The presence of exhaustive method application in our BMC translation is a primary
source of state space explosion. As such, a more precise filtering of R is necessary for
scalability. In this section we describe a simple analysis to restrict the number of methods
considered. We follow ideas from points-to analysis [7], which typically computes an
overapproximation of the points-to set of each variable inside a program, that is, the set
of locations that it may point to.

Our analysis computes the set of methods that may be bound to each variable while
unfolding. We do this via a finite map pt : (Refs ∪ Vars) ⇀ Pts where Pts contains all
points-to sets and is given by: Pts 3 A ::= X | 〈A,A〉 where X ⊆fin Meths. Thus, a
points-to set is either a finite set of names or a pair of points-to sets. These need to be
updated whenever a method name is created, and are assigned to references or variables
according to the following cases:

r := M add in pt: r 7→ pt(M)
let x = M inM ′ add in pt: x 7→ pt(M)
xM add in pt: ret(M) 7→ pt(M)

where ret(M) is the variable assigned to the result of M . The letrec binder follows a
similar logic. The need to have sets of names, instead of single names, in the range of pt
is that the analysis, being symbolic, branches on conditionals and applications, so the
method pointed to by a reference cannot be decided during the analysis. Thus, when
joining after branching, we merge the pt maps obtained from all branches.

The points-to algorithm is presented in Figure 3.4. Given a valid configuration
(M,R, S, k), the algorithm returns PT (M,R, S, k) = (ret, A,R, pt), where A is the
points-to set of ret, and pt is the overall points-to map computed.

The merge of points-to maps is given by:

merge(pt1, . . . , ptn) = {x 7→
⋃

i
p̂ti | x ∈

⋃
i
dom(pti)}

where p̂ti(x) = pti(x) if x ∈ dom(pti), ∅ otherwise, and A∪B is defined by 〈A1∪B1, A2∪
B2〉 if A,B = 〈A1, A2〉, 〈B1, B2〉, and just A ∪B otherwise.

74CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

Base Cases:
PT (M,R, pt, nil) = (ret,∅, R, pt)
PT (v,R, pt, k) = (ret,∅, R, pt) where v = i, ()
PT (m,R, pt, k) = (ret, {m}, R, pt)
PT (λx.M,R, pt, k) = (ret, {m}, R[m 7→ λ.M], pt)
PT (x,R, pt, k) = (ret, pt(x), R, pt)
PT (r := v,R, pt, k) = (ret,∅, R, pt[r 7→ pt(v)])
PT (!r,R, pt, k) = (ret, pt(r), R, pt)
PT (πi v,R, pt, k) = (ret, πi (pt(v)), R, pt)
PT (〈v1, v2〉, R, pt, k) = (ret, 〈pt(v1), pt(v2)〉, R, pt)
PT (v1 ⊕ v2, R, pt, k) = (ret,∅, R, pt)
PT (assertv,R, pt, k) = (ret,∅, R, pt)

Inductive Cases:
PT (let x = M in M ′, R, pt, k) =
let (ret1, A1, R1, pt1) = PT (M,R, pt, k) in PT (M ′{ret1/x}, R1, pt1[ret1 7→ A1], k)

PT (letrec f = λx.M in M ′, R, pt, k) =
let m be fresh in PT (M ′{m/f}, R[m 7→ λx.M{m/f}], pt, k)

PT (mv,R, pt, k) = let R(m) be λx.N in PT (N{v/x}, R, pt, k − 1)
PT (if v then M1 else M0, R, pt, k) =
let (ret0, A0, R0, pt0) = PT (M0, R, pt, k) in
let (ret1, A1, R1, pt1) = PT (M1, R0, ptb, k) in (ret, A0 ∪A1, R1,merge(pt0, pt1))

PT (xθ v,R, pt, k) =
let R be R0 and pt(x) be {m1, ...,mn} in
if n = 0 then (ret, ∅, R0, pt) else: for each i ∈ {1, ..., n} :
let R(mi) be λyi.N in let (reti, Ai, Ri, pti) = PT (Ni{v/yi}, Ri−1, pt, k − 1) in
(ret, A1 ∪ ... ∪An, Rn,merge(pt1, . . . , ptn))

Figure 3.4: The points-to analysis algorithm.

3.4.1 Comparison with Conventional Points-to Analyses

Two common kinds of points-to analyses are Andersen-style [7] and Steengaard-style [76]
analyses, also called inclusion-based and unification-based flow-insensitive analyses re-
spectively [35]. These are often implemented as constraint-based analyses that pass
through the program code to allocate constraints for each reference/variable assignment,
and subsequently solve these constraints in a global manner—as their names suggest,
constraints are often based on inclusion or unification. Both analyses are typically
context-insensitive and flow-insensitive algorithms. For example, let pts(r) be the points-
to set of r. The following are some cases and corresponding constraints for ANSI-C
programs in Andersen-style analysis:

p := &x x ∈ pts(p)
p := q pts(p) ⊇ pts(q)

3.4. A POINTS-TO ANALYSIS FOR NAMES 75

*p := q ∀r ∈ pts(p).pts(r) ⊇ pts(q)
p := *q ∀r ∈ pts(q).pts(p) ⊇ pts(r)

Our analysis has analogous rules for assignment and variable binding inspired on these
kinds of analyses. However, in contrast to ANSI-C our references are a simpler setting
without pointer arithmetic. More significantly, our analysis is intended to interface
with the BMC traversal only for the purpose of recording flow of higher-order values at
intermediate points. As such it is not a global solution, but a forward analysis that gives
online results for the data-flow along the path so far. Moreover, while it does not over-
approximate globally, it does, however, over-approximate after symbolic branching since
the analysis does not perform intermediate calls to the solver—nor does it accumulate
constraints to be solved. Globally, our points-to analysis is less precise than one that is
fully flow sensitive, and is also incomplete as it only gives a depth-bounded result (e.g. if
a reference is eventually assigned after k+ 1 steps, and we only look at k steps, we would
not know about said assignment). That said, the way our analysis is used makes it more
precise than flow and context insensitive algorithms because within a given path, i.e.
before merging after branching or returning from a method call, we have the advantage
of flow and context sensitivity from the BMC traversal itself. Finally, since we only care
about the flow of methods, a complete graph relating all references is unnecessary. For
this reason, our points-to sets do not need to include references, but method names only.

3.4.2 The Optimised BMC Translation

We can now incorporate the points-to analysis in the BMC translation to get an optimised
translation which operates on symbolic configurations augmented with a points-to map,
and returns:

JM,R,C,D, φ, α, pc, pt, kKPT = (ret, φ′, R′, C ′, D′, α, pc, A, pt′)

The optimised BMC translation is defined by lock-stepping the two algorithms presented
above (i.e. J·K and PT (·)) and letting J·K be informed from PT (·) in the xM case, which
now restricts the choices of names for x to the set pt(x). Its soundness is proven along
the same lines as the basic algorithm.

Example 3.10. To illustrate the significance of reducing the set of names, consider the
following program which recursively generates names to compute triangular numbers.

1 letrec f = λ x.
2 if x leq 0 then 0
3 else let g = (λ y.x + y) in g (f (x-1))
4 in
5 letrec f’ = λ x.if x leq 0 then 0 else x + (f’ (x-1))
6 in assert(f n = f’ n)

76CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

Without points-to analysis, since f creates a new method per call, and the translation
considers all methods of matching type per recursive call, the number of names to apply
at depth m ≤ n when translating f(n) is approximately m!. This means that the number
of paths explored grows by the factorial of n, with the total number of methods created
being the left factorial sum !n. In contrast, f ′(n) only considers n names with a linear
growth in number of paths. With points-to analysis, the number of names considered
and created in f is reduced to that of f ′. ♦

3.4.3 Briefly on Complexity Once Again

The points-to analysis algorithm mirrors the BMC translation previously defined as
it is designed to run step-locked with the translation in order to limit the branching
incurred by exhaustive method application. As such, the complexity of our points-to
analysis algorithm is identical to the translation algorithm up-to the exhaustive method
application case. The difference is, of course, a direct result of the points-to analysis itself,
which decreases the number of methods to consider for exhaustive method application.

The improvement depends on the nature of the program analysed. In the best case,
all symbolic methods can be resolved precisely to one method body, which decreases
branching at exhaustive method application from n methods created so far to 1. In
worst case, symbolic conditional branching obfuscates the assignment of the function
body, and points-to analysis cannot do any better to distinguish the methods. In general,
points-to analysis reduces the number of methods to consider down, from all methods
created so far, to the smallest possible set of methods defined by unresolvable symbolic
branching at the point of binding. By unresolvable symbolic branching we mean that the
precise method body to use cannot be resolved. For instance, if a variable x is bound
to a method m1 and m2, where the choice is guarded by a symbolic expression that
cannot be uniquely resolved either to true or false, then the smallest set of plausible
methods bound to x needs to consider both m1 and m2. This points-to analysis is thus
a forward-analysis that propagates this smallest set around, combining unresolvable sets
where necessary, where partial results during the analysis are used for exhaustive method
application. Once combined with the translation, since they run step-locked, would
run with exactly the same complexity in terms of number of paths explored—which
dominates the space and time complexity. Notice also that the analysis would not call a
solver by itself, as it does not accumulate constraints to be solved. As such, all symbolic
branching would be considered unresolvable by our analysis.

3.5 Implementation

We implemented the translation algorithm in a prototype tool to model check higher-order
programs called BMC-2. The implementation and benchmarks can be found at:

3.5. IMPLEMENTATION 77

https://github.com/LaifsV1/BMC-2

The tool takes program source code written in an ML-like language, and produces a
propositional formula in SMT-LIB 2 format. This is then be fed to an SMT solver
such as Z3 [23]. Syntax of the input language is based on the subset of OCaml that
corresponds to HORef. Differences between OCaml and our concrete syntax are for
ease of parsing and lack of type inference. For instance, all input programs must be
either written in “Barendregt Convention”, meaning all bound variables must be distinct,
and different from free variables. Additionally, all bound variables are annotated with
types. Internally, BMC-2 implements an abstract syntax that extends HORef with vector
arguments and integer lists. This means that functions can take multiple arguments at
once. Lists are handled for testing, but not discussed here as they are not relevant to
the theory. BMC-2 itself was written in OCaml.

To illustrate our input language, following is the sample program mc91-e from [45]
translated from OCaml to our syntax.

1 Methods:
2 mc91 (x:Int) :(Int) =
3 if x >= 101 then x + -10
4 else mc91 (mc91 (x + 11));
5 Main (n:Int) :(Unit):
6 if n <= 102
7 then assert ((mc91 n)==91)
8 else skip

The keyword Methods is used to define all methods in the repository. The keyword Main

is used to define the main method. For this sample program, our tool builds a translation
with k = 1 for which Z3 correctly reports that the assertion fails if n = 102. One can see
on the example above that, for ease of parsing, we do not have a subtraction operator.
Instead, we parse negative numbers and add them to subtract.

3.5.1 Tool Architecture and Usage

As of commit 66d0167, BMC-2 consists of three OCaml files and two parser files to use
with the Menhir LR(1) parser generator for OCaml. The files are organised as follows:

• AbstractSyntax.ml contains the abstract syntax for our tool, which corresponds
to the data structures to hold program trees for HORef, and any helper functions
necessary to process the different components of the program configurations.
• Translation.ml contains an implementation of the BMC translation in Figure 3.3.
A simple implementation for variable substitution is provided in this file as well.
• TopLevel.ml contains the top level interface to our tool. This file thus combines
all modules by first parsing the given file and then translating it into our BMC

78CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

encoding.
• Lexer.mll contains the lexer or tokeniser for use with Menhir. It tokenises

according to a list of keywords and regular expressions.
• Parser.mly contains the grammar rules to use with Menhir to generate a parser

for sugared HORef.

The tool itself does not include a type checking component; the program tree is im-
mediately translated to be fed to a solver. Since we include no type inference, type
annotations for all bound variables in the input program are necessary. The formula
produced by our tool is then annotated with these types, which must then pass the
solver’s type checker.

BMC-2 is compiled using OCamlbuild (which automatically determines the sequence
of calls to the OCaml compiler) with the Menhir option enabled:

ocamlbuild -I parser -use-menhir TopLevel.native

This requires an OCaml compiler version 4.04 or above and Menhir. From testing, as long
as Menhir and OCamlbuild are present, the tool can be compiled on any Linux distribution
and on Windows machines running the Cygwin POSIX-compatible environment.

Using this tool requires calling the compiled top level file with the desired parameters:

./TopLevel.native <file-path> <bound> <mode>

where <file-path> is the path for a file written in sugared HORef, <bound> is a natural
number, and <mode> is either 1 or 0 for reachable bugs and reachable bounds respectively.
This outputs a formula in SMT-LIB 2 which can be immediately fed to Z3. For instance:

./TopLevel.native mc91-e.txt 4 1 | z3 -in

feeds a translation of mc91-e.txt to Z3 with a bound 4 and is satisfiable if and only if
an assertion violation is reachable.

Remark 3.11. While the presentation of our BMC algorithm in Figure 3.3 is for terms
in canonical form, the tool itself parses arbitrary HORef terms in sugared form. The
translation to canonical form is linear and can even be done seamlessly by the parser
when constructing the abstract syntax tree.

Example 3.12. Consider the mc91-e example. We execute BMC-2 on this example
with a bound k = 1 in bug-finding mode:

./TopLevel.native mc91-e.txt 1 1

3.6. BENCHMARKS 79

which produces an SMT-LIB 2 formula involving 30 variables and 20 complex clauses
(containing multiple disjunctions). Feeding this to Z3, we obtain the following output:

sat

((n 102))

which states that the formula is satisfiable when the input variable n = 102.

For this run (on a machine equipped with an 8th Gen Intel Core i7 clocked at 1.9GHz),
total execution time from source-code to SMT-LIB 2 was approximately 0.001s, whereas
Z3 was recorded to have taken 0.009s. Timing information for BMC-2 is reported by the
tool as comments in the SMT-LIB formula it produces. ♦

3.6 Benchmarks

We tested our implementation on a set of 40 programs that include a selection from
the MoCHi benchmark [45]. This is a set of higher-order programs written in OCaml,
originally used to test the higher-order model checking tool MoCHi [45] and subsequently
used for benchmarking [77, 15, 73]. We added custom samples with references (ref-1,
ref-1-e, ref-2, ref-2-e, ref-3), as well as programs of varying lengths—100, 200 and
400 lines of code—constructed by combining the other samples. To combine programs,
we refactored and concatenated methods and main methods from different files into a
single file, and switch between the methods based on user input, thus forcing BMC-2 to
consider all mains. In this set we have unsafe versions of safe programs denoted by the -e
termination in their filename. Unsafe programs were constructed by slight modifications
to the assertions of the original safe programs. For our experiment, the programs were
manually translated to our input language and checked using our tool and Z3. Care was
taken to keep all sample programs as close to the original source code as our concrete
syntax allows. All experiments ran on an Ubuntu machine equipped with an Intel Core
i7-6700 CPU clocked at 3.40GHz and 16GB RAM. All tests were set to time-out after
3 minutes, and up to a maximum bound k = 15. These limits were chosen due to the
combinatorial nature of model checking and the sample programs used. BMC-2 ran
twice per program per bound, and the average was recorded.

3.7 Evaluation

Figure 3.5 plots the average time taken for BMC-2 to check all the benchmark programs.
We can observe that performance of BMC-2 heavily depends on the program it is checking,
making the possibility of full verification entirely dependent on the nature of the program.
For example, ack, which is an implementation of the Ackermann function, is a deeply

80CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

Figure 3.5: Average execution time(s) for BMC-2 vs. bounds k = 1..15.

recursive program that diverges rapidly, and thus cannot be translated by our algorithm
any better than its normal growth. This agrees with the intuition that BMC is not
appropriate to find bugs in deep recursion. In exchange, as mentioned before, BMC
has been shown to be effective on shallow bugs in industry. This can be seen with our
examples for 100 to 400 lines of code (LoC), which were correctly shown to have bugs
with little difficulty despite the increase in program size (e.g. 0.03s on average for 100
LoC vs 0.08s for 400 LoC at k = 4). Our approach being bounded-complete means that,
for safe programs, the tool correctly found that no bugs were reachable up to the bound
even on the larger safe programs, again, with little difficulty (e.g. 0.02s at k = 4 vs 0.07s
at k = 15 for 102_2.txt).

From the fact some programs ran out of memory, we can observe that, unlike
mainstream BMC approaches, the procedure is not linear in state-space with respect
to the bound. Instead, we occasionally have exponential behaviour. This is entirely
explained by dynamic method creation in some programs. Due to state merging, the
mainstream approach can be linear on the bound if the branching factor is bounded
throughout the evaluation. In a higher-order setting, where dynamic method creation is
more common, this is not true, since the branching factor may increase if the control flow
cannot be determined after the addition of a new method. This seems to suggest that
BMC looses its advantages with regards to state merging when applied to higher-order
programs, but faster compilation and stable behaviour on larger programs still suggests
BMC is a practically useful alternative.

In addition to testing BMC-2, we also ran comparison experiments on prior tools
MoCHi [45] and Rosette [79]. All experiments ran on the same machine used to test
BMC-2. This will be described in more detail in the following sections. For Rosette,
we used an implementation of our bounded semantics in Rosette provided to us by an

3.7. EVALUATION 81

4 7 10 13 15 MoCHi
100_1-e 0.034 0.173 1.661 84.130 - c
100_2 0.020 0.028 0.032 0.053 0.071 c
100_3-e 0.021 0.027 0.028 0.040 0.051 10.734
200_1-e 0.034 0.188 1.572 71.296 - m
200_2-e 0.033 0.063 0.151 0.259 0.372 -
200_3-e 0.034 2.849 - - m 1.742
400_1-e 0.108 3.805 - - m m
400_2-e 0.061 0.196 0.696 1.321 1.991 -
ack 0.027 11.519 - - - 0.525
a-cppr 0.031 0.020 0.026 0.027 0.028 28.584
a-init 0.018 0.016 0.032 0.042 0.053 c
e-fact 0.009 0.014 0.016 0.021 0.022 0.629
e-simple 0.010 0.008 0.007 0.009 0.009 0.098
hrec 0.020 0.075 26.175 - - 0.867
r-lock-e 0.009 0.013 0.013 0.007 0.011 0.216
ref-2 0.013 0.008 0.011 0.012 0.010 u
ref-2-e 0.011 0.013 0.010 0.013 0.011 u
ref-3 0.019 0.018 0.047 0.211 0.211 u

− time-out c crash
m out of memory u unsupported

Table 3.1: Execution time(s) for BMC-2 (k = 4..15) and MoCHi.

anonymous reviewer. With the semantics implemented, we compare Rosette’s symbolic
execution of HORef to BMC-2 with Z3’s translation and solving of the same terms.

3.7.1 Comparison with MoCHi

Though the goals of each tool are different, we attempted to compare our approach to
MoCHi. Being unable to build from source, we decided to used the Dockerfile on the
Ubuntu machine from before. In Table 3.1, we have the time taken for BMC-2 and
MoCHi for a smaller set of programs—the full range of results can be found in the tool
page. We noticed that MoCHi is very sensitive to the operators and functions used
in the assertions, while BMC-2 appears to be less dependent on these. For instance,
checking mult-e with assert(mult m m <= mult n n) was three orders of magnitude
slower than the original, while, at k = 1, BMC-2 takes 0.012 seconds; an increase of 20%
from the original 0.010s to find a bug. We also noticed that MoCHi is less consistent
with larger programs. For 100 to 400 lines of code, MoCHi correctly found bugs in 4
out of 12 samples, but halted unexpectedly on the remaining 8. BMC-2 found all 11
bugs of the 12 programs, and found no bugs in the safe program. Finally, we included
5 examples with references, which BMC-2 correctly checked, whereas MoCHi does not
support state.

82CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

Depth of search: k = 1 . . . 15. (Time excludes initialisation for Rosette)

Figure 3.6: Execution time(s) for Rosette (left) and BMC-2 (right) vs. search depth.

3.7.2 Comparison with Rosette for Racket

We found that BMC-2 and Rosette are very similar in their ability to check higher-order
programs. Since Racket is a stateful higher-order language like HORef, and Rosette
employs a symbolic virtual machine with symbolic execution techniques for Racket,
we can expect this similarity. Fundamentally, Rosette and BMC-2 provide different
approaches to verification as the former is related to symbolic evaluation, while the
latter is a monolithic BMC translation. We were particularly interested in Rosette’s
ability to implement bounded verification for higher-order programs. With our bounding
mechanism defined in Rosette, we compared its symbolic evaluation to BMC-2 on the
Ubuntu machine. Figure 3.6 showcases a comparison based on 8 sample programs
from the MoCHi benchmarks without counting initialisation time, while Table 3.2 and
Figure 3.7 showcase a comparison on increasingly larger program size in terms of number
of method definitions at k = 2 taking into account initialisation time. The latter
comparison was made on a benchmark built by combining method definitions from other
files, and then refactoring and repeating the definitions present in the file.

Rosette and BMC-2 are comparable in scalability, with BMC-2 being less optimised
for small diverging programs such as ack. This could be due to the way Rosette performs
type-driven state merging, which may allow it to be more memory efficient while still
providing opportunities for concretisation. In contrast, we perform a suboptimal SSA
transformation which could benefit from dominance frontiers for optimal merging of
control flow. BMC, however, has the theoretical advantage of faster compilation time
over symbolic execution [79], which can be observed in Table 3.2 and Figure 3.7. As the
number of method definitions in the program increases, time taken for Rosette including
initialisation appears to grow more steeply than BMC-2 does, which suggests initialisation
time is not constant. Thus, while internal execution time of Rosette appears to scale
similarly if not better than BMC-2 with regards to depth of search, it appears BMC-2

3.7. EVALUATION 83

Method definitions Lines of code Time (s) Lines of code Time (s)
5 71 0.024 78 0.800
10 160 0.029 128 0.825
16 160 0.030 188 0.908
20 195 0.036 228 0.931
27 244 0.036 289 1.001
37 326 0.054 390 1.183

(Time includes initialisation for both tools, bound fixed at k = 2)

Table 3.2: Execution time(s) for BMC-2 (left) and Rosette (right) vs. program size.

(Time includes initialisation for both tools, bound fixed at k = 2)

Figure 3.7: Execution time(s) for BMC-2 and Rosette vs. program size.

can scale better in terms of program size measured by number of method definitions.

84CHAPTER 3. BOUNDED MODEL CHECKING CLOSED HIGHER-ORDER PROGRAMS

Chapter 4

Symbolic Games for Open
Higher-Order Programs

In this chapter we present, to our knowledge, the first game-semantics-based approach to
symbolic execution for reachability of assertion violations in open higher-order programs.
We do this by defining a trace semantics for HOLi, the higher-order language introduced
in Chapter 2, that models the environment of higher-order terms. We show that the
trace semantics of libraries is sound and complete for reachability of errors under any
definable client. We follow by defining a symbolic version of the trace semantics for the
purpose of bug-finding through symbolic execution. We prove the symbolic semantics is
sound with respect to errors found via a strong notion of equivalence with regards to
the concrete semantics (bisimilarity), and implement a bounded version of the symbolic
semantics in a prototype tool called HOLiK.

4.1 A Trace Semantics for HOLi

Recall the syntax of HOLi in Figure 2.1:

Libraries L ::= B | abstract m;L
Blocks B ::= ε | public m = λx.M ;B | m = λx.M ;B

| global r := i;B | global r := λx.M ;B
Terms M ::= assert(M) | m | i | () | x | λx.M | r := M | !r |M ⊕M

| 〈M,M〉 | π1M | π2M |MM | if M then M else M

| letrec x = λx.M in M | let x = M in M

Clients C ::= L; main = M

We extend the operational semantics of HOLi to handle libraries and terms that may call
abstract methods, i.e. calls external methods that are not bound to a definition. The
approach we follow is based on operational game semantics [41, 47, 33] and in particular

85

86 CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

(INT) (M,R, S, k)→ (M ′, R′, S′, k′)
(E ,M,R, S,P,A, k)p → (E ,M ′, R′, S′,P,A, k′)p

(PQ) (E , E[mv], R, S,P,A, k)p
call(m,v)−−−−−−→ ((m,E) :: E , 0, R, S,P ′,A, k)o

(OQ) (E , l, R, S,P,A, k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E ,mv,R, S,P,A′, k)p if R(m) = λx.M

(PA) ((m, l) :: E , v, R, S,P,A, k)p
ret(m,v)−−−−−→ (E , l, R, S,P ′,A, k)o

(OA) ((m,E) :: E , l, R, S,P,A, k)o
ret(m,v)−−−−−→ (E , E[v], R,P,A′, k)p

(PC) m ∈ A and P ′ = P ∪ (Meths(v) ∩ dom(R))
(OC) m ∈ P and A′ = A ∪ (Meths(v) \ dom(R))

Rules (PQ), (PA) assume condition (PC), and (OQ), (OA) assume (OC).
Meths(v) contains all method names appearing in v.

Figure 4.1: Trace (game) semantics rules for HOLi.

the semantics is given by means of traces of method calls and returns (called moves)
between the library and its client. In between such moves, the semantics proceeds with
the operational semantics of HOLi as defined in Chapter 2.

When computing the semantics of a library, the library and its methods are the
Player (P) of the computation game, while the (intended) client is the Opponent (O). As
the semantics is given in absence of an actual client, O actually represents every possible
client for the library P (also called Proponent). When computing the semantics of a
client, the roles are reversed. In either case, the same set of rules applies and there is no
need to specify whether the semantics is evaluating from the perspective of a library or
that of a client. In the definitions that follow we shall see that the only difference in their
semantics is the starting configurations: libraries start from an opponent configuration,
whereas clients start from a proponent configuration holding their main term.

In Figure 4.1, the trace semantics uses game configurations, which are divided
into (proponent) P -configurations and (opponent) O-configurations given respectively as:

(E ,M,R, S,P,A, k)p and (E , l, R, S,P,A, k)o .

In a P -configuration, a term M is being evaluated, meaning, the library is currently
in control and is internally evaluating a term. In an O-configuration, the environment
(client) is in control and is expected to either return to a pending library call if there is
one, or to make a call of its own to the library. The components M,R, S,P,A, k, l are
as in the operational semantics of HOLi, while E is an evaluation stack:

E ::= ε | (m,E) :: E | (m, l) :: E

which keeps track of the computations that are on hold due to external calls. The trace
semantics is generated by the rules given in Figure 4.1, where label INT stands for

4.1. A TRACE SEMANTICS FOR HOLI 87

internal transition; PQ for P -question (i.e. call) and PA for P -answer (i.e. return); and
similarly for OQ and OA.

To potentially bound the semantics, and thus maintain a terminating analysis, we
extend the counting semantics to also keep track of a newly added source of infinite
execution, namely endless consecutive calls from an external component: since the trace
semantics of libraries is complete, a client that keeps calling library methods—and thus
does not terminate—is allowed. Given a concrete client, this chattering behaviour of
the opponent would be bounded by the size of its term; i.e. intuitively, this sequence
of calls and returns corresponds to chained method calls in the opponent term. This
leads us to consider a semantics with two counters, k and l, where k keeps track of
internal nesting of method calls and l records the number of consecutive calls made
from the external component. Note that, since l counts only consecutive calls at a given
call context, it is refreshed for any configuration within a nested call context. This is
understood intuitively if we consider that l represents the size of the largest term the
opponent is allowed to hold; i.e. pushing an old l into the evaluation stack and then
refreshing the current working l upon a change in the call context is analogous to the
opponent term concretely making a method call, which pushes its term into the stack
and starts evaluating a completely fresh term.

The formulation in Figure 4.1 follows closely the operational game semantics technique.
For example, from a P -configuration (E ,M,R, S,P,A, k)p, there are 3 options:

1. If M can make an internal reduction, i.e. in the operational semantics in context
(R,S, k), then (E ,M,R, S,P,A, k)p performs this reduction (via (INT)).

2. If M is stuck at a method application for a method that is not in the repository R,
then that method must be abstract (i.e. external) and needs to be called externally.
This is achieved be issuing a call move and moving to an O-configuration (via
(PQ)). The current evaluation context and the called method name are stored, in
order to resume once the call is returned (via (OA)).

3. If M is a value and the evaluation stack is non-empty, then P has completed a
method call that was issued by O (via (OQ)) and can now return (via (PA)).

On the other hand, from an O-configuration (E , l, R, S,P,A, k)o, there are 2 options:

1. either return the last open method call (made by P) via (OA), or
2. call one of the public methods (from P) using (OQ).

The role of conditions (PC) and (OC) is to ensure that each player calls the methods
owned by the other, or return their own, and update the sets of public and abstract
names according to the method names passed inside v.

Remark 4.1. The novelty of Figure 4.1 with respect to previous work on trace semantics
for open libraries (e.g. [55]) lies in the use of l in order to bound the ability of O to ask
repeated questions for finite analysis. The way rules (OQ) and (PA) are designed is such

88 CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

that any sequence of consecutive O-calls and P -returns has maximum length 2n if we
bound l to n (i.e. l ≤ n), as each such pair of moves increases l by 1. On the other hand,
each P -call supplies to O a fresh counter (l = 0) to be used in contiguous (OQ)-(PA)’s.
Thus, l can be seen as keeping track of the insistence of O in calling, which in turn
depends on the size of the term O holds. Another difference of this trace semantics is
the absence of name-refreshing when names are passed between players. This is done for
simplicity, since we remain sound at the expense of full abstraction, which is not needed
for verification.

Finally, we can define the trace semantics of libraries.

Definition 4.2 (Trace Semantics). Let L be a library. The semantics of L is :

JLK = {(τ, ρ) | (L, ∅, ∅, ∅, ∅) bld−−→∗ (ε,R, S,P,A) ∧ (ε, 0, R, S,P,A, 0)o τ−→ ρ}

where ρ is produced by a trace of moves τ as defined in Figure 4.1. We additionally say
that JLK fails if it contains some (τ, (E , E[assert(0)], · · ·)).

Example 4.3. Consider the DAO example as library LDAO. Evaluating the game
semantics we know the following sequence is in JLDAOK. For economy, we hide R,P,A
and show only the top of the stack in the configurations. We also use m(v)? and m(v)!
for calls and returns. We write Si for the store [bal 7→ i].

(ε, 0, S100, 0)o
wdraw(42)?−−−−−−−→ ((wdraw, 1), wdraw(42), S100, 0)p

−→∗ ((wdraw, 1), E[send(42)], S100, 1)p
send(42)?−−−−−−→ ((send,E), 2, S100, 1)o

wdraw(100)?−−−−−−−−→ ((wdraw, 1), wdraw(100), S100, 1)p

−→∗ ((wdraw, 1), E′[send(100)], S100, 2)p
send(100)?−−−−−−→ ((send,E), 2, S100, 2)o

send(())!−−−−−→ ((wdraw, 1), E′[()], S100, 2)p −→∗ ((wdraw, 1), (), S0, 2)p
wdraw(())!−−−−−−−→ ((send,E), 1, S0, 2)o

send(())!−−−−−→ ((wdraw, 1), E[()], S0, 1)p
−→∗ ((wdraw, 1), E[assert(−42 ≥ 0)], S−42, 1)p

Taking a look at the moves played:

call〈wdraw, 42〉 · call〈send, 42〉 · call〈wdraw, 100〉
· call〈send, 100〉 · ret〈send, ()〉 · ret〈wdraw, ()〉 · ret〈send, ()〉

The sequence of moves is a concrete instance of the symbolic trace provided for the DAO
example in Chapter 2. Here, a call is made with parameter 42, and a reentrant call with
100, which leads to the assertion violation assert(−42 ≥ 0). Also note that a bound of
k ≤ 2 is sufficient to find this assertion violation, showing that, while shallow, errors like
these can be due to intricate higher-order behaviour that is easy to miss. ♦

In the following sections we shall establish two focal properties of the trace semantics:

4.2. ML-LIKE REFERENCES 89

bounding k and l ensures termination (Theorem 4.7), and that it is sound and complete
with respect to library errors (Theorem 4.11).

4.2 ML-like References

Before continuing with Theorem 4.7 and 4.11, we briefly address a remark about HOLi,
which is that references are global and cannot be created or passed as values. The rationale
for global higher-order references is that these suffice to code all of our examples and,
moreover, allow us to prove completeness (every error has a realising client). Additionally,
the precise nature of the references is not of focal relevance to the theory, so an arguably
simpler but equivalent approach was taken. However, we present here a sketch of how
our games can be extended with (locally created, scope extruding) ML-like references,
following e.g. [47, 33]. First, the following extension to types and terms are required.

θ ::= · · · | ref θ M ::= · · · | !M | ref M |M = M v ::= · · · | r

The term !M allows dereferencing terms M which evaluate to references, while ref v

dynamically creates a fresh name r ∈ Refsθ (if v : θ)—the semantic purpose is to update
the store S] {r 7→ v} when evaluating ref v. Note that this introduces another notion
for how references may be of higher-order: one can store references to references, and so
on. Finally, the construct M = M to compare references for name equality is needed.

We then modify our games to handle reference passing and the resulting shared store.
First, game configurations need to be extended with a set L ⊆ Refs that keeps track of
reference names disclosed to the other player. References being passed as values means
that the client can update the references belonging to the client, and viceversa. When
playing a move, each reference r passed is added to L and its value mapped to in the
store. A reference (location name) may be passed in a move either within the method
argument or return value (depending on whether it is a question or answer), or via
the disclosed part of the store (i.e. by having references r ∈ L point at an undisclosed
reference). Every newly passed reference is added into L, and transition labels would be
modified to explicitly pass the portion of the store corresponding to L. Intuitively, this
new interaction is modelled by having the player hold a local copy of the external store
and telling the opponent which references have been disclosed and what their new values
are (i.e. on the move label). In the other direction, the opponent directly adds their own
location names to the store and tells the proponent which these are and what values these
point at. Since the opponent could potentially modify all known common references,
whenever the opponent passes control, all references in L would need to be updated with
opponent values to remain complete. From the other side, the proponent manipulates all
references as it would regularly do. This works because any newly introduced proponent
location names would be found through a transitive closure of the disclosed names upon
passing control.

90 CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

With reference passing, players would manipulate references almost exactly as they
already do (except for the creation of new locations), but passing and updating these
would incur a heavy overhead in the moves, for which we went for the simpler and more
feasible choice that sufficed.

We now proceed with Theorem 4.7 and 4.11.

4.3 Boundedness of Games

We prove our game semantics can be bounded, that is, games on independent components
will always terminate if we bound the call counters. More precisely, Theorem 4.7 states
that our game semantics is strongly normalising when call counters are bounded, meaning
that every transition sequence produced from a given configuration is finite. We approach
the proof in two steps: first we classify all possible transitions any given configuration can
make, thus classifying all reachable configurations, and then we prove that the transition
classes form a terminating sequence.

We begin by defining the classes for ordering of moves.

Definition 4.4. We write |ρ| = (k0 − k, |M |, l0 − l) for the size of ρ. Where an element
is not present in the configuration, we use instead the top-most occurrence of the
missing component in the evaluation stack E . i.e., opponent configurations will have size
(k0 − k, |E|, l0 − l) where E is the top-most one in E , whereas proponent configurations
will have size (k0 − k, |M |, l0 − l) where l is the top-most one in E .

Definition 4.5. Given configurations ρ and ρ′, we define an order |ρ| < |ρ′| to be the
lexicographic ordering of the triples (k0− k, |M |, l0− l), with bounds k0 and l0 such that
k ≤ k0 and l ≤ l0.

Lemma 4.6. For any transition sequence ρ0 → · · · → ρi → . . . and each i > 0, we have
the following two classes of configurations:

(A) either |ρi| < |ρi−1|, or
(B) there exists j < i− 1 such that |ρi| < |ρj |

Proof. Let ρ be a configuration. Considering all moves available to ρ, we have the
following cases.

1. If ρ→ ρ′ is an (Int) move, we have two possibilities.
(a) For a transition (E[LvM], R, S, k)→ (E[v], R, S, k + 1), where k + 1 ≤ k0, we

have a class (B) configuration since there must be a (E[mv], R, S, k) such that
(E[mv], R, S, k) →∗ (E[v], R, S, k) which is lexicographically ordered since
|v| < |mv|.

4.3. BOUNDEDNESS OF GAMES 91

(b) Every other transition sequence is class (A) since they reduce the size of the
term.

2. If ρ → ρ′ is a (Pq) move, we have that ρ′ is a class (A) configuration since
(k, |E|, l0) < (k, |E[mv]|, l0 − l) by lexicographic ordering.

3. If ρ→ ρ′ is an (Oa) move, we have a transition

((m,E) :: E , l, . . . , k)o
ret(m,v)−−−−−→ (E , E[v], . . . , k)p

which must be a result of the prior proponent question

(E , E[mv], . . . , k)p
call(m,v)−−−−−→ ((m,E) :: E , l0, . . . , k)o

where E has an l′ on top. We thus have the following sequence

(E , E[mv], . . . , k)p →∗ (E , E[v], . . . , k)o

where (k, |E[v]|, l) < (k, |E[mv]|, l′), so ρ′ is a class (B) configuration.
4. If ρ→ ρ′ is an (Oq) move, we have the transition

(E , l, . . . , k)o
call(m,v)−−−−−→ ((m, l + 1) :: E ,mv, . . . , k)p
→ ((m, l + 1) :: E , LM{v/x}M, . . . , k + 1)

Ignoring the configuration in between, we take

(E , l, R, S,P,A, k)o
call(m,v)−−−−−→ ((m, l + 1) :: E , LM{v/x}M, R, S,P,A, k + 1)p

to be our new transition. We thus have that ρ′ is a class (A) configuration since
(k0− (k+1), |LM{v/x}M|, l0− (l+1)) < (k0−k, |E|, l0− l) by lexicographic ordering.

5. If ρ→ ρ′ is a (Pa) move, we have the transition

((m, l) :: E , v, . . . , k)p
ret(m,v)−−−−−→ (E , l, . . . , k)o

which must be the result of a prior opponent question

(E , l + 1, . . . , k)o
call(m,v)−−−−−→ ((m, l) :: E , LM{v/x}M, . . . , k + 1)p
→∗ ((m, l) :: E , LvM, . . . , k + 1)p
→ ((m, l) :: E , v, . . . , k)p
ret(m,v)−−−−−→ (E , l, . . . , k)o

where E′ is the topmost evaluation context in E . We thus have that (k0−k,E′, l0−
l) < (k0 − k,E′, l0 − (l + 1)), so ρ′ is a class (B) configuration.

Theorem 4.7 (Boundedness). For any game configuration ρ, provided an upper bound

92 CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

k0 and l0 for call counters k and l, the labelled transition system starting from ρ is
strongly normalising.

Proof. Let us assume there is an infinite sequence

ρ0 → · · · → ρj → · · · → ρi → . . .

Since all reachable configurations fall into either (A) or (B) class by Lemma 4.6, we
know that the sequence must comprise only (A) and (B) configurations. In this infinite
sequence, we know that all sequences of (A) configurations are in descending size, so (A)
sequences cannot be infinite. We also observe that (B) configurations are padded with (A)
sequences and may contain nested (B) sequences. For instance, if ρi is a (B) configuration,
and ρj is its matching configuration, there may be nested (B) configurations between ρj
and ρi, with (A) sequences padding these.

Additionally, these (B) configurations can only occur as a return to a call, so we
know they only occur together with the introduction of evaluation boxes L•M. Since these
brackets occur in pairs and are introduced in a nested fashion, we know E can only
contain evaluation contexts with well-bracketed evaluation boxes, meaning that there
cannot be interleaved sequences of (B) configurations where their target configurations
intersect. More specifically, the sequence

ρ0 → · · · → ρj → · · · → ρ′j → · · · → ρi → · · · → ρ′i → . . .

where ρ′i matches ρ′j and ρi matches ρj is not possible.

Now, ignoring all (A) and nested (B) sequences, we are left with an infinite stream of
top-level (B) sequences which are also in descending order. Since starting size is finite,
we cannot have an infinite stream of (B) sequences. Thus, the assumption does not hold,
so our semantics is strongly normalising.

Additionally, we have a useful property of the term semantics in Lemma 4.8, which
states that application preserves the proponent call counter, meaning that successfully
applying and returning from a function call leaves the k counter unchanged. This
property of the call counter will be useful in the next section, when we prove soundness
of our symbolic games.

Lemma 4.8 (k-counter preserved after application). Given the following sequences of
game moves:

(1) (E , E[M], R, S,P,A, k)p � (E , E[v], R′, S′,P ′,A′, k′)p
(2) ((m,E) :: E , l, R, S,P,A, k)o � (E , E[v], R′, S′,P ′,A′, k′)p

where in both (1) and (2) we apply � until we reach the first occurrence of E and E[L•M]

4.3. BOUNDEDNESS OF GAMES 93

in the sequence of moves, and � is the reflexive transitive closure of game transitions
(→), it must be the case that k = k′ in both (1) and (2).

Proof. Suppose we have the following transition sequences

(1) (E , E[M], R, S,P,A, k)p � (E , E[v], R′, S′,P ′,A′, k′)p
(2) ((m,E) :: E , l, R, S,P,A, k)o � (E , E[v], R′, S′,P ′,A′, k′)p

By induction on the length of the transition sequence (1) and mutually on the length of
(2), we have the following cases, where we say IHp and IHo for the inductive hypotheses
of (1) and (2) respectively:

Base cases:

• Case (1): If M = v, then (E , E[v], R, S,P,A, k)p is a zero-step transition. This
case holds since k = k.

• Case (2): If the opponent returns, then we have a one-step transition

((m,E) :: E , l, R, S,P,A, k)o
ret(m,v)−−−−−→ (E , E[v], R′, S,P,A′, k)p

This case holds since k = k.

Inductive cases (1):

• if the sequence contains only internal moves, i.e. no call to the opponent is made,
then we have the following transition sequence by the assumption in (1) that a
value is reached.

(E , E[M], R, S,P,A, k)p � (E , E[v], R′, S′,P ′,A′, k′)p

By the inductive hypothesis IHp, we know that k = k′.
• if the sequence of internal moves gets stuck, i.e. a call to the opponent is made,

then we have the following transition sequence where m /∈ dom(R′).

(E , E[M], R, S,P,A, k)p � (E , E[E′[mv]], R′, S′,P ′,A′, k′)p
call(m,v)−−−−−−→ ((m,E[E′[•]]) :: E , l, R′, S′,P ′′,A′, k′)o

where E is of the form (m, l) :: E ′. By our assumption in (1) and (2), we know
that the configuration must eventually lead to a value v. As such, the following

94 CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

transition must eventually occur.

((m,E[E[•]]) :: E , l, R′, S′,P ′′,A′, k′)o
� (E , E[E[v]], R′, S′,P ′,A′, k′′)p

By the inductive hypothesis IHo, we know that k′ = k′′. In addition, by our
assumption that a value must be reached, it is the case that the following transition
occurs.

(E , E[E[v]], R′, S′,P ′,A′, k′′)p
� (E , E[v], R′′, S′′,P ′′,A′′, k′′′)p

By the inductive hypothesis IHp, we know that k = k′′′.

Inductive cases (2):

• if a call to the proponent is made, then we have the following transition.

(E ′, l, R, S,P,A, k)o
call(m′,v)−−−−−−→ ((m′, l + 1) :: E ′,m′v,R′, S,P,A′, k)p

from the assumption that a value must be reached, we know that the following
transition occurs.

((m′, l + 1) :: E ′,m′v,R′, S,P,A′, k)p
� ((m′, l + 1) :: E ′, v, R′′, S′,P ′,A′′, k′)p

From the inductive hypothesis IHp, we know that k = k′.

Remark 4.9. Without considering infinite-branching due to integers, complexity of our
games is directly dependent on the number of paths explored for a given program. The
number of paths explored grows at least exponentially up to the given bound. This is
with regards to the number public methods defined and leaked, and the given bounds
to which each path is explored since games are typically infinite. This sits on top of
the exponential path growth of symbolic execution with respect to the The intricate
interaction between k and l, however, make an exact upper bound hard to pin down.

4.4. SOUNDNESS AND COMPLETENESS OF GAMES 95

4.4 Soundness and Completeness of Games

We prove here that the trace semantics for libraries is sound and complete: for any error
that can be reached in the trace semantics there is a client such that linking the library
with the client reaches the same value/error, and vice versa. Intuitively, by completeness
we mean that all reachable errors will be found by our games, whereas by soundness we
mean that our games will only reach true errors. These two requirements are summarised
in Theorem 4.11 as directions 1 to 2 (soundness) and 2 to 1 (completeness). Note that we
are only interested in the library failing. As such, errors introduced by the hypothetical
client are not as interesting, so we shall consider good clients in the proofs that follow.
As before, by error we mean assertion violations (i.e. reachability of assert(0)). We
use a bisimulation argument similar to [55] in the proofs that follow.

Definition 4.10. We say a configuration ρ failed if it holds the term E[assert(0)]. We
also say a configuration ρ fails if ρ τ−→ χ where χ is a configuration that failed. Similarly,
we say a library L fails if JLK fails (as per Definition 4.2).

Theorem 4.11 (Soundness and Completeness). We call a client good if it contains no
assertions. For any library L, the following are equivalent:

1. JLK fails (reaches an assertion violation)
2. there exists a good client C such that JL;CK fails

Proof. 1 to 2: Suppose now that (τ, ρ) ∈ JLK for some trace τ and failed ρ. By
Theorem 4.13, we have that there is a good client C realising the trace τ . So then, by
Lemma 4.12, we have that JL;CK fails.

2 to 1: Suppose JL;CK fails for some good client C. Then, by Lemma 4.12, there are
τ, ρ, ρ′ such that (τ, ρ) ∈ JLK, (τ, ρ′) ∈ JCK, and ρ failed.

The latter relies on an auxiliary lemma (well-composing of libraries and clients), and
a definability result akin to game semantics definability arguments.

Lemma 4.12 (L-C Compositionality). For any library L and compatible good client C,
JL;CK fails if and only if there exist (τ1, ρ1) ∈ JLK and (τ2, ρ2) ∈ JCK such that τ1 = τ2

and ρ1 = (E , E[assert(0)], · · ·).

Theorem 4.13 (Definability). Let L be a library and (τ, ρ) ∈ JLK. There is a good
client compatible with L such that (τ, ρ′) ∈ JCK for some ρ′.

These auxiliary results are proven in the following sections.

96 CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

4.4.1 Semantic Composition

We start by defining a notion of composition that combines the traces produced by two
configurations. These are supposed to correspond to a library and a client, but for now
we will only require that the configurations satisfy a set of compatibility conditions.

We say configurations ρ and ρ′ of opposite polarity (one is p if the other is o) are
compatible (ρ � ρ′) if:

• their stores are disjoint: Refs(ρ) ∩ Refs(ρ′) = ∅
• ρ closes and is closed by ρ′: P = A′ and P ′ = A
• undisclosed names of ρ do not occur in ρ′ and vice versa: (Meths(ρ) \ (A ∪ P)) ∩

Meths(ρ′) = ∅
• their evaluation stacks are compatible, written E � E ′, which means:

– E = E ′ = ε; or
– E = (m, l) :: E1 and E ′ = (m,E) :: E ′1, and E1 � E ′1; or
– E = (m,E) :: E1 and E ′ = (m, l) :: E ′1, and E1 � E ′1.

Note that compatibility of evaluation stacks expects that compatible configurations are
always of opposite polarity. This reflects the fact that we compose libraries with closing
clients.

With these definitions, we follow by defining different notions of composition.

Definition 4.14. Let ρ1, ρ2, ρ
′
1, ρ
′
2 be game configurations. The following rules define

the semantic composition of two configurations.

ρ1 →′ ρ′1 ρ′2 = ρ2 IntL
ρ1 � ρ2 →′ ρ′1 � ρ′2

ρ2 →′ ρ′2 ρ′1 = ρ1 IntC
ρ1 � ρ2 →′ ρ′1 � ρ′2

ρ1
call(m,v)−−−−−−→′ρ′1 ρ2

call(m,v)−−−−−−→′ρ′2 Call
ρ1 � ρ2 →′ ρ′1 � ρ′2

ρ1
ret(m,v)−−−−−→′ρ′1 ρ2

ret(m,v)−−−−−→′ρ′2 Ret
ρ1 � ρ2 →′ ρ′1 � ρ′2

Definition 4.15. Given a library L and a compatible client C, we call JLK� JCK the
semantic composition of L and C.

4.4.2 Composite Semantics and Internal Composition

We now introduce the notion of composing game configurations internally, which occurs
when merging two compatible game configurations into a single composite semantics

4.4. SOUNDNESS AND COMPLETENESS OF GAMES 97

configuration. We first refine the operational semantics and produce a composite
semantics. This is necessary for our compositionality argument since there is an
asymmetry between the call counters of the opponent and proponent configurations.
Proponent configurations count calls internally while opponent configurations have no
internal counters, and thus only count calls when playing moves. This requires that
we keep track of two pairs of counters, one for each component, which may change at
different rates.

With this in mind, to define the composite semantics, we extend the term configura-
tions to obtain tuples of the following form:

(M,R1, R2, S, k1, k2, l1, l2) for which we shall write (M, ~R, S,~k,~l)

where R1 and R2 are the library and client methods respectively, such that dom(R1) ∩
dom(R2) = ∅, S is the combined store, and k1, l1 and k2, l2 are counters managed by the
library and client. All operators tagged with i will be operating on the ith component;
e.g. ~R[m 7→M]i states that Ri[m 7→M] in ~R. We also extend M by tagging all method
names (written mi) as well as all lambda-abstractions (written λi) with i ∈ {1, 2} to
show whether they are being called from the library (1) or the client (2). We write M i

to be the term M with all its methods and lambdas tagged with i. Evaluation contexts
are also extended to mark methods which are being called from the opposite polarity:

E ::= · · · | LEMi | LEM〈i,l〉

Intuitively, i is the component that is currently at a proponent configuration in the
equivalent game semantics, while l in LEM〈i,l〉 is the opponent counter for component 3− i.
This will be used particularly when evaluating a method call miv when m 6∈ dom(Ri).
Applying these changes, we define the semantics for composite terms (→1,2).

(E[assert(i)], ~R, S,~k,~l)→1,2 (E[()], ~R, S,~k,~l) (i 6= 0)

(E[!r], ~R, S,~k,~l)→1,2 (E[S(r)], ~R, S,~k,~l)

(E[r := v], ~R, S,~k,~l)→1,2 (E[()], ~R, S[r 7→ v],~k,~l)

(E[πj〈v1, v2〉], ~R, S,~k,~l)→1,2 (E[vj], ~R, S,~k,~l)

(E[i1 ⊕ i2], ~R, S,~k,~l)→1,2 (E[i], ~R, S,~k,~l) (i = i1 ⊕ i2)

(E[λix.M], ~R, S,~k,~l)→1,2 (E[m], ~R[m 7→ λx.M]i, S,~k,~l) (m 6∈ dom(~R))

(E[if i then M1 else M0], ~R, S,~k,~l)→1,2 (E[Mj], ~R, S,~k,~l) (j = 1 iff i 6= 0)

(E[let x = v in M], ~R, S,~k,~l)→1,2 (E[M{v/x}], ~R, S,~k,~l)
(E[letrec f = λix.M in M ′], ~R, S,~k,~l)→1,2 (E[M ′{m/f}], ~R[m 7→ λx.M{m/f}]i, S,~k,~l)
(E[miv], ~R, S,~k,~l)→1,2 (E[LM{v/y}iMi], ~R, S,~k +i 1,~l) (Ri(m) = λy.M)

(E[miv], ~R, S,~k,~l)→1,2 (E[Lm3−ivM〈i,l+3−i1〉], ~R, S,~k,~l[li 7→ 0]) (R3−i(m) = λy.M)

(E[LvMi], ~R, S,~k +i 1,~l)→1,2 (E[vi], ~R, S,~k,~l)

98 CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

(E[LvM〈i,l〉], ~R, S,~k,~l)→1,2 (E[vi], ~R, S,~k,~l[l3−i 7→ l, li 7→ last(E)]) if last(E) is defined

and last(E) = l̂ if E = E1[LE2M〈j,l̂〉] provided E2 has no tags L•M〈j′,l̂′〉

Definition 4.16. For a library L and compatible client C, their composite semantics is:

JLKf JCK = {ρ | ρ0 f ρ
′
0 →∗1,2 ρ}

where ρ0 ∈ JLK and ρ′0 ∈ JCK are the respective starting configurations, and →∗1,2 is the
reflexive transitive closure of →1,2.

We continue by defining the internal composition of compatible configurations
ρ1 � ρ2. We define the internal composition ρ1 f ρ2 to be a configuration in our new
composite semantics by pattern matching on the configuration polarity and evaluation
stacks according to the following rules. For clarity, we annotate opponent and proponent
configurations with o and p respectively.

Definition 4.17. Given compatible configurations ρ1 � ρ2, the internal composition of
two configurations is defined as follows:

Initial Configurations:

ρ1 = ([],−, R1, S1,P1,A1, 0, 0)o
ρ2 = ([],M0, R2, S2,P2,A2, 0,−)p

ρ1 f ρ2 = (L•M〈1,0〉[M2
0], R1, R2, S1] S2, 0, 0, 0, 0)

Interim Configurations (OP):

ρ1 = (E1,−, R1, S1,P1,A1, k1, l1)o
ρ2 = (E2,M,R2, S2,P2,A2, k2,−)p
E1 = (m,E) :: E ′1 E2 = (m, l2) :: E ′2

ρ1 f ρ2 = ((E ′1 f E ′2)[E1[LM2M〈1,l2〉]], R1, R2, S1] S2, k1, k2, l1, l2)

Interim Configurations (PO):

ρ1 = (E1,M,R1, S1,P1,A1, k1,−)p
ρ2 = (E2,−, R2, S2,P2,A2, k2, l2)o
E1 = (m, l1) :: E ′1 E2 = (m,E) :: E ′2

ρ1 f ρ2 = ((E ′1 f E ′2)[E2[LM1M〈2,l1〉]], R1, R2, S1] S2, k1, k2, l1, l2)

where E ′1 f E ′2 is a single evaluation context resulting from the composition of compatible
stacks E ′1 and E ′2, which we define as follows:

εf ε = •
((m′, E) :: E ′′1)f ((m′, l) :: E ′′2) = (E ′′1 f E ′′2)[E1[L•M〈1,l〉]]

4.4. SOUNDNESS AND COMPLETENESS OF GAMES 99

((m′, l) :: E ′′1)f ((m′, E) :: E ′′2) = (E ′′1 f E ′′2)[E2[L•M〈2,l〉]]

Interim rules are divided into OP and PO cases for opponent-proponent and proponent-
opponent composition. Notice that there is only one case for initial configurations since
the game must start from an opponent-proponent configuration where both stacks
are empty. Additionally, there are no PP and OO cases for interim configurations:
proponent-proponent configurations are not reachable; and reachability of opponent-
opponent configurations is only necessary where full compositionality (compositionality
with arbitrary arity) is needed, which we do not need in our library-client paradigm.

Definition 4.18. Given a library L and compatible client C, we call JLK f JCK the
internal composition of L and C.

4.4.3 Bisimilarity of Semantic and Internal Composition

We begin by defining bisimilarity for the semantic and internal composition.

Definition 4.19. A set R with elements of the form (ρ1, ρ2), where ρ1 is a configuration
of the form ρ′1 � ρ′′1 and ρ2 is from the composite semantics, is a bisimulation if for all
(ρ1, ρ2) ∈ R:

• if ρ1 →′ ρ′1 then ρ2 →∗1,2 ρ′2 and (ρ′1, ρ′2) ∈ R;
• if ρ2 →1,2 ρ

′
2 then ρ1 →′∗ ρ′1 and (ρ′1, ρ′2) ∈ R.

Definition 4.20. We say that two game configurations ρ, ρ′ are bisimilar, and write
ρ ∼ ρ′, if there is a bisimulation R such that ρRρ′.

Lemma 4.21 states that, given game configurations, it is possible to obtain the com-
posite semantics (→1,2) from the semantic composition of the corresponding compatible
configurations, and vice versa.

Lemma 4.21. Given game configurations ρ � ρ′, it is the case that (ρ� ρ′) ∼ (ρf ρ′).

Proof. We want to show that R = {(ρ1 � ρ2, ρ1 f ρ2) | ρ1 � ρ2} is a bisimulation.
Suppose (ρ1 � ρ2, ρ1 f ρ2) ∈ R. We begin with case analysis on the transitions available
to the semantic composite. If (ρ1 � ρ2) →′ (ρ′1 � ρ′2), then ρ′1 � ρ′2. Now, by cases of
the transitions, we prove that composite semantics can be obtained from the semantic
composition.

1. If (ρ1 � ρ2) →′ (ρ′1 � ρ′2) is an (IntL) move, then we have internal moves in
the execution of ρ1 up to ρ′1. Since the composite semantics is concrete and, by
construction, equivalent to operational semantics when no methods of opposite
polarity are called, we can see that (ρ1 f ρ2)→1,2 (ρ′1 f ρ2).

100CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

2. If (ρ1 � ρ2)→′ (ρ′1 � ρ′2) is a (Call) move, then we have that ρ1
call(m,v)−−−−−−→′ρ′1 and

ρ2
call(m,v)−−−−−−→′ρ′2. We thus have two cases: (1) m is defined in R1 and (2) it is in R2.

In case (1), we have the following semantics for ρ1 and ρ2 where the evaluation
stacks are not equal:

((m′, E′) :: E1,−, R1, S1,P1,A1, k1, l1)o
call(m,v)−−−−−−→′((m, l1 + 1) :: (m′, E′) :: E1,mv,R1, S1,P1,A′1, k1,−)p

((m′, l2) :: E2, E[mv], R2, S2,P2,A2, k2,−)p
call(m,v)−−−−−−→′((m,E) :: (m′, l2) :: E2,−, R2, S2,P ′2,A2, k2, l0)o

We thus have:

ρ1 f ρ2 = ((E1 f E2)[E′1[LE2[m2v]M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

ρ′1 f ρ
′
2 = ((E1 f E2)[E′1[LE2[Lm1vM〈2,l1+1〉]M〈1,l2〉]],

~R, S1 ∪ S2, ~k,~l[l2 7→ 0] +1 1)

From the composite semantics evaluating ρ1 f ρ2 we have:

((E1 f E2)[E′1[LE2[m2v]M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

→1,2 ((E1 f E2)[E′1[LE2[Lm1v̂M〈2,l1+1〉]M〈1,l2〉]],
~R, S1 ∪ S2, ~k,~l[l2 7→ 0] +1 1)

Since v = v̂ by determinism of the operational semantics, we have that (ρ1fρ2)→1,2

(ρ′1 f ρ′2). In addition, we can observe that the case for equal evaluation stacks
is proven by substituting the initial stacks with equal ones, which results in an
empty evaluation context. Similarly, the dual case (2), where m is defined in R1,
is identical but with polarities swapped–i.e. shown by the polar complement of
(ρ1 f ρ2)→1,2 (ρ′1 f ρ′2).

3. If (ρ1 � ρ2) →′ (ρ′1 � ρ′2) is a (Ret) move, then we have that ρ1
ret(m,v)−−−−−→′ρ′1 and

ρ2
ret(m,v)−−−−−→′ρ′2. As with the Call case, if m ∈ dom(R2) and stacks are not equal,

we have:

((m,E) :: E1,−, R1, S1,P1,A1, k1, l1)o
ret(m,v)−−−−−→′(E1, E[v], R1, S1,P1,A′1, k1,−)p

((m, l2) :: E2, v, R2, S2,P2,A2, k2,−)p
ret(m,v)−−−−−→′(E2,−, R2, S2,P ′2,A2, k2, l2)o

Here, we have two cases: E1 = E2, and otherwise. We start with the case where
E1 6= E2, since the opposite case is a simpler version of it. Again, we have the

4.4. SOUNDNESS AND COMPLETENESS OF GAMES 101

following composite configurations:

ρ1 f ρ2 = ((E1 f E2)[E1[Lv2M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

ρ′1 f ρ
′
2 = ((E ′1 f E ′2)[E′2[LE1[v1]M〈2,l′1〉]],

~R, S1 ∪ S2,~k, l
′
1, l2)

where E1 = (m′, l′1) :: E ′1 and E2 = (m′, E′) :: E2.
Now, from the composite semantics, we have:

((E1 f E2)[E1[Lv2M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

→1,2 ((E1 f E2)[E1[v̂1]], ~R, S1 ∪ S2, ~k, last((E1 f E2)[E1[•]]), l2)

= ((E ′1 f E ′2)[E′2[LE1[v̂1]M〈2,l′1〉]], ~R, S1 ∪ S2,~k, l
′
1, l2)

We can observe that last(E) = l′1 since E comes directly from the evaluation stack
and is, thus, untagged, and the top-most counter is l′1 since

(E ′1 f E ′2)[E′2[LE1[•]M〈2,l′1〉]] = (E1 f E2)[E1[•]]

Finally, we have that k2 = k′2 when returning a value since, from Lemma 4.8, k
must always decrease back to its original value after evaluating a method call.
We thus have (ρ1 f ρ2)→1,2 (ρ′1 f ρ′2). As previously, the case for empty stacks is
a simpler version of this, while the dual case (2) is the polar complement of the
configurations.

Having shown that external composition produces composite semantics transitions, we
continue with the other direction of the argument, which aims to show that the external
composition can be produced from composite semantics transitions. We now derive the
corresponding semantic compositions by case analysis on the composite semantics rules.

1. If we have an untagged transition, or one where the redex involves no names of
opposite polarity being called, then we have an exact correspondence with internal
moves, since the composite semantics are identical to the operational semantics on
closed terms.

2. If the transition involves a method called from an opposite polarity, we have a
transition of the form

(E[miv], . . . ,~l)→1,2 (E[Lm3−ivM〈i,l3−i+1〉], . . . ,~l[li 7→ 0] +3−i 1)

which corresponds to evaluating the semantics on an initial configuration ρ1 f ρ2

with the following cases:
(a) for an OP configuration, we have the following:

ρ1 = (E1,−, R1, S1, k1, l1)o

102CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

ρ2 = (E2, E[mv], R2, S2, k2,−)p

where E1 = (m′, E′) :: E ′1 and E2 = (m′, l2) :: E ′2. Let us set E[miv] =
(E ′1 f E ′2)[E′1[LM2M〈1,l2〉]] and M2 = E′′[miv], where m 6∈ R2, i = 2, and E′′ is
untagged. We therefore have:

((E ′1 f E ′2)[E′1[LM2M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

→1,2 (E[Lm1vM〈2,l1+1〉], ~R, S1 ∪ S2,~k,~l[l2 7→ 0] +1 1)

We now want to show that semantically composing the configurations results
in an equivalent transition ρ1 � ρ2 →′ ρ′1 � ρ′2. Since this is a Call move, we
know that ρ1

call(m,v)−−−−−−→′ρ′1 and ρ2
call(m,v)−−−−−−→′ρ′2. Evaluating those transitions,

we have that
ρ′1 = ((m, l1 + 1) :: E1,mv, . . . , k1,−)o

ρ′2 = ((m,E′′) :: E2,−, . . . , k2, 0)p

which, when syntactically composed, form the configuration

((E1 f E2)[E′′2[L(mv)1M〈2,l1+1〉]], ~R, S1 ∪ S2, ~k,~l[l2 7→ 0] +1 1)

We can observe that the resulting configurations are equivalent since E′′ = E′′2,
which follows from E′′[miv] = M2. Additionally, since

(E ′1 f E ′2)[E′1[LE′′2[•]M〈1,l2〉]] = (E1 f E2)[E′′2[L•M〈2,l1+1〉]]

it suffices to show (mv)1 = m1v, particularly that v = v1. Now, since the
composite semantics ensures that v will be tagged with 1 when called from
a method m1, as it reduces to M{v/y}1, we have that v = v1, meaning that
the transitions are equal.

(b) for a PO configuration, the polar complement of case (a) suffices.
(c) for an initial configuration OP, we have a simpler version of case (a) where

the evaluation stacks are equal, resulting in an empty evaluation context
E ′1 f E ′2 = •.

3. If the transition involves a tagged value and is of the form

(E[LvM〈i,l〉], ~R, S1 ∪ S2, ~k,~l)

→1,2 (E[vi], ~R, S1 ∪ S2,~k,~l[l3−i 7→ l, li 7→ last(E)])

then we want to show an equivalence to a Ret move in the semantic composite.
As with case (2), we start by defining this transition as the syntactic composite
transition (ρ1 f ρ2)→1,2 (ρ′1 f ρ′2). Then, by case analysis on ρ1 f ρ2:
(a) for an OP configuration, we have the following:

ρ1 = (E1,−, R1, S1, k1, l1)o

4.4. SOUNDNESS AND COMPLETENESS OF GAMES 103

ρ2 = (E2, v, R2, S2, k2,−)p

where E1 = (m,E′) :: E ′1 and E2 = (m, l2) :: E ′2. Let E[v] = (E ′1fE ′2)[E′1[Lv2M〈1,l2〉]].
We thus have:

(E[Lv2M〈1,l2〉], ~R, S1 ∪ S2, ~k,~l)→1,2 (E[v1], ~R, S1 ∪ S2, ~k, last(E), l2)

We then show that semantic composition produces an equivalent transition
ρ1 � ρ2 →′ ρ′1 � ρ′2. Given we have a Ret move, we know that ρ1

ret(m,v)−−−−−→′ρ′1
and ρ2

ret(m,v)−−−−−→′ρ′2, such that:

ρ′1 = (E ′1, E′[v], . . . , k1,−)p

ρ′2 = (E ′2,−, . . . , k2, l2)o

where E ′1 = (m′, l′1) :: E ′′1 and E ′2 = (m′, E′) :: E ′′2 . Internally composing these
resulting configurations, we have:

((E ′′1 f E ′′2)[E′′[LE′1[v1]M〈2,l′1〉]], ~R′, S1 ∪ S2,~k, l
′
1, l2)

Since (E ′′1fE ′′2)[E′′[L•M〈2,l′1〉]] = (E ′1fE ′2)[•], we have that (E ′1fE ′2)[E′1[v1]], from
which we have (E ′′1 f E ′′2)[E′′[LE′1[v1]M〈2,l′1〉]] = E[v1], and that last(E) = l′1
since E′1 is untagged. Thus, the transition produces the composition.

(b) for a PO configuration, we have the polar complement of (a) as previously.
(c) for an initial OP configuration, we again have a simplification of (a), where

the evaluation stacks are equal and the resulting evaluation context is empty.

With this, we are done showing the equivalence of transitions. Lastly, we can observe
that ρ is final iff ρ′ is final since they are both leaf nodes generated by equivalent terminal
rules. We therefore have (ρ� ρ′) ∼ (ρf ρ′).

4.4.4 Library-Client Compositionality

We can now prove compositionality of the modified trace semantics. For this, we want to
show that syntactic composition (Def. 2.3) can be obtained from the semantic counterpart
(Def. 4.15) and vice versa. Since we have bisimilarity between semantic and internal
composition, the goal here is to show that internal composition (Def. 4.18) is related to
syntactic composition under some notion of equivalence.

We shall present in Lemma 4.12 our notion of equivalence between internal and
syntactic composition in the form of reachability of errors. Intuitively, the goal is to show
that any error reachable in the game semantics of a library L will be reachable in the
semantics of the syntactic composite L;C for some client C that is able to trigger the
error in L and does not introduce any errors of its own, and vice-versa. The decision to

104CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

have C not incur errors of its own is because it suffices to know whether the library code
checked is able to fail, since errors caused by a hypothetical client occur trivially often.

Lemma 4.12 For any library L and compatible good client C, JL;CK fails if and
only if there exist (τ1, ρ1) ∈ JLK and (τ2, ρ2) ∈ JCK such that τ1 = τ2 and ρ1 =
(E , E[assert(0)], · · ·).

Proof. We have a case for each direction.

(1 =⇒ 2):

1. Consider L;C that reaches χ.
2. By inspection of the composite semantics, we have that JLKf JCK reaches χ.
3. By bisimilarity (Lemma 4.21) we have that JLK� JCK reaches χ.
4. By definition of semantic composition, we know there are traces τ ∈ JLK and
τ ∈ JCK such that JLK τ−→→′ χ.

(2 =⇒ 1):

1. Consider traces τ ∈ JLK and τ ∈ JCK such that JLK τ−→→′ χ.
2. By definition of semantic composition we have that JLK� JCK reaches χ.
3. By bisimilarity (Lemma 4.21) we have that JLKf JCK reaches χ.
4. By inspection of the composite semantics, we know Ľ;C reaches χ.

4.4.5 Definability

In this section we show that every trace τ in the semantics of a library L has a corre-
sponding good client that realises the same trace in its semantics.

Let L be a library with public names P and abstract names A. Given a trace τ
produced by L, with P ′ and A′ respectively the public and abstract names introduced in
τ , we set:

N = P ∪ P ′ ∪ A ∪A′

Θv = {θ | ∃m ∈ N . m : θ′ ∧ θ a syntactic subtype of θ′}
Θm = {θ ∈ Θ | θ a method type}

Note that the above sets are finite, since τ,P,A are finite. We assume a fixed enumeration
of N = {m1,m2, · · · ,mn}. Moreover, for each type θ, we let defvalθ be a default value,

4.4. SOUNDNESS AND COMPLETENESS OF GAMES 105

1 global cnt := 0
2 global meth := 0
3 global r e f i := mi # for each mi ∈ P
4 global r e f i := defval # for each mi ∈ P ′

5 global va l θ := defval # for each θ ∈ Θv

6

7 public mi = λx . # for each mi ∈ A
8 cnt++; meth:= i ; va l θ1 :=x ; o r a c l e ()
9

10 mi = λx . # for each mi ∈ A′

11 cnt++; meth:= i ; va l θ1 :=x ; o r a c l e ()
12

13 o r a c l e = λ () .
14 match (! cnt) with # number of P-moves played so far (max |τ |/2)
15 | i →
16 # if i > 0 and i-th P-move of τ is crmj(v), with mj : θ1 → θ2, then
17 # - if cr = ret then d = 0 and θ = θ2
18 # - if cr = call then d = j and θ = θ1
19 # diverge if the last P-move played is different from crmj(v)
20 i f not (! meth = d and ! va l θ

∧=θ v) then diverge
21 else for mi in fresh (! va l θ) do r e f i := mi

22

23 # if (i+ 1)-th O-move of τ is cr′ mk(u), with mk : θ1 → θ2, then
24 # - if cr′ = ret then c = 0
25 # - if cr′ = call then c = k
26 i f c then let x = (! r e f k)u in # call mk(u)
27 cnt++; meth :=0; va l θ2 :=x ; o r a c l e () ; ! va l θ2

28 else va l θ2 :=u # return u
29

30 main = ora c l e ()

Figure 4.2: The client Cτ,P,A.

and divergeθ a term that on evaluation diverges by infinite recursion. We then construct
a client Cτ,P,A as in Figure 4.2.

The code is structured as follows.

1. We start off by defining global references:
• cnt counts the number of P (Library) moves played so far;
• meth stores an index that records the move made by P: if the move was a
return then meth stores 0; if it was call to mi then meth stores i;
• each refi will store the method mi ∈ P ∪ P ′, either since the beginning (if
mi ∈ P), or once P plays it (if mi ∈ P ′);
• each valθ will be used for storing the value played by P in their last move.

In the latter case above, there is a light abuse of syntax as θ can be a product type,
of which HOLi does not have references. But we can in fact simulate references of
arbitrary type by several HOLi references.

2. For each mi : θ1 → θ2 ∈ A, we define a public method mi that simulates the
behaviour of O whenever mi is called in τ :

106CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

• it starts by increasing cnt, as a call to mi corresponds to a P-move being
played;

• it continues by storing i and x in meth and valθ1 respectively;
• it calls the private method oracle, which is tasked with simulating the rest of
τ and storing the value that mi will return in valθ2 ;

• it returns the value in valθ2 .
3. For each mi : θ1 → θ2 ∈ A′ we produce a method just like above, but keep it

private (for the time being).
4. The method oracle performs the bulk of the computations, by checking that the

last move played by P was the expected one and selecting the next move to play
(and playing it if is a call).
• The oracle is called after each P-move is played, so it starts with increasing
cnt.

• It then performs a case analysis on the value of cnt, which above we denote
collectively by assuming the value is i – this notation hides the fact that we
have one case for each of the finitely many values of i.
For each such i, the oracle first checks if the previous P-move (if there was
one), was the expected one. If the move was a call, it checks whether the
called method was the expected one (via an appropriate value of d), and
also whether the value was the expected one. Value comparisons (∧=θ) only
compare the integer components of θ, since we cannot compare method names.
If this check is successful, the oracle extracts from u any method names played
fresh by P and stores them in the corresponding refi.
Next, the oracle prepares the next move. If, for the given i, the next move
is a call, then the oracle issues the call, stores the return value of that call,
increases cnt and recurs to itself – when the issued call returns, it would be
through a P-move. If, on the other hand, the next move is a return, the oracle
simply stores the value to be returned in the respective val reference – this
would allow to the respective mi to return that value.

5. The main method simply calls the oracle.

Let us begin with useful definitions. First, let us consider the game semantics for
HOLi with all call counters removed since they do not affect computation. Let L be a
library with public names P and abstract names A that produces a trace τ . Let Cτ,P,A
be the client constructed from τ , which we shall shorthand as Cτ assuming the correct
name sets have been provided. Finally, let us annotate every move in τ with subscripts
O and P for its polarity, starting from O since libraries are always called first.

Definition 4.22 (Client O-configurations). Let library trace τ be of the form τ1τ2,
where τ1 is the portion of τ that has been played so far. We define the set of opponent
configurations Confτ2 that play the remainder trace τ2 of trace τ to be

(Eτ1 , R, Sτ1 ,Pτ1 ,Aτ1) ∈ Confτ2

4.4. SOUNDNESS AND COMPLETENESS OF GAMES 107

where

• R is the initial repository obtained from client Cτ ;
• Sτ1 has the same domain as the initial store S obtained from client Cτ and defines
values cnt 7→ len(τ1)/2 and refi 7→ mi for all mi revealed in τ1;
• Pτ1 = A] {min ∈ A′ | mi ∈ τ1}, for A,A′ as defined initially in Cτ ;
• Aτ1 = P] {min ∈ P ′ | mi ∈ τ1}, for P,P ′ as defined initially in Cτ ;
• and Eτ1 = f(dτ1e) where dτe removes all closed calls in τ as defined in

dτe =

dτ
′τ ′′′e if τ is of the form τ ′call(m, v)τ ′′ret(m, v)τ ′′′

τ otherwise

and

f(τ ′call(m, v)o) =

(let x = • in cnt++; meth := 0; valθ2 := x; oracle(); !valθ2 ,m) :: f(τ ′)

f(call(m, v)o) =

(let x = • in cnt++; meth := 0; valθ2 := x; oracle(); !valθ2 ,m) :: []

f(τ ′call(m, v)p) = m :: f(τ ′)

f(call(m, v)p) = m :: []

Lemma 4.23. Let library trace τL be of the form τ1τ2, such that τ1 is a prefix of τL.
For all configurations Cτ2 ∈ Confτ2 , Cτ2 produces τ2.

Proof. Let τL be a library trace of the form τpτ . We prove that Cτ produces τ for all
Cτ ∈ Confτ by induction on the length of τ .

Base Cases:

• if τ = call(m, v), then we know Cτ → (m :: Eτp ,mv, . . .)p produces a valid OQ
move since m must have been revealed as an initial public name or in τp for it to
appear as a call at this point in the trace.
• if τ = ret(m, v), then we know Cτ → (E ′, v, . . .)p, where Eτp = call(m, v′) :: E ′,

produces a valid OA move since m must appear at the top of the evaluation stack
for a return to appear at this point in the trace.

We thus have base cases for odd length suffixes.

Inductive Cases:

• if τ = call(m, v)call(m′, v′)τ ′, then we have the OQ move

Cτ → (m :: Eτp ,mv, . . .)p � (m :: Eτp , oracle(); !valθ2 , . . .)p → (. . . , E[m′v′], . . .)p

108CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

where E is (E′); !valθ2 and E′ is defined from line 26 to line 28 in the client code,
which correctly updates the store. So far, Cτ produces the same trace up to the
next move. We then have the PQ move

(m :: Eτp , E[m′v′], . . .)p → ((E,m′) :: m :: Eτp , . . .)o

which produces the next valid move. At this point, we can observe that ((E,m′) ::
m :: Eτp , . . .)o ∈ Conf′τ , so we know τ ′ is produced by the inductive hypothesis.
Thus, τ is produced.
• if τ = call(m, v)ret(m′, v′)τ ′, since we have a return move as the second move

this time, we have the OQ move

Cτ → (m :: Eτp ,mv, . . .)p � (m :: Eτp , valθ2 := v′; !valθ2 , . . .)p → (. . . , v′, . . .)p

which produces the first move. We then have the PA move

(Eτp , v
′, . . .)p → (E ′, . . .)o

which produces the second move since Eτp must be of the form m′ :: E ′. As before,
since the store has been correctly updated by internal moves, (E ′, . . .)o ∈ Conf′τ ,
so we know τ ′ is produced by the inductive hypothesis. Thus, τ is produced.
• if τ = ret(m, v)call(m′, v′)τ ′, then it must be the case that Eτ = (let x =
• in cnt++; meth := 0; valθ2 := x; oracle(),m) :: E ′. We have the OA move

Cτ → (E ′, let x = v in . . . , . . .)p � (E ′, oracle(); !valθ2 , . . .)p → (E ′, E[m′v′], . . .)p

where E is the context for oracle, which produces the first move. From here we
have OQ move

(E ′, E[m′v′], . . .)p → ((E,m′) :: E ′, . . .)o

which produces the second move. Since the store is correctly updated internally, we
know ((E,m′) :: E ′, . . .)o ∈ Config′τ , so Cτ ′ produces τ ′ by the inductive hypothesis.
Thus, τ is produced.
• if τ = ret(m, v)ret(m′, v′)τ ′, we have the OA move

Cτ → (E ′, let x = v in . . . , . . .)p � (E ′, !valθ2 , . . .)p → (E ′, v′, . . .)p

which produces the first move. From here, we have PA move

(E ′, v′, . . .)p → (E ′′, . . .)

since E ′ must have been of the form m′ :: E ′′ for a return to m′ to appear on
the trace. Since the internal moves correctly update the store, we know that
(E ′′, . . .) ∈ Config′τ , so Cτ ′ produces τ ′ by the inductive hypothesis. Thus τ is
produced.

4.5. SYMBOLIC SEMANTICS 109

If τ ′ is empty, these serve as base cases for even length suffixes. With all cases proven
(odd and even base cases, and the inductive cases), we have that τ is always possible to
produce with any Cτ ∈ Confτ .

Theorem 4.13 (Definability) Let L be a library and (τ, ρ) ∈ JLK. There is a good
client compatible with L such that (τ, ρ′) ∈ JCK for some ρ′.

Proof. Given a library L and trace produced τ , we construct client Cτ . Since Cτ has a
main method, we begin from a proponent configuration (oracle(), [], R,A,P)p. Since
the library cannot return without being called first, we know the next move is a call, so
τ is of the form call(m, v)τ ′. Thus, we have the following transitions

([], oracle(), R,A,P)p � ([], E[mv], R,A,P)p → ((E,m) :: [], R,A′,P)o

From this point, if τ ′ is empty, we have shown that τ can be produced by Cτ . If τ ′

is not empty, we have a trace τ with suffix τ ′ and prefix call(m, v). By Lemma 4.23,
we know that τ ′ can be produced by any configuration in Configτ ′ . Since ((E,m) ::
[], R,A′,P)o ∈ Configτ ′ , we know that ((E,m) :: [], R,A′,P)o is able to produce τ ′. We
thus have that Cτ can produce τ .

4.5 Symbolic Semantics

So far, we have presented a concrete trace semantics for higher-order terms. However,
checking libraries for errors using this trace semantics is infeasible, even when the traces
are bounded in length, because ground values would be handled concretely. In particular,
integer values provided by O as arguments to calls or as return values range over infinitely
many integers. One approach (symbolic execution) mitigates this limitation by executing
the semantics symbolically using symbolic values for integers and a path condition to
constrain the plausible concrete values that every symbolic value may take. We use
this technique to devise a symbolic version of the trace semantics, corresponding to a
symbolic execution for higher-order stateful libraries, which will enable us in the next
sections to introduce a practical method (and implementation) to check libraries for
errors. The symbolic semantics is fully formal, closely following the developments of the
previous sections, and allows us to prove a strong form of correspondence between the
concrete and symbolic semantics (a bisimulation).

For the symbolic semantics defined in this section, all names played by O shall be
fresh. Using fresh names for methods played by O is sound because the effect of O
calling a higher-order public method with either an argument m (where m is another
public method), or an argument λx.mx, is equivalent as far as reachability of an error is

110CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

concerned. In the latter case, the client semantics would create a fresh name m′, bind it
to λx.mx, and pass m′ as an argument. We therefore just focus on this latter, simpler,
case. Formally speaking, the semantics lives in nominal sets [66].

The symbolic zsemantics involves terms that may contain symbolic values for integers.
We thus extend the syntax for values and terms to include such values, and abuse notation
by continuing to use M to range over them. We let SInts be a set of symbolic integers
ranged over by κ and variants, and define:

Sym.Values ṽ ::= m | i | () | κ | ṽ ⊕ ṽ | 〈ṽ, ṽ〉
Sym.Terms M ::= · · · | κ

where, in ṽ ⊕ ṽ, not both ṽ can be integers. We moreover use a symbolic environment
to store symbolic values for references, but also to keep track of symbolic terms built
from arithmetic performed with symbolic integers. More precisely, we let σ be a finite
partial map from the set SInts ∪ Refs to symbolic values. Finally, we use pc to range
over program conditions, which will be quantifier-free first-order formulas with variables
taken from SInts, and with >,⊥ denoting true and false respectively.

The semantics for closed symbolic terms involves configurations of the form (M,R, σ, pc, k).
Its rules include copies of those from Figure 2.1 (top) where the pc and σ are simply
carried over. For example:

(E[λx.M], R, σ, pc, k)→s (E[m], R] {m 7→ λx.M}, σ, pc, k)

where m is fresh. On the other hand, the following rules directly involve symbolic
reasoning:

(E[assert(κ)], R, σ, pc, k)→s (E[assert(0)], σ, pc ∧ (κ = 0), k)

(E[assert(κ)], R, σ, pc, k)→s (E[()], R, σ, pc ∧ (κ 6= 0), k)

(E[!r], R, σ, pc, k)→s (E[σ(r)], R, σ, pc, k)

(E[r := ṽ], R, σ, pc, k)→s (E[()], R, σ[r 7→ ṽ], pc, k)

(E[ṽ1 ⊕ ṽ2], R, σ, pc, k)→s (E[κ], R, σ] {κ 7→ ṽ1 ⊕ ṽ2}, pc, k) where κ is fresh

(E[if κ then M1 else M0], R, σ, pc, k)→s (E[M0], R, σ, pc ∧ (κ = 0), k)

(E[if κ then M1 else M0], R, σ, pc, k)→s (E[M1], R, σ, pc ∧ (κ 6= 0), k)

and where ṽ1 ⊕ ṽ2 is a symbolic value (for ii ⊕ i2 the rule from Figure 2.1 applies).

We now extend the symbolic setting to the trace semantics. We define symbolic
configurations for P and O respectively as:

(E ,M,R,P,A, σ, pc, k)p (E , l, R,P,A, σ, pc, k)o

with evaluation stack E , proponent term M , counters k, l ∈ N, method repository R,

4.5. SYMBOLIC SEMANTICS 111

(ĨNT)
(M,R, σ, pc, k)→s (M ′, R′, σ, pc′, k′)

(E ,M,R,P,A, σ, pc, k)p →s (E ,M ′, R′,P,A, σ′, pc′, k′)p

(P̃Q) (E , E[mṽ], R,P,A, σ, pc, k)p
call(m,ṽ)−−−−−−→s ((m,E) :: E , l0, R,P ′,A, σ, k)o

(ÕQ) (E , l, R,P,A, σ, pc, k)o
call(m,ṽ)−−−−−−→s ((m, l + 1) :: E ,mṽ, R,P,A′, σ, pc, k)p

(P̃A) ((m, l) :: E , ṽ, R,P,A, σ, pc, k)p
ret(m,ṽ)−−−−−→s (E , l, R,P ′,A, σ, pc, k)o

(ÕA) ((m,E) :: E , l, R,P,A, σ, pc, k)o
ret(m,ṽ)−−−−−→s (E , E[ṽ], R,P,A′, σ, pc, k)p

(P̃C) m ∈ A and P ′ = P ∪ (Meths(ṽ) ∩ dom(R)).
(ÕC) m ∈ P and (ṽ′,A′) ∈ symval(θ,A) where θ is the expected type of ṽ. Moreover:

symval(θ,A) =

{((),A)} if θ = unit
{(κ,A] {κ}) | κ is fresh in dom(σ)] A} if θ = int
{(m,A] {m}) | m is fresh in dom(R)] A} if θ = θ1 → θ2

{(〈ṽ1, ṽ2〉,A2) | (ṽ1,A1) ∈ symval(θ1,A) if θ = θ1 × θ2

(ṽ2,A2) ∈ symval(θ2,A1)}
Rules (P̃Q), (P̃A) assume the condition (P̃C), and similarly for (ÕQ),(ÕA) and (ÕC).

Figure 4.3: Symbolic trace (game) semantics rules.

public method name set P, σ and pc as previously. The abstract name set A is now a
finite subset of Meths ∪ SInts, as we also need to keep track of the symbolic integers
introduced by O (in order to be able to introduce fresh such names). The rules for the
symbolic trace semantics are given in Figure 4.3. Note that O always refreshes names it
passes. This is a sound overapproximation of all names passed for the sake of analysis.

Similarly to Definition 4.2, we can define the symbolic semantics of libraries.

Definition 4.24 (Symbolic Games). Given library L, the symbolic semantics of L is:

JLKs = {(τ, ρ) |(L, ∅, ∅, ∅, ∅) bld−−→∗ (ε,R, S,P,A)

∧ (ε, 0, R,P,A, S,>, 0)o τ−→s ρ ∧ ∃M.M � ρ(σ)◦ ∧ ρ(pc)}

where ρ(χ) is component χ in configuration ρ, andM is a model as defined in Section 4.7.1.
We say that JLKs fails if it contains some (τ, (E , E[assert(0)], · · ·)).

The symbolic rules follow those of the concrete semantics, the biggest change being
the treatment of symbolic values played by O. Condition (ÕC) stipulates that O plays
distinct fresh symbolic integers as well as fresh method names, in each appropriate
position in ṽ, and all these names are included in the set A.

Example 4.25. As with Example 4.3, we consider the DAO attack. Running the
symbolic semantics, we find the following minimal class of errors. We write σṽ for a
symbolic environment [bal 7→ ṽ].

(ε, 2, σ100, k0)o
wdraw(κ1)?−−−−−−−→ ((wdraw, 1), wdraw(κ1), σ100, 2)p

112CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

−→∗ ((wdraw, 1), E[send(κ1)], σ100, 1)p
send(κ1)?−−−−−−→ ((send,E), 2, σ100, 1)o

wdraw(κ2)?−−−−−−−→ ((wdraw, 1), wdraw(κ2), σ100, 1)p

−→∗ ((wdraw, 1), E′[send(κ2)], σ100, 0)p
send(κ2)?−−−−−−→ ((send,E), 2, σ100, 0)o

send(())!−−−−−→ ((wdraw, 1), E′[()], σ100, 0)p

−→∗ ((wdraw, 1), (), σ100−κ2 , 0)p
wdraw(())!−−−−−−−→ ((send,E), 1, σ100−κ2 , 0)o

send(())!−−−−−→ ((wdraw, 1), E[()], σ100−κ2 , 1)p
−→∗ ((wdraw, 1), E[assert(!bal ≥ 0)], σ100−κ2−κ1 , 1)p

For this to be a valid error, we require (κ1, κ2 ≤ 100) ∧ (100 − κ2 − κ1 < 0) to be
satisfiable. Taking assignment {κ1 7→ 100, κ2 7→ 1}, we show the path is valid. ♦

4.6 Bounded Analysis for Libraries

Definition 4.24 states how the symbolic trace semantics can be used to independently
check libraries for errors. As with the trace semantics in Definition 4.2, this is strongly
normalising when given an upper limit to the call counters. As such, JLKs with counter
bounds k0, l0 ∈ N, for k, l respectively, defines a finite set (modulo selecting of fresh
names) of reachable valid configurations within k ≤ k0, l ≤ l0, where validity is defined
by the satisfiability of the symbolic environment σ and the path condition pc of the
configuration reached. By virtue of Theorems 4.29 and 4.11, every valid reachable
configuration that is failed (i.e. evaluates an invalid assertion) is realisable by some client.
And viceversa.

Given a library L, taking FJLKs to be all reachable final configurations, we have the
exhaustive set of paths L can reach—also called the computation tree of L. In FJLKs,
every failed configuration (τ, ρ), i.e. such that ρ holds a term E[assert(0)], defines a
reachable assertion violation, where τ is a true counterexample. Hence, to check L for
assertion violations it suffices to produce a finite representation of the set FJLKs. The
approach we have been building to do this is that of bounding the depth of analysis by
setting an upper bound to the call counters, using a name generator ensure deterministic
creation of fresh names, to thus exhaustively search all final configurations for failed
elements. This has the effect of finding all assertion violations in the depth-bounded
computation tree of L. In Section 4.8. we implement this routine and test it.

4.7 Soundness of Symbolic Games

We shall now follow by proving soundness of our symbolic semantics with respect to errors
found. This depends on two underlying results: the bisimilarity of concrete and symbolic

4.7. SOUNDNESS OF SYMBOLIC GAMES 113

game configurations (Lemma 4.29)—provided a unifying model for them exists—and
the extensional equivalence between taking only O-refreshing moves (i.e. the opponent
always refreshes names) and otherwise (Lemma 4.31). The main result of this section
is thus establishing soundness: a trace and a specific configuration can be achieved
symbolically iff they can be achieved concretely as well. As suggested before, we will
need to quantify this statement as, by construction, the symbolic semantics requires O
to always place fresh method names, whereas in the symbolic semantics O is given the
freedom to play old names as well. Intuitively, we show that the symbolic semantics
corresponds (via bisimilarity) to a restriction of the concrete semantics where O plays
fresh names only. We then show this restriction is sound in the sense that it does not
affect our ability to identify whether a configuration can fail. We make this precise below.

Theorem 4.26 (Soundness). For any L, JLK fails iff JLKs fails.

Proof. Lemma 4.29 implies that JLKs fails iff JLK fails with O-refreshing transitions,
which in turns occurs iff JLK fails, by Lemma 4.31.

4.7.1 Bisimilarity of Concrete and Symbolic Configurations

We start with the bisimilarity argument. A model M is a finite partial map from
symbolic integers to concrete integers. Given such an M and a formula φ, we define
M |= φ using a standard first-order logic interpretation with integers and arithmetic
operators (in particular, we require that all symbolic integers in φ are in the domain of
M). Moreover, for any symbolic term M (or trace, move, etc.), we denote by M{M}
the concrete term we obtain by substituting any symbolic integer κ of M with its
corresponding concrete integerM(κ). Finally, given a symbolic environment σ, we define
its formula representation σ◦ recursively by:

∅◦ = >, (σ] {r 7→ v})◦ = σ◦, (σ] {κ 7→ v})◦ = σ◦ ∧ (κ = v).

We now define notions for equivalence between symbolic and concrete configura-
tions. The equivalence we require between concrete configurations and their symbolic
counterparts is behavioural equivalence, modulo O playing fresh names.

Definition 4.27. LetM be a model. For any concrete configuration ρ = (E , χ,R, S,P,A, k)
and symbolic configuration ρs = (E ′, χ′, R′,P ′,A′, σ, pc, k′), we say they are equivalent
in M, written ρ =M ρs, if:

• (E , χ,R) = (E ′, χ′, R′){M},P = P ′,A = A′ ∩ Meths and S = (σ � Refs){M};
• dom(M) = (A′ ∪ dom(σ)) ∩ SInts andM � pc ∧ σ◦.

More precisely, a transition ρ
χ−→ ρ′ is called O-refreshing if, when ρ is an O-

configuration and χ = call/ret(m, v) then all names in v are fresh and distinct. To

114CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

prove the correspondence between our symbolic and concrete semantics we shall be using
a new notion of bisimulation that takes into account the existence of a model M that
relates a symbolic configuration to a concrete one. We shall be abusing notation to use
familiar syntax seen before in Definition 4.19. It should be noted that Definition 4.28
below is different from Definition 4.19 in that they handle different kinds of configurations,
and Definition 4.28 additionally requires a model that closes the symbolic configuration.

Definition 4.28. A finite set R with elements of the form (ρ,M, ρs) is a bisimulation
in M if, whenever (ρ,M, ρs) ∈ R, written ρRM ρs then ρ =M ρs and, using χ to range
over moves and ε (i.e. no move):

• if ρ χ−→ ρ′ is O-refreshing then there exists M′ ⊇ M such that ρs
χs−→s ρ

′
s, with

χ = χs{M′}, and ρ′RM′ρ′s;
• if ρs

χ−→s ρ
′
s then there existsM′ ⊇M such that ρ χ{M′}−−−−→G ρ

′ and ρ′RM′ρ′s.

We let ∼ be the largest bisimulation relation: ρ ∼M ρs iff there is bisimulation R such
that ρRMρs.

We now show that concrete and symbolic configurations are bisimilar.

Lemma 4.29. Given ρ, ρs a concrete and symbolic configuration respectively, andM a
model such that ρ =M (ρ′), we have ρ ∼M ρs.

Proof. We want show that R = {(ρ,M, ρs) | ρ =M ρs} is a bisimulation. First, we show
that if ρ→ ρ′, being O-refreshing, then ρs →s ρ

′
s such that (ρ′,M′, ρ′s) is in R for some

M′ ⊇M. By cases on the transition ρ→ ρ′:

1. If ρ→ ρ′ is one of the return moves, then we have the following possible transitions:
(a) If (E , E[assert(0)], R, S,P,A, k)p 6→, then we have the corresponding sym-

bolic final configuration:

(E , E′[assert(0)], R,P,A, σ, pc, k)p

From the assumptions, we know that M � pc ∧ σ◦. It is also the case that
E′{M} is equivalent to E, and ρ′ and ρ′s are equivalent terminal configurations.

(b) If (∅, v, R, S,P,A, k)p 6→, the proof is similar to (a).
2. If ρ→ ρ′ is an (Int) move, we have that ρs →s ρ

′
s such that ρ′ ∼ ρ′s by soundness

of the symbolic execution (Lemma 4.30).
3. If ρ→ ρ′ is a (Pq) move, then we have the following transition

(E , E[mv], R, S,P,A, k)p
call(m,v)−−−−−−→ ((m,E) :: E , l0, R′, S,P ′,A, k)o

with its corresponding symbolic equivalent

(E ′, E′[mv′], . . . , σ, pc, k)p
call(m,v′)−−−−−−→s ((m,E′) :: E ′, l0, . . . , σ, pc, k)o

4.7. SOUNDNESS OF SYMBOLIC GAMES 115

From the assumptions, we knowM(v′) = v. In addition, since E′[mv′] = E[mv]
under M, we have that (m,E′) :: E ′ = (m,E) :: E , and similarly for other
components, so ρ′ =M ρ′s, meaning (ρ′,M, ρ′s) ∈ R.

4. If ρ→ ρ′ is a (Pa) move, then we have the following transition

((m, l) :: E , v, R, S,P,A, k)p
ret(m,v)−−−−−→ (E , l, R′, S,P ′,A, k)o

with its corresponding symbolic equivalent

((m, l) :: E ′, v′, . . . , σ, pc, k)p
ret(m,v′)−−−−−−→s (E ′, l, . . . , σ, pc, k)o

From the assumptions, we knowM(v′) = v. Since the original stacks are equivalent
underM, we have that E =M E ′, and similarly for other components, so ρ′ =M ρ′s,
meaning (ρ′,M, ρ′s) ∈ R.

5. If ρ→ ρ′ is an (Oq) move, O-refreshing, then we have the following transition

(E , l, R, S,P,A, k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E ,mv,R, S,P,A′, k)p

with its corresponding symbolic equivalent

(E ′, l, . . . , σ, pc, k)o
call(m,v′)−−−−−−→s ((m, l + 1) :: E ′,mv′, . . . , σ, pc, k)p

Let us choose M′ = M[v′ 7→ v]. Since the original stacks are equivalent under
M, we have that ((m, l + 1) :: E) =M ((m, l + 1) :: E ′), and similarly for other
components, so ρ′ =M′ ρ′s, meaning (ρ′,M′, ρ′s) ∈ R.

6. If ρ→ ρ′ is an (Oa) move, O-refreshing, then we have the following transition

((m,E) :: E , l, R, S,P,A, k)o
ret(m,v)−−−−−→ (E , E[v], R, S,P,A′, k)p

with its corresponding symbolic equivalent

((m,E′) :: E ′, l, . . . , σ, pc, k)o
ret(m,v′)−−−−−−→s (E ′, E′[v′], . . . , σ, pc, k)p

Let us choose M′ = M[v′ 7→ v]. Since the original stacks are equivalent under
M, we have that E =M E . Additionally, since M′ extends M, we know that
E[v] = E′[v′] underM′, and similarly for the remaining components, so ρ′ =M′ ρ′s,
meaning (ρ′,M′, ρ′s) ∈ R.

The opposite direction is treated with similarly.

Lemma 4.30 (Soundness of symbolic execution). For any concrete configuration η =
(M,R, S, k) and symbolic configuration η′ = (M ′, R′, σ, pc, k), given an assignment
M � pc ∧ σ◦ such that M =M M ′, it is the case that η ∼ η′.

Proof. Let R = {(η,M, ηs) | η =M ηs} for any concrete configuration η and symbolic

116CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

configuration ηs. We want to show that R is a bisimulation. We now show that ηs → η′s

if η → η′. By cases on η → η′:

1. If we have a terminal rule, then we have the following cases.
(a) for (E[assert(0)], R, S, k) 6→ we have the equivalent final configuration

(E′[assert(0)], R′, σ, pc, k)

Since η =M η′, and η′ =M η′s since they are equivalent terminal configurations,
it is the case that (η′,M, η′s) ∈ R.

(b) for (v,R, S, k) 6→ we have a similar proof to (a).
2. If (E[assert(i)], R, S, k)→ (E[()], R, S, k) where (i 6= 0), then we have the equiva-

lent symbolic transition

(E′[assert(i)], R′, σ, pc, k)→ (E′[()], R′, σ, pc, k)

By assumption, we know E =M E′ and R =M R′, and similarly for other compo-
nents, so η′ =M η′s. As such, we know (η′,M, η′s) ∈ R.

3. If (E[!r], R, S, k)→ (E[S(r)], R, S, k), then we have the equivalent symbolic transi-
tion

(E′[!r], R′, σ, pc, k)→ (E′[σ(r)], R′, σ, pc, k)

Since η =M ηs, we know that S =M σ, meaning that σ(r){M} = S(r). Thus,
(η′,M, η′s) ∈ R.

4. If (E[r := v], R, S, k) → (E[()], R, S[r 7→ v], k), then we have the equivalent
symbolic transition

(E′[r := v′], R′, σ, pc, k)→ (E′[()], R′, σ[r 7→ σ(v′)], pc, k)

Since η =M ηs, we know that S =M σ and v′ =M v, meaning that σ[r 7→ v′]{M} =
S[r 7→ v]. Thus, (η′,M, η′s) ∈ R.

5. If (E[πj〈v1, v2〉], R, S, k)→ (E[vj], R, S, k), then we have the equivalent symbolic
transition

(E′[πj〈v′1, v′2〉], R′, σ, pc, k)→ (E′[v′j], R′, σ, pc, k)

Since η =M ηs, we know that 〈v1, v2〉 =M 〈v′1, v′2〉, so v′j{M} = vj . Thus,
(η′,M, η′s) ∈ R.

6. If (E[i1 ⊕ i2], R, S, k)→ (E[i], R, S, k) where i = i1 ⊕ i2, prove as above.
7. If (E[λx.M], R, S, k) → (E[m], R[m 7→ λx.M], S, k), then we have the equivalent

symbolic transition

(E′[λx.M ′], R′, σ, pc, k)→ (E′[m], R′[m 7→ λx.M ′], σ, pc, k)

Since η =M ηs, we know that E[m] =M E[m′], so v′j{M} = vj . Additionally, we
knowM = M ′{M}, so R′[m 7→ λx.M ′] =M R[m 7→ λx.M]. Thus, (η′,M, η′s) ∈ R.

4.7. SOUNDNESS OF SYMBOLIC GAMES 117

8. If (E[if 0 then M1 else M0], R, S, k)→ (E[M0], R, S, k), then we have the equiv-
alent symbolic transition

(E′[if 0 then M ′1 else M ′0], R′, σ, pc, k)→ (E′[M ′0], R′, σ, pc, k)

Since η =M ηs, we know that E[M0] =M E[M ′0]. Thus, (η′,M, η′s) ∈ R.
9. If (E[if i then M1 else M0], R, S, k) → (E[M1], R, S, k) where i 6= 0, prove as

above.
10. If (E[let x = v in M], R, S, k)→ (E[M{v/x}], R, S, k), then we have the equiva-

lent symbolic transition

(E′[let x = v′ in M ′], R′, σ, pc, k)→ (E′[M ′{v′/x}], R′, σ, pc, k)

Since η =M ηs, we know that E[M] =M E[M ′] and v′{M} = v, so E[M{v/x}] =M
E[M ′{v′/x}]. Thus, (η′,M, η′s) ∈ R.

11. If (E[letrec f = λx.M ′ in M], R, S, k)

→ (E[M{m/f}], R[m 7→ λx.M ′{m/f}], S, k)
prove by combining cases (7) and (10).

12. If (E[mv], R, S, k)→ (E[LM{v/y}M], R, S, k + 1), prove like (10).
13. If (E[LvM], R, S, k) → (E[v], R, S, k − 1), then we have the equivalent symbolic

transition
(E′[Lv′M], R′, σ, pc, k)→ (E′[v′], R′, σ, pc, k − 1)

Since v =M v′, it is the case that (η′,M, η′s) ∈ R.

In the opposite direction, all cases are treated similarly to the ones above, but we now
additionally have symbolic branching cases not directly covered by the previous cases.

1. If (E[assert(κ)], R, σ, pc, k)→ (E[assert(0)], σ, pc∧ (σ(κ) = 0)), then there exists
M such that E[assert(κ)] evaluates to E[assert(0)], which requires it to satisfy
(σ(κ) = 0). As such, we knowM � σ(κ) = 0, meaning that 0 =M κ. We thus have
the following equivalent concrete configuration

(E′[assert(0)], R′, S, k) 6→

which holds since η′ and η′s are equivalent terminal configurations.
2. If (E[assert(κ)], R, σ, pc, k)→ (E[()], σ, pc ∧ (σ(κ) 6= 0)), prove as above.
3. If (E[v1⊕ v2], R, σ, pc, k)→ (E[κ], R, σ[κ 7→ σ(v1)⊕σ(v2)], pc, k), then we have the

following equivalent concrete transition

(E′[i1 ⊕ i2], R′, S, k)→ (E′[i], R′, S, k)

From the assumption, we know i1 ⊕ i2 =M σ(v1) ⊕ σ(v2), so by choosing M′ =
M[κ 7→ i], we have that η′ and η′s are equivalent under M. As such, this case
holds.

118CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

4. If (E[if κ then M1 else M0], R, σ, pc, k)→ (E[M0], R, σ, pc∧ (σ(κ) = 0), k), then
there must exist a model M � κ = 0. We thus have the following equivalent
concrete transition

(E′[if 0 then M ′1 else M ′0], R′, S, k)→ (E′[M ′0], R′, S, k)

From the assumption, we know M0 =M M ′0, so η′ and η′s are equivalent underM.
As such, this case holds.

5. If (E[if κ then M1 else M0], R, σ, pc, k)→ (E[M1], R, σ, pc∧(σ(κ) 6= 0), k), prove
as above.

4.7.2 Extensional Equivalence of O-Refreshing Moves

Let us remember that the opponent in our symbolic games always refreshes names,
i.e. only plays O-refreshing moves. As such, showing the correspondence between an
O-refreshing semantics and one with a regular opponent is necessary to prove soundness.
We thus argue in this section that O-refreshing transitions suffice for examining failure of
concrete configurations. Indeed, suppose τ is a trace leading to fail where O at some point
plays an old name m as an argument to some public name. Then, τ can be simulated by
a trace τ ′ that uses a fresh m′ in place of m. We show this by case analysis on m. If m
is an O-name, then we can obtain τ ′ from τ by following exactly the same transitions,
where some P -calls to m can be safely replaced by calls to m′ (and accordingly for
returns) without changing the semantics. If, on the other hand, m is a P -name, then the
simulation performed by τ ′ is somewhat more elaborate: some internal calls to m will be
replaced by P -calls to m′, immediately followed by the required calls to m (and dually
for returns).

Lemma 4.31 (O-Refreshing). Given a concrete configuration ρ, the following are
equivalent:

1. ρ fails using any kinds of transitions
2. ρ fails using only O-refreshing transitions

Proof. Let us consider two games starting from ρ: (A) is allowed to play any kind of
moves, while (B) is only allowed to play O-refreshing moves. We thus want to show that
(A) and (B) are both allowed to reach an assertion violation.

(2) =⇒ (1): Trivial. (A) is allowed to play all the moves that (B) can play.

(1) =⇒ (2): By Lemma 4.32, we know any ρ fails in (B) if it fails in (A).

4.7. SOUNDNESS OF SYMBOLIC GAMES 119

The above result requires the following lemma, which in turn requires some definitions.
First, we call a name phantom if it is an opponent name created by refreshing a proponent
name through an O-refreshing transition that has some equivalent original name in the
non-refreshing semantics. We assume a method to identify phantom names by keeping
track of them with regard to the non-refreshing semantics as computation progresses.
We thus say that a configuration ρ that is reached through O-refreshing transitions has
a corresponding phantom names dictionary Φ that maps all phantom names m in ρ to
their proponent-owned original names m̂ in Φ(ρ). Let us also define a set AΦ ⊆ A for all
the phantom names in A.

Lemma 4.32. Given a configuration ρ with corresponding phantom names Φ, it is the
case that ρ fails through O-refreshing transitions if Φ(ρ) fails.

Proof. Let (A) be a standard semantics where any moves are allowed. Let (B) be a
semantics where only O-refreshing transitions are allowed. Suppose (B) starts from a
configuration ρ and has phantom names Φ. We show this by induction on the number
of steps to reach ρ. Let us consider proponent moves first, so ρ = (E ,M,R, S,P,A)p.
Suppose Φ(ρ) � τ(. . . , assert(0), . . .) in (A), by case analysis on M , we have the
following.

1. M is not of the form E[mv] or is of the form E[mv] where m ∈ P :
Let Φ(ρ) → ρ̂′ via (A) semantics. Since ρ is a proponent configuration, and the
language features no name comparison, we know that the semantics are not affected
by opponent names. Thus, we know ρ̂′ = Φ(ρ′), so ρ→ ρ′ via (B). By the inductive
hypothesis on ρ̂′ and ρ′, we know (A) and (B) both fail.

2. M is of the form E[mv] and m ∈ (A \ AΦ) (m is not a phantom name):
Let Φ(ρ) call(m,v̂)−−−−−−→ ρ̂′ in (A). It must be the case ρ̂′ cr(m̂

′,v̂′)−−−−−→ ρ̂′′ for some call or
return cr, since ρ̂′ cannot fail without passing control to the proponent.
With (B), we know ρ

call(m,v)−−−−−−→ ρ′
cr(m′,v′)−−−−−→ ρ′′. Extending Φ, we get Φ′ = Φ[m′i 7→

m̂′i] for every m′i, m̂i ∈ v′, v̂′. Thus, we have Φ′(ρ′′) = ρ̂′′. By the inductive
hypothesis on ρ′′, ρ̂′′ and Φ′, we know (A) and (B) fail.

3. M is of the form E[mv] where m ∈ AΦ (m is a phantom name):
Let Φ(m) = m̂. We have two cases on m̂:
(a) If m̂ ∈ A, then we have the same situation as before.
(b) If m̂ ∈ P, then we know ρ̂ → (. . . , Ê[(R(m̂))v̂], . . .) in (A). In (B), we have

ρ
call(m,v)−−−−−−→ ρ′. Since m̂ must have been revealed to the opponent at some

point in order for it to have been refreshed by (B), we have ρ′ call(m,v)−−−−−−→
(. . . , E[R(m̂)v′], . . .). Extending Φ to account for the indirect call of m̂,
we have Φ′ = Φ[mi 7→ m̂i] for every mi ∈ v′ and m̂i ∈ Φ(v). Thus, we
have Φ′(. . . , E[R(m̂)v′], . . .) = (. . . , Ê[(R(m̂))v̂], . . .), so by the inductive
hypothesis on them, we know (B) fails.

For the opponent moves, the cases are captured for every move ρ̂ cr(m,v̂)−−−−→ ρ̂′ in (A)

120CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

and every move ρ cr(m,v)−−−−→ ρ′ in (B) by extending Φ to be Φ′ = Φ[mi 7→ m̂i] for every
name mi ∈ v and m̂i ∈ v̂ introduced in the move. With this, by the inductive hypothesis
on ρ′, ρ̂′ and Φ′, we know (B) fails in all the opponent cases. With this, we know (B)
fails if (A) fails under Φ.

4.8 Implementation

We implemented the syntax and symbolic trace semantics (symbolic games) for HOLi in
the K semantic framework [71] as a proof of concept, and tested it on 70 sample libraries.
The following sections will describe our implementation and the experiments in more
detail. As already mentioned, we shall refer to this prototype implementation in K as
“HOLiK”. The tool and its benchmark can be found at:

https://github.com/LaifsV1/HOLiK

4.8.1 The K Framework

K is a semantic framework in which programming language semantics can be implemented
and executed. Formal semantics for a language L are defined using configurations and
rewrite rules, and compiled into an executable definition that can be used to run programs
written in L. The syntax of K organises a semantics into program configurations and
rewrite rules to transition from one configuration to another. The similarity between K’s
rewrite syntax and the notation used to formally present operational semantics makes K
convenient to implement analysis tools for programs for which a formal semantics has
been defined. The idea is thus to implement the symbolic semantics of HOLi in K, and
use it to symbolically execute HOLi programs.

We implemented our symbolic execution tool for HOLi by defining the symbolic
transition rules in K. To illustrate this, following is the definition of proponent questions
in K.

1 rule <k> M:KVar X:KVar ~> E => !OPPONENT! </k>
2 <eval > ES => M~>(Context E)~>ES </eval >
3 <repo > ... X |→ (fun (A:ATYPE) :(OTYPE) → T) ... </repo >
4 <abs > ... (M |→ _) ... </abs >
5 <pub > P => P[X <- (ATYPE→OTYPE)] </pub >
6 <lcount > I => L </lcount >
7 <lzero > L </lzero >
8 <trace > TAU => TAU ~> call (M X) </trace >
9 [transition]

The keyword rule in line 1 is used to start the definition of a rewrite rule. In this
case, the rule operates on a configuration with eight cells defined in a markup notation.

4.8. IMPLEMENTATION 121

The cell <k>...</k> holds the main program term constructed by the built-in parser,
which corresponds to M in the game semantics. We then have <eval>...</eval> for the
evaluation stack E , <repo>...</repo> for the method repository R, <abs>...</abs> for
abstract names A, <pub>...</pub> for public names P, <lcount>...</lcount> for the
call counter l, <lzero>...</lzero> for the call counter bound l0, and <trace>...</trace>

for the trace produced τ . A special term !OPPONENT! is used to tell K that the next
configuration is an opponent configuration. In this rule, method application M X has no
definition in repo, which requires the proponent to pass control to the opponent. The
transition inside each cell is written using the operator =>, which states that the left
hand side is to be rewritten into what is defined on the right hand side. Where omitted,
configuration cells are left unmodified by the rule. The label [transition] tells K that
the rule can be expanded non-deterministically. When provided the --search option, K
runs a program by exhaustively expanding all non-deterministic transitions, which is
useful for symbolic execution.

To ensure validity of transitions taken, we make external calls to Z3 [23], i.e., a
transition is taken only if the path condition is satisfiable. To illustrate this, following is
a non-deterministic symbolic rule for assertions.

1 rule <k>assert X:KVar => fail ... </k>
2 <sig > SIG </sig >
3 <pc>PC => PC (assert (= X 0))</pc >
4 requires CheckSAT(SIG PC (assert (= X 0)))
5 [transition]

This rule states that an assertion assert(X) is able to fail (and be rewritten into a
special term fail) if the symbolic environment conjoined with the path condition is
satisfiable when the assertion is violated (X = 0). Here, CheckSAT is a custom function
that parses an SMT-LIB 2 formula and them calls Z3 on it. To interface with Z3, a
costume module was made that defines a data structure for SMT-LIB 2 and functions
needed to call the solver. Specifically, the CheckSAT function flattens the SMT-LIB 2
data structure into a string, and then calls Z3 via a system call. The output of the
system call is then parsed to know whether the formula passed is satisfiable or not.

Using K’s option to exhaustively expand all transitions, we let K build a closure of all
applicable rules. Providing K with a bound on the call counters, we produce a finite set of
all reachable valid symbolic configurations up to a given depth of analysis—equivalent to
finding every valid ρ ∈ FJLKs, which thus implements our bounded symbolic execution.

4.8.2 Example Usage of HOLiK

HOLiK was implemented as two source files: holi.k and z3.k. The former contains an
implementation of the syntax and game semantics for HOLi in K, whereas the latter
implements an interface between K and Z3. While K does have a built-in form of

122CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

symbolic execution, we chose to implement symbolic execution manually to stay close
to our definitions. This additionally required implementing our own interface with Z3.
HOLiK is compiled from these source files using the K command:

kompile –backend java holi.k

Despite the planned deprecation, we are using the Java backend because, to date, it is
the only one providing both built-in substitution and exhaustive search.

Example 4.33. The file reentrancy.holi containing the simplification of the DAO
smart contract introduced in Chapter 2 is defined as follows:

1 # set -bounds 2 1 #
2 import send :(int → unit)
3

4 public withdraw (m:int) :(unit) = {
5 if (not (! funds < m))
6 then send(m);
7 funds := !funds - m;
8 assert(not(!funds < 0))
9 else ()};

10 int funds := 100;

The file is to be checked with bounds k ≤ 2 and l ≤ 1, as defined in its header. We can
execute this file in HOLiK using the K command:

krun reentrancy.holi

this would symbolically execute one path in the computation tree of reentrancy.holi,
and output the final configuration reached along that path. To explore the entire
computation tree, we can use the --search option. We can combine this with the
--pattern option to filter the results and produce a more legible output. For instance:

krun --search --pattern "<trace> T </trace>" reentrancy.holi

produces the following list of 8 traces:

1 T ==K (call withdraw _1 ~> call send _1 ~> call withdraw _5
2 ~> call send _5 ~> call withdraw _11)
3 #Or
4 T ==K (call withdraw _1 ~> call send _1 ~> call withdraw _5
5 ~> call send _5 ~> ret send () ~> ret withdraw ())
6 #Or
7 T ==K (call withdraw _1 ~> call send _1 ~> call withdraw _5
8 ~> call send _5 ~> ret send () ~> ret withdraw ()
9 ~> ret send ())

4.9. EXPERIMENTS 123

10 #Or
11 T ==K (call withdraw _1 ~> call send _1 ~> call withdraw _5
12 ~> call send _5 ~> ret send () ~> ret withdraw ()
13 ~> ret send () ~> ret withdraw ())
14 #Or
15 T ==K (call withdraw _1 ~> call send _1 ~> call withdraw _5
16 ~> ret withdraw ())
17 #Or
18 T ==K (call withdraw _1 ~> call send _1 ~> call withdraw _5
19 ~> ret withdraw () ~> ret send () ~> ret withdraw ())
20 #Or
21 T ==K (call withdraw _1 ~> call send _1 ~> ret send ()
22 ~> ret withdraw ())
23 #Or
24 T ==K (call withdraw _1 ~> ret withdraw ())

By additionally filtering the configurations by whether an error was reached (implemented
as a special term fail), we find all traces that violate an assertion:

1 $ krun --search --pattern "<k>fail </k><trace >T</trace >"
2 reentrancy.holi
3 T ==K (call withdraw _1 ~> call send _1 ~> call withdraw _5
4 ~> call send _5 ~> ret send () ~> ret withdraw ()
5 ~> ret send ())

which corresponds to the example trace provided in Chapter 2:

call〈withdraw, x1〉 · call〈send, x1〉 · call〈withdraw, x5〉
· call〈send, x5〉 · ret〈send, ()〉 · ret〈withdraw, ()〉 · ret〈send, ()〉

where x1 and x5 are opponent values, with x5 being the value used for the reentrant call.
The path condition and symbolic environment generated for this trace contain 5 and 11
clauses respectively, for a total of 16 clauses over 14 variables.

♦

4.9 Experiments

We wrote and adapted examples of coding errors into a set of 70 sample libraries written
in HOLi, totalling 6,510 lines of code (LoC). Examples adapted from literature include:
reentrancy bugs from smart contracts [8, 51]; variations of the “awkward example” [65];
various programs from the MoCHi benchmark [45]; and simple implementations related
to concurrent programming (e.g. flat combining and race conditions) where errors may
occur in a single thread due to higher-order behaviour. We also combined several libraries,
by concatenating refactored method and reference definitions, to generate larger libraries

124CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

l ≤ 1 l ≤ 2 l ≤ 3
k ≤ 2 226/70/45 (555s) 5708/60/44 (4710s) 9656/3/23 (12471s)
k ≤ 3 1254/67/51 (1475s) 4092/27/18 (13482s) 4187/17/12 (16649s)
k ≤ 4 3392/63/48 (3180s) 3069/19/14 (15903s) 1335/12/10 (17765s)
k ≤ 5 3659/57/45 (4787s) 895/15/10 (16757s) 215/11/9 (17796s)
a/b/c (d) for a traces found in b successful runs taking d seconds in total

where c out of 59 unsafe files were found to have bugs, per bound.
59 of 59 unsafe files found to have bugs over the various bounds checked

Table 4.1: Table recording performance of HOLiK on our benchmarks

that are harder to solve. In our benchmark, a filename X-mo describes a program X

that has been extended, via simple concatenation, with all the method definitions inside
our selection of MoCHi programs. These files are approximately 150 LoC each. The
benchmark also contains filenames that include the term “various”, which is used to
label libraries built by combining various other files, with the largest being a combination
of all files in the benchmark. Combined files range from 150 to 520 LoC.

We ran HOLiK on all sample libraries, lexicographically increasing the bounds from
k ≤ 2, l ≤ 1 to k ≤ 5, l ≤ 3 (totalling 78,120 LoC checked), with a timeout set to five
minutes per library. We start from k ≤ 2 because it provides the minimum nesting needed
to observe higher-order semantics. All experiments ran on an Ubuntu 19.04 machine
with 16GB RAM, Intel Core i7 3.40GHz CPU, with intermediate calls to Z3 to prune
invalid configurations. Per file, the number of error traces found and time taken can be
seen in Figure 4.4. More compactly, per bound pair, the number of counterexamples
found, the time taken in seconds, and the execution status (i.e. whether it terminated or
not) is recorded in Table 4.1. Finally, Figure 4.5 records the frequency of errors per file
size measured in lines of code.

4.9.1 Results and Evaluation

In Figure 4.4, we observe the raw data recorded from the experiments. The graphs show
that bug-finding is, expectedly, very dependent on the nature of the specific program
being checked, as seen by the wide distribution of errors found. However, a pattern
can still be observed with both lower and higher k, l bound pairs reporting errors more
sparsely. This can explained by lower bounds not finding bugs existing deeper in the
execution tree, as well as analyses not terminating when attempting to search too deeply.
Table 4.1, which more succinctly expresses the results, shows this behaviour more clearly.
We can observe that independently increasing the bounds for k and l causes exponential
growth in the total time taken, which is expected from symbolic execution. Note that the
time tends towards 21000 seconds because of the timeout set to 5 minutes for 70 programs.
Similarly, the number of errors found initially grows exponentially with respect to the

4.9. EXPERIMENTS 125

Figure 4.4: Errors (top) and time(s) (bottom) per file per k, l-bound in HOLiK

126CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

increase in bounds, which can be explained by the exponential growth in paths, but
this trend does not continue indefinitely as the tool starts timing out without reporting
any errors as the bounds grow. For the benchmark as a whole, with bounds k ≤ 2 and
l ≤ 1, all 70 files in our benchmark were successfully analysed, meaning, all analyses
terminated. Errors were found at different bounds for different files, which was expected
seen as some programs had deeper bugs by design. Cumulatively, all unsafe programs in
our benchmark were correctly identified. While the table may suggest that increasing
the bound for l is more beneficial than that for k, the number of errors reported does
not imply every trace is useful. For instance, increasing the bound for l can lead to
errors re-merging in a higher-order version, which suggests potential gain from a partial
order reduction. In general, the k and l counters are incomparable as they keep track of
different behaviours.

As for scalability in program size rather than depth of search, we see in Figure 4.5
that, for our benchmark, the frequency of errors found in programs increases with the
size of the program. We can thus tell that our tool is able to scale up to programs over
500 LoC, but the number of errors reported starts to plateau at this point. This is mainly
due to the fact bigger programs cannot be searched as deeply as smaller programs can
be, so, while more errors may exist in larger programs, less terminating deeper analyses
are recorded. The tool appears to be most comfortable with programs between 100 and
400 LoC, as it records the widest range of errors, but this can be misleading as there
were not many files over 500 LoC (<1000 LoC) compared to files in the 100 to 500 LoC
range, which contains the bulk of benchmarks. The highest average for errors reported
were in the 400 to 500 LoC range. Again, these results depend on the nature of the
programs in our benchmark, and some files between 100 and 400 LoC were found to
contain more errors than the larger programs. Bounded symbolic execution, however,
is also theoretically less scalable in terms of compilation speed than other bounded
techniques (such as BMC discussed in the previous chapter) and thus, it may so be an
expected result to see scalability of SE drop off in terms of program size.

Considering theoretical results, and, experimentally, since HOLiK was able to handle
every file and correctly identified all unsafe files in the benchmark, we conclude that
HOLiK, as a proof of concept, captures the full range of behaviours in higher-order
libraries in a practical sense. Results suggest that the tool scales up to at least medium-
sized programs (<1000 LoC), which is promising because real-world medium-size higher-
order programs have been proven infeasible to check with standard techniques (e.g. the
DAO withdraw contract was approximately 100 LoC, but required the development of
techniques specialised on reentrancy to check). Even if performance for larger programs
appears to drop off, as a bounded technique, our tool still comfortably analysed all the
large programs when given smaller bounds to work with. For instance, for k, l ≤ 2, 1
the tool analysed all programs in less than 5 minutes each, which suggests the potential
to check much larger programs if allowed to run for longer. Taking into consideration
that k, l ≤ 2, 1 is the minimal depth required to find intricate higher-order bugs, i.e. it is

4.9. EXPERIMENTS 127

Figure 4.5: Error distribution vs ranges of file size (LoC) in HOLiK

sufficient to find higher-order interaction with the environment, the technique appears
promising even on larger programs, as it is at least able to scan said large programs for
superficial higher-order errors, which, as already mentioned, have been proven infeasible
to check with standard techniques. Moreover, unlike tools that specialise on particular
higher-order behaviours, our semantics models the complete range of higher-order errors
definable by a client.

4.9.2 Comparison with Racket Contract Verification

In Section 1.5, we mentioned [58] and [57] as tools related to higher-order verification. In
this section we compare our games-based approach to those in the area of Racket contract
verification. Firstly, since [58] does not handle state, we shall only consider the latest
version of the tool [57], which we shall refer to as SCV (for Soft Contract Verification).
A small benchmark (19 programs based on the HOLiK and SCV benchmarks) was used
for the comparison. Programs were manually translated between Racket and HOLi.
Care was taken to translate programs while keeping the semantics as close as possible.
However, since assertions and contracts are fundamentally different, some decisions had
to be made about the terms to choose for the different features in contracts, and vice
versa. For instance, contracts enforcing an input-output relation were translated into
HOLi using wrapper functions that define the relation through an if statement. e.g.

1 (provide/contract
2 [f (→i [n (and/c integer? (>/c 0))]
3 (res (n) (and/c integer? (>/c n))))])
4 (define (f n) (...))

would be translated into

1 public fcontract (n:int) :(unit) = {

128CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

2 if (n > 0) then assert(f n > n) else ()
3 };
4 private f (n:int) :(int) = {...};

In the opposite direction, since contracts do not directly access references in a term,
stateful functions were translated to return any references we wish to reason about.

Table 4.2 records the comparison. The most obvious difference is in bug reporting and
safety; which makes them incomparable in general. While HOLiK reported traces that
always correspond to real errors, SCV reported several spurious counter examples—a third
of all errors reported by SCV were spurious. Spurious errors were manually determined by
whether the contract referenced is possible to violate or not. On the other hand, SCV was
able to prove total correctness for 3 of the 7 programs designed to be bug free. The next
obvious difference is that SCV scales much better than HOLiK with respect to program
size, which it achieves in exchange for the loss in precision incurred in finitising the
semantics. While the difference in time for small programs is mainly due to initalisation
time, HOLiK would take close to an order of magnitude longer for some larger programs.
The programs that took the longest for HOLiK (dao-various and dao2-e) consist of
multiple repeated methods, which suggests a potential optimisation in partial order
reduction. More subtle differences in the nature of each approach can also be observed
in the results recorded. e.g., HOLiK reports 1 real error for ack-simple-e, whereas
SCV reports 2 errors. The difference is because SCV takes into account constraints for
integers (e.g. > 0 and = 0). More interestingly, for various, HOLiK reports 19 ways to
reach assertion violations, whereas SCV reports only 6 real ways to violate contracts.
The difference is because HOLiK reports paths through the execution tree that violate
assertions, whereas SCV reports a set of term skeletons that may violate contracts. To
illustrate this difference, take for instance two independently safe methods A and B

that may call an unsafe method C. From testing, HOLiK reports three valid traces as
there are three paths that reach C (call〈A〉 · call〈C〉, call〈B〉 · call〈C〉 and call〈C〉). In
contrast, SCV reports a single contract violation directly blaming C as the only error.
This could be because SCV groups these paths into a single term description, whereas
we explicitly list them. Finally, ack failed to run on SCV due to internal errors. Since
ack is valid and can be executed manually, we cannot explain this result.

Overall, HOLiK is generally slower than SCV and appears to scale worse in terms
of program size. This is expected of SCV since it benefits from a finitised abstract
interpretation of its semantics. However, the trade-off in precision can be easily observed
from the fact SCV is not able to distinguish between the safe and unsafe versions of the
DAO example. In our own attempts at finitising our symbolic games, which we discuss
as a potential further direction in Chapter 5, abstract interpretation also caused our
games to become unable to distinguish the safe DAO from the unsafe one, which we
deemed too much of a loss in precision. Moreover, as mentioned previously, bounding the
semantics still allows games to scale for much larger programs, while still reporting only

4.9. EXPERIMENTS 129

Program LoC Traces Time (s) LoC Errors Time (s) False Errors
ack 17 0 6.0 9 N/A 2.4 N/A

ack-simple 13 0 6.5 9 0 2.4 0
ack-simple-e 13 1 6.5 9 2 2.5 0

dao 10 0 5.0 15 1 2.6 1
dao-e 16 1 5.5 15 1 2.7 0

dao-various 85 5 22.5 122 10 3.0 5
dao2-e 85 10 23.5 122 10 2.9 0
escape 9 0 5.0 9 0 2.6 0
escape-e 9 2 5.0 10 1 2.7 0
escape2-e 10 14 6.0 10 1 2.7 0
factorial 10 0 5.0 9 0 2.2 0
mc91 12 0 5.0 9 1 2.2 1
mc91-e 12 1 5.0 8 1 2.4 0
mult 14 0 5.0 11 2 2.7 2
mult-e 14 1 5.0 11 2 2.4 0
succ 7 0 5.0 7 1 2.5 1
succ-e 7 1 5.0 7 1 2.8 0
various 116 19 14.0 108 11 6.2 5
total 459 55 140.5 500 45 49.8 15

Table 4.2: Comparison of HOLiK (left) and SCV (right).

sound errors. This is, in addition to the fact that there is still room for optimisation since
the approach presented herein is a foundational and has not been optimised, suggests
the technique could find use in verifying real-world software. We thus conclude that,
in terms of verification of higher-order programs, our games-based approach is a viable
alternative to the line of work presented in soft contract verification.

130CHAPTER 4. SYMBOLIC GAMES FOR OPEN HIGHER-ORDER PROGRAMS

Chapter 5

Conclusions

We conclude this thesis with a summary of the contributions and results presented herein,
and a discussion of potential future work. We shall present concluding statements in two
parts, one for each content chapter of the thesis, starting with Chapter 3.

5.1 BMC for Closed Higher-Order Programs

In Chapter 3 we presented a BMC approach for closed higher-order programs inspired
by the widespread success of BMC in industry. The approach presented is based on
a nominal interpretation of defunctionalisation at the semantics level, and a points-to
analysis to optimise the flow of methods. Preliminary results were provided for the
performance of our approach in a prototype tool named BMC-2, as well as a proof of
soundness of the algorithm.

From testing, we concluded that our BMC technique is a practically viable alternative
to existing approaches for higher-order (closed) terms when compared to HORS model
checking (e.g. MoCHi) and higher-order SE (e.g. Rosette) in particular. For HORS
model checking, we provide a bug-finding alternative to total correctness that is sound
for errors. Compared to SE, results suggest that the theoretical speed-up in compilation,
at the expense of a larger monolithic SAT instance, can be beneficial for large programs,
even if comparatively detrimental for depth of analysis. Specifically, BMC-2 scales better
than the internal implementation of SE in Rosette for program size when initialisation is
considered. Large higher-order programs may find use in our approach as its bounded
nature could make it feasible to scan these for superficial errors. We also briefly discussed
a limitation of state merging in our approach due to the nature of the problem at hand.
Specifically, a higher-order semantics that allows dynamic creation of methods does not
have a bounded branching factor, and thus does not scale linearly with the bound as
mainstream BMC might. While this partially detracts from the advantages in memory
efficiency, its performance on larger programs show BMC is still worth investigating.

131

132 CHAPTER 5. CONCLUSIONS

5.2 Symbolic Games for Open Higher-Order Programs

While able to handle internal higher-order behaviour, the monolithic nature of our BMC
approach hinders its ability to handle external higher-order interaction in general, which
requires a compositional reasoning. To address this, and practically motivated by the
prominence of higher-order errors in real-world programs, in Chapter 4 we presented
a game semantics to model the behaviour of an undefined environment and adapted
it to symbolically execute open higher-order libraries. We implemented a prototype
symbolic execution tool for higher-order libraries named HOLiK as a proof of concept.
Our approach was also supported with theoretical results that prove soundness and
completeness of our game semantics, which makes use of compositionality and definability
results; prove that termination can be enforced by bounding the nesting of calls and
chattering of the opponent; and prove that the resulting symbolic execution technique is
sound with respect to errors reported.

Our experiments show that our technique has a practical application in soundly
scanning programs for errors. In comparison to most other lines of work, our approach
is distinguished by the ability to cope with the full range of higher-order interaction
allowed by an undefined environment, whereas most extant tools focus on fragments
of the behaviours we are interested in. In comparison to the line of work presented
in [57], which does handle the complete range of higher-order behaviour, we found that
game semantics is a different theoretical foundation that produced a viable alternative
approach to analysis of higher-order programs. We showed [57] scales better in terms of
program size, but sacrifices precision, whereas HOLiK always finds concrete errors in a
bounded-complete manner. Fundamentally, the approaches have different motivations
(bug-finding vs total correctness), and are thus incomparable. In their overlapping task,
however, both tools can produce counterexamples, which, as stated, mainly differs in
their soundness and scalability. Considering that the theory presented is foundational
only and has not been optimised in its implementation, on top of the scalability added
by the parametrisation of depth of search, we concluded that our games approach is
practically promising and serves as a novel foundation for symbolic execution of open
higher-order programs.

5.3 Limitations and Further Directions

In this section we primarily discuss possible future work for both content chapters of
the thesis. We shall dedicate a section for each prospective endeavour for the content
presented herein. We start with that for our BMC technique, and continue with those
for our SE game semantics.

5.3. LIMITATIONS AND FURTHER DIRECTIONS 133

5.3.1 Further Developing and Optimising BMC-2

We begin this section with a discussion for our BMC technique. In particular, the
experiments we ran on our tool show that BMC is a practically feasible direction to
check higher-order programs. This agrees with the intuition that BMC is a practically
successful technique at an industrial level. However, the tool we produced was a very
preliminary proof of concept. There are various limitations for BMC-2 as a tool, which
we shall discuss in the following paragraphs.

Firstly, HORef is a toy language for academic purposes as it is a universal stateful
language that includes a minimal set of features required to exhibit higher-order behaviour
internal to the term. Theoretically, selecting a specific industry language may present
many complications in features that are not of interest. Implementationally, it makes
developing a prototype under limited resources feasible. Practically, however, the tool
would need a translation from source code into HORef in order to be useful. HORef
could serve as an intermediate language due to its universality, but being fundamentally
a simple low-level extension of lambda calculus makes impractical to translate the range
of features seen in real-world languages. As such, a possible direction is to implement
our approach for one such real-world language. Particularly, as it is, HORef already
serves as a subset of features for ML-like languages, and could even be almost directly
implemented for C. These would require extensions of the theory to cover features such
as pattern matching for functional languages and pointer arithmetic for C. Of particular
interest may be object oriented features. The current nominal model for higher-order
terms could potentially be used to reason about objects as values.

Secondly, although some effort was made in optimising the translation, particularly
with regards to flow of names to prune spurious paths, this was done primarily for overall
feasibility rather than as a fine-tuned optimisation. As is, the encoding could be further
optimised for size and complexity of the formula produced, for instance, by merging
states more optimally. Our translation currently adds a so-called Φ function after each
branch, meaning that states are always merged wherever merging is possible. While
this keeps memory usage low in mainstream BMC, this has two severe drawbacks that
affect the complexity of our approach. Firstly, total state merging means that symbolic
names (i.e. those appearing in variables) are never concretised. This means that names,
wherever encountered, are more likely to cause branching as each corresponds to the
largest possible set of names that may flow into any given term. This leads to more
spurious paths explored, which takes longer to compile and produces formulas that are
harder to solve. Our points-to analysis tackles this issue by reducing the number of
names to consider. However, concretisation of names is still desirable as it involves less
operations than data flow of a single name. Secondly, state merging is an expensive
operation, particularly where references are involved. When a Φ function is inserted,
all references in every branch need to be merged. This is an expensive operation that
adds to the formula at least n many clauses, where n is the number of references in the

134 CHAPTER 5. CONCLUSIONS

term. Additionally, the Φ function requires a guard for each path merged within it. This
adds, for every branch, a disjunction nested in the clauses (i.e. a nested implication)
that makes the formula harder to solve. As such, minimising the number of Φ functions
whilst ensuring static single assignment is desirable.

As mentioned in Chapter 1, state merging in BMC is a result of the SSA transfor-
mation. As such, the problem of efficient state merging has already been studied in
optimising SSA transformations. A general solution to inserting Φ functions efficiently has
been provided using the concept of “minimal” SSA with dominance frontiers. These tell
us precisely where Φ functions should be inserted to maintain the SSA form. Moreover,
with liveness analysis and dead-code elimination, one can construct a so-called “pruned”
SSA form [19], which tackles the problem of having to merge every reference appearing in
the term by pruning all references that become unreachable from any point onwards. The
added overhead in computing the information required for optimal Φ function placement
is non-trivial, however, and a parameter to specify the level of precision needed is often
useful. For instance, a “semi-pruned” SSA form [14] approximates the effect of a fully
“pruned” SSA without the expense of full liveness analysis. Instead, it computes the
relatively cheap set of “block-local”—meaning variables that are never live outside a
block—that require no Φ function.

5.3.2 Theoretical and Practical Directions for Symbolic Games

In this section we discuss different prospective developments for our symbolic games. The
future work presented in this sectional shall be divided into two directions: optimisations
further implementational directions for the current theory, and theoretical developments
in the form of full compositionality and total verification.

5.3.2.1 Practical Developments and Optimisation

According to the experiments, most of the errors reported when increasing the depth of
analysis were replicas of shallow errors resurfacing deeper in the trace. These occurred in
the form of lower order errors appearing nested within some trace of higher order, and,
as such, suggest the possibility of defining a partial order for our semantics. A notion
of partial order could define configurations that subsume the behaviour of lower order
behaviours already observed, and thus eliminate paths that involve known errors [63, 80].

Additionally, from our theoretical results we observed that a lot of effort was placed
in carefully manipulating k and l to prove soundness. Moreover, attempting to show the
complexity of our games in terms of k and l proved to be a harder task than expected.
With the addition of k and l not being intuitively useful when attempting to understand
the practical impact of increasing the bound with respect to verification feasibility, it
seems that our bounding mechanism as it currently is, while sensible as a direct bound

5.3. LIMITATIONS AND FURTHER DIRECTIONS 135

to sources of infinite behaviour, is more of an arbitrary choice with respect to the
overarching goal of verifying programs. Considering that the theory does not prevent
the generalisation of k and l as a monotonic cost function, allowing instead the option of
a user-specified bounding mechanism that satisfies the property of monotonicity could
provide versatility for the user to define a mechanism that most intuitively satisfies their
expected behaviour. For instance, while k is intended to bound method calls, it only
bounds proponent calls—i.e. the bound is not symmetric, which makes it more difficult
to reason about the semantics both theoretically and intuitively. Another example
of this disadvantage can be seen by how different programs may differ immensely in
feasibility even when given the same bounds; one may desire a more intuitive bounding
strategy where bounds determine how the analysis is expected to behave. Additionally,
a generalisation of the bounds could improve the practical feasibility of our technique by
more precisely filtering the state-space. The idea is that, similarly to a search heuristic,
specifying a generalised bound could have the effect of guiding the search towards certain
patterns of errors—or guarantee the lack thereof—that would otherwise be difficult to
find. For instance, the minimal error trace for the “flat combiner" example in Chapter 2
requires a minimum call depth of k = 4 and for the opponent to be able to make at
least l = 2 consecutive calls at each layer. However, the error is caused by a specific
pattern that has an initial preference for shallow moves that are followed by a series of
calls that increases the depth of the game. Finding this specific pattern among the entire
computation tree of depth k = 4 and environment size l = 2 could be difficult.

Another issue observed is that the language supported is again a toy language.
The choice to use HOLi as our vehicle of study was made for the sake of developing
a theoretical foundation. Support for a real-world language would have required a
substantial amount of effort in the formalisation of specific language features that are not
relevant to the theory of stateful higher-order verification. Moreover, doing so may have
still required the translation of programs from one language to another, especially when
taking into consideration that our benchmarks were obtained from various languages.
However, it remains a limitation that all our benchmarks had to be translated into HOLi,
which involves an additional step where the semantics of the source program and the
target program may deviate, which is exacerbated by the low-level nature of HOLi. For
instance, while our DAO example captures the essence of the reentrant attack, as would
any simplification used for illustration, the actual attack was additionally a result of the
semantics of Solidity, which would have obfuscated the fact that an external function
could be called within the withdraw contract. Additionally, the semantics of the Ethereum
virtual machine has not been taken into account in the naive simplification. Again, our
focus was never smart contract verification, but this leads to a forced simplification of
some benchmarks, since properties such as resource consumption when making calls
were not modelled in the benchmarks inspired by smart contracts. Lastly, the use of a
toy language also imposes a limitation in the size, relevance and eloquence of programs
we are allowed to examine. In particular, translating real-world features into HOLi
is not trivial as it involves reconciliation between different operational semantics, and

136 CHAPTER 5. CONCLUSIONS

thus prevents us from using larger real-world representatives in our benchmarks. For
these reasons, a possible development is to formalise a real-world language, or extend an
existing formalisation or SE tool with our game-semantic theory.

Finally, before moving on with theoretical developments, our experiments revealed
a potential problem in the architecture of our implementation. Namely, our semantics
was implemented in K as it makes the implementing formal rules a relatively simple
process. However, we noticed potential issues in reliability and performance as a result
of depending on K. During development, we encountered an issue with HOLiK after
revision 01ba51401 (July 30, 2019) of the K platform-independent binaries, after which the
interaction between K and Z3 became unreliable. The update changed pattern matching,
and caused K to not recognise some responses from the solver. This was eventually fixed,
but dependence on external tools could affect long-term support and development of the
tool. More importantly, several limitations were imposed by using K. For instance, we
did not have control over the search strategy, and lacked features necessary to implement
certain optimisations (e.g. keeping a set of explored configurations across all paths is
not possible). Worse still, the current plan is to deprecate the Java backend which we
depend on. Currently, the other backends parse definitions slightly differently and do
not feature the options we need for our symbolic execution—from communication with
the developers, we learned that they have a different direction in mind for symbolic
execution and support for implementation of functional languages is not a priority. The
eventual lack of support may be a problem for continued development of a reliable tool.
Putting reliability aside, a potential issue in the performance of K was also observed
in its performance; for instance, long initialisation times. While the complexity of our
semantics is the primary factor in the performance observed, results suggest that some
amount of time is added to all executions simply by virtue of using K. Considering these
limitations, a native implementation of our semantics is desirable. This could, as in the
previous paragraph, be by extension of an existing SE tool, or built from scratch.

5.3.2.2 Full Compositionality and Total Verification

The first theoretical direction is that of full compositionality. The current semantics
only allows for compositionality between two components. Compositionality between
n-many components (full compositionality) would allow for fully modular verification.
Given the compositional design of games, it is possible full compositionality is already
a property of our games that just needs to be proven. For our purpose, a two-part
compositionality was sufficient for verification. However, a full compositionality result
may lead to a fully compositional technique. More intuitively, as it is, our semantics
guarantees that composing the result of independently analysing two components (a
library and a client) is equivalent to analysing an already fully composed system. This
has the useful property of allowing one to either analyse each component in isolation

1https://github.com/kframework/k/releases/tag/nightly-01ba514c0

5.3. LIMITATIONS AND FURTHER DIRECTIONS 137

first to then modularly analyse various compatible clients for correctness, or, by splitting
any program into two components with disjoint name sets, allowing one to decompose
the analysis of programs into smaller instances. The latter is of particular interest in
the field of modular verification, as it allows tools like BLITZ [18] to split programs into
smaller components at various levels of granularity. This is useful practice especially
when verifying large programs that would otherwise not fit in memory. As such, the
development of a theoretical result for full compositionality may indicate to us a method
to use games for modular analysis that decomposes programs into arbitrarily many
libraries, also adjustable for a specified level of granularity.

Finally, to finish this section we shall discuss the possibility of removing the bounds
entirely for unbounded verification. A limitation of our technique when compared to [57]
is that we are not sound when the termination cannot be determined within the bound.
This means we are generally unable to show total correctness of programs, which is
theoretically interesting and practically desirable. For this, we looked into three possible
directions to finitise the game semantics.

Abstract Interpretation The first is to go for a standard abstract interpretation
technique [22]. The plan would be to transform our bounded semantics to an abstract
interpretation semantics by using abstract domains in place of symbolic values. A
bounded execution of this new semantics would produce a chain of abstract values for
each assertion in the source code, which could then be used to produce a fixpoint for the
range of possible values that may occur in each assertion. While experimenting with
preliminary definitions of possible abstract semantics, however, we noticed it incurred a
substantial loss in precision, which we deemed unacceptable. Particularly, being able
to differentiate between safe programs and unsafe programs—e.g. the safe and unsafe
DAO—turned out to require a substantial amount of additional infrastructure.

Fresh-Register Pushdown Automata Another direction, closely related to Coneqct
[53], is to define a pushdown system that finitely captures the unbounded game semantics
of any program we want to verify. The approach in [53] is based on the decidability of
reachability in fresh-register pushdown automata (FPDRA)—even over infinite alphabets.
This requires, however, a finite branching factor for the semantics, which in our case
amounts to overapproximating methods and integers. As with abstract interpretation,
this may require defining an abstract domain for integers to enforce finite branching.
Methods could be overapproximated using a finite set of names as done in k-CFA [75].
Assuming that sufficient precision is maintained, the approach would proceed by building
an FPDRA that captures the unbounded game semantics of a target program, to then
apply an existing decision procedure [54] for reachability of errors. As a result of thr
overapproximation, unreachability of errors in the automaton would imply errors are
similarly unreachable in the unbounded computation tree.

138 CHAPTER 5. CONCLUSIONS

Counter-Example Guided Refinement Lastly, from MoCHi [45] we know that
it is possible to use a CEGAR loop in tandem with higher-order recursion schemes
for unbounded verification of higher-order programs. The main disadvantage is that
the MoCHi approach does not handle state or undefined functions. From private
communication with the authors, we found that extensions to MoCHi may provide
limited support for state, but would not handle open code. An extension of MoCHi that
combines it with our games to support open code is not obvious, but remains a potential
direction to follow to produce a total correctness technique.

Bibliography

[1] S. Abramsky, D. R. Ghica, L. Ong, and A. Murawski. Algorithmic game semantics
and component-based verification. In Proceedings of SAVBCS 2003: Specification
and Verification of Component-Based Systems, Workshop at ESEC/FASE 2003,
pages 66–74, 2003. published as Technical Report 03-11, Department of Computer
Science, Iowa State University.

[2] Samson Abramsky. Semantics of interaction (abstract). In Hélène Kirchner, editor,
Trees in Algebra and Programming - CAAP’96, 21st International Colloquium,
Linköping, Sweden, April, 22-24, 1996, Proceedings, volume 1059 of Lecture Notes
in Computer Science, page 1. Springer, 1996.

[3] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game
semantics for general references. In Thirteenth Annual IEEE Symposium on Logic
in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998, pages 334–344.
IEEE Computer Society, 1998.

[4] Samson Abramsky, Pasquale Malacaria, and Radha Jagadeesan. Full abstraction
for PCF. In Masami Hagiya and John C. Mitchell, editors, Theoretical Aspects
of Computer Software, International Conference TACS ’94, Sendai, Japan, April
19-22, 1994, Proceedings, volume 789 of Lecture Notes in Computer Science, pages
1–15. Springer, 1994.

[5] Samson Abramsky and Guy McCusker. Game semantics. In Ulrich Berger and Hel-
mut Schwichtenberg, editors, Computational Logic, pages 1–55, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

[6] Nina Amla, Robert P. Kurshan, Kenneth L. McMillan, and Ricardo Medel. Ex-
perimental analysis of different techniques for bounded model checking. In Hubert
Garavel and John Hatcliff, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 9th International Conference, TACAS 2003, Proceedings,
volume 2619 of Lecture Notes in Computer Science, pages 34–48. Springer, 2003.

[7] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report
94/19).

139

140 BIBLIOGRAPHY

[8] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
ethereum smart contracts sok. In Proceedings of the 6th International Conference
on Principles of Security and Trust - Volume 10204, pages 164–186, New York, NY,
USA, 2017. Springer-Verlag New York, Inc.

[9] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[10] Adam Bakewell and Dan R. Ghica. Game-based safety checking with mage. In
Arnd Poetzsch-Heffter, editor, Proceedings of the 2007 Conference Specification
and Verification of Component-Based Systems, SAVCBS 2007, Dubrovnik, Croatia,
September 3-4, 2007, pages 85–87. ACM, 2007.

[11] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In Rance Cleaveland, editor, Tools and Algorithms
for Construction and Analysis of Systems, 5th International Conference, TACAS
’99, Proceedings, volume 1579 of Lecture Notes in Computer Science, pages 193–207.
Springer, 1999.

[12] Robert Boyer, Bernard Elspas, and Karl Levitt. SelectâĂŤa formal system for
testing and debugging programs by symbolic execution. ACM SIGPLAN Notices,
10:234–245, 06 1975.

[13] Robert S. Boyer, Bernard Elspas, and Karl Levitt. SELECTâĂŤa formal system for
testing and debugging programs by symbolic execution. ACM SIGPLAN Notices,
10:234–245, 06 1975.

[14] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson. Prac-
tical improvements to the construction and destruction of static single assignment
form. Softw., Pract. Exper., 28(8):859–881, 1998.

[15] Toby Cathcart Burn, C.-H. Luke Ong, and Steven J. Ramsay. Higher-order con-
strained horn clauses for verification. PACMPL, 2(POPL):11:1–11:28, 2018.

[16] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings
of the 8th USENIX Conference on Operating Systems Design and Implementation,
OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX Association.

[17] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three
decades later. Commun. ACM, 56(2):82–90, 2013.

[18] Chia Yuan Cho, Vijay D’Silva, and Dawn Song. BLITZ: compositional bounded
model checking for real-world programs. In Ewen Denney, Tevfik Bultan, and An-
dreas Zeller, editors, 2013 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013,
pages 136–146. IEEE, 2013.

BIBLIOGRAPHY 141

[19] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of
sparse data flow evaluation graphs. In David S. Wise, editor, Conference Record of
the Eighteenth Annual ACM Symposium on Principles of Programming Languages,
Orlando, Florida, USA, January 21-23, 1991, pages 55–66. ACM Press, 1991.

[20] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C
programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 10th International Conference, TACAS
2004, Proceedings, volume 2988 of Lecture Notes in Computer Science, pages 168–176.
Springer, 2004.

[21] Lori A. Clarke. A program testing system. In John A. Gosden and Olin G. Johnson,
editors, Proceedings of the 1976 Annual Conference, Houston, Texas, USA, October
20-22, 1976, pages 488–491. ACM, 1976.

[22] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977, pages 238–252. ACM, 1977.

[23] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[24] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular verification of
code with SAT. In Lori L. Pollock and Mauro Pezzè, editors, Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2006, Portland, Maine, USA, July 17-20, 2006, pages 109–120. ACM, 2006.

[25] Aleksandar S. Dimovski. Program verification using symbolic game semantics. Theor.
Comput. Sci., 560:364–379, 2014.

[26] Julian Dolby, Mandana Vaziri, and Frank Tip. Finding bugs efficiently with a SAT
solver. In Ivica Crnkovic and Antonia Bertolino, editors, Proceedings of the 6th joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2007, Dubrovnik,
Croatia, September 3-7, 2007, pages 195–204. ACM, 2007.

[27] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated
techniques for formal software verification. IEEE Trans. on CAD of Integrated
Circuits and Systems, 27(7):1165–1178, 2008.

[28] Quinn Dupont. Experiments in Algorithmic Governance: A history and ethnogra-
phy of " The DAO, " a failed Decentralized Autonomous Organization, chapter 8.
Routledge, 01 2017.

142 BIBLIOGRAPHY

[29] Juan P. Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and Marcelo F.
Frias. TACO: efficient sat-based bounded verification using symmetry breaking and
tight bounds. IEEE Trans. Software Eng., 39(9):1283–1307, 2013.

[30] D. R. Ghica. Applications of game semantics: From program analysis to hardware
synthesis. In 2009 24th Annual IEEE Symposium on Logic In Computer Science,
pages 17–26, 2009.

[31] Dan R. Ghica. Applications of game semantics: From program analysis to hardware
synthesis. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer
Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 17–26. IEEE
Computer Society, 2009.

[32] Dan R. Ghica and Guy McCusker. Reasoning about idealized ALGOL using regular
languages. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, Automata,
Languages and Programming, 27th International Colloquium, ICALP 2000, Geneva,
Switzerland, July 9-15, 2000, Proceedings, volume 1853 of Lecture Notes in Computer
Science, pages 103–115. Springer, 2000.

[33] Dan R. Ghica and Nikos Tzevelekos. A system-level game semantics. Electr. Notes
Theor. Comput. Sci., 286:191–211, 2012.

[34] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. Foundations and tools
for the static analysis of ethereum smart contracts. In Hana Chockler and Georg
Weissenbacher, editors, Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes in Computer
Science, pages 51–78. Springer, 2018.

[35] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In John Field
and Gregor Snelting, editors, Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis For Software Tools and Engineering, PASTE’01,
pages 54–61. ACM, 2001.

[36] David Hopkins, Andrzej S. Murawski, and C.-H Luke Ong. Hector: An equivalence
checker for a higher-order fragment of ml. In CAV, 2012.

[37] David Van Horn and Matthew Might. Abstracting abstract machines. In Paul Hudak
and Stephanie Weirich, editors, Proceeding of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA,
September 27-29, 2010, pages 51–62. ACM, 2010.

[38] William E. Howden. Symbolic testing and the DISSECT symbolic evaluation system.
Software Engineering, IEEE Transactions on, SE-3:266– 278, 08 1977.

[39] John Hughes. Why functional programming matters. Comput. J., 32(2):98–107,
1989.

BIBLIOGRAPHY 143

[40] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: i, ii, and III.
Inf. Comput., 163(2):285–408, 2000.

[41] A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science,
pages 101–112, July 2002.

[42] James C. King. A new approach to program testing. SIGPLAN Not., 10(6):228–233,
April 1975.

[43] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–
394, 1976.

[44] Naoki Kobayashi. Types and higher-order recursion schemes for verification of
higher-order programs. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’09, pages 416–428,
New York, NY, USA, 2009. ACM.

[45] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Predicate abstraction and
CEGAR for higher-order model checking. In Mary W. Hall and David A. Padua,
editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, pages 222–233. ACM, 2011.

[46] Daniel Kroening. The cbmc homepage. http://www.cprover.org/cbmc/, 2017.
[Online; accessed 13-Jun-2017].

[47] James Laird. A fully abstract trace semantics for general references. In Lars Arge,
Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata,
Languages and Programming, 34th International Colloquium, ICALP 2007, Wroclaw,
Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in Computer
Science, pages 667–679. Springer, 2007.

[48] Yu-Yang Lin and Nikos Tzevelekos. A bounded model checking technique for higher-
order programs. In Nan Guan, Joost-Pieter Katoen, and Jun Sun, editors, Depend-
able Software Engineering. Theories, Tools, and Applications - 5th International
Symposium, SETTA 2019, Shanghai, China, November 27-29, 2019, Proceedings,
volume 11951 of Lecture Notes in Computer Science, pages 1–18. Springer, 2019.

[49] Yu-Yang Lin and Nikos Tzevelekos. Symbolic execution game semantics. In Zena M.
Ariola, editor, 5th International Conference on Formal Structures for Computation
and Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Confer-
ence), volume 167 of LIPIcs, pages 27:1–27:24. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[50] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. Reguard: Finding reen-
trancy bugs in smart contracts. In 2018 IEEE/ACM 40th International Conference
on Software Engineering: Companion (ICSE-Companion), pages 65–68, May 2018.

144 BIBLIOGRAPHY

[51] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making
smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, pages 254–269, New York, NY,
USA, 2016. ACM.

[52] Jeremy Morse, Mikhail Ramalho, Lucas C. Cordeiro, Denis Nicole, and Bernd
Fischer. ESBMC 1.22 - (competition contribution). In Erika Ábrahám and Klaus
Havelund, editors, Tools and Algorithms for the Construction and Analysis of
Systems - 20th International Conference, TACAS 2014, Proceedings, volume 8413
of Lecture Notes in Computer Science, pages 405–407. Springer, 2014.

[53] Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos. A contextual
equivalence checker for IMJ*. pages 234–240, 11 2015.

[54] Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos. Reachability in
pushdown register automata. J. Comput. Syst. Sci., 87:58–83, 2017.

[55] Andrzej S. Murawski and Nikos Tzevelekos. Higher-order linearisability. In Roland
Meyer and Uwe Nestmann, editors, 28th International Conference on Concurrency
Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany, volume 85 of
LIPIcs, pages 34:1–34:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[56] Joseph P. Near and Daniel Jackson. Rubicon: bounded verification of web ap-
plications. In Will Tracz, Martin P. Robillard, and Tevfik Bultan, editors, 20th
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20),
SIGSOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012, page 60. ACM, 2012.

[57] Phuc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. Soft
contract verification for higher-order stateful programs. PACMPL, 2(POPL):51:1–
51:30, 2018.

[58] Phuc C. Nguyen and David Van Horn. Relatively complete counterexamples for
higher-order programs. In David Grove and Steve Blackburn, editors, Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, USA, June 15-17, 2015, pages 446–456. ACM, 2015.

[59] Hanno Nickau. Hereditarily sequential functionals. In Anil Nerode and Yuri V.
Matiyasevich, editors, Logical Foundations of Computer Science, Third International
Symposium, LFCS’94, St. Petersburg, Russia, July 11-14, 1994, Proceedings, volume
813 of Lecture Notes in Computer Science, pages 253–264. Springer, 1994.

[60] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program
analysis. Springer, 1999.

[61] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings of
the 34th Annual Computer Security Applications Conference, ACSAC ’18, pages
653–663, New York, NY, USA, 2018. ACM.

BIBLIOGRAPHY 145

[62] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes.
In 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06), pages
81–90, Aug 2006.

[63] Doron A. Peled. All from one, one for all: on model checking using representatives.
In Costas Courcoubetis, editor, Computer Aided Verification, 5th International
Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume
697 of Lecture Notes in Computer Science, pages 409–423. Springer, 1993.

[64] Quoc-Sang Phan, Pasquale Malacaria, and Corina S. Pasareanu. Concurrent bounded
model checking. ACM SIGSOFT Software Engineering Notes, 40(1):1–5, 2015.

[65] Andrew Pitts and Ian Stark. Operational reasoning for functions with local state.
In Higher Order Operational Techniques in Semantics, pages 227–273. Cambridge
University Press, 1998.

[66] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science.
Cambridge University Press, New York, NY, USA, 2013.

[67] Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput.
Sci., 5(3):223–255, 1977.

[68] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of concurrent
programs. In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided
Verification, pages 82–97, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[69] John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998.

[70] Williame Rocha, Herbert Rocha, Hussama Ismail, Lucas Cordeiro, and Bernd Fischer.
Depthk: A k-induction verifier based on invariant inference for c programs. In
Proceedings, Part II, of the 23rd International Conference on Tools and Algorithms
for the Construction and Analysis of Systems - Volume 10206, pages 360–364, Berlin,
Heidelberg, 2017. Springer-Verlag.

[71] Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic framework.
J. Log. Algebraic Methods Program., 79(6):397–434, 2010.

[72] Ryosuke Sato and Naoki Kobayashi. Modular verification of higher-order functional
programs. In Hongseok Yang, editor, Programming Languages and Systems - 26th
European Symposium on Programming, ESOP 2017, volume 10201 of Lecture Notes
in Computer Science, pages 831–854. Springer, 2017.

[73] Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. Towards a scalable software
model checker for higher-order programs. In Elvira Albert and Shin-Cheng Mu,
editors, Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation
and Program Manipulation, PEPM 2013, pages 53–62. ACM, 2013.

146 BIBLIOGRAPHY

[74] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit path
model-checking tools. In Thomas Ball and Robert B. Jones, editors, Computer Aided
Verification, pages 419–423, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[75] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie-Mellon University, 1991.

[76] Bjarne Steensgaard. Points-to analysis in almost linear time. In Hans-Juergen
Boehm and Guy L. Steele Jr., editors, POPL’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 32–41. ACM
Press, 1996.

[77] Taku Terao and Naoki Kobayashi. A zdd-based efficient higher-order model checking
algorithm. In Jacques Garrigue, editor, Programming Languages and Systems - 12th
Asian Symposium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings,
volume 8858 of Lecture Notes in Computer Science, pages 354–371. Springer, 2014.

[78] Sam Tobin-Hochstadt and David Van Horn. Higher-order symbolic execution via
contracts. In Gary T. Leavens and Matthew B. Dwyer, editors, Proceedings of the
27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ,
USA, October 21-25, 2012, pages 537–554. ACM, 2012.

[79] Emina Torlak and Rastislav Bodík. A lightweight symbolic virtual machine for
solver-aided host languages. In Michael F. P. O’Boyle and Keshav Pingali, editors,
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 530–541. ACM,
2014.

[80] Antti Valmari. Stubborn sets for reduced state space generation. In Grzegorz
Rozenberg, editor, Advances in Petri Nets 1990 [10th International Conference on
Applications and Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings],
volume 483 of Lecture Notes in Computer Science, pages 491–515. Springer, 1989.

[81] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. QSYM : A
practical concolic execution engine tailored for hybrid fuzzing. In William Enck
and Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 745–761. USENIX
Association, 2018.

