
1

Deep Representation Learning for Vehicle

Re-Identification

H. Aytaç Kanacı
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Abstract

With the widespread use of surveillance cameras in cities and on motorways, computer vision
based intelligent systems are becoming a standard in the industry. Vehicle related problems such
as Automatic License Plate Recognition have been addressed by computer vision systems, albeit
in controlled settings (e.g.cameras installed at toll gates). Due to the freely available research
data becoming available in the last few years, surveillance footage analysis for vehicle related
problems are being studied with a computer vision focus. In this thesis, vision-based approaches
for the problem of vehicle re-identification are investigated and original approaches are presented
for various challenges of the problem.

Computer vision based systems have advanced considerably in the last decade due to rapid
improvements in machine learning with the advent of deep learning and convolutional neural net-
works (CNNs). At the core of the paradigm shift that has arrived with deep learning in machine
learning is feature learning by multiple stacked neural network layers. Compared to traditional
machine learning methods that utilise hand-crafted feature extraction and shallow model learn-
ing, deep neural networks can learn hierarchical feature representations as input data transform
from low-level to high-level representation through consecutive neural network layers. Further-
more, machine learning tasks are trained in an end-to-end fashion that integrates feature extrac-
tion and machine learning methods into a combined framework using neural networks.

This thesis focuses on visual feature learning with deep convolutional neural networks for the
vehicle re-identification problem. The problem of re-identification has attracted attention from
the computer vision community, especially for the person re-identification domain, whereas ve-
hicle re-identification is relatively understudied. Re-identification is the problem of matching
identities of subjects in images. The images come from non-overlapping viewing angles cap-
tured at varying locations, illuminations, etc. Compared to person re-identification, vehicle re-
identification is particularly challenging as vehicles are manufactured to have the same visual
appearance and shape that makes different instances visually indistinguishable. This thesis in-
vestigates solutions for the aforementioned challenges and makes the following contributions,
improving accuracy and robustness of recent approaches. The contributions are the following:
(1) Exploring the man-made nature of vehicles, that is, their hierarchical categories such as type
(e.g.sedan, SUV) and model (e.g.Audi-2011-A4) and its usefulness in identity matching when
identity pairwise labelling is not present (2) A new vehicle re-identification benchmark, Vehicle
Re-Identification in Context (VRIC), is introduced to enable the design and evaluation of vehi-
cle re-id methods to more closely reflect real-world application conditions compared to existing
benchmarks. VRIC is uniquely characterised by unconstrained vehicle images in low resolution;
from wide field of view traffic scene videos exhibiting variations of illumination, motion blur,
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and occlusion. (3) We evaluate the advantages of Multi-Scale Visual Representation (MSVR)
in multi-scale cross-camera matching performance by training a multi-branch CNN model for
vehicle re-identification enabled by the availability of low resolution images in VRIC. Experi-
mental results indicate that this approach is useful in real-world settings where image resolution
is low and varying across cameras. (4) With Multi-Task Mutual Learning (MTML) we propose
a multi-modal learning representation e.g.using orientation as well as identity labels in training.
We utilise deep convolutional neural networks with multiple branches to facilitate the learning of
multi-modal and multi-scale deep features that increase re-identification performance, as well as
orientation invariant feature learning.
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Chapter 1

Introduction

1.1 Re-Identification

In Computer Vision understanding and interpreting an image, or a collection of images is the

fundamental task at hand. These fundamental tasks are shaped by, informally, basic questions

that can be asked to that image such as what, where and who. Respectively these questions

lead to problems we have come to define as classification, segmentation and recognition. Re-

Identification is an example of such a problem, where we are interested in interpreting an image

of a certain known subject, such as person or face, and determining if the identity of the subject

is known to the system.

The ubiquitousness of large-scale distributed multi-camera systems capturing continuously

in public spaces (e.g.squares, public transport, highways) and in private spaces (e.g.buildings,

factories, and supermarkets) in modern cities as well as digital imaging devices such as digi-

tal cameras (e.g.smartphones) in our everyday life create vast amounts of digital imaging data.

Specifically in the case of surveillance setting, how the captured data can be used and utilized is

an open research question and the need for analysing this visual data has become an interest in

computer vision.

Let us first introduce the re-identification problem briefly to give an overview of the common

characteristics of the problem and its setting. Re-identification (Re-ID) aims to identify identities

among various camera views. The goal is to recognize identities, using face or the whole-body

images, namely, face recognition and person (whole-body) re-identification.
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The problem is usually set as the following; given a probe image, can we find the matching

image with the same identity among the images in the gallery set? A gallery is a collection of

images with a predefined(known, non-arbitrary) set of identities, and a probe is the query image

input. Main challenges of this setting are building robust systems to discriminate identities under

varying conditions e.g.different camera angles and different lighting conditions.

In the surveillance setting, recently, re-identification is being applied to vehicle data captured

in cities and motorways. Next section will give more detail on vehicle re-identification.

1.1.1 Vehicle Re-Identification

Figure 1.1: Real world surveillance footage showcasing challenging vehicle re-identification scenario.
Illumination differences make cross-camera matching extremely difficult. Resolution and viewing angles
make number plate recognition infeasible.

In this thesis, we will focus on vehicle re-ID in the surveillance (CCTV) setting. See Fig-

ure 1.1 for example images showcasing typical traffic scenes. With the recent developments of

autonomous driving and smart city applications, the need to accurately analyse vehicles on urban

streets captured by distributed multi-camera systems with computer vision is ever-increasing.

Specially, vehicle re-identification, solving the problem of associating vehicle identities across

camera views at different locations and time, has attracted increasing attention in the research

community [43, 44, 45, 62, 62, 75], as it can play an important role in intelligent transportation

systems and public safety.

Vehicle re-identification aims to search a specific vehicle(s) instance(s) visually; across non-

overlapping cameras (at different locations), captured at diverse camera views in uncontrolled

environments potentially with various lighting and pose differences over a period of time. Par-

ticular instances can appear and disappear in a certain view and need to be associated in another

view, with large differences in lighting conditions and pose at a different location and time, while
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also needing to be differentiated visually from similar candidates.

With the change in subject to vehicles in the re-ID setting, domain specific challenges need

to be taken into consideration. Similar to person re-ID, vehicle re-ID is also challenging because

different vehicle identities have very similar visual appearance (low inter-class variance). Unlike

person re-ID, the pose/orientation of vehicles results in occlusion and drastic visual geometry

changes, since the vehicle is a rigid body (high intra-class variance). This means that it is dif-

ficult to infer the same identity from any given pose/orientation of a vehicle. Even in the same

orientation, vehicles of different identities may look very similar due to being of the same, or

similar, vehicle make/model. This requires vehicle re-ID models to have a more discriminative

fine-grained recognition ability. In fact in vehicle re-id, the same vehicle model manufactured

the same year would have identical visual appearance. This makes vehicle re-identification more

challenging compared to person re-ID. See Figure 1.2. Hence vehicle re-identification is not a

trivial task when we are concerned with matching images visually under these circumstances.

Using number plates for matching is also problematic since only a limited percentage of images

in surveillance settings can provide detectable and recognisable number plate information due to

low resolution, non-frontal camera angles, and occlusions.

Figure 1.2: Inherent qualities of vehicles make vehicle re-ID an ill defined supervised learning problem
where visually identical instances has different labels and same vehicle has captured at different location
by different camera angle has dissimilar appearance. Examples images from VeRi-776[45] benchmark
showcasing high intra-class variance and low inter-class variance.
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1.2 Deep Learning and Convolutional Neural Networks

In machine learning Deep Learning[35, 16], a powerful set of techniques for learning in neural

networks, revolutionized the usage of neural networks in many areas. Particularly in computer

vision, fundamental problems such as object classification [32], object detection [14, 13] and se-

mantic segmentation [49] have shifted the attention of researchers and has been shown to achieve

significant in leaps state-of-the-art performance even surpassing human level performance for

large scale classification tasks [19].

Practically, convolutional neural networks have been shown to recognize handwritten digits[34]

in 90s however only recently novel machine learning techniques [48, 30, 26] allowed neural net-

works to be trained efficiently with improved generalization properties. CNNs are designed to be

efficient for computer vision tasks compared to fully-connected networks with fewer parameters

and fit well to the 2D structure of images with useful properties such as translation invariance.

Using CNNs and deep learning, an exiting possibility is to use end-to-end framework for

feature learning[4]. Previous approaches in computer vision relied on hand crafted detectors and

descriptors for feature extraction which then were used as input for machine learning algorithms.

On the other hand end-to-end learning provides a framework where these two stages are com-

bined and tightly coupled, meaning feature learning and the machine learning tasks are trained

in the same framework at the same time.

1.3 Contributions

Firstly, we propose “Cross-Level Vehicle Recognition” (CLVR) method that uses a vehicle model

classification approach and repurposes the classification model for the vehicle re-identification

task. This approach learns a fine-grained classification model using vehicle model labels (e.g.Ford

Focus, Audi A4) and the learned model is tested with the identity labels for vehicle re-identification.

Finer-grained vehicle instance re-identification task requires expensive and time-consuming cross-

camera identity pairwise labelling, and this approach uses easier to obtain model labels to per-

form the instance re-identification task. This cross-level matching scheme is significantly dif-

ferent from existing methods that typically rely on the availability of identity instance annota-

tions/labels for the re-ID problem and showcases an alternative approach with usable re-identification

accuracy where identity annotations are not available.

With current vehicle re-ID benchmarks, VehicleID [43] and VeRi-776 [45], being limited
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in their real world applicability, we introduce a new benchmark dataset called Vehicle Re-

Identification in Context (VRIC1) for more realistic and challenging vehicle re-identification.

VRIC dataset aims to provide a more realistic vehicle re-ID evaluation benchmark that contains

vehicle images of unconstrained visual appearances with variations in resolution, motion blur,

weather, and occlusion. See Figure 1.1 for video frame samples showing realistic settings with

challenging aforementioned difficulties.

Following our focus on challenging inputs for vehicle re-identification with VRIC bench-

mark, especially with low resolution images, we further investigate a Multi-Scale Vehicle Rep-

resentation (MSVR) learning model to address re-identification performance on low resolution

input. MSVR is a multi-branch CNN architecture for re-identification that aims to learn res-

olution invariant models focusing performance on low resolution images. This is done with a

augmenting the learning for each branch with a consensus signal during the training process.

Extensive comparative evaluations demonstrate the effectiveness of the proposed MSVR method

in comparison to the state-of-the-art vehicle re-ID techniques on the two existing benchmarks

(VehicleID [43] and VeRi-776 [45]) and the newly introduced VRIC benchmark. The inherent

low resolution input captured from wide-view traffic scenes can be better evaluated in VRIC

benchmarks as current available datasets contains mostly high resolution images.

Lastly, we propose an original Multi-Task Mutual Learning (MTML) method that improves

upon the MSVR model by addressing the high intra-class variance matching that arises from

vehicle orientation at the time of capture. This approach is motivated by the observation that

low inter-class variance between identities results in poor performance when similar vehicles

captured with the same orientation are present in the gallery set. This scenario hinders the re-

ID performance as incorrect identities are ranked higher in the results. MTML uses additional

orientation labels to learn orientation aware model weights by utilising multi-modal learning

from identity and orientation supervisory signals together. MTML is similar to MSVR in its

use of multi-branch CNN architecture that simultaneously learns the re-identification task from

different supervisory signals, plus a consensus loss function, to build an improved representation

for the purpose of vehicle re-identification.

1Available at http://qmul-vric.github.io
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1.4 Thesis Structure

The thesis is organised as the following. Chapter 2 describes the re-identification problem as

a similarity learning problem and details the state-of-the-art literature in both person and ve-

hicle re-identification as well as current benchmarks. Chapter 3 discusses fine-grained vehicle

model classification, Chapter 4 introduces Vehicle Re-Identification in Context (VRIC) bench-

mark, Chapter 5 proposes the Multi-Scale Vehicle Representation (MSVR) approach. Chapter

6 further improves the multi-branch learning with Multi-Task Mutual Learning (MTML) model

to incorporate vehicle orientation information with resolution invariant learning. Chapter 7 con-

cludes the thesis.



25

Chapter 2

Literature Review

2.1 Computer Vision and Machine Learning

In recent years, machine learning techniques have advanced significantly due to prevalent deep

learning research. Deep Learning[35] showed that Artificial Neural Networks are powerful high

level feature extractors from raw input when neurons are organised as consecutive layers, trans-

forming the input to high-level features as the network becomes deeper. Currently, modern neural

network models can contain hundreds of layers [20] and such models are called Deep Neural Net-

works giving rise to the popularity of the term Deep Learning. Deep learning has proven to be

shown the most performant approach not only in computer vision [32, 53, 57, 20] but many other

areas of research domains such as machine translation [65] and voice recognition [22]. Such

deep neural networks take advantage of the capabilities offered by modern graphical processing

units (GPU) to train large neural networks with millions of parameters.

Image understanding is the core interest in Computer Vision and recognition(identification)

is one of the most studied to in modern computer vision. Researchers have formulated typical

scenarios where determining an identity of humans in different modalities such as face detection,

verification and person re-identification. The topics have attracted interest not only because they

propose useful for applications such as security and behavioural analysis but also they help arrive

at better understandings of problems that are at the core of computer vision. Particularly in com-

puter vision, fundamental problems closely related to classification[32], such as object detection

[14, 13] and semantic segmentation [49] as well as low level image processing tasks e.g. edge de-
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tection and optical flow have attracted attention from researchers and has been shown to achieve

significant in leaps state of the art performance, even surpassing human level performance for

large scale classification tasks[19], when using modern neural networks.

2.1.1 Supervised Learning for Computer Vision

Classification

Classification is a process of categorizing an input as one of the given set of classes. For example,

handwritten digit recognition classifies given input as one of the digits, 0-9. LeCun et al. [34]

introduced a convolutional neural network(LeNet5) and showed neural networks can be used for

classification handwritten digits successfully. Modern CNNs use almost identical frameworks

as this seminal work, adding modern modifications that make learning more efficient with better

representation learning capabilities. ImageNet[10] visual recognition challenge provided the first

large scale dataset for computer vision tasks. For training, ImageNet provides 1.2 million images

with 1000 category labels. At this scale, the computer vision models trained on this dataset can

be used as a general purpose computer vision model for visual classification tasks. Krizhevsky et

al. [32] introduced the AlexNet model with significantly more parameters than previously used.

This model performed significantly better than traditional computer vision methods by winning

2012 ImageNet[10] challenge, with 16% error surpassing the closest competitor at 26% error by

a large margin, and cementing deep learning approach in computer vision. This modern model

successfully uses pooling and strided convolutions with ReLU activations, compared to sigmoid

activations in LeNet5. Following the success of AlexNet, VGG[6] models improved the perfor-

mance by utilising 3× 3 kernels in all convolutional layers of the network, showcasing simpler

uniform structure can provide state-of-the-art performance. Following this, more complex con-

volutional layer structures with parallel data processing as in Inception[56], residual connections

and bottleneck layers in ResNet[20] as well as BatchNorm[57] layers that allow deeper CNN

models with significantly more layers to be trained quickly and efficiently.

Fine Grained Visual Classification

When the provided label for a dataset identifies subcategories of a certain type of subject of in-

terest e.g.species of dogs[29], birds [60] etc. we are dealing with a similar task but with finer

granularity of information provided by labels. Convolutional neural networks have been proving

to be quite performant in this setting without requiring the learning framework to be changed.
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This is the power of neural networks in supervised learning approaches. In fine grained vi-

sual classification, standard classification network models can be utilised with good performance

however task-specific modifications [41, 27] do increase performance.

One closely related problem to vehicle re-identification is vehicle model classification [39,

18, 42, 69, 54, 25]. But, the two problems are usually studied independently. For example, Yang

et al. [69] propose a part attributes driven vehicle model recognition. They also contribute a

large comprehensive car dataset named “CompCars” with model class labels but without vehicle

identity labels.

Verification

A facial recognition system is a technology capable of matching a human face from a digital

image or a video frame against a database of face. As the faces are coming from a predefined set,

this problem has almost the same setting of classification in terms of machine learning approach,

but the granularity of information provided by the dataset labels are identities rather than cate-

gories or subcategories. The ground truth should come in pairs of images denoting their identity

match or otherwise. Then the verification score is given by the percentage of pairs that correctly

predicts if the image pair has the same identity or not. Both re-identification and verification uses

very same loss functions during model training [51, 64] as the approaches are quite similar with

just a small difference in test setting.

2.2 Re-Identification

2.2.1 Problem Definition

In computer vision Re-Identification is problem of matching identities visually. The matching is

usually done between different viewing angles, and/or lighting conditions of the identities, e.g.

matching of images that are captured from different surveillance cameras in a building. In a sense,

it can be considered as a case of classification problem where classes are instances(identities).

However having all identities available to us is neither feasible nor preferred for tackling this

problem. For this reason re-identification problem is formulated in the following way. Similar to

classification, it is a supervised learning problem. We have multiple examples of data for each

identity, preferably from various capture conditions and angles, in the training set. Each example

is labelled with identity information. However the train set and test set are disjoint i.e.contain
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Figure 2.1: Overview of the supervised learning tasks and key differences in problem settings regarding
data collection and inherent goal of the visual representation learning.

different set of identities. Meaning during testing time, test classes are unseen compared to

training time. Figure 2.1 highlights the differences between re-identification and related problems

and shows their general characteristics in terms of the images in the datasets and the provided

labels.

2.2.2 Testing

Traditionally, for person and face re-ID each dataset had slightly different evaluation settings.

This is still valid but in time, as the field matured common characteristics emerged. Images in

the test classes are separated in two categories: probe and gallery. Note that all test identities

are present in probe and gallery sets. Probe images are query images i.e.images that are to be

matched. For each probe image, the images in the gallery set are ranked(sorted) according to a

similarity metric.

The re-ID score is given by the percentage of the rank-n images (first n images after sorting)

that have the same label as the probe image e.g. rank-1 gives the score by the most similarly

sorted image in the gallery set. This score is reported as the percentage of the all probe images

that satisfy rank-n, where n is usually set as 1 and 5. Moreover a Cumulative Matching Char-
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Figure 2.2: Overview of the re-identification evaluation using learned CNN model to extract feature vector
representation and ranking.

acteristic(CMC) can be reported showing all the percentages of rank-1 to rank-N, where N is a

relatively large natural number i.e. 50. Figure 2.2 shows the general framework of the testing in

re-identification.

2.3 Vehicle Re-Identification

Whist vehicle re-ID is less studied than person re-id [15, 36, 2, 66, 37, 55, 38, 74], there are a

handful of existing methods. Notably, Feris et al.[12] proposed an attribute-based re-ID method.

The vehicles are firstly classified by different attributes like vehicle model and colours. The re-ID

matching is then conducted in the attribute space. Dominik et al.[70] used 3D bounding boxes

for rectifying car images and then concatenate colour histogram features of vehicle image pairs.

A binary linear SVM model is then trained to verify whether a pair of images have the same

identity. Both methods rely heavily on hand-crafted visual features and consecutive machine

learning training that result in poor performance with weak model generalisation.

More recently, deep learning techniques have been used for vehicle re-identification. Liu et

al.[45] explored a deep neural network to estimate the visual similarities between vehicle images.

Liu et al.[43] also designed a Coupled Cluster Loss (CCL) to boost a multi-branch CNN model

for vehicle re-id. All these methods utilise the global appearance features of vehicle images and

ignore local discriminative regions. To explore local information and motivated by the idea of

landmark alignment [71] in both face recognition [58] and human body pose estimation [47],

Wang et al.[62] considered 20 vehicle keypoints for learning and aligning local regions of a
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vehicle for re-id. Clearly, this approach comes with extra cost of exhaustively labelling these

keypoints in a large number of vehicle images, and the implicit assumption of having sufficient

image resolution/details for computing these keypoints.

Additionally, space-time contextual knowledge has also been exploited for vehicle re-ID sub-

ject to structured scenes [45, 52]. Liu et al.[45] proposed a spatio-temporal affinity approach for

quantifying every pair of images. Shen et al.[52] further incorporated spatio-temporal path infor-

mation of vehicles. Whilst this method improves the re-ID performance on the VeRi-776 dataset,

it may not generalise to complex scene structures when the number of visual spatio-temporal

path proposals is very large with only weak contextual knowledge available to facilitate model

decision.

2.4 Datasets

Liu et al. [43] introduced the “VehicleID” benchmark with a total of 221,763 images from 26,267

IDs. In parallel, Liu et al. [44] created “VeRi-776“, a smaller scale re-ID dataset (51,035 images

of 776 IDs) but with space-time annotations among 20 cameras in a road network. Recently, Yan

et al.[68] presented two large scale datasets (846,358 images of 141,756 IDs in “VD1”, 690,518

images of 79,763 IDs in “VD2”) with constrained viewing angle visual characteristics similar

to VehicleID. Finally, CityFlow[59] with 56,277 bounding boxes in total, where 36,935 of them

from 333 object identities form the training set, and the test set consists of 18,290 bounding

boxes from the other 333 identities. CityFlow is the most challenging addition to vehicle re-

identification datasets as it was captured from from 40 cameras across 10 intersections, with the

longest distance between two simultaneous cameras being 2.5 km.

Whilst existing benchmarks have contributed significantly to the development of vehicle re-

ID methods, they only represent constrained test scenarios due to the rather artificial assumption

of having high-quality images of constant resolution. This makes them limited for testing the

true robustness of re-ID matching algorithms in typically unconstrained wide-view traffic scene

imaging conditions. The VRIC benchmark introduced in this work addresses this limitation by

providing a vehicle re-ID dataset with more realistic imaging quality from unconstrained viewing

conditions giving rise to changes in resolution, motion blur, weather, illumination, and occlusion.

A summary of the dataset statistics are available in Table 2.1.
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VehicleID

Figure 2.3: Sample images of collected images from the VehicleID dataset.

The VehicleID [43] dataset contains data captured during daytime by multiple real-world

surveillance cameras. It contains 221,763 images of 26,267 vehicles in total and 78,982 images,

which have been used for model training, are labelled with three attributes: colour, vehicle model

and vehicle ID. There are three gallery sets containing 800, 1600 and 2400 unique identities.

Colour and vehicle model can be used as coarse attributes which can be useful for 7 distinct

colours, 250 distinct models in total. The train and test split identities are disjoint sets, however

each identity is only captured from single viewpoint. In this regard, it is different from usual

person re-ID datasets and it is not suitable for multi-camera re-identification evaluation. See

Figure 2.3 for example images.

VeRi-776

Introduced in [45], Veri-776 contains over 50,000 images of 776 vehicles captured by 20 cameras

covering a 1 km2 area in 24 hour period. Images are also labelled with attributes, namely, vehicle

type and colour. Each vehicle is captured by 2 to 18 cameras at different locations. The database

also provides 9000 vehicle tracks.

The training set has 576 vehicles with 37,778 images and the testing set has 200 vehicles with

11,579 images. Also in [45] a different evaluation method is introduced other than the image-to-

image ranking. The database provides 1678 query images and 2021 testing tracks for evaluating
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Table 2.1: Summary of Characteristics of existing vehicle re-identification datasets.

Dataset Images IDs Cameras Motion Blur Illumination Occlusion

VehicleID [43] 113,123 15,524 - No Limited No

VeRi-776 [45] 51,034 776 20 No Limited No

CityFlow [59] 56,277 666 40 No Limited No

VRIC 60,434 5626 120 Unconstrained Unconstrained Unconstrained

image-to-track scenario which authors say is closer to the real world scenario. Compared to

VehicleID this dataset is relatively small but has images that are captured from multiple cameras

of the same identity, thus it is the first true vehicle re-ID dataset.

CityFlow

The most recent vehicle re-identification benchmark, CityFlow [59], a city-scale traffic camera

dataset consisting of more than 3 hours of synchronised HD videos from 40 cameras across

10 intersections, with the longest distance between two simultaneous cameras being 2.5 km.

CityFlow has large-scale spatial coverage and with large number of cameras/videos in an urban

environment. The dataset contains more than 56,277 annotated bounding boxes covering a wide

range of scenes, viewing angles, vehicle models, and urban traffic flow conditions.

The CityFlow dataset [59] has 36,935 images of 333 IDs in the training set and 333 different

IDs in the test set. The standard probe and gallery sets consist of 1,052 and 18,290 images respec-

tively. Baseline benchmarks tested on CityFlow are still lower than 35% in mAP. In comparison,

performance of the same method on other public benchmarks, using the same implementations

and hyper-parameters, is significantly better, thus verifying that CityFlow is indeed more chal-

lenging [59].

2.5 Discussion

Convolutional Neural Networks [32, 20], have proven to be the most effective tool we have in our

disposal that can achieve high performance accuracy in most computer vision tasks. This is due

to the powerful high-level features learned by deep neural networks with many weight parame-

ters. Following recent developments in the state-of-the-art vehicle re-identification literature, this

thesis explores many aspects of training and deploying vehicle re-identification models that can
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learn discriminative visual representations for challenging input data. Approaches presented here

have improved performance in challenging situations such as low resolution images, illumination

and pose variance.

Approaches to vehicle re-identification in this thesis are laid out in the following chapters.

Chapter 3 Vehicle re-identification in unconstrained images is a challenging computer vision

task due to the subtle visual appearance discrepancy between different identities and large vi-

sual appearance changes of the same vehicle instance. Existing methods rely on the availability

of pairwise annotations. In this work, we question the necessity of costly pairwise identity la-

belling by exploiting the inherent hierarchical nature of vehicle identity and vehicle model type

so as to eliminate the need of identity level label collection. Specifically, we propose to transfer

the fine-grained vehicle model discriminative representation for instance re-ID matching task by

leveraging the discriminative capacity of fine-grained classification at the vehicle model level.

This realises “Cross-Level Vehicle Recognition” (CLVR). Extensive comparative experiments

demonstrate the effectiveness of the proposed CLVR method compared to state-of-the-art ap-

proaches of using fine-grained identity pairwise labels on the largest vehicle re-ID benchmark

dataset.

Chapter 4 Existing vehicle re-identification (re-id) evaluation benchmarks consider strongly ar-

tificial test scenarios by assuming the availability of high quality images and fine-grained appear-

ance at an almost constant image scale, reminiscent to images required for Automatic Number

Plate Recognition, e.g.VehicleID benchmark. Such assumptions are often invalid in real-world

vehicle re-id scenarios where arbitrarily changing image resolutions (scales) are the norm. This

makes the existing vehicle re-ID benchmarks limited for testing the true performance of a re-ID

method. We introduce a more realistic and challenging vehicle re-ID benchmark, called Ve-

hicle Re-Identification in Context (VRIC). In contrast to existing datasets, VRIC is uniquely

characterised by vehicle images subject to more realistic and unconstrained variations in scale

(resolution), motion blur, illumination, occlusion, and viewpoint. It contains 60,434 images of

5,626 vehicle identities captured by 60 different cameras at heterogeneous road traffic scenes in

both day-time and night-time.

Chapter 5 Given the nature of this new benchmark VRIC, we further investigate a matching

approach to vehicle re-ID by learning a multi-scale discriminative feature representations from

varying resolution images. Compared to existing datasets, resolution of images in VRIC are more
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than 50% smaller in width and height on average. Specifically, we design a consensus learning

loss function by fusing features from multiple convolutional network branches to get more robust

features for low resolution image matching. In our experiments, we will showcase the efficacy

of using multi-branch multi-scale convolutional neural network design to learn models that can

perform better on vehicle re-identification, increasing the matching performance for image pairs

of varying resolution.

Chapter 6 Another prominent challenge of vehicle re-ID is that the visual appearance of vehicles

may drastically change according to diverse viewpoints and illumination. Most existing vehicle

re-ID models cannot make full use of various complementary vehicle information, e.g. vehicle

type and orientation. In this paper, we propose a Multi-Task Mutual Learning (MTML) deep

model to learn discriminative features, simultaneously from multiple branches similar to the

previous chapter but also using additional label supervision, i.e.combining identity level label

supervision at multiple scales with extra vehicle orientation information. Extensive compara-

tive evaluations demonstrate the effectiveness of our proposed MTML method in comparison to

the state-of-the-art vehicle Re-ID techniques on a large-scale benchmark dataset, VeRi-776 and

CityFlow.
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Chapter 3

Fine-grained Vehicle Model Classification

for Vehicle Instance Re-ID

3.1 Introduction

Motivated by the extensive work on person re-ID and the capacity of deep neural network mod-

els learning from large scale training data, recent vehicle re-ID methods are typically designed

to learn a discriminative deep feature representation [43, 45] where images have identity labels

available. Existing methods often rely on the availability of cross-camera identity annotations

collected by exhaustive human labelling. This approach is not scalable to many real-world con-

ditions as cross-camera labelling of vehicle reappearance is costly as well as time consuming.

In this work, we investigate the usefulness of fine-grained vehicle model classification for even

more finer-grained vehicle instance search and re-identification without the need of cross-camera

vehicle identity label supervision in training. The motivation for this approach comes from the

observations: (1) Vehicle identity is intrinsically associated with the vehicle model classes, in

other words, the model and identity labels form a hierarchical relation. (2) Relative to the identity

labels, the vehicle model labelling is much easier to collect without the need for cross-camera

vehicle annotation, although less fine-grained with weaker supervision information. (3) There

are many different vehicle models with small visual appearance differences e.g.different mod-

els from the same manufacturer or slight styling changes that are made every year for the same

model. This means that model class labels are already fine-grained and potentially provide no-

table discriminative information relevant to vehicle re-ID task.
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Figure 3.1: Illustration of vehicle re-identification challenges: (First Row): Stark visual similarities be-
tween different vehicle instances with same model (low inter-class variance); (Second Row): Significant
variations in visual appearance due to variation of illumination, view-angle for a given identity label (high
intra-class variance).

3.2 Modelling Framework

3.2.1 Deep Convolutional Neural Networks

This section will take a closer look at the CNN architectures in similarity learning for re-identification

problem. As mentioned previously, state-of-the-art re-identification architectures mostly take in-

spiration from tried and tested deep neural networks for visual image classification tasks bench-

marked with ImageNet challenge [10]. Architectures like [32, 53] provided very successful in-

carnations of CNN architectures for classification and these types of architectures are almost

always used as-is with minor modifications in re-ID setting. These modifications are what allows

researchers to derive the learned features of similar and dissimilar examples in the feature space.

This, in practice, means choosing appropriate loss functions to derive the learning procedure to

end up with features that are robust to low inter-class variance and high intra-class variance. For

an illustration of this challenge see Figure 3.1.

Formally, a CNN learns a mapping f . Each input (image) xxx can be transformed in to feature

vector zzz and WWW is the weights of the network:

zzz = f (xxx|WWW ) (3.1)

CNN models consist of layers that are stacked up one after the other. State-of-the-art ar-

chitectures consist of two types of layers in two distinct stages. The first stage after the input

consists of convolutional layers and the second stage consists of fully-connected layers. The first

stage is analogous to a feature extractor for the image with mainly convolutional layers resulting
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in feature vector zzz and that is fed to the second stage, a linear classifier made of fully-connected

layers. This approach is referred as end-to-end learning, as starting from raw input including

the last classification layer, the network parameters are updated in end-to-end fashion, providing

updates to both feature extraction and classification parameters at each step in the training proce-

dure. In other words previously distinct steps in computer vision, namely, feature extraction and

classifier training are unified in and end-to-end framework.

3.2.2 Loss Functions for Re-Identification

Cross-Entropy Loss

In a classification problem with C classes, we can use the cross-entropy between ground-truth

label and the model’s estimated predictions as the cost function, thus we minimise the negative

log-likelihood of the predictions of the model f . This is the standard approach for learning

discriminative models in classification. We can use the same approach in re-identification by

treating identity labels as the classes when training re-ID models.

Formally, given a training image xxx, and ground truth one-hot label vector yyy ∈ RC, we define

the estimated posterior probability distribution vector p̂pp ∈ RC of xxx by converting the models

output logits zzz ∈ RC (see Eq 3.1) to a valid probability distribution using the softmax function.

Specifically the j-th class posterior probability p̂ j is written as:

p̂ j = P(y j = y|xxx) =
exp(WWW>j zzz)

∑
C
k=1 exp(WWW>k zzz)

(3.2)

where y is the ground truth label and WWW k the prediction function parameter of model class k.

The negative log likelihood − logP(yyy | xxx) or equivalently the cross-entropy LCE between

one-hot vector label encoding y and model’s prediction p̂pp over C classes is computed by:

LCE =
C

∑
j=1
−y j log p̂ j (3.3)

Triplet Loss

Triplet loss is the standard technique in a metric learning system where we know some examples

should lie closer to certain examples than others in a feature space. This approach have been

used successfully in deep learning applications[51, 21]. Formally, we have the triplets of input

selected from the training set, namely X = {< xxx(i)a ,xxx(i)p ,xxx(i)n >}N
i=1 namely anchor, positive and

negative input images as denoted by the superscripts; where xxx(i)a and xxx(i)p belong to the same

identity while xxx(i)a and xxx(i)n belong to different identities. The feature vectors < zzz(i)a ,zzz(i)p ,zzz(i)n >
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must satisfy the following constraint:

||zzz(i)a − zzz(i)p ||22 +α ≥ ||zzz(i)a − zzz(i)n ||22 (3.4)

after the training of the model. Loss function is defined as the sum of all triplet’s hinge loss:

L=
N

∑
i=1

max{||zzz(i)a − zzz(i)p ||22 +α−||zzz(i)a − zzz(i)n ||22,0} (3.5)

Hinge loss penalises the examples that are not similar enough by theampltthe margin α . If the

distance to the positive example is bigger than to the negative example plus the margin, we have

a positive loss, otherwise the loss is 0 for that triplet.

When using triplet loss, one concern is that which triplets are to be chosen during training,

namely triplet sampling. Uniformly sampling the triplets from the whole dataset is not desired

because the number of triplets are in the order of O(n3) and most triplets will easily satisfy the

triplet constraint. It is essential to choose triplets that are more informative so that the training

converges quickly with efficient learning. Two approaches have emerged. First option is pausing

the training process and mining the most informative triplets using up-to-date feature vectors as in

[51, 61]. Second, choosing the most informative triplets from the current minibatch, a minibatch

specifically designed for re-identification as in [21].

Coupled Cluster Loss

This is a variation of the triplet loss idea, it is relevant because it was used recently to achieve best

re-ID results on the VehicleID dataset in [43]. Here two sets of positive and negative examples

are chosen and the anchor chosen from the positive set. Then the loss is calculated between the

mean of the positive examples and the closest negative example to anchor. Figure 3.2 shows a

visualisation. For N positive, M negative samples: {xxx(i)p }N
i=1,{xxx

(i)
n }M

i=1 the loss is defined as:

L=
N

∑
i=1

1
2

max{||zzz(i)p − ccc||22 +α−||zzz(i)n∗ − ccc||22,0} (3.6)

where ccc = 1
N ∑

N
i=1 zzz(i)p , zzz(i)n∗ is the closest negative sample to ccc, and α the margin. This formulation

helps mean feature vector of the positive images in a batch to form clusters and triplet sampling

becomes less complicated.

Contrastive Loss

This loss was introduced in [9] and was shown in an application to face verification. Here the

network is trained in pairs of inputs instead of triplets and a binary label y ∈ {0,1} denotes if the
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Figure 3.2: Coupled Cluster Loss

pairs are from the same class or not. DW (xxx1,xxx2) = ||z1−z2||2 is the distance between the feature

representations of xxx1 and xxx2. And the loss function for the tuple xxx1,xxx2 and the binary label Y is

defined as:

L(y,xxx1,xxx2) = (1− y)LS + yLD

where LS and LD denotes partial losses for similar and dissimilar pairs. The binary label y effec-

tively cancels out either LS and LD by multiplication. The exact loss function is:

L(y,xxx1,xxx2) = (1− y)
1
2
(DW )2 + y

1
2

max(0,m− (DW )2)

where m is the margin of similarity imposed by the training. As triplet loss inherently enforces a

three-branch structure, contrastive loss enforces a two-branch structure conceptually. However,

in practice, one branch is sufficient as the branches share the same weights and input pairs can

be processed sequentially.

Center Loss

Introduced in [64] center loss is used in conjunction with the standard cross-entropy loss used

in classification. Using this loss is as simple as changing the loss function and no complicated

triplet sampling is necessary. The loss keeps track of all the classes’ feature mean(center) and

works to keep these centers separated in the feature space.

LC =
1
2

m

∑
i=1
||zi− cyi ||22

The centers cyi are updated with each minibatch and cross-entropy loss, LS, and center loss LC

are summed L = LS +λLC. The scalar λ is used to weight the two loss functions.

Figure 3.3 shows the effect of the hyper parameter λ when center loss is used to classify the

MNIST dataset.
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Figure 3.3: The distribution of deeply learned features under the joint supervision of soft- max loss and
center loss. The points with different colours denote features from different classes. The white dots
(c0, · · · ,c9) denote 10 class centers of deep features for each label (digits 0–9) in MNIST dataset.

3.3 Cross-Level Vehicle Recognition

Inspired by the recent work done on vehicle model classification benchmark CompCars [69] and

more generally, the application of deep convolutional neural networks [41, 27] on fine-grained

recognition tasks [29, 60], we explore a similar learning paradigm for vehicle re-ID, using ve-

hicle model labels instead of identity labels for learning. Specifically, we propose to utilise the

vehicle model discriminative representation for more fine-grained identification task through our

“Cross-Level Vehicle Recognition” (CLVR) approach. See Figure 3.4 for an overview of CVLR

processing pipeline.

The contributions of this work are: (1) We propose a vehicle discriminative learning model

for fine-grained vehicle instance re-identification task so that expensive and time-consuming

cross-camera identity pairwise labelling can be avoided by using fine-grained vehicle model

classification models for vehicle re-identification. This cross-level matching scheme is signif-

icantly different from existing methods that typically rely on the availability of identity instance

annotations for re-ID models. Apart from reducing labelling cost, this approach takes into ac-

count that vehicle identity instance labelling can potentially cause a negative impact to re-ID

model optimisation due to the strong similarities of different instances of the same vehicle model

(low-intra class variance). To our best knowledge, this is the first attempt of exploiting the po-
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Figure 3.4: Overview of the proposed Cross-Level Vehicle Recognition (CLVR) method for vehicle re-
identification: (1) Training (vehicle model classification): Learn a less fine-grained vehicle model classi-
fication deep model by a customised Inception-V3 [57] CNN network; (2) Testing (Vehicle Re-ID Match-
ing): Deploy the learned CLVR model as a feature extractor using the output of the fully-connected feature
vector (Dense-1024) layer for instance level vehicle re-identification.

tential of vehicle model information for semantically correlated instance level re-identification

tasks. (2) We present a simple but effective CLVR model for vehicle re-identification by exploit-

ing state-of-the-art deep Convolutional Neural Network (CNN) models (e.g. Inception-V3 [57])

for achieving not only accurate vehicle model classification but also reliable vehicle instance

re-identification beyond just vehicle model-level recognition. Extensive comparative evaluations

demonstrate the effectiveness of the proposed CLVR method regarding existing state-of-the-art

vehicle re-ID models [43] utilising instance level label supervision on the largest vehicle re-ID

benchmark dataset.

3.3.1 Fine-grained Vehicle Model Classification

We aim to learn a deep representation model for a generic distance matching (e.g. L2) based

vehicle re-identification without the need for tedious identity labels in model training, instead

only less fine-grained vehicle model labels are exploited. We assume a set of n vehicle bounding

box training images X = {xxx(i)}n
i=1 with the corresponding vehicle model class labels as Y =

{yyy(i)}n
i=1. These training images capture the visual appearance and variation of Cmodel different

vehicle model categories where y(i) ∈RCmodel is one-hot encoded ground truth vehicle model label.

For model training, we utilise typical classification formulation with the cross-entropy loss

function to optimise vehicle model discrimination given training labels of multiple vehicle model

classes. Formally, we predict the posterior probability p̂ j of training image xxx over all vehicle

model labels y j:

p̂ j = P(y j = y|xxx) =
exp(WWW>j zzz)

∑
Cmodel
k=1 exp(WWW>k zzz)

(3.7)

where zzz refers to the feature vector of xxx from the CLVR CNN model, and WWW k the prediction
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function parameter of training model class k.

The model training loss on a minibatch of Xbatch = {xxx(i),yyy(i)}nbatch
i=1 training samples is com-

puted as:

Lbatch =−
1

nbatch

nbatch

∑
i=1

log
(

P(yyy(i) | xxx(i)
)

(3.8)

The negative log likelihood − logP(yyy | xxx) or equivalently the cross-entropy LCE between

one-hot vector label encoding y and model’s prediction p̂pp over C classes is computed by:

LCE =
C

∑
j=1
−y j log p̂ j (3.9)

3.3.2 Implementation Details

Training

We use the 42-layers Inception-V3 CNN architecture design [57] due to its high computational

efficiency (higher classification accuracy with fewer parameters on ImageNet benchmark). We

modify the network by (1) removing the original 1000-D classification layer (for ImageNet 1,000

class) and (2) adding a fully-connected feature layer with 1024 neurons on top of the Inception-

V3 average pooling layer, followed by a new classification layer for accommodating the 228

vehicle model classes. Other competitive architectures, e.g. ResNet [20] or VGG [53], can be

modified in a similar manner for this purpose.

Testing

After the CLVR deep CNN model is trained with vehicle model label annotations, we deploy

the last fully connected layer output (1024-D vector) as the feature representation for more fine-

grained vehicle re-ID at the instance level. We utilise only a generic distance metric without

camera-pair specific distance metric learning, e.g. L2 distance. Specifically, given a test probe

vehicle image zp from one camera view and a set of test gallery images {zg
i } from other non-

overlapping camera views: (1) We first compute their corresponding 1024-D feature vectors by

forward-feeding vehicle images into the trained CLVR model, denoted as zp and {zg
i }. (2) We

then compute the cross-camera similarity score between zp and zg
i by L2 distance. (3) We lastly

rank all gallery images in ascending order by their matching distances to the probe image.
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3.4 Experiments

3.4.1 Fine-grained Vehicle Model Classification

For evaluation, we selected the recent large vehicle re-identification dataset VehicleID [43]. This

dataset provides a standard training/test images split: (1) 113,346 images of 13,164 identities

for model training (8.61 images per identity); and (2) non-overlapping 108,211 image of 13,164

identities for test evaluation (8.22 images per identity). Of which 90,168 images in the training

set are also labelled with vehicle model categories. Table 3.1 summarises of the image statistics.

Table 3.1: Summary of VehicleID Dataset.

Images Train Test

With model label 90168 0

Without model label 23178 108221

Total 113346 108221

Note that, only vehicle model labels are required for training fine-grained vehicle model clas-

sification. In total, there are 228 vehicle model classes, with many classes presenting only very

subtle visual appearance differences. This causes typical fine-grained recognition challenges,

further compounded by the uncontrolled appearance variations in illumination, pose, view-angle,

and background clutters (see examples in Figure 2.3). Of the 90,168 images with model labels

we split 80% for training, 20% for testing.
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Figure 3.5: (Left): Classification accuracies over all 228 vehicle model classes; (Right): The training
image size distribution over the corresponding model classes of (Left).

For vehicle model classification, the common accuracy measure, top-1, is used [10], e.g.percentage

of correctly classified images in the test set. Overall, the proposed model achieves 94.8% vehicle

model classification accuracy over all 228 model classes. This suggests the satisfactory per-

formance of our learned deep features in distinguishing the subtle visual discrepancy between

different but very similar vehicle model classes. We further examined the per-class recognition

performance. Figure 3.5 (Left) shows that the vast majority classes can be very accurately recog-
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nised, while a few instances obtain very low (even 0%) accuracy. This is mainly because of only

very sparse corresponding training images available for these poorly detected classes (Figure 3.5

(Right)). For visual evaluation, we show some vehicle model recognition examples in Figure 3.6.

Figure 3.6: Qualitative evaluations of vehicle model classification. (Left): Correctly classified vehicle
images with large visual appearance similarity between different model classes. (Right): Misclassified
vehicle images due to extreme illumination conditions.

3.4.2 Vehicle Re-Identification

We used the cumulative matching characteristic (CMC) as vehicle re-identification performance

measure [43]. The CMC is computed on each individual rank position k as the probe cumulative

percentage of truth matches appearing at ranks≤ k. Moreover, three different scales of vehicle re-

ID test setting are benchmarked: small (6,493 images of 800 identities), medium (13,377 images

of 1,600 identities), and large (19,777 images of 2,400 identities). For each case, one image per

identity is randomly selected from the test set as the probe image, whilst the remaining images

are put into the gallery set. Summary of the test sets are available in Table 3.2.

Table 3.2: Test Gallery Sets in VehicleID.

Small Medium Large

Number of vehicles 800 1600 2400

Number of images 6493 13377 19777

We present the results in Table 3.3. Compared to the state-of-the-art methods, the results

are relatively competitive with the state-of-the-art considering that CVLR uses less informative

model labels in training. The results show 7.2%,4.4% decrease in rank-1 accuracy in small

and large test sets respectively compared to ID label supervised method with pairwise ob-

jective loss function: Coupled Cluster Loss(a variant of triplet loss). Compared to MixedDiff
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Table 3.3: Vehicle re-identification performance comparisons. Metric: CMC measure (%).

Method Pairwise Label Type Rank Small

(800)

Medium

(1600)

Large

(2400)

CCL[43] 3 ID

1

43.6 37.0 32.9

MixedDiff[43] 3 Model&ID 49.0 42.8 38.2

CLVR 7 Model 36.4 32.2 28.5

CCL [43] 3 ID

5

64.2 57.1 53.3

MixedDiff[43] 3 Model&ID 73.5 66.8 61.6

CLVR 7 Model 52.9 48.8 45.6

method which utilises both ID and model labels with two-branch network structure for each type

of label supervision and complicated multi-stage training procedure, the difference increases to

12.6%,9.7% in rank-1 matching. Note that the larger (harder) test set becomes the advantage of

using instance level label supervision diminishes, showcasing the usefulness of coarser model

category labels in realistic larger data setting. These evidences suggest that vehicle model label

supervision in deep neural network training can be effectively used for visual feature learning for

vehicle re-identification. While expensive pairwise identity labels offer finer-grained informa-

tion, model optimisation is likely to get confused, due to the subtle, and possibly no distinguish-

able visual appearance, in training image data. Figure 3.7 show visual examples of probe/gallery

ranking using CLVR on vehicle re-identification.

3.5 Discussion

In contrast to existing methods, we uniquely bridge the connection between vehicle model clas-

sification and vehicle re-ID, by investigating the discrimination capability of vehicle model sen-

sitive deep features in performing more fine-grained identity matching tasks. To our best knowl-

edge, this is the first systematic attempt of investigating this structural knowledge inherent to

man-made vehicles recognition approach in the hope of eliminating the tedious identity-level

fine-grained labelling requirement. The state-of-the-art methods achieve their performance with

typical identity level label supervision during training. Moreover, pairwise loss functions like

triplet loss are often costly as it requires extra steps such as triplet sampling e.g.hard-negative
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Figure 3.7: Highly successful Top-1 ranking examples. Left-most column is the probe image. Ranked
images are ordered in ascending order by their distance from left to right. Green border shows same
identity images, red border notes otherwise.(1 gallery image per ID)

triplet mining as in[43, 51]. This is in contrast to the CLVR design of exploiting only the cheaper

vehicle model annotation in a much simpler way of training i.e.standard CNN training model

training for classification with cross-entropy loss.

This type of approaches is largely motivated by the extensive person re-ID methods [15] due

to their similar nature in the problem level. We have showed that using vehicle model labels are

also useful when we want to match identities of vehicles visually. This is not possible in person

re-identification. However our approach is brittle and still suffers under illumination changes and

the performance is not on par with state-of-the-art that utilise identity labels. Further research is

necessary regarding the use of both labels in conjunction.
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In the following chapter we’ll introduce a more realistic vehicle re-identification benchmark

that tries to collect data points in uncontrolled situations with focus on low resolution images and

that doesn’t constrain the viewing angle to only front/and back views compared to the current

vehicle re-identification benchmark VehicleID[43].
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Chapter 4

Constructing a New Benchmark:

Vehicle Re-Identification in Context (VRIC)

Figure 4.1: Realistic video frames from UA-DETRAC captured in uncontrolled environment showcasing:
(a) common artefacts such as motion blur (b) low resolution with limited number plate visibility (c) dif-
ferent illumination due to time of day and changing weather conditions and time of day i.e.sunny, night,
cloudy and rainy.

4.1 Introduction

We want to establish a realistic vehicle re-ID evaluation benchmark with natural visual appear-

ance characteristics and matching challenges. Whilst these existing benchmarks VehicleID[43]

and VeRi-776[45] have contributed significantly to the development of vehicle re-ID methods,

they only represent constrained test scenarios due to the rather artificial assumption of having
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high quality images of constant resolution (See Table 4.2). This makes them limited for testing

the true robustness of re-ID matching algorithms in typically unconstrained wide-view traffic

scene imaging conditions. To this end, it is necessary to collect a large number of vehicle im-

ages/videos from wide-view traffic scenes.

Given highly restricted access permission of typical surveillance video data, we propose to

reuse existing vehicle related datasets publicly available in the research community.

In the following, we describe the process of constructing the Vehicle Re-Identification in

Context (VRIC) benchmark.

4.2 Methodology

In this chapter we will detail how we repurpose a detection and tracking dataset into re-identification

dataset in the spirit of the DukeMTMC4REID [17]. Like DukeMTMC[50] UA-DETRAC is a de-

tection and tracking dataset but the subject matter is vehicles instead of people. However there is

a signification difference when it comes to re-identification. Multi-tracking multi-camera aspect

is quite important because re-identification is a problem of visual matching of identities between

different camera views hence a multi-camera multi-tracking dataset is perfectly suited for this

conversion. Compared to the aforementioned multi-tracking multi-camera detection and track-

ing datasets, UA-DETRAC is a multi-tracking single-camera detection and tracking dataset. This

is an important distinction to note and Section 4.2.3 discusses how we overcome this drawback.

4.2.1 Source Dataset: UA-DETRAC

UA-DETRAC[63] is a challenging real-world multi-object detection and multi-object tracking

benchmark. The dataset consists of 10 hours of videos captured with a Cannon EOS 550D

camera at 24 different locations at Beijing and Tianjin in China. The videos are recorded at 25

frames per seconds (fps), with resolution of 960x540 pixels. There are more than 140 thousand

frames in the UA-DETRAC dataset and 8250 vehicles that are manually annotated, leading to a

total of 1.21 million labelled bounding boxes of objects.

Based on following considerations: (1) All videos were captured from the real-world traf-

fic scenes (e.g. roads), reflecting realistic context for vehicle re-id. (2) It covers 24 different

surveillance locations with diverse environmental conditions, therefore offering a rich spectrum

of test scenarios without bias towards particular viewing conditions. (3) It contains rich object
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and attribute annotations that can facilitate vehicle re-ID labelling. Samples of the whole scene

images are shown in Fig 4.1.

4.2.2 Frame Selection

Figure 4.2: Samples of cropped image frames in final dataset of the VRIC benchmark.

To construct a vehicle re-ID dataset, we used 60 UA-DETRAC training videos with object

bounding box annotations. For vehicle identity (ID) annotation, we started with assigning a

unique label to each vehicle trajectory per UA-DETRAC video and then manually verified the ID

duplication cases. Since all raw videos were collected from different scenes and time durations,

we found little duplicated trajectories in terms of identity. To ensure sufficient vehicle appearance

variation, we throw away short trajectories with less than 20 frames and bounding boxes smaller

than 24×24. By doing so, we obtained 5,626 vehicle IDs across all 60 videos.

In terms of vehicle instance resolution, the average image resolution of all 60,434 vehicle

bounding-boxes is 69.8×107.5 pixels in width×height, with a variance of 32 to 280 pixels due to

the unconstrained distances between vehicles and cameras. This presents low resolution multi-

scale re-ID matching benchmark compared to available datasets VeRi-776 and VehicleID. Fig 4.3

shows image width and height distributions afters the frame selection process.

4.2.3 Train and Test Data Split

For model training and testing using the VRIC dataset as a benchmark, we randomly split all

5,626 vehicle IDs into two disjoint sets: 2,813 for train, and 2,813 for test.

Train Set

To remove data redundancy coming from consecutive frames, we performed random frame-wise
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Pixels

Figure 4.3: Histogram of image pixel width and height distributions in VRIC.

sub-sampling of the training trajectories rather than adding all the frames in each tracklet to the

benchmark. Subsampling process is done as the following: for each of the identities selected

for the train set, k number of frame indexes are randomly selected from a tracklet, where k is

randomly selected integer between 1 and 40. This gives us a realistic setting with 54,808 where

each identity in the training set has varying number of data points (images).

Test Set

UA-DETRAC is a multi-tracking single-camera detection and tracking dataset unlike its counter-

parts in person tracking where identities observed across cameras. Since there is no cross-camera

pairwise ID matches we simulated cross-view variation by distant sampling of probe and gallery

images. In particular, we defined two pseudo views, near or far, for each tracklet and then built

the probe/gallery sets from the tracklets in the test set by choosing the first and last frames asso-

ciated to near and far cameras corresponding to to probe and gallery images in the test set. As

a result, for each 2813 identities in the test we have chosen one probe-gallery pair and in total test

set contains 5,626 images. Fig 4.4 shows that the near and far views present different viewing

conditions and hence allowing for a good simulation of two non-overlapping camera views. In

this sense, VRIC contains a total 120 pseudo camera views from the 60 original camera views

with unconstrained condition diversity.

From the above, we obtained 54,808/5,626 training/testing images for the VRIC benchmark.

The data partition and statistics are summarised in Table 4.1.
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Table 4.1: Data statistics and partition in VRIC.

Total Training Set
Test Set

Probe Gallery

IDs 5,626 2,813 2,813 2,813

Images 60,434 54,808 2,813 2,813

4.2.4 Evaluation Protocol

Figure 4.4: Examples of probe/gallery test images in the VRIC benchmark. Probe and gallery image pairs
are shown in first and second row respectively.

Resulting VRIC gallery test set only has one image for each identity, this is referred as single-

shot setting. Another way to think about the test as set each identity has one image per view. We

adopted the standard single-shot evaluation setting, i.e. For re-ID performance measure, we used

the Cumulative Matching Characteristic (CMC) [31]. The CMC is computed for each individual

rank k as the cumulative percentage of the truth matches for probes returned at ranks ≤ k. In

practice, the Rank-1 rate is often used as a strong indicator of an algorithm’s efficacy.

4.3 Discussion

VehicleID VeRi-776 VRIC

Figure 4.5: Example images of VehicleID, VeRi-776 and VRIC. Images in each row depict the same
vehicle instance. VRIC images exhibit significantly more unconstrained variations in resolution, motion
blur, occlusion/truncation and illumination within each vehicle bounding-box images.

The main contribution of VRIC benchmark is its varying low-resolution images compared
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Table 4.2: Characteristics of vehicle existing re-id datasets.

Dataset Images IDs Cameras
Resolutions

Width×Height (Mean)
Motion Blur Illumination Occlusion

VehicleID [43] 113,123 15,524 - 345.4×376.1 No Limited No

VeRi-776 [45] 51,034 776 20 376.1×345.4 No Limited No

VRIC [28] 60,434 5626 120 65.9×103.0 Unconstrained Unconstrained Unconstrained

to existing datasets which contain mostly similar resolution images with higher resolution. Ar-

guably more important aspect is the images’ realistic capture conditions with non-constrained

viewing angles and Additionally these images are not in any way constrained by the placement

of cameras where we only get front/back views. Fig 4.5 provides a qualitative comparison of

the collection of images available in competing benchmarks. In Table 4.2 datasets statistics are

also shown highlight the image resolution characteristics combated to current datasets. Existing

benchmarks[43, 45] have contributed significantly to the development of vehicle re-ID methods,

however, they only represent constrained test scenarios due to the rather artificial assumption of

having high quality images of constant resolution.
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Chapter 5

Multi-Scale Vehicle Representation with Multi-Branch

Convolutional Neural Network

5.1 Introduction

Existing vehicle re-identification (re-id) evaluation benchmarks consider strongly artificial test

scenarios by assuming the availability of high quality images and fine-grained appearance at an

almost constant image scale, reminiscent to images required for Automatic Number Plate Recog-

nition, e.g. VeRi-776. Given the nature of this new benchmark VRIC introduced in Chapter 4,

we further investigate a multi-scale matching approach to vehicle re-ID by learning more dis-

criminative feature representations from multi-resolution images. Our approach is inspired by

using a combination of features at different scales as in image pyramids.

Current vehicle re-ID studies are mainly driven by two benchmark datasets, VehicleID [43]

and VeRi-776 [45]. While having achieved significant performance improvement (e.g. from

61.44% by [45] to 92.35% Rank-1 by [62] on VeRi-776), the scalability of existing re-ID algo-

rithms to real-world vehicle re-ID applications remains unclear. All these methods utilise the

global appearance features of vehicle images and ignore local discriminative regions. Moreover,

existing benchmarks present rather artificial tests using high-quality images of high resolution,

no motion blur, limited weather conditions and occlusion. (See Figure 4.5 from previous chapter

for a visual comparison). We investigate a Multi-Scale Vehicle Representation (MSVR) learning

model to address the inherent and significant multi-scale resolution in vehicle visual appearances

from typical wide-view traffic scenes, currently an unaddressed problem in vehicle re-ID due
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to the lack of a suitable benchmark dataset. Extensive comparative evaluations demonstrate the

effectiveness of the proposed MSVR method in comparison to the state-of-the-art vehicle re-ID

techniques on the two existing benchmarks (VehicleID [43] and VeRi-776 [45]) and the newly

introduced VRIC benchmark.

In typical surveillance scenes, vehicles are often captured at varying scales (resolutions),

which causes a significant inter-view feature representation discrepancy in re-ID matching. Our

approach differs notably from existing vehicle re-ID models that typically assume single-scale

representation learning.

5.2 Methodology

Our objective is to extract and represent complementary appearance information of vehicle iden-

tity from multiple resolution scales concurrently in order to optimise re-ID matching in instances

where probe and gallery images differ in resolution. In this work, we investigate this problem in

vehicle re-ID by exploring image pyramid [1, 33] inspired multi-branch CNN architectures where

each sub-branch extracts a feature representation from different scales. Specifically, we exploit

the potential of learning identity discriminative multi-scale representations originally designed

for person re-id in [7].

MSVR Overview

Feature                    Classification
Layer                        Layer

CNN

CNN

IDConsensus
LearningFeature Fusion

x1   

x1
…
xm

xm`

I1

Im

Figure 5.1: Overview of Multi-Scale Vehicle Representation (MSVR) learning for discriminative vehicle
re-ID at varying spatial resolutions. MSVR learns vehicle re-ID sensitive feature representations from
image pyramid by an network architecture of multiple branches all of which are optimised concurrently
(consensus feedback shown in red, see Eq. (5.4)) subject to the same ID label constraints. Importantly, an
inter-scale interaction mechanism is enforce to further enhance the scale-generic feature learning.

The overall MSVR network design is depicted in Fig 5.1. Specifically, MSVR consists of

(m+1) sub-networks: (1) m branches each for learning discriminative scale-specific visual fea-
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tures. Each branch has an identical structure. (2) 1 fusion branch for learning the discriminative

integration of m scale-specific representations of the same vehicle image. Low resolution input

images are scaled down versions of the original images with bilinear interpolation. To max-

imise the complementary advantage between different scales of feature representation in learn-

ing, we concurrently optimise per-scale discriminative representations with scale-specific and

scale-generic (combined) learning subject to the same ID label supervision. Critically, we fur-

ther propagate multi-scale consensus as feedback to regulate the learning of per-scale branches.

Next, we detail three MSVR components: (1) Single-Scale Representation; (2) Multi-Scale Con-

sensus; (3) Feature Regularisation.

(1) Single-Scale Representation We exploit MobileNet [24] to design single-scale branches due

to its favourable trade-off between model complexity and learning capability. To train a single-

scale branch, we use the softmax cross-entropy loss function to optimise vehicle re-ID sensitive

information from ID labels. Assume we have n training samples {X,Y}. The images X =

{xxx(i)}n
i=1 with the corresponding vehicle ID labels Y= {yyy(i)}n

i=1. These training images capture

the visual appearance variations of CID different identities where yyy(i) ∈ RCID is one-hot vector

encoding ground truth vehicle identity label y. Formally, we predict the posterior probability p̂ j

of training image xxx over all vehicle identity labels y j:

p̂ j = P(y j = y|xxx) =
exp(WWW>j zzz)

∑
CID
k=1 exp(WWW>k zzz)

(5.1)

where zzz refers to the feature vector of xxx of the CNN model, and WWW k the prediction function

parameter of training identity class k.

The negative log likelihood − logP(yyy | xxx) or equivalently the cross-entropy LCE between

one-hot vector label encoding y and model’s prediction p̂pp over C classes is computed by:

LCE =
C

∑
j=1
−y j log p̂ j (5.2)

(2) Multi-Scale Consensus We learn multi-scale consensus on vehicle ID classes between m

scale-specific branches. We achieve this using joint-feature based classification. First, we obtain

the joint feature vector of different scales by vector fusion. In MobileNet, feature vectors are

computed by global average pooling of the last CNN feature maps with a dimension of 1024.

Hence, this fusion produces a 1024×m-D feature vectors. We then use this combined features to

perform classification for providing multi-scale consensus on the ID labels. We again adopt the

cross-entropy loss (Eq (5.2)) as in single-scale representation learning.
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(3) Feature Regularisation We regularise the single-scale branches by multi-scale consensus for

imposing interaction between different scale representations in model learning. Specifically, we

propagate the consensus as an auxiliary feedback to regularise the learning of each single-scale

branch concurrently. We first compute for each training sample a soft probability prediction (i.e.

a consensus representation) P̃ = [p̃1, · · · , p̃i, · · · , p̃CID ] as:

p̃i = p̃(ỹ = y|xxx) =
exp( zi

T )

∑
CID
k=1 exp( zk

T )
, i ∈ [1, · · · ,CID] (5.3)

where z is the logit and T the temperature parameter (higher values lead to a softer probability

distribution). We empirically set T = 1 in our experiments. Then, we use the consensus probabil-

ity P̃ as the teacher signal to guide the learning process of each single-scale branch (student). To

quantify the alignment between these predictions, we use the cross-entropy measurement which

is defined as:

H(P̃,P) =− 1
CID

CID

∑
i=1

(
p̃i log(pi)+(1− p̃i) log(1− pi)

)
(5.4)

The objective loss function for each single-scale branch is then:

LScale = LCE +λH(P̃,P) (5.5)

where the hyper-parameter λ (λ = 1 in our experiments) is the weighting between two loss terms.

P = [p1, · · · , pCID ] defines the probability prediction over all CID identity classes by the corre-

sponding single-scale branch (Eq. (3.2)). As such, each single-scale branch learns to correctly

predict the true ID label of training sample (LCE) by the corresponding scale-specific representa-

tion and to match the consensus probability estimated based on the scale-generic representation

(H).

MSVR Re-Identification Ranking

In testing, we deploy the fusion branch’s representation for multi-scale aware vehicle re-ID

matching. We use only a generic distance metric without camera-pair specific distance metric

learning, e.g. L2 distance. Based on the pairwise distances, we then return a ranking list as the

re-ID results.
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5.3 Experiments

Datasets For evaluation, in addition to the newly introduced VRIC dataset, we also utilised two

most popular vehicle re-ID benchmarks. The VehicleID [43] dataset provides a training set with

113,346 from 13,164 IDs and a test set with 19,777 images from 2,400 identities. It adopts the

single-shot re-ID setting, with only one true matching for each probe. Following the standard

performance reporting, 10 random probe image selection was done and average performances

are reported. in our experiments. The VeRi-776 dataset [45] has 37,778 images of 576 IDs in

training set and 200 IDs in test set. The standard probe and gallery sets consist of 1,678 and

11,579 images, respectively. The data split statistics are summarised in Table 5.1.

Table 5.1: Data split of vehicle re-ID datasets evaluated in our experiments.

Dataset Training IDs / Images Probe IDs / Images Gallery IDs / Images

VehicleID[43] 13,164 / 113,346 2,400 / 17,377 2,400 / 2,400

VeRi-776[45] 576 / 37,778 200 / 1,678 200 / 11,579

(VRIC) 2,813 / 54,808 2,813 / 2,813 2,813 / 2,813

Performance Metrics For VehicleID and VRIC, we used the CMC measurement to evaluate re-

ID performance. For VeRi-776, we additionally adopted the mean average precision (mAP) due

to its multi-shot nature in the gallery of the test data. Specifically, for each probe, we compute

the area under its Precision-Recall curve, i.e. Average Precision (AP). The mAP is then com-

puted as the mean value of APs for all probes. This metric considers both precision and recall

performance, and hence provides a more comprehensive evaluation.

Implementation Details In the MSVR model, we used 2 resolution scales, 224×224 and 160×

160. We adopted the ADAM optimiser and set the initial learning rate to 0.0002, the weight

decay to 0.0002, β1 to 0.5, the minibatch size to 8, the max training epoch to 100,000. Model

initialisation was done with ImageNet [10] pretrained weights. The MobileNet[24] architecture

is used for each branch of different scale input. The data augmentation includes random cropping

and horizontal flipping.

Evaluation Table 5.2 compares MSVR with state-of-the-art methods on three benchmarks. We

make three main observations:

(1) Under standard visual appearance based evaluation setting (the top part), MSVR outperforms
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Table 5.2: Comparative vehicle re-ID results on three benchmarking datasets. Upper part of table lists
methods trained with only the images available from the respective datasets for fair comparison of the
methods; lower part lists methods trained with additional datasets and/or labels. *: By our reimple-
mentation. E: Extra information and annotation, e.g. number plates, local key-points, space-time prior
knowledge. M: Multiple vehicle re-ID and classification datasets are combined for training. †: Result
from [62].

Method
N

ot
es VeRi-776 [45] VehicleID [43] VRIC

Publication
Rank-1 mAP Rank-1 Rank-5 Rank-1 Rank-5

LOMO [40] 25.33 9.64 - - - - CVPR’15

FACT [44] 50.95 18.49 - - - - ICME’16

Mixed Diff + CCL [43] - - 38.20 50.30 - - CVPR’16

Siamese-Visual [52] 41.12 29.40 - - - - ICCV’17

Siamese-Visual [52] * 64.18 31.54 36.83 57.97 30.55 57.30 ICCV’17

OIFE(Single Branch) [62] * 60.13 31.81 32.86 52.75 24.62 50.98 ICCV’17

MSVR 88.56 49.30 63.02 73.05 46.61 65.58 Ours

KEPLER [46] † M 68.70 33.53 45.40 68.90 - - TIP’15

FACT + Plate + Space-Time [45] E 61.44 27.77 - - - - ECCV’16

Siamese-CNN + Path-LSTM [52] E 83.49 58.27 - - - - ICCV’17

OIFE(Single Branch) [62] M 88.66 45.50 63.20 80.60 - - ICCV’17

OIFE(4Views) [62] ME 89.43 48.00 67.00 82.90 - - ICCV’17

OIFE(4Views + Space-Time) [62] ME 92.35 51.42 - - - - ICCV’17

all other competitors with large margins – MSVR surpasses the best competitor in Rank-1 rate by

24.38 % (88.56-64.18) on VeRi-776, 24.82% (62.02-38.20) on VehicleID, and 16.73% (46.61-

30.55) on VRIC. This demonstrates the consistent superiority of MSVR over alternative methods

in vehicle re-id, showing the importance in modelling multi-scale representation for vehicle re-

id.

(2) Benefited from more training data plus space-time contextual knowledge and fine-grained lo-

cal key-point supervision, the OIFE model achieves the best performance on VeRi-776. However,

such advantages from additional data and knowledge representation is generically beneficial to

all models including the MSVR.

(3) We carefully reproduced two methods, OIFE(Single-Branch) [62] and Siamese-Visual [52],

and obtained inconsistent results compared to the reported performances of these two models.

In particular, the performance of OIFE(Single-Branch) decreases on VeRi-776 and VehicleID.
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This is mainly due to that the original results are based on a larger multi-source training set

with 225,268 training images of 36,108 IDs (from VehicleID [43], VeRi-776 [45], BoxCars [54]

and CompCars [69]), versus the standard 100,182 training images of 13,164 IDs on VehicleID,

i.e.2.2 times more training images and 2.7 times more training ID labels, and the standard 37,778

training images of 576 IDs on VeRi-776, i.e.6.0 times more training images and 62.7 times more

training ID labels, respectively.

Further Analysis

Table 5.3: Comparing single-scale and multi-scale representations of MSVR. Gain is measured as the
performance difference of MSVR over the mean of single-scale variants.

Dataset VeRi-776 [45] VehicleID [43] VRIC

Metrics (%) Rank-1 mAP Rank-1 Rank-5 Rank-1 Rank-5

Scale-224 88.37 47.37 62.80 72.54 43.55 61.88

Scale-160 87.43 46.81 60.29 71.15 43.62 62.77

MSVR 88.56 49.30 63.02 73.05 46.61 65.58

Gain (%) +0.76 +2.11 +1.47 +1.20 +3.02 +3.25

Table 5.3 compares the performances of a single-scale and a multi-scale feature representa-

tions of the MSVR model. Results on the VRIC benchmark, where we have significant resolu-

tion differences in resolution for the test images, the performance gain between single-scale and

multi-scale feature representation is 3.02% in rank-1. However on the other datasets where the

resolution of the images in the dataset are more uniform, the performance increase is 0.76% and

1.47% for VeRi-776 and VehicleID respectively for rank-1. It is evident that the multi-scale rep-

resentation learning with MSVR has performance benefit across all three datasets with different

resolution scale changes, however, the performance gain is dependant on the inherent character-

istics of the dataset, especially the resolution variance. The model performance gain on VRIC is

the largest, which is consistent with the more significant scale variations exhibited in the VRIC

vehicle images (See Table 5.1). This shows that the overall effectiveness of MSVR in boosting

vehicle re-ID matching performance.
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5.4 Discussion

Enabled by the availability of the new datasets with varying resolution images for cross cam-

era matching in vehicle re-identification setting, we proposed a multi-scale visual representation

learning paradigm, utilising an image pyramid inspired multi-branch neural network design. Our

visual representation learning optimisation design by consensus learning feedback enables us to

learn compatible feature extraction from multiple scales leading into resolution invariant feature

learning. In other words, we investigated a multi-scale learning representation by exploiting an

image pyramid inspired multi-branch CNN. Experimental evaluations demonstrate the effective-

ness and performance advantages of our multi-scale learning method over the state-of-the-art

vehicle re-ID methods on three benchmarks VeRi-776, VehicleID, and VRIC. The realistic and

challenging vehicle re-identification benchmark, Vehicle Re-Identification in Context (VRIC),

containing unconstrained vehicle images with varying resolution, from wide-view traffic scenes

showed the most performance gains with our method.

Next chapter focuses on expanding multi-branch CNN architecture with grayscale input in

conjunction with multi-modal multi-label supervision of vehicle viewpoint information.
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Chapter 6

Orientation Invariant Feature Learning With

Multi-Modal Training

6.1 Introduction

The main challenge of vehicle re-ID is that the visual appearance of vehicles can be quite dif-

ferent according to diverse camera angles and illumination changes. Most existing vehicle re-ID

models cannot make full use of various complementary vehicle information, e.g. vehicle type

and orientation. In this work, we propose an original Multi-Task Mutual Learning (MTML) deep

model to learn discriminative features simultaneously from multiple branches. Specifically, we

design a consensus learning loss function by fusing features from the final convolutional fea-

ture maps from all branches. Extensive comparative evaluations demonstrate the effectiveness

of our proposed MTML method in comparison to the state-of-the-art vehicle re-ID techniques

on a large-scale benchmark dataset, VeRi-776. We also yield competitive performance on the

NVIDIA 2019 AI City Challenge Track 2.

In this work, we propose an original Multi-Task Mutual Learning (MTML) based network

architecture, that aims to simultaneously learn a number of recognition tasks from different su-

pervisory signals, plus a consensus loss function, to build an improved representation that is

robust in varying resolution input and viewpoint aware for vehicle re-identification.

We make two contributions in this work: (1) we formulate an original Multi-Task Mutual

Learning (MTML) deep learning model by building multi-branch CNN where each branch learns

a feature extractor that specialises on certain type of input and supervised by complementary la-



64 Chapter 6. Orientation Invariant Feature Learning With Multi-Modal Training

Index Orientation Colour

0 front red

1 rear -

2 left -

3 left front cyan

4 left rear yellow

5 right -

6 right front green

7 right rear black

Figure 6.1: Examples from the VeRi-776 dataset with the orientation labels provided in [62] (best viewed
in colour).

bel supervision. For vehicle re-ID we are aiming for an invariant feature representation regarding

multi-scale and grayscale input and/or pose identification by orientation labels. 2) we introduce

a mutual learning mechanism to improving the robustness of re-ID feature fusion by synchro-

nising the discrimination qualities of each branch with consensus feedback. Our model benefits

from multiple supervisory signals in order to enhance model learning of more discriminative

features for vehicle Re-ID. Our model aims to fuse the complementary information improved

re-ID matching. Extensive evaluations demonstrate the effectiveness of the proposed MTML

method in comparison to the state-of-the-art vehicle re-ID techniques on the large-scale bench-

mark VeRi-776 [45]. We also yield competitive performance on the CityFlow [59] benchmark at

the NVIDIA 2019 AI City Challenge.

A number of deep learning techniques have been exploited for the purpose of vehicle re-ID.

For instance, Liu et al.[45] explored a deep neural network to estimate the visual similarities

between vehicle images. Liu et al.[43] also designed a Coupled Cluster Loss (CCL) to boost

a multi-branch CNN model for vehicle Re-ID. All state-of-the-art methods utilise the global

appearance features of vehicle images and ignore local discriminative regions. To explore local

information, motivated by the idea of landmark alignment [71] in both face recognition [58] and

human body pose estimation [47], Wang et al.[62] considered 20 vehicle keypoints for learning

and aligning local regions of a vehicle images for re-ID. Clearly, this approach comes with extra

cost of exhaustively labelling of keypoints in a large number of vehicle images, and the implicit

assumption of having sufficient image resolution/details for extracting these keypoints.
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Additionally, space-time contextual knowledge has also been exploited for vehicle Re-ID

subject to structured scenes [45, 52]. Liu et al.[45] proposed a spatio-temporal affinity approach

for quantifying every pair of images. Shen et al.[52] further incorporated spatio-temporal path

information of vehicles. Whilst this method improves the re-ID performance on the VeRi-776

dataset, it may not generalise to complex scene structures when the number of visual spatio-

temporal path proposals is very large with only weak contextual knowledge available to facilitate

model decision.

Multi-task Learning(MTL) is a machine learning strategy that learns several related tasks si-

multaneously for their mutual benefits [3]. A good MTL survey with focus on neural networks

is provided in [5]. Deep CNNs are well suited for performing multi-task learning as they are

inherently designed to learn joint feature representations subject to multiple label objectives con-

currently in multi-branch architectures. Joint learning of multiple related tasks has been proven

to be effective in solving computer vision problems [11, 72]. Critically, our method is uniquely

designed to explore the potential of multi-task learning by combining multiple label supervision

of the vehicle images (e.g. ID and orientation) with each label being associated with an individual

sub-branch of a single model.

6.2 Methodology

6.2.1 Multi-modal Vehicle Re-identification

In order to perform re-ID of previously unseen query vehicles, the aim of our model is to learn

a feature embedding and calculate similarity of vehicle images by distances in the feature em-

bedding space (e.g.L2). We aim to improve vehicle re-ID matching by utilising multi-branch

CNN network design with multi-modal label supervision that would result in accurate match-

ing of identities. In order to perform this task, we utilise training data containing a number of

different labels: identity class labels as well as vehicle orientation class labels. We assume two

sets of training examples X1 = {xxx(i)}N
i=1 and X2 = {xxx(i)}M

i=1, containing N and M training images

respectively. Both training sets contain the associated identity class labels Y1 = {yyy(i)}N
i=1 and

Y2 = {yyy(i)}M
i=1, where yi ∈ [1, ...,CID] for CID distinct vehicle identities spanning the two training

sets. In addition, X1 also contains orientation labels, O = {ooo(i)}N
i=1, where oooi ∈ [1, ...,CO] is the

orientation (for CO possible orientations).

In order to perform accurate vehicle re-ID, we use this data to build a model constructed
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Figure 6.2: An overview of our proposed model (best viewed in colour). (I) Vehicle identity branch (S)
Multi-scale analysis branch (G) Grayscale analysis branch (O) Vehicle orientation branch (C) Consensus
learning through feature fusion. Feedforward signals shown in black. Hard target (ground-truth) loss
propagation shown in red. Soft target consensus feedback loss propagation shown in green.

from multiple branches, each of which is tasked with learning a specific aspect of the data con-

currently. The branches of the model are as the following: BI) Identity classification, BS) Identity

classification from a scaled image, BG) Identity from grayscale image, BO) Identity plus the ve-

hicles’ orientations. These individual branches then form a consensus prediction on the identity

of the training examples, and this consensus is then used as a regularise signal for the individual

sub-branches.

6.2.2 Model Structure and Feature Learning

An overview of our proposed model can be seen in Figure 6.2. The model is composed of four

sub-branches, each of which is simultaneously learning a representation to solve its own task.

In addition, there is a single fusion branch, which allows feature selection to be performed from

the entire collection of individual representations. It is the output from this branch that is taken

during deployment. Each sub-branch will now be described in detail.

(I) Vehicle Identity The root branch of our model is tasked with learning the best representation

for vehicle identity discrimination, for both training sets X1 and X2 with CID different identities

where yyy(i) ∈ RCID is one-hot vector encoding ground truth vehicle identity label y. Here, we

exploit the cross entropy classification loss function in order to train one branch to predict vehicle

identity. Thus, we predict the posterior probability pID
j of training image xxx over all identity labels
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y j:

pID
j = P(y j = y|xxx) =

exp(WWW>j zzz)

∑
CID
k=1 exp(WWW>k zzz)

(6.1)

where zzz refers to the feature vector of xxx of the CNN model, and WWW k the prediction function pa-

rameter of training model class k. The cross-entropy LID between one-hot vector label encoding

yyy and model’s prediction pppID over CID classes is computed by:

LID =
CID

∑
j=1
−y j log pID

j (6.2)

(S) Identity from Scaled Image Here we exploit the multi-scale analysis that has previously

been shown to be of benefit for the task of re-identification, both for persons [8] and vehicles

[28]. This is done by including a branch that is trained via cross-entropy loss (Eq. 6.4) to predict

the class identity from a rescaled version of the input image, in a similar way to branch A. The

low resolution image is the result of resizing with bilinear interpolation from the high resolution

image.

(G) Identity from Grayscale Image In order to direct the model to learn low frequency lightness

changes in vehicles images, we ensure that one branch will not be able to use colour information

for distinguishing between these classes. This is done by giving as input only the grayscale im-

age, and again training the branch to predict identity via the cross entropy loss. The grayscale

image is the resulting of RGB conversion using Floyd-Steinberg dither to approximate the origi-

nal image luminosity level.

(O) Vehicle Orientation This branch is tasked with learning a representation to simultaneously

predict the identity class and the orientation class when this is known. Both sets of labels are

simultaneously employed in a joint loss function in order to optimise the branch for the prediction

of both identity and orientation. As orientation labels are not available for all training data, we

employ a selective classification subset loss function, that allows the loss to be calculated across

only the subset of the batch for which orientation labels are known.

Again, the cross entropy loss is exploited for this task. Hence, the branch calculates both Eq.

(6.3), as well as the softmax posterior probability of the orientation label o for the images for

which the orientation class is known. Using O with CO different orientations where ooo(i) ∈ RCO

is one-hot vector encoding ground truth vehicle identity label o. Here, we use the cross entropy

classification loss function in order to train one branch to predict vehicle orientation. Thus, we
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predict the posterior probability pO
j of training image xxx over all orientation labels o j:

pO
j = P(o j = o|xxx) =

exp(WWW>j zzz)

∑
CO
k=1 exp(WWW>k zzz)

(6.3)

where zzz refers to the feature vector of xxx of the CNN model, and WWW k the prediction function

parameter of orientation label k. The cross-entropy LO between one-hot vector label encoding ooo

and model’s prediction pppO over CO orientations is computed by:

LO =
CO

∑
j=1
−o j log pO

j (6.4)

The total loss for the orientation branch LBO is calculated as:

LBO =


LID +LO if x(i) ∈ X1

LID if x(i) ∈ X2

(6.5)

(C) Consensus Learning and Feedback In order to harness the benefit of all branches for the

purpose of vehicle re-identification, we employ consensus learning as proposed in [8] and pre-

viously harnessed for vehicle re-ID in [28]. This is done via feature fusion of the final convolu-

tional feature maps from all branches for consensus learning. As our branches are based on the

ResNet50 architecture [20], these feature maps are formed via an average pooling operation that

results in feature vectors of length 2048. Hence our fused concatenated features in the consensus

branch are of length 8192. We then add one additional fully connected layer, of size 1024, and

the output of this is passed to a final identity softmax classification layer, again employed with

cross entropy loss. Hence:

pC
j = P(y j = y|xxx) =

exp(WWW>j zzz)

∑
CID
k=1 exp(WWW>k zzz)

(6.6)

where zzz refers to the consensus feature vector of xxx.

Additionally, we also utilise a consensus propagation mechanism, similar to the previously

proposed method [8, 28]. Here the consensus output is taken as ‘soft targets’ (as opposed to the

ground truth label ‘hard targets’) for the training data, and used to feedback information about the

predictions made by the entire ensemble of branches. This is done concurrently with the training

of the individual branches. The method is inspired by the idea of Knowledge Distillation (KD)

[23], but is different in that here we employ the combined predictions from all ‘student’ branches

as a virtual teacher model, rather than utilising a pretrained powerful teacher model to provide

soft targets.
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Algorithm 1 The MTML training algorithm.
Require: Training sets X1 X2, labels Y1 Y2 O1, modelM

• Initialise network branches with pretrained ImageNet weights

• Initialise output layers ofM randomly

for epoch e ∈ (1,E), minibatch images Xe do

• Feed-forward images Xe through model for all branches inM

• Feed-forward to obtain identity classification predictions for images Xe

• Feed-forward to obtain orientation classification predictions for images Xe ∈ X1

• Fuse features and obtain consensus identity classification predictions for images Xe

• Calculate identity losses for each branch and back-propagate to update weights

• Calculate orientation losses for images Xe ∈ X1 and back-propagate to update weights on

the orientation branch

• Calculate identity losses for the consensus branch and back-propagate

end for

Specifically, the feedback mechanism employs the consensus probability prediction vector

PC =
[
pC

1 , . . . , pC
CID

]
given image xxx, feeding these into the cross entropy loss between the two

distributions to provide a consensus regularisation loss for each input sub-branch BI,BS,BG and

BO. The total consensus loss for a particular branch B is then:

H(PC,PB) =− 1
CID

CID

∑
j=1

pC
j log pB

j (6.7)

where PB =
[
pB

1 , . . . , pB
CID

]
is the softmax output probability vector. This is added to each indi-

vidual branch’s loss function. In addition, this mechanism provides regularisation of the whole

network by propagating all of the consensus losses back through the feature fusion layer, which

also boosts the learning of the ensemble. The total loss for a particular branch is then:

L= LB +λH(PC,PB) (6.8)

6.2.3 Model Training

In order to train our model, we combine both training sets, X1 and X2, and employ batches that

contain both images with and without orientation labelling. The full training algorithm can be

seen in Algorithm 1.



70 Chapter 6. Orientation Invariant Feature Learning With Multi-Modal Training

Table 6.1: Details of the datasets employed for train and test.

Dataset
Training Probe Gallery

#IDs #Imgs #Orients #IDs #Imgs #IDs #Imgs

VeRi-776 [45] 576 37778 8 200 1678 200 11579

CityFlow [59] 333 36935 - 333 1052 333 18290

6.2.4 Vehicle Re-ID deployment

During deployment, we employ the feature fusion layer from our trained model as the full feature

representation in order to perform vehicle re-identification matching. As we do not necessarily

have camera information about the query or gallery images, or timestamp information, which

would allow the use of camera distance or time-based analysis, we use only a generic distance

metric - the L2 metric - in order to match gallery images to the query. Hence, for each of the

query image xxx(i)q , and the gallery images {xxx(i)g }, we compute our 6400 dimension fused feature

representations, zzzq and {zzz(i)g } respectively. We then calculate the L2 distance between the query

representation and each of the gallery images, and rank the latter by increasing distance in order

to calculate the Rank-1 and mAP performance scores.

6.3 Experiments

We conduct a number of experiments to explore the performance of our method. First, we exploit

a number of widely available vehicle ID benchmark datasets in order to assess the benefit of each

of the branches of our model independently, and altogether. Then we compare the performance of

our model to other current work by looking at our performance in the NVIDIA AI City Challenge

2019 Task 2 (Vehicle Re-identification). As our method includes a branch that predicts vehicle

orientation in addition to identity, our model requires data that contains the orientation labels

for training. As a result, we include the VeRi-776 [45] dataset in the training set for all our

experiments.

6.3.1 Datasets

We employ two vehicle re-ID datasets in our experiments in order to train and test our method

extensively. Firstly we conduct experiments on a benchmark dataset, VeRi-776 [45], which has

been widely tested by the majority of recent works. And secondly, we employ the new CityFlow
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dataset [59], a challenging dataset that has been shown to be more difficult than previous publicly

available benchmarks. The VeRi-776 dataset [45] has 37,778 images of 576 IDs in the training

set and 200 IDs in the test set. The standard probe and gallery sets consist of 1,678 and 11,579

images, respectively. There are also orientation labels, for 8 possible orientations, available for

the VeRi-776 dataset, which were provided by [62]. The CityFlow dataset [59] has 36,935 images

of 333 IDs in the training set and 333 different IDs in the test set. The standard probe and gallery

sets consist of 1,052 and 18,290 images respectively. The data split statistics of both datasets are

summarised in Table 6.1.

6.3.2 Implementation Details

We employ the ResNet50 [20] network architecture as the base of our model. We train the model

with minibatches of size 8, using the Adam optimisation technique with a learning rate of 0.0001,

exponential decay rates set as the following: β1 = 0.9 and β2 = 0.999. The two image sizes used

were standard 224x224 and small (for the scaled branch) 160x160.

We measure the performance of our vehicle re-identification methods according to the stan-

dard Cumulative Matching Characteristic (CMC) and mean Average Precision (mAP). The CMC

is computed on each individual rank k as the cumulative percentage of correct matches appearing

at ranks ≤ k. The mAP is calculated as the mean over all query images of the Average Precision,

which itself is calculated as the precision cut-off at each correct recalled image position averaged

over all possible correct gallery images.

6.3.3 Evaluation on VeRi-776 Dataset

Firstly, we train and test on the VeRi-776 dataset in order to compare with existing state-of-the-

art methods with identical settings. In order to experiment the benefit of adding each of the

separate branches of our model, we take branch I (vehicle identity) as our central branch, and all

models have an C (consensus) branch. We then perform experiments where we include each of

the other branches in turn. So MTML-S refers to a model built from branches I,C and S, MTML-

OG has branches I,C and O and G, and so on. MTML-OSG (branches I, S, G, O and C) is then

our full model, and MTML-OSG (ReRank [73]) the results of the full model after additional

re-ranking. Table 6.3 shows the included branches. Table 6.2 shows the experiment results, with

all experiments run for 150 epochs of training. As can be seen, even before re-ranking, our full

model achieves state-of-the-art mAP and Rank-1 scores on this dataset, of 64.6% and 92.3%
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Table 6.2: Trained/tested on VeRi-776

Method mAP Rank-1 Rank-5

MSVF [28] 49.3 88.6 -

OIFE [62] 51.4 68.3 89.7

S-CNN+P-LSTM [52] 58.3 83.5 90.0

MTCRO [67] 61.6 87.2 94.2

MTCRO (ReRank) [67] 62.6 88.0 94.6

MTML-S 59.4 89.5 94.9

MTML-O 60.8 90.2 95.4

MTML-G 62.8 91.1 95.8

MTML-SG 63.7 90.6 95.8

MTML-OG 63.5 92.0 96.4

MTML-OSG 64.6 92.3 95.7

MTML-OSG (ReRank) 68.3 92.0 94.2

respectively. And after re-ranking the mAP score is increased to 68.3%.

Table 6.3: Tested architectures and the included branches

Method Branches

MTML-S I,C,S

MTML-O I,C,O

MTML-G I,C,G

MTML-SG I,C,S,G

MTML-OG I,C,O,G

MTML-OSG I,C,O,S,G

The mAP results from the experiments also show how the individual branches contribute

to the performance, with orientation (60.8%) improving over the result of scaled analysis alone

(59.4%), and grayscale doing even better (62.8%). This demonstrates how allowing the model to

learn about the orientation of the vehicle at the same time as identity can strengthen the perfor-

mance. And that removal of the colour during learning - although obviously a useful indicator
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of identity at test time - allows for the model to focus on the more discriminatory features of the

identity that ultimately boosts the re-ID performance.

The combinations of three branches all show improvement over only two, with MTML-

SG and MTML-OG achieving mAPs of 63.7% and 63.5% respectively. However they are still

outperformed by combining all four branches in the MTML-OSG model. These results show

that combining all the different signals for multi-task learning does indeed allow for the overall

model to perform better in the final task of vehicle re-identification.

6.3.4 Evaluation on CityFlow Dataset

Table 6.4: Trained/tested on CityFlow

Method mAP Rank-1 Rank-5

Resnet50 [59] 25.5 41.3 -

MTML-S 17.0 40.4 53.3

MTML-G 19.6 44.5 58.4

MTML-SG 20.6 44.1 55.8

MTML-SG (ReRank) 25.7 43.4 47.2

Table 6.5: Trained/tested on CityFlow+VeRi-776

VeRi-776 CityFlow

Method mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

MTML-S 58.4 88.5 94.6 18.9 40.6 53.3

MTML-O 59.2 89.9 94.9 20.3 44.3 56.0

MTML-G 61.6 89.7 95.1 21.6 46.1 57.5

MTML-SG 62.6 90.8 95.8 22.1 45.8 56.5

MLML-OG 62.0 91.2 95.6 22.9 46.6 58.2

MTML-OSG 62.6 90.6 95.5 23.6 48.9 59.7

MTML-OSG (ReRank) 66.4 91.5 93.6 29.2 48.8 50.7

We participated in Task 2 of the NVIDIA AI City Challenge 2019. This task was bench-

marked with a new vehicle re-identification dataset. city-scale multi-camera vehicle re-identification.
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AP Query - Ranks(1-10)
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Figure 6.3: Qualitative comparison of example query images between experiments with and without in-
clusion of the orientation branch. Beginning with the query image in the first column, ranks from Rank-1
to Rank-10 is shown. Each pair (a,b,c,d) compares MTML-SG (upper) to MTML-OSG (lower) trained
and tested on the VeRi-776, showcasing the impact on cross-camera matching performance gains by train-
ing with additional orientation labels. AP refers to Average Precision of that query. Correct and incorrect
identity matches are shown with green and red borders around images, respectively.

Multiple cameras were placed at multiple intersections and no camera information was provided

about the images.

Two sets of experiments are conducted on CityFlow benchmark: (1) Training on CityFlow,

and (2) Training on CityFlow and VeRi-776. For the first set of experiments, we trained MTML-

S (branch A, B and E), MTML-G (branch A, C and E) and MTML-SG model only on CityFlow

training data. Table 6.4 shows that: (1) MTML-G branch combination is much better than

MTML-S branch combination. The potential reason is that grayscale analysis is more useful

than multi-scale in vehicle Re-ID. (2) Joint learning with MTML-SG is better than any indi-

vidual one of them on mAP evaluation. Another interesting observation is that after re-ranking

algorithm, mAP and rank-1 performance improves while rank-5 score drops. The possible reason

as the re-ranking moves up an image with correct ID to rank-1, at the same time it also moves

up in rank images with different identities with similar visual appearance as well; resulting in a

lower rank-5 score as other gallery images with the correct identity is pushed down in rank.
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Since the orientation label is only available in VeRi-776, for training the full MTML model

including the orientation supervisory signal, we did the second experiment which included both

this database plus CityFlow. Table 6.5 shows that: (1) By adding VeRi-776 training data, with

MTML-S, MTML-G and MTML-SG, we all obtain a better mAP and CMC performance on

CityFlow than the model which was only trained on CityFlow. Meanwhile, the mAP and CMC

performance is slightly lower on VeRi-776 than the model only trained on VeRi-776. We suspect

this is due to training for a shorter period of time, as this experiment ran for only 100 epochs,

compared to 150. (2) By adding the orientation branch for the MLTML-OSG model, we obtain

the best mAP performance 62.6% and 23.6% on VeRi-776 and CityFlow respectively. This is

improved to 66.4% and 29.2% with re-ranking. This shows that our method of mutual learning

between the orientation branch supervised by orientation labels and the other branches supervised

by ID label is effective.

Qualitative results showing a comparison of rankings with or without orientation branch are

shown in Figure 6.3. The advantage of learning both the orientation and ID signal can be seen

in each pair where the MTML-OSG model is able to rank very different views of the same ID

vehicle highly, which compares to the MTML-SG model which can only find images containing

similar viewpoints, many of which are incorrect IDs (Figure 6.3(a,b,d)). It can also be observed

that similar viewpoints are better grouped together in the ranks (Figure 6.3(c,d)).

6.4 Discussion

Vehicle re-ID is a difficult problem due to the fact that the visual appearance of a vehicle in-

stance may drastically change due to diverse viewpoints and illumination, whilst different ve-

hicle instances of the same model type may have a very similar appearance. In this chapter,

we propose Multi-Task Mutual Learning (MTML) deep model to learn discriminative features

simultaneously from multiple branches by combining multi-scale feature fusion in conjunction

with additional orientation labels. Following from the findings of the effectiveness of consensus

learning by feature fusion in multi-scale input, we explore a similar approach with additional

features from grayscale input branch and orientation branches. Orientation labelling provides

the information to address large inter-class visual appearance variance from vehicle pose with

respect to camera. Consensus learning by feature fusion from all branches including orienta-

tion allows for cross-camera matching vehicle identities invariant to pose. Extensive evaluations
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show the performance increase in all permutations of the proposed additions to neural network

design in matching performance, measured by mAP. Qualitative investigation of re-ID ranking

performance shows that different poses of the same identity instances in the gallery set are ranked

higher in testing. Additionally, grayscale input branch provides a data augmentation option for

improved vehicle re-identification performance. We also yield a competitive performance on the

NVIDIA 2019 AI City Challenge Track 2 tested using the CityFlow benchmark.



77

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have explored several approaches for the vehicle re-identification problem to

improve visual matching capability with modern convolutional neural networks. Vehicle re-

identification is the matching problem of visual vehicle appearance captured by different cameras

in varying pose and illumination.

In computer vision literature, convolutional neural networks are the preferred tools for pro-

cessing visual data e.g.images and videos. CNNs can learn feature representations with high

level discriminative capabilities, enabled by the efficient learning implementations on modern

hardware as well as large scale labelled data that is currently available. Large scale datasets

such as ImageNet[10] provide diverse labels that can be used to learn non-linear CNN models

with millions of parameters that can encode discriminative feature extractors. This is achieved

by end-to-end learning approach, combining the representation power of deep neural networks

and training the network parameters with Stochastic Gradient Descent in conjunction with back-

propagation to efficiently update model parameters.

Re-identification aims to match identities by visual information among various camera views.

Main challenges of re-identification problem are two-fold: (a) visually matching an identity cap-

tured at different locations that vary in pose and illumination (high intra-class variance), (b)

discrimination between different identities at same location and/or pose with similar visual ap-

pearance (low inter-class variance). Thus re-identification requires dealing with a two-faceted



78 Chapter 7. Conclusion and Future Work

problem of discrimination at the identity granularity. When it comes to vehicle re-identification,

the problem of matching becomes even more challenging by the man-made characteristics of the

subject data, that is, the similar (in some cases identical) visual appearance of different identities

of certain vehicles with same make, model, and colour. To address these challenging aspects,

this thesis investigates the effectiveness of approaches in the following original work:

1. Chapter 3 explores the man-made nature of vehicles, that is, their inherent hierarchical

categories such as model (e.g.Audi-2011-A) and its usefulness in identity matching when

identity pairwise labelling is not present. In contrast to existing methods, we uniquely

bridge the connection between vehicle model classification and vehicle re-identification,

by investigating the discrimination capability of vehicle model label supervised deep CNN

features in performing finer-grained identity matching. Experiments show learning from

vehicle model label supervision provide useful information for visual matching that can be

used for vehicle re-identification.

2. Chapter 4 introduces a more realistic and challenging vehicle re-ID benchmark, called

Vehicle Re-Identification in Context (VRIC). In contrast to existing datasets, VRIC is

uniquely characterised by vehicle images subject to more realistic and unconstrained vari-

ations in resolution (scale), motion blur, illumination, occlusion, and viewpoint. Motion

artefacts and varying resolution vehicle images provide a re-identification matching setting

in wide-view traffic scenes “in-the-wild”. Moreover, test set construction uniquely pairs

high-low resolution probe-gallery images that puts emphasis on matching challenges of

varying resolution input.

3. Chapter 5 evaluates image pyramid inspired multi-branch neural network design with mul-

tiple input resolution scales. Experiments evaluated on our varying resolution dataset

VRIC has shown that visual representation training augmented by consensus feature iden-

tification loss feedback improves features compatibility between varying resolution scales

with significant performance gains.

4. Chapter 6 proposes Multi-Task Mutual Learning (MTML) deep model to learn discrim-

inative features simultaneously from multiple branches by combining multi-scale feature

fusion in conjunction with additional orientation labels. Extensive comparative evaluations

demonstrate the effectiveness of our proposed MTML method in comparison to the state-
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of-the-art vehicle re-ID techniques and performance gains of each branch and labels are

investigated with ablation studies. It has been also shown that orientation supervision has

an observable affect on intra-class matching of vehicles captured by different pose.

7.2 Discussion and Future Work

In supervised learning, labels provide the information to be learned, on the other hand, the qual-

ity of the datasets, e.g.diversity and representative quality of the collected set of data, determine

how successful the learned machine learning model can be. Data collection as well as labelling

are time consuming and costly endeavours. Arguably the most important dataset in the recent

computer vision literature is the large scale image classification benchmark ImageNet[10]. At

this scale it was only feasible to be constructed with crawling the internet and very costly la-

belling process that followed. The scale of the data in training sets is one of the most important

factors that enabled the performance gains we have enjoyed in the “deep learning” era. We have

discussed how each computer vision task requires different labelling practices and as we move

from general classification tasks to finer grained recognition tasks such as re-identification the

labelling required is also of finer grain; e.g.individual identities rather than generic categories.

We see here that there is a structural hierarchy in these tasks regarding the input domain and

their labelling. In most specialised computer vision tasks transfer learning have become standard

practice. When we train neural network models for narrower i.e.downstream computer vision

tasks such as re-identification; they are trained by fine turning model parameters with new la-

bels associated with the narrower problem domain. In this thesis all experiments, as well as the

vast majority of the approaches for re-identification in recent literature, are trained by fine-tuning

ImageNet classification model parameters i.e.transferring the information that was learned with

generic category labels by re-training with labels of the downstream task e.g.re-identification.

This fact attests to be usefulness of fine-tuning technique as well as the importance of rigorously

labelled large scale datasets

Unlike supervised learning, semi-supervised training paradigms try to overcome costly la-

belling process by combining unlabelled data with smaller scale labelled data to take advantage

of the available labelled data. Self-supervised learning is a new unsupervised learning paradigm

where an where the structured data (images) itself provides the supervision. Both of these

paradigms address the issue of task specific labelling that is required to achieve acceptable per-
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formance in a supervised setting. Enabling the usage of the unlabelled data with self-supervised

learning in combination with more traditional clustering approaches provides an exciting oppor-

tunity to discover the hierarchical relation of the downstream task labels with self-supervised

learning, we can imagine CNN architectures that can do discrimination at different levels of this

hierarchy with the same network parameters, an all purpose feature extractor. This would also

change the fine-tuning approach we use in supervised learning for each task, that require learning

different network parameters with discriminative characteristics at each label granularity. This of

sort of approach that can learn from data itself, that require little or no labelling, is especially in-

teresting for re-identification problem because it is simply not feasible to know/label all identities

in real world scenarios.
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Appendix A

Machine Learning and Artificial Neural

Network Fundamentals

A.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are powerful family of neural networks that are designed

build efficient models for learning from image data. Modern CNNs have multiple convolutional

layers where each layer contains a number of neurons with non-linearities to enable powerful

computations. Each hidden layer computes a simple affine transformation combined with a non-

linearity. Modern hardware such as Graphical Processing Unit(GPU)s that can compute hundreds

of such transformations calculating various input-output relations by each hidden layer. The

resulting neural network stacking such layers one after the other with millions of neurons are

deep convolutional neural networks that can achieve human like processing capability of said

input, extracting higher level relations.

Artificial Neurons

The basic building blocks of a neural network are called neurons. Foundations of modern neural

networks called perceptron were developed in 1950s which could learn linear models of binary

input-output relations. Modern neural networks use neurons compute non-linear outputs of it

inputs such as the sigmoid neuron. This is done by (1) computing an affine transformation of

inputs and weights that are continuous - that is a linear weighting of inputs x by weights w and

a translation of the output called bias b to get the output z (2) the output is fed to a non-linear

function e.g.sigmoid function. Sigmoid function σ (see Figure A.1) has range (0,1) and defined
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as:

σ(x)≡ 1
1+ e−x . (A.1)

Figure A.1: Sigmoid activation function

Formally, when our inputs consist of d

features, the affine transformation, i.e.output

of a given neuron, usually denoted by z is de-

fined as:

z = w1x1 + ...+wdxd +b.

Vectorizing the equation for compact rep-

resentation with dot product:

z = w>x+b

where x ∈ Rd and w ∈ Rd . Finally we can use the non-linear sigmoid function to express an

artificial neuron by:

z = σ(w>x+b). (A.2)

Fully Connected Layers

A layer is a collection of neurons. By stacking and connecting layers of neurons one after the

other we can get artificial neural network models. See Figure A.2 for an example diagram.

Suppose we have m number of neurons, considering the all of neurons in layer, we can formulate

all weights in needed for a layer as matrix W ∈ Rd×m and bias vector b ∈ Rm finally defining a

layer in matrix notation as:

z = Wx+b. (A.3)

The layer is said to be fully-connected because each of its inputs is connected to each of its

outputs by means of a matrix-vector multiplication. First and last layers of a network are called

input and output layers respectively, whereas intermediate layers are called hidden layers.

Convolutional Layers

Convolutional layers are the basic building blocks of modern convolutional neural network. For

image data with a 2D structure CNNs are computationally efficient because they require fewer

parameters than fully-connected architectures where each neuron has input from all of the outputs

from the previous layer.
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Figure A.2: An example artificial neural network model with input, hidden and output layers. All layers
are fully connected.

The convolution between two functions, f ,g : Rd → R and denoted by ( f ∗g), is defined as:

( f ∗g)(i) =
∫

f (i)g(i−m)di.

For two-dimensional tensors, such as 2D images with discrete values rather than functions,

we have a corresponding sum: with indices (m,n) for f and (i−m, j−n) for g, respectively:

h(i, j) = ( f ∗g)(i, j) = ∑
m

∑
n

f (m,n)g(i−m, j−n). (A.4)

In convolutional network terminology, the first argument (the function f) to the convolution

is often referred to as the input and the second argument (the function g) as the kernel. For two-

dimensional images X as inputs and their immediate hidden representations H and neurons now

called kernels K all similarly represented as tensors.

Let [X]i, j and [H]i, j denote the pixel at location (i, j), in the input image and hidden repre-

sentation respectively. While [K]m,n denote kernel weights K and B vector denoting biasses b for

each kernel.

[H]i, j = b+
∆

∑
m=−∆

∆

∑
n=−∆

[K]m,n[X]i−m, j−n (A.5)

In this formulation [X] and [K] assumed to have the same dimensions however outside the

range ∆: |m|> ∆ or |n|> ∆ we should set the [Km,n = 0]. In practice these weights in [K] outside

the range ∆ are omitted resulting in desired reduction of parameters in CNNs. Moreover trans-

lation invariance and locality properties which are crucial for processing images are achieved.
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Translation invariance in images implies that all patches of an image will be treated in the same

manner whereas locality means that only a small neighbourhood of pixels will be used to com-

pute the corresponding hidden representations. Figure A.3 illustrates a 2D convolution example

calculation with a single kernel.

Figure A.3: Illustration of convolution operation with a 2D 3×3 input and a 2×2 kernel with the resulting
output, omitting the bias term.

Colour images have three channels: red, green, and blue. Formally they are third-order

tensors, characterized by a height, width, and channel, e.g., with shape 256×256×3 pixels. We

thus index X as [X]i, j,k. The convolutional hence instead becomes [K]m,n,l . Hidden representations

are third-order tensors H – an entire vector of hidden representations with an extra dimension

corresponding to each spatial location. Extra dimension is naturally named channels or feature

maps.

To support multiple channels in both inputs (X) and hidden representations (H), we can add

a fourth coordinate to K: [K]m,n,l,d . Hence we have:

[H]i, j,d =
∆

∑
m=−∆

∆

∑
n=−∆

∑
l
[K]m,n,l,d [X]i+m, j+n,l (A.6)

where d indexes the output channels in the hidden representations H. The subsequent convolu-

tional layer will go on to take a third-order tensor, H, as the input.

Non-linear Activations

Other than the sigmoid function (σ ) defined in eq A.1 there are two other commonly used non-

linear functions, namely tanh and ReLU . The definitions are the following:

tanh(x) =
1− exp(−2x)
1+ exp(−2x)

(A.7)

ReLU(x) = max(x,0) (A.8)

Activation functions differentiable operators that provide non-linear transform for signal

passing through a neuron. While sigmoid and tanh outputs a smooth signal in the range (0,1),
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ReLU simply suppresses negative signals, allowing only positive signal to effect later layers, thus

activating each neuron or not. In CNNs ReLU activations are much preferred for computer vision

tasks as they provide a way to make each neuron decide rather than smoothly passing all range

of signals for later layers.

Stride and Pooling

CNNs are effectively feature extractors modelled with convolutional layers one after the other.

Compact and high level representations of images are achieved by dowmsampling intermediate

hidden feature layers without ignoring important information. Input images as well as interme-

diate feature maps provide possibly redundant information considering commonly used kernel

sizes of 3×3 and 5×5 by the locality principle.

During convolution operation starting at the top-left corner of the input tensor, computation

progresses by sliding the kernel over all locations both down and to the right. Using a stride

kernels skip processing at intermediate positions of the input tensor, increasing computational

efficiency by effectively reducing the number of affine transforms that would contain relatively

similar input that is offset by translation in the small receptive field of the kernels.

Taking the input elements in the pooling window, the maximum pooling operation assigns

the maximum value as the output and the average pooling operation assigns the average value

as the output. gradually reduce the spatial resolution of our hidden representations, aggregating

information so that the higher up we go in the network,

A.2 Gradient-Based Learning

Classification Problem

Classification problem is defined as determining whether an input belongs to a predefined set

of classes. Classification is a supervised learning problem where we learn a prediction model

from data and their correct labels. A dataset is a collection training samples, i.e.pairs input data

and their corresponding labels. Formally, a training set S consists of pairs of vectors such that

S= {x(i),y(i)}n
i=1 where n is the number of training samples. The feature vector x(i) and a one-hot

label vector y(i) have dimensions m and k respectively, where d is the input dimension and k is

the number of classes for our problem, i.e.x ∈ Rd and y ∈ Rk.

Cross-Entropy Loss

In machine learning, learning is done through optimisation of a model parameters according to an



96 Appendix A. Machine Learning and Artificial Neural Network Fundamentals

objective, the loss function. For a multi-label classification problem, we adopt the cross-entropy

loss. This means we use the cross-entropy between the training data and the model’s predictions

as the loss function.

Consider the model z = f (x|WWW ) where z ∈ Rk is output feature vector, k is the number of

classes and WWW as the model parameters. We require the parametric model f to define a distribu-

tion:

ŷ = P(y | x,WWW ) (A.9)

where ŷ ∈ Rk defines a multi-class probabilistic prediction vector over all classes, as such, we

require not only that each element of ŷi ∈ [0,1], but also that the entire vector sums to 1 so that it

represents a valid probability distribution. This is achieved with the softmax function:

ŷ = softmax(z) where ŷ j =
exp(z j)

∑k exp(zk)
(A.10)

such that ŷ j become non-negative and sum to 1; ∑
k
i=1 ŷi = 1. In other words, the softmax function

takes a feature vector z and maps it into probabilities ŷ. The model output ŷ j is to be interpreted

as the estimated posterior probability that an input x belongs to class j.

.

We will optimise the model parameters WWW to produce probabilities that maximise the like-

lihood of the observed data X, given labels Y This is referred as the maximum likelihood esti-

mation. Model f provides a probabilistic output ŷ = P(y | x,WWW ), we can compute the maximum

likelihood

Let X represent all our inputs and Y all our observed targets, where the example indexed by

i consists of a feature vector x(i) and a one-hot label vector y(i). We also assume the training

samples are independent and identically distributed. Joint probability of dataset can be computed

as a product over the individual conditional probabilities and the maximum likelihood of the

entire dataset can be written as:

P(Y | X) =
n

∏
i=1

P(y(i) | x(i)). (A.11)

We maximise P(Y | X), equivalent to minimising the negative log-likelihood:

− logP(Y | X) =
n

∑
i=1
− logP(y(i) | x(i)) =

n

∑
i=1
LCE(y(i), ŷ(i)), (A.12)
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where LCE is the cross-entropy loss function.

The negative log likelihood− logP(y(i) | x(i)) or equivalently the cross-entropy LCE between

training label y and model’s prediction ŷ over k classes is computed by:

LCE =−
k

∑
j=1

y j log ŷ j (A.13)

Since y = (y1, . . . ,yC) is a one-hot vector that encodes ground-truth label y ∈ {1, . . . ,C} by

assigning the y-th term as 1 and others as 0, i.e.,

y j =

 1 : j = y

0 : j 6= y
, (A.14)

the sum over all its terms j is multiplied by 0 for all but one term following the definition of LCE .

Minibatch Stochastic Gradient Descent

The objective function is usually the average of the loss functions for each example in the

training dataset. We assume that fi(x) is the loss function of the training dataset with n examples,

an index of i, and parameter vector of x, then we have the objective function

f (x) =
1
n

n

∑
i=1

fi(x).

The gradient of the objective function at x is computed as

∇ f (x) =
1
n

n

∑
i=1
∇ fi(x).

in vanilla gradient descent training dataset is large, the cost of gradient descent for each

iteration will be very high. There is a trade-off between statistical efficiency arising from SGD

and computational efficiency arising from processing large batches of data at a time. Minibatch

stochastic gradient descent offers the best of both worlds: computational and statistical efficiency.

Stochastic gradient descent (SGD) reduces computational cost at each iteration. At each iteration

of stochastic gradient descent, we uniformly sample an index i ∈ {1, . . . ,n} for data examples at

random, and compute the gradient∇ fi(x) to update x:

x← x−η∇ fi(x).

Here, η is the learning rate. whenever we perform
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w← w−ηtgt where

gt = ∂w f (xt ,w)

We can increase the computational efficiency of this operation by applying it to a minibatch

of observations at a time. That is, we replace the gradient gt over a single observation by one

over a small batch

gt = ∂w
1
|Bt | ∑

i∈Bt

f (xi,w)

Minibatch SGD had the nice side-effect that averaging gradients reduced the amount of vari-

ance. The minibatch SGD can be calculated by:

gt,t−1 = ∂w
1
|Bt | ∑

i∈Bt

f (xi,wt−1) =
1
|Bt | ∑

i∈Bt

hi,t−1

To keep the notation simple, here we used

hi,t−1 = ∂w f (xi,wt−1)

as the SGD for sample i using the weights updated at time t−1.

vt = βvt−1 +gt,t−1

for some β ∈ (0,1). This effectively replaces the instantaneous gradient by one that’s been

averaged over multiple past gradients. v is called momentum. Momentum prevents stalling of

the optimisation process that is much more likely to occur for stochastic gradient descent.


