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Abstract

User-Generated Content is normally recorded with mobile phones by non-professionals,
which leads to a low viewing experience due to artifacts such as jitter and blur. Other
jittery videos are those recorded with mounted cameras or moving platforms. In
these scenarios, Digital Video Stabilization (DVS) has been utilized, to create high
quality, professional level videos. In the industry and academia, there are a number of
traditional and Deep Learning (DL)-based DVS systems, however both approaches have
limitations: the former struggles to extract and track features in a number of scenarios,
and the latter struggles with camera path smoothing, a hard problem to define in
this context. On the other hand, traditional methods have shown good performance
in smoothing camera path whereas DL methods are effective in feature extraction,
tracking, and motion parameter estimation.

Hence, to the best of our knowledge the available DVS systems struggle to stabilize
videos in a wide variety of scenarios, especially with high motion and certain scene
content, such as textureless areas, dark scenes, close object, lack of depth, amongst
others. Another challenge faced by current DVS implementations is the resulting arti-
facts that such systems add to the stabilized videos, degrading the viewing experience.
These artifacts are mainly distortion, blur, zoom, and ghosting effects.

In this thesis, we utilize the strengths of Deep Learning and traditional methods for
video stabilization. Our approach is robust to a wide variety of scene content and
camera motion, and avoids adding artifacts to the stabilized video. First, we provide a
dataset and evaluation framework for Deep Learning-based DVS. Then, we present our
image alignment module, which contains a Spatial Transformer Network (STN). Next,
we leverage this module to propose a homography-based video stabilization system.
Aiming at avoiding blur and distortion caused by homographies, our next proposal is a
translation-based video stabilization method, which contains Exponential Weighted
Moving Averages (EWMAs) to smooth the camera path. Finally, instead of using
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EWMAs, we study the utilization of filters in our approach. In this case, we compare
a number of filters and choose the filters with best performance. Since the quality of
experience of a viewer does not only consist of video stability, but also of blur and
distortion, we consider it is a good trade off to allow some jitter left on the video while
avoiding adding distortion and blur. In all three cases, we show that this approach pays
off, since our systems ourperform the state-of-the-art proposals.
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Chapter 1

Introduction

1.1 Motivation

Video stabilization has become a popular topic in the past few years, both in industry

and academia. Such popularity is caused by the increase in digital camera utilization,

which has led to the recording of unsteady and blurred videos [7]. More specifically,

there is a wide variety of videos recorded with smartphones and compact handycams

by non-professional users, who tend to induce jitter due to body tremors. There are also

a number of videos recorded with mounted cameras for surveillance, law enforcement,

and military applications: in this case, the jerkiness is introduced by atmospheric

disturbances [8]. Another set of videos are those recorded with moving platforms, such

as Unmanned Aerial Vehicles (UAV), robots, and body cameras. In all scenarios, the

unwanted camera motion may lead to unpleasant viewing experience by the end user

and affect the performance of video processing algorithms, e.g. surveillance and video

encoding applications [9]. Therefore, video stabilization is fundamental for generating

suitable content for video applications [10].



2 Introduction

Video stabilization techniques aim at removing or reducing undesired camera motion

from an unsteady video to improve its quality, by generating a compensated video

which preserves intentional global motion [11][10][8][12]. Professionals can leverage

advanced sensors and lens systems for changing the way the camera receives light or

utilize mechanical devices (e.g., tripod, dolly, steadycam) to prevent the camera from

shaking during the video capture [13]. In fact, amateur videos differ from professional

ones due to two reasons: jitter and blur caused by camera motion [14]. However, the

mentioned solutions are unfeasible for amateur utilization, once they are expensive

or demand large equipment [8][11]. Other methods rely on gyroscopes for video

stabilization, however, gyroscopes can smooth rotational motion, not being able to

compensate translation. Added to that, gyroscopes cannot be employed in all levels of

cameras as high cost and space requirements prevent them from being used in compact

and low cost stabilizers [8][11].

Fig. 1.1 Digital Video Stabilization Overview

Digital Video Stabilization (DVS), seen in Figure 1.1, is more convenient and econom-

ical for casual or amateur recordings because it neither requires specific equipment

nor demands knowledge of the device used for recording [12][15]. It aims at creating

a new video with the same visual content and without unwanted motion components

[9]. Several video stabilization systems have been proposed in recent years, to improve

the quality of consumer-level videos, which were captured during walking, running,
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riding, driving, amongst others [12][15][16]. Post processing for video stabilization

normally warps the frames for compensating motion, producing a smooth camera path

[17]. Therefore, it provides a better viewing experience and is suitable for a number of

computer vision tasks, such as UAV exploration, robot navigation, and others [13].

Traditional DVS methods match pixels, blocks of pixels, or features between neigh-

bouring frames for motion estimation. However, this process is time consuming [11],

and for traditional methods, pixels/blocks/features tend to be sensitive to certain charac-

teristics of the video. For instance, quick camera motion and textureless regions tend to

produce a low number of matched pixels/blocks/features and a short length of tracked

motion [11][9]. In fact, although there has been great advances in the field, traditional

methods tend to fail in a number of scenarios, e.g. with occlusion, textureless areas,

parallax, dark areas, amongst others [16][15].

The literature has reported that Deep Learning (DL) approaches have demonstrated the

ability to address various computer vision challenges, such as super resolution [18],

image deblurring [19], style transfer [20], classification[21], recognition[22], amongst

others. In this scenario, DL-based approaches for DVS have recently been proposed in

the literature [23][24][25][26].

However, video stabilization faces hurdles when it comes to leveraging DL strategies:

1) lack of training data, which would consist of pairs of synchronized steady and

unsteady videos with identical route and content. Although these datasets are not

required for traditional methods, they are essential for learning-based systems. 2)

accurate problem definition, since camera path smoothing is not easily defined in a DL

context [23]. 3) shortage of full-reference evaluation frameworks. Next Section, we

provide further discussion on the challenges faced in the DVS field, which we will try

to address in this thesis.



4 Introduction

1.2 Challenges

Digital video stabilization has been a trendy research topic for decades, and there has

been significant contributions from industry and academia. However, the available

DVS methods still struggle in a number of scenarios, which can be separated into input

and output related, as shown in Figure 1.2.

The input related challenges refer to some video characteristics that impair the process-

ing abilities of the algorithms. Textureless objects lead to little amount of features that

are found in each frame, which makes it difficult to track them. Parallax, occlusion, and

high motion lead to adjacent frames that are too different from each other, which makes

it hard for the algorithms to compare consecutive frames, leading to the wrong motion

parameters. Also, 3D-based methods tend to struggle with lack of depth in videos,

which leads to instabilities in the stabilization process. Lastly, the DVS algorithms tend

to face the problem of differentiating the wanted from unwanted motion.

The output related challenges refer to the low quality of the stabilized videos: videos

with added blur, distortion, unwanted motion, ghost effect, or videos that require a high

amount of zoom, to remove the border effect caused by frame transformation.

Fig. 1.2 Challenges for traditional DVS methods.

The challenges faced by deep approaches are slightly different (see Figure 1.3). Al-

though they tend to find and track features easily, they still struggle with added blur



1.3 Contributions 5

and distortion [23][26]. Some approaches [24][[27] have also unsuccessfully tried to

generate the frames of the stabilized video. However, the main issue with DL-based

DVS methods is the camera path smoothing problem definition, since it is hard to

mathematically define a smooth camera path that contains wanted camera motion. With

this in mind, we propose our own DVS system, which will be briefly described next

Section.

Fig. 1.3 Challenges for deep DVS methods.

1.3 Contributions

This thesis proposes a novel approach for video stabilization, by utilizing the benefits

of DL for aligning images and the benefits of traditional methods for smoothing the

camera path. Our approach addresses the challenges presented in Figures 1.2 and 1.3.

1) Having in mind the dataset shortage and the fact that current DL-based DVS systems

estimate transformation matrices in their algorithms, we provide a dataset that contains

such information in Chapter 3. We leverage the knowledge provided by the dataset in

[23] to produce a large dataset of artificial steady-unsteady video pairs. Unlike [23], we

provide motion parameters, which can decrease the complexity in the training process

of future algorithms, since the loss function can be based on the motion parameters

instead of the output frames.
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2) Performance evaluation in previous studies have mostly been non-reference (i.e.,

taking only the stabilized video into account). Since we provide a large amount of

Ground Truth (GT) and parameter (PR) data, we implement a full-reference evaluation

framework in Chapter 3, for performance evaluation based on GT, PR, and stabilized

data. To demonstrate the practical use of the introduced dataset and the evaluation

framework, we compare the performances of Estadeo [28], a 2D-based DVS algorithm,

and StabNet [23], a DL-based DVS algorithm.

3) We leverage Spatial Transformer Networks (STNs) [29] to learn motion parameters

between frames in Chapter 4. We simplify the problem by, initially, learning the

transformation parameters between two versions of a given image, one of them being

previously warped. After obtaining accurate results, we move on to the next step, by

using this model to stabilize videos. Our training procedure considers images, therefore

our proposed system does not require video datasets that are specific for training DVS

systems, which simplifies the process. For testing, our system requires single unstable

videos. Because we use the evaluation framework we have provided in 2), in the

performance evaluation we also utilize our dataset1, mentioned in 1).

4) In our first DVS approach, we use moving averages and full homographies to

stabilize videos in Chapter 5. To this end, we perform motion estimations between

frames and provide two outputs, the first one being long-term smoothed and the second

one being long and short-term smoothed.

5) Aiming at avoiding blur and possible distortions caused by homographies, we

propose a translation-based DVS system in Chapter 6. This approach uses Exponential

Weighted Moving Averages (EWMAs) and moving averages.

1https://github.com/mariito/DVS_
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6) Since in the literature there are a number of filters utilized for smoothing the camera

path, in Chapter 7 we propose a DVS approach that uses filters. We present a thorough

analysis and performance comparisons between a number of low-pass filters and

their parameters, to select one, or a few, that present best overall performance. Such

filter selection is performed considering the homography-based and translation-based

approaches.

Fig. 1.4 Thesis structure.

1.4 Thesis Structure

The remainder of the report is organized as follows and is shown in Figure 1.4. Chapter

2 presents a brief background and related work on video stabilization and deep learning.

Chapter 3 introduces the dataset production and our evaluation framework. In the same

Chapter, we describe other datasets and metric that we use in this thesis. Chapter 4

presents our image alignment module, based on STNs. Chapter 5 presents our deep

homography-based DVS system. Chapter 6 presents our deep translation-based DVS
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systems. Chapter 7 presents our deep filter-based DVS. Finally, Chapter 8 presents our

concluding remarks and potential future developments.

1.5 Published Work

• "A Dataset and Evaluation Framework for Deep Learning Based Video Stabi-

lization Systems," 2019 IEEE Visual Communications and Image Processing

(VCIP), Sydney, Australia, 2019. In this thesis, the given work is presented in

Chapter 3.

• "Distortion-Free Video Stabilization," 2020 IEEE International Conference on

Multimedia & Expo Workshops (ICMEW), London, United Kingdom, 2020. In

this thesis, the given work is presented in Chapters 4 and 6.

• "Deep Homography-Based Video Stabilization," 2020 International Conference

on Pattern Recognition (ICPR), Milan, Italy. In this thesis, the given work is

presented in Chapters 4 and 5.



Chapter 2

Background and Related Work

This Chapter presents a background (Section 2.1) followed by related work on video

stabilization systems (Section 2.2), datasets (Section 2.3), evaluation tools (Section

2.4), image alignment (Section 2.5), low-pass filters (Section 2.5.4), and finally our

project proposal (Section 2.7).

2.1 Background

This Section presents a Background on Digital Video Stabilization and Deep Learning.

2.1.1 Video Stabilization

DVS has been a research topic for decades, presenting a wide variety of techniques and

characteristics. Because of this, DVS systems can be classified according to:

• The time the videos are stabilized [13]

- Offline: after the videos are recorded
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- Deferred: while they are being recorded, with a delay between input and

output frames

- Real-time: while they are being recorded, without negligible delays

Because motion estimation algorithms are computationally expensive, most DVS

systems are offline or deferred. Also, there are a number of DVS methods

that utilize both past and future frames of a recorded video for high quality

stabilization. However, the need for real time stabilization has raised recently,

for applications that demand interaction between the video application and the

viewer. For example, robots and drones that communicate with a remote operator,

who can ideally view a stable video in real time to make immediate decisions

[30]. Therefore, real time video stabilization is a challenge [13].

• The complexity of the model used to process the frames [15][31]:

- 2D-based: utilizes 2D transformations, such as affine and homography, to

model and smooth the camera path. These methods are fast, robust, and demand

low computational cost. However, they are limited at handling parallax, relative

depth variations, large or abrupt camera movements, camera translation, and

scaling [32][9].

- 3D-based: utilized for reconstructing and smoothing 3D camera trajec-

tories, allowing representation of realistic displacements in all directions. The

motion estimation step strongly relies on depth estimation, which is slow and

computationally expensive. Although they can deal with complex geometry,

they do not deal with lack of depth, parallax and occlusion well, as they tend to

introduce ghost effects on the stabilized frames [31][9].
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- 2.5D-based: leverages partial 3D information for video smoothing by

relaxing the 3D reconstruction. They aim at obtaining the correctness of 3D

based techniques while more computationally efficient than 3D approaches

[15][11].

- Hybrid: leverages the strengths of 2D and 3D methods, by applying 2D

methods to certain frames and 3D methods to other frames [15].

- Deep: utilizes Deep Learning strategies for video stabilization [23][24].

Selecting the appropriate model can be tricky, since the mentioned models perform

differently, depending on the scene and camera path. Choosing an inappropriate model

can cause low quality video stabilization results [9].

Generally, DVS methods are performed in three steps[10][17][11], as shown in Figure

2.1:

Fig. 2.1 DVS methods steps.
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1) motion estimation: fundamental for stabilization methods, it analyzes the video to

estimate camera motion, since it differentiates camera motion from moving subjects/ob-

jects. Initially, the camera motion parameters are estimated with the spatio-temporal

correspondence between adjacent frames. It can be done by matching pixels (or blocks

of pixels, or even features) between consecutive frames with either a similarity or

distance metric [9]. Then, the camera motion is differentiated from the movement

of subjects or objects with outlier detection and removal. It can be done either on

a frame-to-frame basis or by analyzing the video stream. After outlier removal, the

remaining motion can be used to model or approximate the camera motion per se.

However, pixel/block/feature matching and tracking are time consuming. They may

also be sensitive to camera motion (e.g., quick camera motion) and scene content (e.g.,

textureless regions, occlusion) [10][11][16]. These scenarios may lead to a limited

amount of matches or to a short duration of tracked motion.

2) motion compensation: aims at removing or reducing the unwanted camera motion

and to compute a new plausible camera motion. The intensity of the stabilization

algorithm can be adapted, so as to provide a good viewing experience [9]. Since one

of the most common causes for discomfort are high and/or low frequency jitter, one

solution is to use filters or damping to remove such motion. These filters can be applied

to pixels/blocks/features trajectories or to camera motion parameters. Particularly, there

is a difference in the use of filters or of damping techniques:

i) Frame Position Smoothing (FPS) uses low-pass filters to smooth the absolute frame

position that is obtained with accumulated global motion vectors. These are constructed

by accumulating global inter-frame motion vectors from an unstable video. The accu-

mulated motion vectors are low-pass filtered, to remove high frequency components

caused by jitter and maintain low frequency components, caused by intentional camera
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movement. The low-pass filtered motion vector Xl p f (n) and the original accumulated

global motion vector Xact(n) are, then, used to estimate the corrected vector Vcor(n)

[33].

Vcor(n) = Xl p f (n)−Xact(n) (2.1)

ii) Motion Vector Integration (MVI), generates correction vectors by integrating the

differential global motion vector of a frame using a damping coefficient k [33].

Vint(n) = k×Vint(n−1)+Vact(n) (2.2)

Even though the community has widely utilized MVI, [33] has proven that FPS is

better than MVI.

Another option is to use path fitting, which consists of fitting the camera motion to a

particular model: constant models replicate still shots, linear models replicate tracking

shots, and quadratic models can replicate a transition from one to another. However,

this approach is not applicable to long video sequences and may require user input to

select the desired motion type [9].

3) video synthesis: generates a new video that corresponds to the smooth camera

path, by applying the newly smoothed camera motion to the original unstable video.

This step depends on the camera model of choice [9]. While some models describe

motions for all pixels in the frames, using dense reconstruction, some describe motion

for specific points, with sparse reconstruction.
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These blocks are not necessarily present in all proposed methods, and may present

some differences to the described steps. However, the mentioned steps constitute a

convenient and straightforward way to describe the video stabilization pipeline.

2.1.2 Machine Learning and Deep Learning

Machine Learning (ML) algorithms aim at representing the input data and generalizing

the learned patterns for utilization on unseen data. With ML, computers can act without

explicitly being programmed, with algorithms that learn from data, by making data

driven decisions and predictions [34]. The quality and fit of the data highly influence the

performance of the ML algorithm. Therefore, feature extraction and data representation

from raw data are crucial to ML. In fact, these procedures take up a large percentage of

the effort in a given ML task. Also, they are domain specific and require substantial

human intervention [35]. Although traditional ML has been widely used in pattern

recognition, natural language processing, and computational learning, when it comes

to speech and vision, its performance is far from satisfactory. DL was introduced in the

past years to fill this gap [34].

Deep Learning (DL), a sub-field of ML, is an emerging approach which aims at learning

high level abstractions in data by leveraging hierarchical architectures [36][37]. The

goal of DL is to automate the extraction of complex data representations. These algo-

rithms consist of a layered and hierarchical architecture for learning and representing

data. In this hierarchy, higher level, or more abstract features are defined based on

lower level, or less abstract features [36][35]. The main idea is that these layers are

not designed by engineers: instead, they are learned from the input data with a general

purpose learning algorithm [38]. Such hierarchical architecture is an attempt to emulate

the learning process of the human brain [35].
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DL methods have provided good results in different ML fields, such as object detection

and recognition [39], media retrieval, multimodal data analysis, speech recognition,

computer vision, natural language processing, image analysis, video tracking, amongst

others [36][34][35].

One of the most notable DL approaches is the Convolutional Neural Network (CNN),

being the most commonly used in several computer vision applications [37]. CNNs

generally consist of three main layers [37]]: i) convolutional layers: in these layers,

several kernels or filters convolve the whole image and the intermediate feature maps,

creating several feature maps, as shown in Figures 2.2 and 2.3. This type of layer

allows weight sharing within the same feature map, leading to a drop in the number of

parameters ii) pooling layers: they usually follow a convolutional layer, and are utilized

for reducing the dimensions of the feature maps and the network parameters. The

most common approaches are max pooling and average pooling iii) fully connected

layers: responsible for converting 2D feature maps into a 1D feature vector, performing

like traditional neural networks. They allow feeding a neural network into a vector

with pre-defined dimensions. However, they contain many parameters, leading to high

computational cost for training

In 2D CNNs (shown in Figure 2.2), convolutions are applied on 2D feature maps, only

computing features from spatial dimensions. On the other hand, 3D CNNs (shown

in Figure 2.3) are used to compute features from spatial and temporal dimensions,

e.g., in a video. In this case, the convolutions are applied convolving 3D kernels to

cubes formed by stacking multiple consecutive frames together. With this structure, the

feature maps in a given convolution layer are linked to several consecutive frames in

the previous layer, allowing the extraction of motion information. 3D CNNs are widely

used in video analysis due to this reason [40].
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Fig. 2.2 2D Convolutional Neural Network Structure. Extracted from [1]

Fig. 2.3 3D Convolutional Neural Network Structure. Extracted from [1]

Although CNNs present good performance in a variety of computer vision tasks, they

are not spatially invariant to the input data in a computationally and parameter efficient

way [24][29]. For spatial manipulation of data within the network, Spatial Transformer

Networks (STNs) have recently been proposed [29]. Spatial Transformers can be

utilized in standard neural network architectures to provide spatial transformation

capabilities. The spatial transformer does not require extra supervision, and can

spatially transform an image, or feature map, by providing transformation parameters

for each input. The transformation provided is performed on the entire image, or

feature map, and can include scale, crop, rotation, and non-rigid deformation. Spatial

Transformers can be inserted into CNNs for performing a number of tasks, namely

image classification, co-localization, spatial attention, amongst others [29]. Another
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task is warp learning, in which it learns a set of warp parameters, followed by a

differentiable warp function [41].

Spatial transformers are differentiable modules that apply a spatial transformation to a

feature map, producing a single feature map as output. In case of an input with multiple

channels, the same transformation is applied to all channels. As shown in Figure 2.4,

a spatial transformer consists of three parts: 1) localization network, which takes the

input feature map and, through a group of hidden layers, outputs the transformation

parameters that should be applied to the feature map. The predicted parameters are,

then, passed to the 2) grid generator, which uses the parameters to create a sampling

grid, i.e., a grid of points where the input map should be sampled to generate the

transformed output. Lastly, the input feature map and the sampling grid are received by

the 3) sampler, which produces the output feature map [29].

STNs have been utilized in a number of tasks: facial recognition [42], inverse composi-

tion [43], neural circuits reconstruction [44], deformable image registration [45], and

video stabilization [24][46], amongst others.

In the past years, Deep Learning techniques have provided good results in different

computer vision fields, such as super resolution [18], image deblurring [19], style

transfer [20], medical imaging [47], among others. However, Deep Learning based

solutions for video stabilization have not been thoroughly studied yet. This is mostly

due to: 1) lack of training data, which would consist of pairs of synchronized steady

and unsteady videos with identical route and content. Although such datasets are not

required for traditional methods, they are normally required for learning-based systems.

2) accurate problem definition, since camera path smoothing is not easily defined in a

CNN context [23].
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2.2 Video Stabilization Systems

Digital video stabilization has been a research topic for decades, to the best of our

knowledge dating back to 1998 [48], as the use of amateur digital handheld cameras

started to spread. Along the years, digital cameras have evolved 1 and their utilization

has become more frequent, especially after the start of the smartphone utilization 2. Not

to mention the increase in security cameras3 and devices equipped with cameras (such

as drones and robots). With the available amateur recording devices, video stabilization

has also evolved, starting with 2D approaches, followed by 3D, 2.5D, and hybrid

approaches. Next, a few DL-based approaches have been proposed. In this Section, we

present papers related to some of these approaches.

Although there are a number of different classifications for DVS systems, in this thesis,

we focus on the most utilized one, which focuses on the model complexity, separating

different proposals as 2D, 2.5D, 3D, hybrid, and deep.

Fig. 2.4 Spatial Transformer Network.

2.2.1 2D-based

2D-based DVS methods estimate 2D transformation (e.g., affine and homography)

parameters between adjacent frames and concatenate such parameters to form a 2D
1http://uk.businessinsider.com/digital-photography-revolution-2015-4?r=US&IR=T
2https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
3https://www.statista.com/statistics/477917/video-surveillance-equipment-market-worldwide/
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camera path [49][50][51] or a grid of 2D camera paths [50][30]. The optimal path

consists of temporally smoothed transformations [23]. It is estimated with low-pass

Gaussian filter [52][53][54], Kalman filter [55][56], least square fitting [57], low-pass

filters [58][59], L1-norm optimization [49][60], bundled camera paths [50], geodesics

optimization [17], or rolling shutter effects analysis [61]. Early 2D methods estimated

homographies between adjacent frames and then smoothed all obtained homographies

after concatenating them to obtain stable frames. Since 2D methods match features

between adjacent frames, they are more robust to camera motion and efficient than 3D

models [23][11].

2D methods are known to be easily implemented, but prone to artifacts (e.g., wobbling,

distortion, blur), especially for videos with parallax (caused by depth variation or out

of plane motion [17]). In these cases, the distortion added is likely to be more annoying

to the viewer than the jitter from the original video. Also, they are still sensitive to

camera motion (e.g. quick camera motion) and scene content (e.g. textureless regions

and occlusion) [10][11][16].

State-of-the-art 2D methods either estimate the unsteady camera path with global

[52]][49][55] or local [50][62] parametric 2D transformations between consecutive

frames, then optimize the estimated parameters to obtain a smooth camera path.

Grundman et. al. [49] adopt some smoothness constraints based on cinematographic

criteria, and utilize L1-norm optimization for affine transformations to obtain a smooth

path, enabling high quality video stabilization results. The authors prove that a well

defined path can lead to good stabilization results even with 2D transformations.

However, since the optimization does not preserve shape, it can still lead to distortion.

Liu et. al. [50] propose a 2D stabilization method that considers bundled camera paths.

In this model, each frame is divided into a mesh grid, and each cell has its own path,
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allowing it to handle non linear motion caused by parallax and rolling shutter effects.

Also, the model requires feature matching between two consecutive frames, allowing

the robustness and simplicity of 2D methods. However, the model has its drawbacks.

According to the authors, the warping can fail in the presence of severe occlusion,

especially if combined to rolling shutter effect. In this case, it prefers to leave some

jitter to avoid distortion. Also, the path optimization does not obtain cinematographic

results, which can be undesirable in some applications.

Estadeo [28] is a paper dedicated to implementing and exhaustively comparing classic

DVS techniques and boundary conditions. It also analyzes two algorithms that aim at

cropping the videos after they are stabilized. Since the author has provided the source

code to the system, in this thesis we extensively use it as baseline. To this end, we

utilize the default options in the code provided by the author.

Battiato et al. [63] present a video stabilization algorithm based on the extraction and

tracking of Scale-Invariant Feature Transform (SIFT) features through video frames.

The proposed approach contains a modified version of iterative least squares method to

avoid estimation errors and intentional camera motion is filtered with Adaptive Motion

Vector Integration.

Kim et al. [64] propose a method to estimate the global motion accurately using the

background and foreground feature points. In the approach, global motion estimation

and feature point classification are performed simultaneously using the feature point

correspondences and the global motion parameters of the previous frame.

Su et al. [65] propose an approach which combines the techniques of video stitching

and stabilization into an optimization framework. The considered scenario consists

of two videos captured with mobile devices recording the same scene, from different
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angles, which are then stitched together. The proposed method computes the optimal

stabilization and stitching results with respect to each other.

Hu et al. [66] present a method that contains a multilayer gray projection algorithm to

estimate translation, rotation and scaling motion between target and reference images.

Differential gray projection is applied to estimate relative image translation, then the

scaling and rotation are calculated by doing ring projection and circular projection.

Chen et al. [67] propose an approach that is based on the shortest spanning path

clustering algorithm for estimation of the global motion vectors. Feature points detected

by Fast Retina Keypoint (FREAK) descriptors [68] from each frame pair are used to

obtain global motion vectors through the shortest spanning path clustering algorithm.

Then, these vectors are used to stabilize the successive frames.

Dong et al. [69] propose an instantaneous video stabilization method for Unmanned

Aerial Vehicles (UAV). The proposed method smooths the video motion in both two-

dimensional and three-dimensional scenes and instantaneously provides the stabilized

footage to users. For each input frame, the approach applies inter-frame transformations

to the four corners of the image rectangle, then uses an adaptive filter to smooth motion

trajectories.

Kejriwal and Singh [70] also propose a video stabilization algorithm for UAV. The

proposed system extracts corner points with Good Features to Track corner detection

algorithm. Then, optical flow between consecutive frames is computed with the ex-

tracted points. The optical flow detected points are used to estimate motion parameters

using an affine transform model. Finally, a hybrid filter consisting of Kalman and

low-pass filter is used to smooth the estimated motion parameters and the frames are

warped using the smoothed parameters to obtain a stabilized video sequence.
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Walha et al. [71] present a video stabilization and moving object detection system.

It uses local feature extraction and matching to estimate global motion with SIFT

keypoints. The proposed approach estimates global camera motion using affine trans-

formation, then uses Kalman filter to detect moving objects. To smooth the camera

path, it uses a median filter to retain the desired motion.

Although the presented methods tend to produce good results, few of them can provide

real-time stabilization for portable devices due to their high computational cost. A num-

ber of Field-Programmable Gate Array (FPGA) implementations have been proposed

for video stabilization to date [72][73][74]. However, they can only address videos

with translational jitter, not being able to address rotation and scaling. The work in

[10] is another FPGA implementation, feature-based full-frame stabilization method.

It consists of 2D method which estimates affine transformations between consecutive

frames: it can deal with translation, rotation, and scaling.

2.2.2 3D-based

3D-based methods estimate the camera path based on the full reconstruction of the

camera path in the 3D space, by utilizing Structure-from-Motion (SfM) [75][76][77] or

depth sensors for 3D reconstruction [78], to obtain rotation and translation information

to model camera motion. The 3D camera path is, then, smoothed and the unsteady

frames are rendered with the new smoothed camera configuration, generating stabilized

frames. These methods provide good stabilization results, however they are usually

more computationally expensive and brittle than 2D methods [17][15]. Finally, 3D

methods might fail due to tracking errors (since they normally utilize long feature

tracks for 3D structure reconstruction, including scene points and camera motion [15])

and scene degeneration[11].
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Liu & Jin [75] propose a 3D method of video stabilization that simulates an ideal

camera motion from a handheld recorded video. The model is based on existing 3D

proposals, but can avoid ghosting effects by warping each output frame from a single

input frame. For guidance on the warping process of the output, they utilize 3D sparse

point cloud. The proposed system presents higher resulting stability than traditional

2D models while avoiding the ghosting effect found in previous 3D proposals. Overall,

the method is still more time consuming than 2D models due to the 3D point clouds,

and can suffer in the absence of camera translation. Also, the output frame needs to be

cropped, and due to the aggressive warping the content loss due to croppping might be

higher than other techniques.

Lee et al. [79] propose a fast video stabilization algorithm that provides reduced

computational complexity. The proposed approach estimates the 3D information of the

feature points in each input frame and defines the Region Of Interest (ROI) based on the

obtained 3D information. Then, if the number of feature points in the ROI is sufficient,

it applies ROI-based pre-warping and content-preserving warping sequentially to the

input frame. Otherwise, conventional full-frame warping is applied.

We noticed there is a disagreement in the literature with respect to subspace constraints

[80] and epipolar geometry [32]. In this work, we consider these as 2.5D methods.

2.2.3 2.5D-based

2.5D-based methods leverage partial 3D reconstruction of the camera path by relaxing

some requirements adopted in 3D reconstruction [11][80]. Some constraints utilized

are epipolar geometry [32], mixed homographies [81], local similarity transformations

[16] or homographies [50][62], space-time constraints based on free-form curve fitting

[82], steady optical flow [51] or subspace constraints [80]. Although these methods

tend to produce good results with low computational cost, they are prone to failure
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under severe jitter [17][15] and in the presence of occlusion or textureless areas [16].

Also, since the optical flow methods require reliable optical flow estimation, they are

prone to failure in the presence of occlusion or textureless areas [16].

Liu et al. [83] present a joint subspace stabilization method for stereoscopic video.

The authors initially prove that the low-rank subspace constraint for monocular video

proposed by [84] holds for stereoscopic video, since the feature trajectories from the

left and right video share the same subspace. Then, they propose a DVS method that

computes a common subspace from the left and right videos and uses it to stabilize the

two videos simultaneously. The proposed method does not require 3D reconstruction

or explicit left-right correspondence to meet the stereoscopic constraints.

Liu et al. [80] transform a set of input 2D camera paths so that they are both smooth

and visually plausible. To this end, he authors achieve this by enforcing subspace

constraints on feature trajectories while smoothing them.

2.2.4 Hybrid-based

Hybrid methods leverage the strengths of 2D and 3D methods, by applying 2D methods

to certain frames and 3D methods to other frames [15]. Because they leverage 2D

and 3D methods simultaneously, they present the same drawbacks as these methods.

Hybrid architectures tend to achieve better robustness, speed, and smoothing ability

than either pure 2D or 3D methods can provide.

Liu et. al. [15] employ a hybrid video stabilization approach for videos that is robust

to various camera motions and can handle Discontinuous Depth Variation (DDV), a

challenging scenario in video stabilization. According to the authors, 3D methods

can handle DDV well, with the computational burden and the long processing time as

drawbacks. They automatically partition the video frames into DDV and Continuous
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Depth Variation (CDV), and employ 3D and 2D stabilization methods to the frames

with DDV and CDV, respectively. Then, the frames are grouped with an optimization

constraint.

Johannes [85] presents a hybrid 3D-2D algorithm for stabilizing 360° video using

a deformable rotation motion model. The approach estimates the rotation between

key frames that are appropriately spaced using 3D analysis. It uses 2D optimization

to maximize the visual smoothness of feature point trajectories for the remaining

frames. The algorithm contains a rotation motion model that enables handling small

translational jitter, parallax, lens deformation, and rolling shutter effect.

2.2.5 Deep Learning-based

The literature has recently reported that Deep Learning (DL) approaches have the ability

to address various computer vision challenges, such as image recognition [86][87] and

image generation [88][89], optical flow [90], camera motion estimation [91], action

recognition [92], scene dynamic generation [93], frame interpolation [94], deblurring

[19][95]. In this scenario, DL-based approaches for DVS have recently been proposed

in the literature [23][24][25][26][27].

StabNet [23] is a deep online video stabilization method which considers a few past

stabilized frames for stabilizing future frames. Instead of explicitly estimating and

smoothing camera paths, it leverages a CNN to predict warp parameters. This is

performed by learning multi-grid transformation parameters for each unstable frame,

using only past frames. StabNet can stabilize low quality videos, with night scenes,

watermarks, blurry and noisy videos, which tend to lead existing methods to failure.

However, StabNet is prone to failure in the presence of extreme near-range videos or

drastic motion.
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The work proposed in [24] presents a novel deep online learning framework that learns

transformation parameters for each unsteady frame, considering historical stabilized

frames. It consists of a generative network with embedded STNs in different layers

of the network. The work also contains an adversarial network, which determines the

stability of a video fragment. The system can stabilize low-quality videos, scenarios in

which traditional methods tend to fail (i.e., heavy noise or multiple exposure). However,

the generated affine transformation only considers transformation from the previous

frame, resulting in a weak temporal coherence.

Yu et al. [27] use optical flow between adjacent frames to generate dense correspon-

dence of all pixels between the two frames. Then, the video is stabilized by minimizing

the distances between corresponding pixels. However, this is a large scale non-convex

problem, which is hard to solve. The authors’ approach is to use CNNs purely as an

optimizer rather than learning from data: the proposed method trains the CNN for

every unstable video, and intentionally overfits the CNN parameters to produce the

best result. It is robust to scenarios that would lead state-of-the-art solutions to failure.

The authors argue that this is a viable formulation for video stabilization, however it is

limited by the need to train and overfit a CNN for every input video, leading to a high

computational time.

Choi et al. [26] propose an unsupervised framework that utilizes frame interpolation

to stabilize frames, which eliminates cropping. The proposed network generates a

frame that would be between two sequential unstable frames. Since the middle frame

would be between two unstable frames spatially and temporally, generating a sequence

of middle frames would result in a more stable video. However, since the proposed

work performs a number of interpolations for stabilizing videos, such an approach may

generate blurred videos.
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Zhao et al. [96] propose a cascade of encoder-decoder architectures that receives a

number of unstable frames for generating precise warping maps, with a high degree of

freedom. The authors also propose an effective method to automatically determine the

cropping region. However, since the proposed method is trained with the DeepStab

dataset [23], it has mainly learned how to handle the jitter present in the dataset, and

may present degraded performance when handling videos with different movement

patterns. Also, the cropping algorithm may inaccurately determine the cropping region.

There have been proposals that leverage a siamese CNN [23], a Generative Adversarial

Network (GAN) with embedded STNs [24], weight optimization [25], and frame inter-

polation [26]. However, as pointed by [6], DL-based video stabilization methods still

have room for improving their performance. Also, the stabilized frames in [23][24][25]

are a result of 2D transformations, which adds blur and distortion to the resulting video,

and [26] performs cascaded frame interpolations to stabilize videos, which can add

blur and noise.

Table 2.1 shows a summary of the current DL-based DVS systems. As one can see,

their output videos present added artifacts, normally blur and distortion, caused by the

use of 2D transformations or interpolation. It is clear that DL-based DVS systems have

not yet managed to seamlessly produce stable videos, since the logistics behind the

camera path smoothing is still complex and does not produce adequate results. Hence,

we argue that there is room for improvement in DL-based DVS.

2.3 Datasets

Although video stabilization is a research problem being investigated for decades,

more promising Deep Learning based solutions have not been thoroughly studied yet,

mainly because of the shortage of datasets for training, camera smoothing problem
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Work Network Main feature Advantage Disadvantage
StabNet [23] Siamese CNN Learns multi-grid

transformations
Can stabilize
low quality
videos, with night
scenes,watermarks,
blurry and noisy
videos

_Prone to failure with ex-
treme near-range videos or
drastic motion
_Performs 2D transforma-
tion, adding blur and distor-
tions

Xu et al. [24] GAN with em-
bedded STNs

Contains a genera-
tive network with
embedded STNs in
different layers of
the network

Can stabilize low-
quality videos

_Weak temporal coherence
_Performs 2D transforma-
tion, adding blur and distor-
tions

Yu et al. [27] CNN Uses optical flow
and the CNN as an
optimizer

Uses optical flow
estimation to gen-
erate a warp field
for each frame

_Requires training and over-
fitting the CNN for every in-
put video, leading to a high
computational time
_Performs 2D transforma-
tion, adding blur and distor-
tions

Choi et al.
[26]

CNN Uses frame inter-
polation

Avoids cropping
the frames in the
stabilized video

_The high number of in-
terpolations may add blur
and distortions to the output
videos

Zhao et al.
[96]

CNN cascade Uses a cascade of
encoder-decoder
networks for es-
timating warping
maps

The warping maps
present a high de-
gree of freedom
Effective cropping
algorithm

_Has mainly learned how to
handle the jitter present in
the DeepStab dataset [23]
_The warped maps require
interpolation, which adds
blur and distortions to the
output videos

Table 2.1 Deep Learning-based DVS systems in the literature.

definition [23], and shortage of evaluation frameworks [6]. In fact, most DVS systems

proposed until 2018 were either tested on synthetic data or real data without ground

truths. According to [9], the first significant dataset composed of stable/unstable video

pairs was published in 2018 [97]. Since then, other large scale datasets have been made

available [23][6], including the one we present in Chapter 3.

There are a number of DVS systems that provide unstable videos for testing [75][49][80]

[98][50][99][100][97][23]. However, out of these only [97] and [23] provide ground

truth videos. Both have recorded synchronized video pairs with a handheld device, the

former providing 45 videos (categories: walking, climbing, running, riding, driving,

large parallax, crowd, near-range object, dark) and the latter providing 60 videos (cate-
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gories: Simple, blurry, high motion, dark, textureless, parallax, discontinuous depth,

crowd, close object).

However, the amount of videos provided by both proposals is not enough for training

and testing DL-based approaches. In fact, for training StabNet (proposed in [23]),

data augmentation techniques were utilized to the dataset. Also, the dataset lacks the

corresponding motion parameters between the stable-unstable video pairs. The dataset

presented by [97] presents the same issue: not enough videos, which was solved by

adding synthetic videos to the Full-Reference (FR) tests performed by the authors in

the same work. An alternative to recording an entire dataset is to synthetically produce

unsteady videos, which has been done in [101][102]. However, these works have not

provided a dataset.

2.4 Evaluation Tools

Video Stabilization Quality Assessment (VSQA) evaluates the performance of DVS

systems in terms of perceptual quality. It is considered a multi-criterion problem, since

factors such as camera motion and artifacts caused by the DVS system (e.g., resolution

loss, distortion, blur) contribute to the final quality of experience. These factors are not

easily described mathematically [9]. Although a number of DVS systems have been

proposed for decades, there is currently no well defined and accepted framework for

performance evaluation of DVS systems.

In the literature, there are two approaches that have been used to assess the quality of

DVS systems: 1) with visual inspection or user studies. However, these subjective tests

are normally time consuming and difficult to setup, being therefore unfeasible. 2) with

objective metrics. In this scenario, one can carry out VSQA in two ways, depending

on the availability of a ground truth video: i) full-reference: analyzes the quality of a
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DVS system by comparing the stabilized and the ground truth videos. ii) non-reference:

leverages statistical models for assessing the quality of a DVS system.

However, both approaches pose challenges: 1) it is difficult to obtain ground truth

videos for pairwise comparisons. 2) motion stability is a perceptual concept, therefore

it is difficult to be modelled mathematically [12].

In previous state-of-the-art DVS systems proposals, [23][24][50], the utilized evalua-

tion methods were non-reference. Also, there have been studies that specifically propose

evaluation frameworks for DVS systems [103][12][104][105][106][107][108][109][110].

However, these frameworks consider non-reference evaluations, not taking advantage

of the availability of GT videos. Finally, there have been a few full-reference evaluation

proposals in [111][97]. Both works present complex metrics, however fail to provide

an evaluation code, which could lead developers to obtain wrong calculations.

2.5 Image alignment

Image alignment is one of the main components of our work. Hence, in this Section we

present a number of proposed systems for homography estimation, image registration,

and visual odometry estimation using different strategies, both traditional and DL-

based. This Section also presents a number of proposals that utilize STNs in their

architectures.

2.5.1 Homography Estimation

Chang et al. [112] propose a network architecture that combines the strengths of CNNs

and the Lucas-Kanade algorithm for image alignment. The architecture contains a

Lucas-Kanade layer that performs the inverse compositional algorithm on convolutional

feature maps. The method contains a cascaded feature learning method that incorporates



2.5 Image alignment 31

the coarse-to-fine strategy into the training process, learning a pyramid representation

of convolutional features in a cascaded manner and yielding a cascaded network that

performs coarse-to-fine alignment on the feature pyramids. The method is then applied

to the task of homography estimation.

DeTone et al. [113] present HomographyNet, a CNN for estimating the relative

homography between image pairs. The proposed network takes two stacked grayscale

images as input, and produces an 8 DoF homography matrix. The work presents two

architectures for HomographyNet: 1) a regression network to estimate the real-valued

homography parameters, and 2) a classification network to produce a distribution

over quantized homographies. To this end, a 4-point homography parameterization is

utilized, maping the four corners from one image into the second image.

Nowruzi et al. [114] propose a hierarchy of twin convolutional regression networks

to estimate the homography between image pairs. The proposed approach contains

sequentially stacked networks to reduce error bounds of the estimate. At every convolu-

tional network module, features from each image are extracted independently, given a

shared set of kernels, in a siamese network. Later on in the process, they are merged to-

gether to estimate the homography. Given the iterative nature of the framework, highly

complicated models are not necessarily required, and high performance is achieved via

hierarchical arrangement of simple models.

2.5.2 Image Registration

Fan et al. [115] propose an unsupervised adversarial similarity network for image

registration. The given approach does not require ground-truth deformations and

specific similarity metrics. Instead, a registration network and a discrimination network

are connected with a deformable transformation layer. With adversarial training, the

registration network is trained to predict deformations that are accurate enough.
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Huang et al. [116] propose a combination of unsupervised joint alignment with

unsupervised feature learning. Specifically, it incorporates deep learning into the

alignment framework, which iteratively transforms images to reduce the entropy of a

given dataset. The proposed approach obtains features that can represent the image at

differing resolutions based on network depth, and that are tuned to the statistics of the

specific data being aligned.

Kowalski et al. [117] propose Deep Alignment Network (DAN), a robust face alignment

method based on a deep neural network architecture. DAN contains a number of stages,

each stage improving the locations of the facial landmarks estimated by the previous

stage. The proposed method uses entire face images at all stages, and allows DAN to

handle face images with large variation in head pose and difficult initializations.

2.5.3 Visual Odometry estimation

Constante et al. [118] propose a novel frame-to-frame (F2F) Visual Odometry (VO)

strategy using a CNN. The approach can autonomously select the most important visual

cues and the best strategy to compute F2F estimates that are robust to blur, luminance

and constrast anomalies.

DeepVO [119], proposed by Wang et al., is an end-to-end framework for monocular

VO that uses deep Recurrent Convolutional Neural Networks (RCNNs). It infers poses

directly from raw videos without adopting any module in the conventional VO pipeline.

DeepVO automatically learns effective feature representation for the VO problem

through CNNs and implicitly models sequential dynamics and relations using deep

Recurrent Neural Networks.

Yang et al. [120] propose to leverage deep monocular depth prediction to overcome

limitations of geometry-based monocular visual odometry. The proposed system
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incorporates deep depth predictions into Direct Sparse Odometry (DSO) as direct

virtual stereo measurements. The depth prediction module consists of a deep network

that refines predicted depth from a single image in a two-stage process: the network

is trained in a semi-supervised way on photoconsistency in stereo images and on

consistency with accurate sparse depth reconstructions from stereo DSO.

Iyer et al. [121] propose an unsupervised paradigm for deep visual odometry learning.

The authors design a loss term that enforces geometric consistency of the trajectory

which allows accurate training of unsupervised VO models. The proposed method

uses geometry as a self-supervisory signal and Composite Transformation Constraints

(CTCs), that automatically generate supervisory signals for training and enforce geo-

metric consistency in the VO estimation.

2.5.4 Spatial Transformer Networks

Cirstea et al. [122] propose Tied Spatial Transformer Networks (TSTNs), a combination

of CNNs and STNs which consists of a localization CNN and a classification CNN with

shared weights. The former predicts an affine transform for the input image, which is

processed according to the predicted parameters and passed through the classification

CNN. The authors then utilize the approach to the noisy digits recognition, using the

cluttered MNIST database [123], which consists of the MNIST [124] database with

additional noise.

Kim et al. [125] present recurrent transformer networks (RTNs), a group of networks

for obtaining dense correspondences between semantically similar images. The work

consists of an iterative process that estimates spatial transformations between the input

images and generates aligned convolutional activations with the estimated transfor-

mations. Instead of using STNs to independently normalize each individual image,

the system directly estimates the transformations between image pairs. The process is
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performed recursively to refine the transformation estimates and the feature representa-

tions. Finally, the authors present a technique for weakly-supervised training RTNs

that is based on a classification loss.

Lin et al. [43] establish a theoretical connection between the classical Lucas-Kanade

(LK) algorithm and STNs. The authors present Inverse Compositional Spatial Trans-

former Networks (IC-STNs), inspired by the Inverse Compositional (IC) variant of the

LK algorithm. Then, they demonstrate that IC-STNs achieves better performance than

conventional STNs with less model capacity, in the context of image alignment tasks

and joint alignment and classification problems.

Lin et al. [41] propose Spatial Transformer GANs (ST-GANs), a GAN architecture that

utilizes STNs as the generator to find geometric corrections to a foreground object that

is composited into a background image. The proposed approach exploits an iterative

STN warping scheme and propose a sequential training strategy that achieves better

results compared to naive training of a single generator.

Garcia et al. [126] present a Deep Learning approach for traffic sign recognition

systems which comprises Convolutional layers and Spatial Transformer Networks. The

authors perform a number of experiments to measure the impact of diverse factors

aiming at designing a CNN that improves the state-of-the-art. First, a number of

different adaptive and non-adaptive Stochastic Gradient Descent (SGD) optimisation

algorithms (such as SGD, SGD-Nesterov, RMSprop and Adam) are evaluated. Then,

multiple combinations of STNs placed at different locations within the neural network

are analysed.

Fang et al. [127] propose a Multi-Level Feature Fusion Based Locality-Constrained

Spatial Transformer Network (MLSTN), which consists of a density map regression

module and a Locality-Constrained Spatial Transformer (LST) module. It first estimates
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the density map of each frame by utilizing the combination of the low, middle and high

level features of the CNNs. To measure the relationship of the density maps between

neighboring frames, the LST module estimates the density map of the next frame by

concatenating several regression density maps.

2.6 Filters

We use Motion Vector Integration and Frame Position Smoothing in this thesis. Hence,

in this Section, we provide background on a number of filters (Kalman and low-pass)

that we are going to utilize.

2.6.1 Butterworth Low-Pass Filter

The Butterworth low-pass filter is commonly used in gait analysis applications. It is

widely utilized by the community, due to its simplicity and acceptable performance.

The only parameter to be defined by the user is the cutoff frequency. Such filter operates

on the assumption that the signal to be processed is stationary, which is not always the

case. The performance of the Butterworth filter can, therefore, be limited by such fact

[128].

This filter is considered the best compromise between attenuation and phase response,

since it presents no ripple in the pass band or the stop band. Due to this reason, it is

also known as maximally flat filter. However, the Butterworth filter achieves its flatness

at the expense of a relatively wide transition region from pass band to stop band [3]. A

frequency response chart to the Butterworh filter is shown in Figure 2.5.

We chose the Butterworth filter as an option for video stabilization because the one

of the main sources of jitter in amateur videos is the movement of a walking person.



36 Background and Related Work

Further in this thesis, we analyse the performance of this filter under a number of cutoff

frequencies, to observe whether it is suitable for video stabilization.

Fig. 2.5 Sample frequency response of the Butterworth filter (extracted from [2]).

2.6.2 Gaussian Low-Pass Filter

Gaussian kernel filtering is a widely adopted method to remove high frequency jitter

from videos because it is simple to implement and to adjust the level of stabilization.

It avoids overshoot to a step function input while minimizing rise and fall time [27],

as can be seen in Figure 2.6. As it is widely known, its filtering characteristics rely

on the variance of the gaussian curve, which allows for the adjustment of the level of

stabilization [9].

The Gaussian filter is a popular approach to smoothing the camera path in traditional

DVS systems. Therefore, we take it into account when analyzing low-pass filters

further in this thesis.
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Fig. 2.6 Sample frequency response of the Gaussian filter (extracted from [3]).

2.6.3 Kalman Filter

The Kalman filter uses the camera path to separate wanted from unwanted motion,

correcting the latter [9]. It is a set of mathematical equations that provide an efficient

computational and recursive solution of the least-squares method. The filter supports

estimations of past, present, and future states. The Kalman filter has been extensively

utilized in the academia and industry, especially in autonomous or assisted navigation

[129]. Although we do not intend to get into details, it heavily relies on the prediction

error covariance of the process it tries to filter.

Fig. 2.7 Sample frequency response of the Kalman filter (extracted from [4]).
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The frequency response of the Kalman filter is shown in Figure 2.7. There is a number

of DVS methods that employ this filter in their strategies. Hence, we consider it a good

filter to consider when it comes to assessing low-pass filters for DVS.

2.7 Proposal

To address the shortage of DL-suitable datasets, in this thesis we provide a dataset of

synchronised stable-unstable video pairs with the motion parameters that maps them.

To the best of our knowledge, our dataset is the largest ever provided for DVS systems,

and is the only one to provide motion parameters between ground truth and unstable

videos. Since our video production is synthetic, our dataset can scale easily, and does

not require time consuming recordings.

With our dataset, we provide a full-reference performance evaluation framework, to

help the development and improvement of DVS systems. Since we provide a dataset

that contains motion parameters, our evaluation framework also provides metrics that

take into account these parameters. We believe these tools will contribute to the

development of future DL-based DVS systems.

Traditional and Deep DVS methods present strengths and weaknesses. Although

traditional DVS methods can effectively smooth camera path, they struggle to extract

and track features in a number of scenarios. Deep Learning-based video stabilization

proposals, on the other hand, are effective in feature extraction and motion parameter

estimation. However, they struggle with camera path smoothing, since it is a hard

problem to define in this context. Also, current DL-based DVS systems tend to add

artifacts to the resulting videos, such as distortion and blur, by either performing 2D

transformations or cascaded interpolation to the unstable videos. These artifacts tend

may be more annoying than the original jitter of the unstable video.
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Having this in mind, we propose our novel STN-based video stabilization system. We

first describe our image alignment module. Such module simplifies even further the

training process, since it doesn’t require stable/unstable video pairs, but images, which

allows the utilization of image datasets. Then, we propose a series of DVS methods.

The first one consists of a homography-based video stabilization. The second is a

translation-based video stabilization that leverages EWMAs and moving averages to

smooth the camera path. Lastly, we present a filter-based DVS. In the latter proposal, we

present a thorough analysis of filters, such as Gaussian, Kalman, Butterworth, amongst

others. We then select the filters and parameters that present the best performances for

both the homography-based and the translation-based systems. We then compare the

performance of our three proposed DVS systems, and determine which one is the best

amongst them. Finally, we study the possibility of adding our system to StabNet, our

Deep-based baseline.

Our proposals are effective, since they are not sensitive to scene content, and simplify

the camera path smoothing problem. Furthermore, our final systems avoid blurry and

distorted videos, since we simulate translation only, which we prove to be effective in

our experimental results. This allows us to overcome the issue presented by current

DL-based DVS systems, and is an initial step in building effective DVS systems that

avoid artifacts in their stabilized videos. Added to these, our in-depth filter selection

shows that there is room for improving current filters utilized for video stabilization.

Our proposed systems are different from our DL-based baseline, StabNet [23], which

uses a siamese network to obtain a grid of motion parameters, enforcing temporal and

spatial constraints to obtain a stable video. Its entire DVS implementation is based on

Deep Learning, and the camera path is smoothed considering a number of previous

frames: for each frame, these previous frames are taken into account to estimate a grid

of motion parameters (see Figure 2.8). Since StabNet estimates a grid of transformation
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Fig. 2.8 StabNet warp grid.

parameters, it needs to reinforce inter-grid consistency between all sub-images. It leads

to a small output frame, and in some cases the consistency enforced is not strong enough

to avoid distortions between sub-images. Added to this artifact, for each sub-image,

StabNet performs a homography, which adds distortion and blur to the sub-image.

Our systems, on the other hand, consist of a mixture of Deep Learning and traditional

methods. Our motion estimation is Deep Learning-based, while the camera path

smoothing is traditional-based. Unlike StabNet, our systems estimate global motion

parameters, which mitigates intra-frame distortions caused by sub-image stitching.

However, in the homography-based system, one can see the distortion and blur caused

by the homography, as well as unnatural motion in case there is occlusion, or parallax.

With our translation-based system, on the other hand, since we do not warp the frames,

we avoid distortion and blur. We also avoid the unnatural view previously seen with our

homography-based system. Hence, we argue that our system is the best option so far.
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Dataset and Evaluation Framework

3.1 Motivation

The most adequate technique for casual amateur recording is Digital Video Stabilization

(DVS), which is convenient and economical [13]. The literature has reported that Deep

Learning (DL) approaches have demonstrated the ability to handle and process complex,

large-scale datasets for addressing various computer vision challenges, such as super

resolution [18], image deblurring [19], style transfer [20], amongst others. In this sce-

nario, DL-based approaches for DVS have recently been proposed [23][24][25][26][96].

However, large datasets are essential for learning-based algorithms: for DVS, such

datasets would normally require pairs of synchronized steady-unsteady videos [23][24].

In fact, Wang et. al. [23] and Xu et. al. [24] point out that the lack of appropriate

datasets is one of the root causes for the few DL-based DVS systems available to date,

and [97] and [23] provide datasets for DVS. However, they consist of short amounts

of video pairs and do not provide motion parameters that map steady and unsteady

frames.
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Having in mind such shortage and the fact that current DL-based DVS systems estimate

transformation matrices in their algorithms, in this Chapter we provide a dataset that

contains such information. We leverage the knowledge provided by the dataset in

[23] to generate a large dataset of artificially produced steady-unsteady pairs. Unlike

[23], we provide motion parameters, which can decrease the complexity in the training

process of future algorithms, since the loss function can be based on the motion

parameters instead of the output frames.

Also, performance evaluation in previous studies have mostly been non-reference (i.e.,

taking only the stabilized video into account). Since we provide a large amount of

Ground Truth (GT) and parameter (PR) data, we implement a full-reference evaluation

framework, for performance evaluation based on GT, PR, and stabilized data. We

have proposed such a framework to simplify the evaluation process, since using the

GT allows the use of efficient and simple metrics such as Mean Square Error (MSE),

Structural Similarity Index (SSIM), and to directly measure how much a feature has

moved between GT and stabilized video. Also, by using PR information we allow an

even simpler comparison, between estimated and ground truth motion parameters.

To demonstrate the practical use of the introduced dataset and the evaluation framework,

we compare the performances of Estadeo [28], a 2D-based DVS algorithm, and StabNet

[23], a DL-based DVS algorithm. The contribution1 of the Chapter is threefold: i) a

dataset for training and testing DL-based DVS systems, which consists of a variety

of video types; ii) a full-reference evaluation framework, which considers GT frames

and motion parameters; iii) with our newly proposed evaluation framework, an initial

performance comparison between a traditional and a DL-based DVS systems.

1Dataset and framework available at https://github.com/mariito/DVS_
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3.2 Dataset Production

This Section describes our dataset production. As [23][24] mentioned, one of the

main obstacles for developing DL based Video Stabilization is the lack of training

dataset. The authors in [23] and [97] have manually recorded their datasets, since they

utilized a device for producing steady and unsteady video pairs: they had two cameras

attached to a handheld stabilizer, next to each other. The first one was fixed to the

stabilizer, producing a video with motion similar to that of the holder of the stabilizer.

The second one was attached to a moving platform in the stabilizer, producing stable

videos. Although it is a feasible way to produce a dataset, it demands recording of all

the videos in the dataset. It is clear that producing large datasets is a time consuming

task with this approach. In fact, the amount of video pairs provided is low: around 105

for both datasets, and in [23] the authors utilized data augmentation techniques to train

their system.

Fig. 3.1 Dataset Creation Procedure.
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Algorithm 1 Unsteady Video Production. VSt and VUn are the stable and unstable
videos from the dataset in [23]. f rames and f rUns are the frames of stable and unstable
videos, respectively. Trans f orm is the list of transformation parameters estimated
between VSt and VUn. VOrig is the stable video that is going to be used to generate an
unsteady video. SmoothT R is the smooth transformation list, obtained by applying an
EWMA to Trans f orm. f rsyn is the frame that has been synthetically transformed, to
generate an unsteady video VSyn.

procedure UNSTEADYVIDEO(VSt , VUn, Vorig) ◃ Input:VSt , VUn, Vorig
Assert length(VSt) = length(VUn)
for Vid in VSt do

Read f rames(Vid, VidUns)
for f r in f rames do

Read f r and f rUns
RTr← EstimateRigidTrans f orm( f r, f rUns)
Append RTr to Trans f orm

end for
Save Trans f orm

end for
for Vid in VOrig do

Read f rames(Vid)
for f r in f rames do

Pick RTr from Trans f orm
SmoothT R← EWMA(previous f rames)
f rsyn← warp( f r,SmoothT R)
Save f rsyn
Append f rsyn to VSyn

end for
Save VSyn

end for ◃ Output:VSyn, SmoothT R
end procedure
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With this in mind, our approach to providing a dataset is by producing synthetic stable-

unstable video pairs and motion parameters, as seen in Figure 3.1 and presented in

Algorithm 1. Since our video production is synthetic, our dataset can scale easily, and

does not require manual recordings.

First, we collect the dataset provided by [23], then we extract the frames from each

video pair (using ffmpeg [130]) to compare their frames. We estimate a 2x3 transfor-

mation matrix between each frame pair. For some of the pairs, we can not estimate

such matrix due to the content of the frames, however the amount of transformation

matrices obtained (approximately 23000 records) is considered a good sample for our

purposes.

We collect short videos from a free stock video repository2, which contains several

types of high quality and steady videos. We classify them into 9 categories: a) Simple,

videos with the same depth and textured objects; b) Blurry; c) High motion; d) Dark; e)

Textureless; f) Parallax; g) Discontinuous depth; h) Crowd, videos with large amounts

of moving objects, with high motion and parallax; i) Close object, videos with at least

one close object, leading to obstruction. The Simple category was selected because it

contains features that have been previously addressed by DVS systems, and should not

pose a problem to video stabilization algorithms. The remaining video categories were

selected because they contain one characteristic that poses a challenge to current DVS

systems.

From this group of steady videos, we utilize the transformation matrices we obtained

from [23] to produce our dataset of unsteady videos: for each frame in a given video, we

randomly select one affine matrix and assign it to the given frame. To avoid a wobbly

unnatural video, we utilize an Exponential Weighted Moving Average (EWMA) to

smooth the transition between frames, then crop the unstable frames, to extract the

2https://www.pexels.com/
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black borders resulting from the warps. To maintain resolution consistency between

GT and unstable videos, we also crop the GT frames, so both videos present the same

resolution. Then, we produce videos with the frames using ffmpeg [130].

We perform all these steps to make the motion in the unstable videos as close to real

unstable videos as possible. On the other hand, we also aim at producing a wide variety

of jitter frequencies: for producing our dataset, we do not take into account the motion

patterns of the videos in [23], only the motion parameters. Algorithm 1 shows an

overview of the unstable video production.

3.2.1 Dataset Characteristics

Table 3.1 and Figure 3.2 present the characteristics of the videos collected for our

dataset. They consist of 421 videos, with a variety of durations, resolutions (presented

separately as width and height), bitrates, and frame rates. We present the mean and

standard deviation for all the videos (All), and for each video category, separately

(Simple, Blurry, High Motion, Dark, Textureless, Parallax, Depth, Crowd, and Close

Object). Most videos would fit in more than one category, therefore we added each

video to the most challenging category it would be part of. Hence, the Textureless,

Depth, and Close Object categories contain more videos.

The duration for most categories are around 10s and present certain consistency, with a

high standard deviation in the Parallax, Depth, Crowd, and Close Object categories.

The bitrate, however, presents the most significant changes within the same category,

which can be explained by the relationship between bitrate and video content. It is also

interesting to note that the Blurry and Close Object categories present the lowest bitrate,

whereas the High Motion presents the highest ones. It is expected, since blurry scenes

and close objects present a high amount of patterns, whereas high motion presents a

wide variety of changes in scene content. Lastly, the width, height, and frame rate
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present certain consistency between categories and within the same category. It is

caused by the tendency of the video content providers to maintain high quality of the

content they provide.

Amount Duration (s) Bitrate (kbps) Width Height Frame Rate (fps)

All 421 AVG 11.59 9,767.07 2,504.97 1,448.21 28.14
STD 6.28 10,099.69 1,023.35 574.82 7.33

Simple 62 AVG 9.56 12,124.00 2,572.29 1,430.65 27.88
STD 1.45 11,339.76 1,078.52 584.68 6.55

Blurry 23 AVG 9.34 6,943.70 2,265.04 1,267.83 26.43
STD 1.29 8,358.07 794.16 432.40 2.70

High Motion 43 AVG 9.73 13,318.63 2,836.09 1,710.70 28.01
STD 1.01 11,774.23 993.93 723.37 7.62

Dark 43 AVG 9.34 12,999.00 2,878.93 1,727.40 28.91
STD 1.49 13,950.11 1,067.59 499.53 9.07

Textureless 96 AVG 9.80 10,012.70 2,729.13 1,581.79 27.53
STD 0.87 9,834.66 1,048.72 551.29 7.68

Parallax 19 AVG 12.32 10,898.05 2,694.95 1,514.11 28.51
STD 5.59 9,988.16 1,049.64 571.61 5.85

Depth 73 AVG 17.87 7,832.41 2,301.12 1,313.95 28.97
STD 9.48 6,897.58 851.41 452.64 8.36

Crowd 10 AVG 12.75 7,708.00 2,265.60 1,260.00 28.38
STD 5.01 6,757.42 921.15 487.44 2.58

Close Object 52 AVG 12.43 4,841.48 1,796.77 1,055.04 28.49
STD 9.85 5,454.73 816.24 466.97 6.86

Table 3.1 Dataset Characteristics: Original Videos.

We use the videos in Table 3.1 to produce our Video Stabilization Dataset. Table 3.2

presents the characteristics of our synthetic dataset. This Table only shows the unstable

videos and does not contain the frame rate column, since all videos have been produced

with the same frame rate: 30 fps. We also do not present duration column, since they

are very similar to the original videos. It is expected that the width, height, and bitrates

are slightly lower than the original videos, since we have cropped all GT and unstable

videos.
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Fig. 3.2 Dataset Characteristics: Original Videos.

3.3 Other Datasets Utilized in This Thesis

The following datasets are also present in this thesis.

COCO Dataset [5]

A large scale dataset (see Figure 3.3) that addresses three main research problems in

scene understanding: detecting non-iconic views (or non-canonical perspectives) of

objects, contextual reasoning between objects and the precise 2D object location. The

authors argue that current recognition systems perform fairly well on iconic views

(i.e., images that contain the object with no obstructions next to the center of a neatly

composed photo), but struggle to recognize objects otherwise (in the background,
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Amount Width Height Bitrate Bitrate
GT (kbps) Unstable (kbps)

All 421 AVG 2,254.47 1,303.39 9,181.05 8,399.68
STD 921.02 517.34 9,089.72 8,584.74

Simple 62 AVG 2,315.06 1,287.59 10,911.60 10,790.36
STD 970.67 526.21 10,319.18 9,752.19

Blurry 23 AVG 2,038.54 1,141.05 6,596.52 6,041.02
STD 714.74 389.16 7,689.42 7,187.94

High Motion 43 AVG 2,552.48 1,539.63 12,519.51 11,853.58
STD 894.54 651.03 11,067.78 10,008.10

Dark 43 AVG 2,591.04 1,554.66 11,829.09 11,179.14
STD 960.83 449.58 12,555.10 12,136.60

Textureless 96 AVG 2,456.22 1,423.61 9,211.68 8,610.92
STD 943.85 496.16 9,342.93 8,851.19

Parallax 19 AVG 2,425.46 1,362.70 10,244.17 9,263.34
STD 944.68 514.45 9,189.11 8,889.46

Depth 73 AVG 2,071.01 1,182.56 7,049.17 6,970.84
STD 766.27 407.38 6,276.80 6,069.87

Crowd 10 AVG 2,039.04 1,134.00 7,399.68 6,705.96
STD 829.04 438.70 6,419.55 5,743.81

Close Object 52 AVG 1,617.09 949.54 4,647.82 4,212.09
STD 734.62 420.27 4,963.80 4,909.26

Table 3.2 Dataset Characteristics: Ground Truth and Unstable Videos.

partially occluded, or amid clutter). In fact, finding natural images that contain several

objects (i.e., images depicting scenes instead of isolated objects) is challenging.

The Microsoft Common Objects in COntext (MSCOCO) dataset consists of 91 common

object categories, with 82 of them having more than 5,000 labeled instances. The

dataset has a total of 2,500,000 labeled instances in 328,000 images. Unlike the

ImageNet dataset [131], the COCO dataset has fewer categories but more instances

per category. This is helpful in learning detailed object models capable of accurate 2D

localization. Another distinction between the COCO and other datasets is the number

of labeled instances per image, which may aid in learning contextual information.

DeepStab Dataset [23]

A dataset provided by Wang et. al. containing pairs of synchronized videos with diverse

scenarios: indoor scenes with parallax, and outdoor scenes with buildings, crowds,
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Fig. 3.3 COCO train dataset sample [5].

vegetation, amongst others. The camera paths present in this dataset is also varied:

moving camera, panning, and combinations of both, at various speeds. The dataset

contains 60 video pairs of synchronized videos with length of up to 30s, at 30 fps.

3.4 Evaluation Framework

In the literature, there have been few studies dedicated to evaluating the perceptual

quality of stabilized videos [132][12][111][106][133][103]. However, there is no

widely accepted evaluation framework in the academia, since it is hard to quantify the

stability of a video. On the other hand, although it is possible to perform subjective

tests on the output of DVS systems, these tests are hard to perform and time consuming.

Although objective metrics do not thoroughly assess the quality of stabilized videos,

they are more straightforward than subjective tests and tend to show an overall view on

the DVS systems. Full-Reference (FR) metrics compare the stabilized videos and the

ground truth ones, whereas Non-Reference (NR) directly evaluate the stabilized videos.

However, there has been little progress in performance evaluation for DVS [97][9],

with a majority of performance metrics being NR, since most available datasets consist
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of only the unsteady videos. With our new dataset, we provide a FR performance

evaluation framework.

This Section presents the metrics and formulae of our evaluation framework. It is FR,

since we provide a wide range of videos for tests, with the ground truth and motion

parameters. Consider a stable-unstable video pair, which consist of n frames Sgt =

{F1,F2, ...,Fn} and Sun = {F̂1, F̂2, ...F̂n}, respectively. Also, consider a stabilized video,

which is the output of a DVS system and consists of n frames Sst = {F̄1, F̄2, ..., F̄n}.

The metrics we evaluate in our framework compare stabilized Sst and GT frames Sgt ,

and consist of:

i) Mean Square Error (MSE), Eq.3.1: the mean MSE between F̄i and Fi frames of a

video.

MSE =
1
n
∗

n

∑
i=1

MSEi(F̄i,Fi) (3.1)

ii) Structural Similarity Index (SSIM), Eq.3.2: the mean SSIM between F̄i and Fi

frames of a video.

SSIM =
1
n
∗

n

∑
i=1

SSIMi(F̄i,Fi) (3.2)

Since these metrics compare F̄i and Fi, they are computing all types of distortion (noise,

blur, the distortion of straight lines, among others) in the resulting frame.

iii) Distance between features: shows how much a given feature has moved from

GT to stabilized frame. Consider a given set of features, which has coordinates

(xgt ,ygt)1,(xgt ,ygt)2, ...,(xgt ,ygt)n in the GT frame and (xst ,yst)1,(xst ,yst)2, ...,(xst ,yst)n

in the stabilized frame. Both stabilized and ground truth frames have the same dimen-
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sion, y f r width and x f r height. The distance D f between features can be computed

as shown in Eq.3.3 and Eq.3.4. The notion behind this is that, on average, the higher

the mean distance between features in a frame pair, the more the stabilized frames are

dislocated.

D f (x) =
1

n∗ x f r
∗

n

∑
i=1
|xst− xgt |i (3.3)

D f (y) =
1

n∗ y f r
∗

n

∑
i=1
|yst− ygt |i (3.4)

iv) Resolution Preservation (ResPrev), Eq.3.5: compares the average ratio of file size

(Fst and Fgt) and number of pixels (Pst and Pgt) between Sst and Sgt , respectively. This

metric aims at determining how much the video has been cropped, and if there has

been any frame quality loss.

RP =
1
n
∗

n

∑
i=1

(Fst/Pst)i

(Fgt/Pgt)i
(3.5)

v) Final resolution of the outputs to the DVS systems, given the same input size (Eq.

3.6.

FR = y f r ∗ x f r (3.6)

The previous state-of-the-art papers propose slightly different metrics. The non-

reference ones are not needed in our framework, since we can perform a full-reference

evaluation. Some of the full-reference metrics will be added to our framework in
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Fig. 3.4 Videos utilized in our performance evaluation

future work. We validate our evaluation framework in Section 3.5 by comparing two

state-of-the-art DVS methods.

3.5 Experiments

In this Section, we evaluate two selected state-of-the-art proposals on DVS using the

videos in Figure 3.4. We choose these proposals because their authors have made their

code available to the public:

i) Estadeo [28]: is a paper dedicated to implementing and exhaustively comparing

classic DVS techniques and boundary conditions. In this Chapter, we will utilize the

default options in the code provided by the author.

ii) StabNet [23]: is a low-latency, real-time, DL-based method. It learns a set of

transformations for each input frame, considering the previously stabilized frames in
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the video. In this Chapter, we will utilize the code and pre-trained model provided by

the authors.

Fig. 3.5 Sample frames for videos a) (Simple), b) (Blurry), and c) (High Motion).

We encourage the reader to refer to Chapter 2 for a thorough description of StabNet

and Estadeo. By following the authors’ instructions, we tend to be fair to both systems,

which is our main goal in our performance evaluation. Figure 3.5 shows a randomly

selected sample of (from left to right) the stable frame, unstable frame, and the outputs

to StabNet and Estadeo, respectively. In the Figure, we highlight how much a given

feature has moved from GT to unstable and output frames.

Figure 3.6 shows the charts with the performance evaluation we executed with our

framework. The blue bars represent the results we obtained for StabNet, whereas the

orange bars represent the results for Estadeo. The x-axis represents the 9 different

videos, shown in Figure 3.4: 1-9 correspond to videos (a) to (i), respectively. In our

evaluation, we cropped the GT frames to have the same dimensions as the outputs to

the systems, to calculate metrics such as MSE.

By observing Figure 3.6, we note that both systems present high MSE, and it depends

on the nature of the video. Most MSE values are similar between the systems, and
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Fig. 3.6 Experimental results. The blue bars represent StabNet, the orange bars
represent Estadeo. Experimental results: 1-9 in the x-axis correspond to videos (a)-(i).

when it differs significantly, it is mainly with StabNet presenting worse results. The

output to Estadeo presents better SSIM results in most cases, and both systems have

very low performance in video 6 (parallax). The Resolution Preservation is similar

for both systems in most cases, and when they differ significantly, Estadeo has the

worst result. It means that, although Estadeo tends to present better MSE and SSIM
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results and has significantly higher output resolution, it presents worse performance

when it comes to the video quality, which could be annoying to the viewer of the video,

or could impair the performance of a given computer vision algorithm. However, the

ResPrev results are probably a cause of the high final resolution, which preserves the

initial resolution at the cost of lower video quality.

Finally, dx and dy, which show normalized distance between feature coordinates in

the GT and stabilized frames, demonstrate that the features move at similar average

distances in the x and y-axis for both Estadeo and StabNet.

Although both systems present similar performances, Estadeo still has an advantage

when compared to StabNet, if we consider carefully MSE, SSIM, and Final Resolution.

Even though the Resolution Preservation results are not in favour of Estadeo, one

could argue that it can be frustrating to view an output video with significantly lower

resolution, even though it presents higher resolution preservation. Hence, we consider

that Estadeo outperforms StabNet in our initial evaluation.

3.6 Other Metric Utilized in This Thesis

Video Multimethod Assessment Fusion (VMAF) [134]

VMAF combines a number of video quality features: 1) Detail Loss Metric (DLM

[135]), 2) Visual Information Fidelity (VIF [136]), and 3) luminance differences

between frame pairs. 1) and 2) are metrics based on the Human Visual System, whereas

3) adds the temporal information. These features are combined using a Support Vector

Regression (SVR) trained on subjective data. Since VMAF is trained on subjective

data, we argue that there is a subjective factor to this metric.
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Although VMAF does not fully exploit temporal quality information sensitive to

temporal distortions, it focuses on compression and scaling artifacts. The former

tipically consists of blocky regions within a frame, and the latter is observed as blurry

regions around edges. Since it exploits loss of information and blurriness in frames, we

argue that it can be used as a perceptual video metric to evaluate blur in the stabilized

videos.

Since VMAF is Full-Reference, it compares a distorted image to a reference, given

that both show exactly the same scene. It ranges between 0 and 100, and for VMAF

scores above 96, the distorted video is considered perceptually inseparable from the

reference. In our case, the videos are not the same, since we are comparing a stable

video (reference) to a stabilized one (distorted). It is expected that the VMAF scores

are going to be low: in fact, the more misaligned two frames are, the lower the VMAF

score, hence we argue that it indirectly measures the alignment between two videos.

Since the reference is a stable video, it indirectly measures how stable a stabilized

video is.

3.7 Outcomes

This Chapter has provided fundamental tools for the development of Deep Learning-

based Video Stabilization Systems. The first is a comprehensive synthetic dataset,

which consists of Ground Truth and unsteady frames, and the motion parameters that

map each frame of the stable video into the corresponding frame in the unstable video.

We also presented a full-reference performance evaluation for DVS algorithms, which

takes into account the provided features in the dataset. Then, we compared the per-

formances of two state-of-the-art DVS systems: a 2D based method, Estadeo, and a

DL-based approach, StabNet. Both systems showed similar performance, although Es-

tadeo performed better in some scenarios. This is proof that there are still opportunities
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for further enhancements of DL-based systems for DVS and showcases the importance

of our work, which will assist the development of these systems.

In this Chapter, we have also presented other datasets (namely the COCO and the

DeepStab datasets) and another evaluation metric that we are going to utilize in this

thesis (VMAF). Both are not a result of our work but are widely used in the industry

and academia, and we believe they are useful in the development of this thesis.



Chapter 4

STN-Based Image Alignment

4.1 Motivation

The DL-based DVS problem is not easy to be addressed, once camera path smoothness

is hard to define in this context. In this thesis, we propose a novel video stabilization

technique, which leverages Deep Learning-based image alignment and traditional

camera path smoothing. In this Chapter, specifically, we present our image alignment

module, which will be the starting point of our DVS proposals.

With this Chapter, our main contribution is to build the base network for this thesis, by

training and testing an STN-based image alignment module. We demonstrate, with our

experimental results, the good performance of our STN.

4.2 Image Alignment Module

In this Section, we present our STN-based image alignment system, depicted in Figure

4.1, which shows our workflow: we first train our DL-based image alignment. Then,
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Fig. 4.1 Our system workflow.

we test it with image datasets, and after having successful results, we propose different

DVS systems. An STN consists of three blocks, namely the localization network, the

grid generator, and the sampler.

In the first step, our initial task is to align images, hence we do not need videos to train

or test: we can use image datasets, which simplifies the training process. To this end,

we use the COCO dataset [5], shown in Figure 3.3. We provide a large video dataset,

which consists of hundreds of videos, each containing hundreds of frames, providing,

therefore, thousands of images. However, the frames provided in each video contain

basically the same scene and a moving camera, perhaps moving objects, leading to a

high number of very similar images, which is not ideal for training an image alignment

network, at the risk of overfitting. Hence, we use COCO as an alternative dataset,

which contains natural scenes, with objects in the background, partially occluded, and

amid clutter.

During training (Figure 4.2), the input to our system is a single image: we use randomly

generated motion parameters to transform it and feed our network with a stack of two

160x120 images (original and transformed). The localization network then outputs

an array (1x8) of motion parameters. We found out that using only the localization

network of the STN is enough for training, which simplifies and speeds up the process.



4.2 Image Alignment Module 61

In fact, we have trained the network with the entire STN and with only the localization

network, and obtained similar performances. Therefore, in this case, we calculate L2

loss between the input and output motion parameters.

Although the input to our localization network is a stack of 160x120 images, the input

size to our system can be of any dimensions, since prior to feeding the localization

network we perform scaling and, if necessary, cropping, as seen in Figure 4.3. This

does not compromise performance, since most of the feature map is used in the motion

estimation, and allows for flexibility when inputting images, for either training or

testing. One should note that, since the input to our system can be of any dimension, so

can the output, since we transform the original image.

Fig. 4.2 Training procedure for the localization network.

Fig. 4.3 Image dimension management performed by our system.

Our testing process is divided into two steps:

1. Single images (Figure 4.4): our goal is to see how well our STN can align two

images. Same as in training, we feed one image, transform it with random motion
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Fig. 4.4 Testing procedure for single images: image alignment.

parameters, and stack it with the original one. In this case, we utilize all the

blocks in our spatial transformer, by estimating the motion parameters and then

transforming the originally warped image, to obtain an output image that is as

similar as possible to the original one.

2. Videos: our goal is to remove unwanted motion from unstable videos, without

adding any other undesirable motion. To this end, we have developed a number

of DVS systems. First, in this Chapter we show a simple experimental result with

aligning frames of an unstable video, with simple alignment between consecutive

frames. Then, we detail the implementation and behaviour of our proposed DVS

systems in Chapters 5 and 6.

4.3 Experiments

4.3.1 Experimental Setup

We design and test our image alignment and DVS systems in a Linux environment, with

Ubuntu 16.04, 11GB NVIDIA GEFORCE GTX 1080 Ti. Currently, we use CUDA

version 9.0.176, CUDNN v7, and tensorflow version 1.7.0.
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4.3.2 Experiments with COCO Dataset

We first train and test our network using the COCO dataset. This Section shows our

experimental results for image alignment. We run the test with 1500 images from the

COCO [5] test dataset, since we consider it to be a good sample for our purposes. In

our tests, we include images that present a challenge for traditional DVS systems, such

as dark scenes, and close objects. Figure 4.5 shows a sample of original image (column

a), randomly transformed image (column b), and output image to the system (column

c).

Fig. 4.5 Image test for the COCO Dataset. Column a: Ground truth. Column b:
randomly transformed image. Column c: output.
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Apart from the border effect throughout the process, the output is similar to the original

image: it is possible to notice the border effect in the output image, even with the

scaling factor. There is a cascade impact on the border of the output images, since they

are the transformation of a previously transformed image, which would not be as severe

in a regular scenario, where we would estimate the transformation parameters between

two images that do not contain border effect. The metrics we study in this step are:

1) MSE1 is calculated between the two inputs to the network, original and transformed,

2) MSE2 is obtained between the output to the network and the original image,

3) MSE3 is determined between the randomly selected motion parameters (PR1) and

the estimated ones (PR2),

4) the mean of PR12. We use PR1 values as a baseline for comparison against MSE3,

the difference between PR1 and PR2.

Fig. 4.6 MSE1, MSE2, and MSE3 calculation.

A diagram containing MSE1, MSE2, and MSE3 is shown in Figure 4.6, to demonstrate

how we calculate these metrics. MSE3, specifically, is a measure of accuracy of our

system, since it compares the ground truth (the random motion parameters) to the

output to our network (the estimated parameters). Figure 4.7c is a histogram that shows
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the accuracy for each of the 1500 tested images. Hence, we argue that the mean of

MSE3 is a good accuracy metric: 0.00691.

Figure 4.7a shows the MSE1 values, while Figure 4.7b shows MSE2 values, both

histograms have bins with a range of 0.015. MSE1 is concentrated at higher values

(between 0 and 0.345), with the highest frequency between 0.045 and 0.060, while

MSE2 lies between 0 and 0.18 and has the highest frequency between 0.015 and 0.030.

Hence, we can conclude that the original images are considerably more similar to the

output than the originally transformed ones.

Figures 4.7c and 4.7d, which show MSE3 and mean of PR12, confirm this, both

histograms have bins with a range of 0.003. MSE3 ranges from 0 to 0.075 and presents

the highest frequency between 0 and 0.003. On the other hand, mean PR12 ranges from

0 to 0.036 and has the highest frequency between 0.003 and 0.006. Although the range

in Figure 4.7c is wider than in Figure 4.7d, it presents nearly half of the events in the

first bin, around zero, while the latter needs two bins to have approximately the same

amount of events. Therefore, we conclude that the estimated motion parameters are

accurately estimated by our system.

4.3.3 Experiments with our video dataset

In this Section, we carry out a performance evaluation with one video from our dataset.

In this case, we try to align each frame to the previous one, without taking into account

the interdependence between all the frames in the video. In other words, we try to

align the frames as if they were isolated image pairs. For performance evaluation, we

compare the unstable, stabilized, and GT videos, on a frame-by-frame basis.

Our metrics in this scenario are:

1) MSEstabilized is calculated between the GT and the stabilized frames,
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(a) MSE1 histogram. (b) MSE2 histogram.

(c) MSE3 histogram. (d) Mean of PR12

Fig. 4.7 Histograms for the image alignment experiments: COCO Dataset.

2) MSEunstable is obtained between the GT and the unstable frames.

In Figure 4.8, we show the histograms to MSEstabilized in the top row and to MSEunstable

in the bottom row. Both histograms present bins with a range of 0.25. It is easy to

see that the stabilized video presents the highest frequencies in the first half of the

histogram, while the unstable presents the highest frequency in the second half. Hence,

we can conclude our image alignment module works for frame alignment as well, and

make sure that our image alignment module is not guided by the black borders in the

images shown in column b from Figure 4.5.

4.4 Outcomes

In this Chapter, we presented the base of our DVS system, an STN-based image

alignment module. Such module can take images of any dimension and output images

with the same size. It utilizes an STN to estimate the motion parameter between two
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Fig. 4.8 Frame alignment test for our dataset: MSEstabilized (top) and MSEunstable
(bottom).

images, then transforms one of them, to align it to the previous one. In our experiments

with images, we showed that the output image is more similar to the input than the

initially transformed image. We also proved that the MSE between input and output

motion parameters is negligible when compared to the initial motion parameters. In

our experiments with frames from videos from our dataset, we could also conclude that

our image alignment module also works for aligning frames from a video, which do

not contain black borders.



Chapter 5

Deep Homography-Based Video

Stabilization

5.1 Motivation

Traditional and DL-based DVS methods present advantages: while the former can

smooth the camera path effectively, the latter can extract and track features successfully,

and estimate motion parameters between image pairs. On the other hand, both present

drawbacks: the former struggles with feature detection and tracking in certain scenarios,

whereas with the latter it is hard to define camera path smoothness.

This Chapter proposes a novel approach for DVS, by utilizing the benefits of DL and

traditional methods. To this end, we leverage the presented image alignment module to

learn motion parameters between frames. To stabilize videos, we estimate the motion

parameters between the current frame and previous frames from a given unstable video,

then we utilize moving average to provide long term as well as long and short term

smoothness.
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Depending on the jitter of the unstable video, one of these outputs will present the

best results. In this Chapter, we present a solution with traditional homographies, i.e.,

we use all the homography parameters to perform image transformation. Because of

the STN image alignment and the moving average-based camera path smoothness, we

argue that our system uses the benefits of traditional and modern video stabilization.

With this Chapter, our contribution is threefold: 1) since we use STNs for aligning

the frames, we avoid relying on traditional feature extraction and tracking and optical

flow, which are the main reasons traditional DVS methods fail. 2) we address the

problem definition issue in a DL context, by using a traditional method for camera path

smoothing, which tends to be effective. 3) since we train our network with images,

our proposed system does not require video datasets that are specific for training DVS

systems, simplifying the process.

5.2 Deep Homography-Based DVS

In our proposed approach, we use the ability of our Image Alignment module to

stabilize videos, as shown in Figure 5.1. Because we perform motion parameter

estimation between two frames, for stabilizing videos we can use the same trained

model utilized in Chapter 4. Unlike previous DL-based DVS methods, our proposed

system does not require video pairs for training, but single images. This simplifies the

training procedure, once any image dataset can be used.

Our goal is to remove unwanted motion from the unstable video, which presents high

and/or low frequencies, without adding any other unwanted motion. Therefore, we

feed an unstable video to the system, and similarly with the image alignment step, we

perform several transformation parameter estimations. Instead of original and warped

images, each transformation is estimated between different frames of a given video.



70 Deep Homography-Based Video Stabilization

Fig. 5.1 Homography-based Video Stabilization.

If we try to align a given frame to a single previous frame, each frame transformation

would be independent from the others, which would cause the output video to be

wobbly, with an even higher motion frequency. Hence, considering that the current

frame should be consistent with the adjacent frames in terms of motion, we compare it

with a number of previous frames, for obtaining motion smoothness. For each frame,

we perform the motion parameters estimation with the previous n frames. After such

estimation, we provide two output videos:

i) we calculate the mean to the n motion parameter matrices and then transform the

current frame, as shown in the area outside the dotted line in Figure 5.1. This moving

average strategy is utilized in a number of fields for smoothing parameters, including

traditional video stabilization techniques. Our current implementation considers n = 20

a good value, based on previous experiments.

ii) the motion parameters we utilize in this case consist of the mean between two

different means: we calculate the mean to n and n/2 motion parameter matrices,

estimated between the current frame and the previous n and n/2 previous frames,

respectively, as shown in Figure 5.1. Then, we take the mean between them. With this

output, we perform not only a long term smoothing procedure, but also a short term one,
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which allows us to filter motion in different frequencies (low and high). Depending on

the video motion, one of these outputs will provide better results.

In preliminary tests of the video stabilization step, we noticed that the scale parameter

of the transformation matrix distorts the output videos to our system. Therefore, unlike

in the image tests, for videos we limit how this parameter varies: we do not allow it

to be higher than 2 times the previous value, or lower than half of it. These limitation

values have been selected during our preliminary tests. Since the output frames are not

fully scaled, some of them present border effect, which is not desired, since it impairs

the quality of experience of viewers. Because of that, we perform a post-processing

step, by cropping 10% of the borders from the width and height of each frame (5%

each side, i.e. left and right, top and bottom).

Although this moving average approach has been utilized in traditional DVS methods,

we have the benefit of avoiding traditional feature extraction and tracking with our

approach. In fact, this is where traditional methods fail, since sometimes the video

contains scenes that present little to no features to be tracked, with e.g. textureless

and dark content. Hence, we argue that our system leverages the benefits of traditional

and modern video stabilization, since we use STNs for motion estimation and moving

average for camera path smoothing.

5.3 Experiments

In this Section, we compare our proposed system to a number of state-of-the-art

proposals. We carry out two different Full-Reference performance evaluations:

1) Since we provide a dataset that is specific for DVS, with GT and unstable videos,

we initially compare our system to proposed systems that are available to the public, by
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either providing source code or because they are available in mobile phones. Also, in

this performance comparison we use our evaluation framework.

2) In an attempt to use a widely utilized metric that considers the Human Visual System

(HVS), we also use VMAF.

Fig. 5.2 Test videos [6].

Fig. 5.3 Artifacts introduced by Ours-1, StabNet, Estadeo, and GPhotos.
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Fig. 5.4 Sample video output.

5.3.1 Performance Evaluation: our Evaluation Framework

In this Section, we carry out the performance evaluation mentioned in item 1) and

compare our system to two state-of-the-art proposals and one commercial solution. We

choose these systems as baseline because they are available to the public, by either

providing their source code or being present in regular consumer devices. The baseline

utilized in this Section are:

1. StabNet [23]: a low-latency, real-time, DL-based method. It consists of a siamese

network that learns a set of transformations for each input frame, considering the

previously stabilized frames in the video. We use the code and pre-trained model

provided by the authors.

2. Estadeo [28]: a paper dedicated to implementing and exhaustively comparing

classic digital video stabilization techniques and boundary conditions. We utilize the

default options in the code provided by the author.

3. Google Photos [137]: a commercial solution provided by Google, available on

mobile phones. For testing this application, we upload the unstable videos to an

Android phone and, in the Photos application, we select the options to edit and stabilize

the videos.
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We encourage the reader to refer to Chapter 2 for a thorough description of StabNet

and Estadeo. Since our evaluation framework runs frame-wise, we use ffmpeg [130] to

extract frames from each test video.

Our system has two outputs. In the next Figures presented in this Chapter, Ours-1

represents item i (long term smoothing) in the given Section, whereas Ours-2 represents

item ii (long and short term smoothing).

For testing, we use the videos we provide in our dataset. A sample of the test videos is

shown in Figure 5.2.

DVS systems should aim at obtaining not only stable videos, but also videos without

blur, distortion, and that do not present high crop ratio. However, the tested systems

tend to fail in one or more of the requirements for DVS, as shown in Figure 5.3. The

most common artifact introduced by the tested systems is distortion, since stabilization

systems normally warp the frames, which tends to distort edges. Another common

artifact is crop and zoom, to remove border effect. Also, a consequence of the zoom

factor is the added blur to the frames.

However, artifacts are not present in all output videos. In fact, there are several success

cases. Figure 5.4 shows a sample of the output from each of the tested systems. We

can note that our systems present less zoom and crop ratio, and that the blur introduced

is negligible when compared to our baseline.

Although Estadeo and Google Photos (which we will name GPhotos for the sake of

simplicity) output videos with the same resolution as the input, StabNet and our system

output videos with different resolutions. Because of that, for testing both systems we

crop every ground truth video so that they have the same dimensions.
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We carry out our performance evaluation using 60 videos from our dataset and proposed

evaluation framework. While we encourage the reader to refer to Chapter 3 for

reference, here we mention the utilized metrics for the sake of convenience: 1) MSE,

2) SSIM, 3) Resolution Preservation, and 4) Mean distance between features.

Figure 5.5 and Table 5.1 show the average results for all measurements, the latter also

presenting the standard deviation to the measurements, for the sake of completeness.

Figure 5.6, on the other hand, shows the experimental results for specific videos,

selected from the videos that have been tested. We show such a chart to better illustrate

the performance of the evaluated systems.

Fig. 5.5 Experimental Results for homography-based DVS (our evaluation framework):
average results.

In Figures 5.5 and 5.6, we note that, overall, our system presents betters MSE results.

This occurs because we limit the scale factor of our system, keeping the same image

ratio (i.e., not zooming in, enlarging objects, and cropping large portions of the frame)

and avoiding blur caused by scaling the frames (which is visible from the sample in

Figure 5.4). The second best system in this metric is GPhotos, followed by Estadeo

and StabNet. For videos 7 and 8 in Figure 5.6, all systems present high MSE: this

is explained by the fact that both present challenging scenes, since video 7 contains
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RESPREV
Ours-1 Ours-2 StabNet Estadeo G.Photos

AVG 0.931 0.926 0.609 0.830 0.805
STD 0.039 0.040 0.043 0.112 0.053

MSE
Ours-1 Ours-2 StabNet Estadeo G.Photos

AVG 855.437 896.932 1,936.189 1,487.433 1,306.550
STD 909.062 932.829 1,315.196 1,261.247 1,104.298

SSIM
Ours-1 Ours-2 StabNet Estadeo G.Photos

AVG 0.574 0.567 0.447 0.497 0.500
STD 0.199 0.200 0.204 0.216 0.217

dx
Ours-1 Ours-2 StabNet Estadeo G.Photos

AVG 0.117 0.115 0.077 0.081 0.056
STD 0.098 0.101 0.062 0.095 0.072

dy
Ours-1 Ours-2 StabNet Estadeo G.Photos

AVG 0.057 0.055 0.031 0.053 0.044
STD 0.025 0.024 0.013 0.024 0.024

Table 5.1 Experimental Results for homography-based DVS (our evaluation frame-
work).

occlusion and video 8 contains textureless content. The SSIM results show similar

performance comparison, with our system presenting the best results, followed by

Estadeo and GPhotos. In this case, the results for videos 1 and 4 in Figure 5.6 are the

worst, which can be explained by the fact that the stabilized videos presented higher

distortion, leading to higher structure difference from the ground truth, which is taken

into account by SSIM calculation.

The resolution preservation (ResPrev) charts show that, although we crop 10% of each

frame on both height and width, our system can still preserve more information. This

is caused by the fact that we limit the scale factor in our frames, keeping edges sharp

and avoiding blur.

The dx and dy charts show the normalized mean distance between features. Comparing

both charts, we can note that the displacement in the x-axis is normally higher than in

the y-axis for all systems. Hence, the evaluated systems provide better alignment in the
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Fig. 5.6 Experimental Results for homography-based DVS (our evaluation framework):
video specific results.

y-axis. We also note the difference in performance between our two systems. This is

caused by the camera path in the different videos, which causes the long term (present

in both systems) and short term smoothness (present in system ii) to present different

performances.

In these metrics, our system does not perform as well as our baseline. This is a

compromise that we make, by avoiding distorting and zooming the frames to our

videos, thus allowing remaining jitter. We argue that the viewing experience of an end

user and the performance of an application do not only rely on the stability of the video,

but also on the blur, distortion, and scale of the stabilized video. In all these other

characteristics, our system provides better performance. Therefore, we can conclude

that our system outperforms the state-of-the-art proposals and the commercial solution.
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Also, since we use a wide variety of content in our tests, it is possible to conclude that

our proposed systems are robust enough for video stabilization.

5.3.2 Performance Evaluation: VMAF

In this Section, we carry out the performance comparison mentioned in item 2). Figures

5.7 and 5.8 show average and video specific results. Both charts show VMAF scores

divided by the maximum VMAF score (100). In the average results, we can see that

our system provide overall higher VMAF scores. On the other hand, in some scenarios

our systems do not deliver the highest VMAF scores, as is the case for videos 2 and 10.

Overall, although our systems do not deliver the highest VMAF scores for all videos,

we argue that they are better than the state-of-the-art proposals.

Since VMAF is based on the Human Visual System, we argue that there is a subjective

factor to this metric. The obtained VMAF scores only confirm the superiority in

performance of our system, once VMAF has shown overall better performance of our

system.

Fig. 5.7 Experimental Results for homography-based DVS (VMAF): average results.

Fig. 5.8 Experimental Results for homography-based DVS (VMAF): video specific
results.
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5.4 Limitations

The currently proposed system performs homographies to the unstable frames to

generate a stable video. However, in some cases the homographies tend to distort the

output frame, generating unrealistic scenes. Figure 5.9 shows some examples, with

buildings that are not straight and people walking diagonally. It also highlights the

artifacts added by interpolation to the output frames. Our current implementation

uses bilinear interpolation to perform homographies, which adds blur to the resulting

images.

The effect of interpolation is also shown in Figure 5.10, with some other cases of blur

caused by interpolation. It is easy to see that the edges of the objects lose sharpness,

which is annoying, especially in high resolution videos.

Having this in mind, we next propose a system that mitigates these issues, by using

translation only. Instead of performing homographies, we simply move the frames

in the x and y axis, not manipulating the content of the frame. Hence, it allows

us to preserve the sharpness of the images, and to avoid distotion. Although the

translation only video stabilization allows some jitter left in the video, we argue that

the preservation of crucial features of the frame is as important as stabilizing a video

for the viewing experience.

5.5 Outcomes

In this Chapter, we proposed a video stabilization system based on traditional and Deep

Learning methods by combining the advantages of STNs and their ability to align two

images, and the simplicity of smoothing videos with moving averages. Our system

is a simple approach that is more robust to scene content than traditional methods.

With our moving average approach, we addressed the path smoothing definition issue
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Fig. 5.9 Artifacts added by homography: distortion and blur.

video stabilization systems face in a DL context. To stabilize the input videos, we use

homographies to transform each frame. Experimental results showed that our system

can stabilize videos even in challenging scenarios, in which traditional methods tend to

fail. They also showed that our system outperformed the state-of-the art proposals and

commercial application with our evaluation framework and the VMAF score.

Although the system we proposed so far presents good performance, it is not ideal.

Since we perform homographies to every frame of the unstable video, we end up

interpolating them. Regardless of the interpolation we perform, we end up adding blur

to the frame, which is undesirable. Also, since we perform translation, rotation, and

scaling (to some extension), we may add distortion to the output frames. These artifacts

are annoying to the viewer, and could impair the performance of any computer vision

application.
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Fig. 5.10 Artifacts added by homography: blur.



Chapter 6

Deep Translation-Based Video

Stabilization

6.1 Motivation

Two common artifacts added to stabilized videos by DVS systems are blur and distor-

tion. These tend to annoy the viewer, or to damage the performance of an application

that uses the stabilized video, and should be avoided in the stabilization process.

In fact, most of the DVS solutions available in the academia do not address the blur

factor in the original video. Added to that, since most DVS systems perform 2D

transformations to the frames, they tend to distort the stabilized frames and cause

additional blur, which are the most noticeable artifacts in stabilized videos [14].

In this Chapter, we continue with our approach to video stabilization, by leveraging

STNs to learn motion parameters between two consecutive frames. Then, unlike

our homography-based approach, we use Exponentially Weighted Moving Average

(EWMA), a traditional technique, to smooth the camera path. We also do not perform
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homographies, hence avoiding 1) distortion and 2) interpolation, which tend to blur

images.

Instead, we estimate how much a frame should be translated in the x and y axis and pad

the edges with zeros, then crop the frame to avoid border effects. Since our camera path

smoothing only performs translations in the x and y axis, we allow certain level of jitter

left in the ouput video, in a tradeoff between video stability and overall frame quality.

We believe the outcomes of this Chapter are essential for improving the quality of

amateur videos, hence improving the viewing experience of such content and allowing

good performance of computer vision applications that rely on the stabilized videos.

With this Chapter, our main contribution is to avoid performing homographies on

the video frames, avoiding blurring and distorting the resulting frames by simulating

translation in the x and y axis.

6.2 Deep Translation-Based DVS

Our approach follows the main idea presented in our homography-based DVS, which

aims at removing unwanted motion from the unstable video without adding any other

unwanted motion. We feed an unstable video to the system, and perform several

transformation parameters estimations. Instead of original and warped images, each

transformation is estimated between different frames of a given video. Having in mind

that the current frame should be consistent with the adjacent frames in terms of motion,

we compare it with a number of previous frames, for obtaining motion smoothness.

For each frame, such estimation is performed n times, between the given frame and the

previous n frames. Then, we calculate the EWMA of the given values and take two

different averages:
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Fig. 6.1 Translation-based Video Stabilization method.

i) we calculate the mean to the n motion parameter matrices, as shown in the area outside

the dotted lines in Figure 6.1. With this output, we perform long term smoothing.

ii) as shown in Figure 6.1, the motion parameters we utilize in this case consist of the

mean between two different means: the EWMA to the n motion parameters and the

EWMA to the n/2 motion parameters. With this output, we perform long and short

term smoothing, which allows us to filter motion in different frequencies (low and

high).

Depending on the video camera path, one of these outputs will provide better results.

Our current implementation considers n = 20 a good value, based on preliminary

experiments. After obtaining the motion parameters, we simulate image translation

in the x and y axis, according to Figure 6.2. We estimate how many pixels the frame

would move with a regular image transformation (x and y translation only). Then, we

pad the frame, by adding the estimated amount of rows and columns with zeros at

the edges of the frame, and cropping the opposite side. Since we do not perform any

image transformations (i.e., we do not multiply transformation matrices and images),

we do not interpolate the images, not adding blur to the resulting frame. Because

we only perform translation, we avoid the inherent frame distortion of a traditional

transformation, normally caused by rotation.
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Fig. 6.2 Translation in the x and y axis.

Fig. 6.3 Test videos.

Finally, to avoid the border effect (i.e., the resulting black borders from translation),

we perform a post-processing step, by cropping 10% of the borders from the width

and height of each frame (5% each side: left and right, top and bottom). This would

result in slightly smaller frames, which does not impair frame quality, as we show in

our experimental results.

Although EWMAs have been utilized in traditional DVS methods, with our approach

we benefit from not relying on traditional motion estimation, where traditional methods

fail, since traditional feature extraction is sensitive to scene contents. Also, the EWMA

utilization simplifies the camera path smoothing problem, which is hard to define by

DL-based systems. Hence, we argue that our system leverages the benefits of both

traditional and modern video stabilization, since we use STNs for motion estimation

and EWMAs for path smoothing.



86 Deep Translation-Based Video Stabilization

6.3 Experimental Results

In this Section, we carry out a performance evaluation of our translation-based video

stabilization. We evaluate our systems and our baseline with a wide range of scene

contents and video categories, in an attempt to observe how robust our proposed system

is. For testing, we use the videos we provide in our dataset. A sample of the test videos

is shown in Figure 6.3.

We run experiments with our evaluation framework. Here, we present our experiments

in two steps: 1) baseline, where we compare our system to the same state-of-the-art

proposals and commercial solution from Chapter 5: StabNet, Estadeo, and GPhotos.

While Estadeo and GPhotos output videos with the same resolution as the input, StabNet

and our system output videos with different resolutions. Hence, for performance

evaluation, we crop every ground truth video for testing both systems, so they have the

same dimensions. 2) ablation studies, where we test different settings of our system

using one metric from our evaluation framework, namely Resolution Preservation.

Then, we compare the performances to our systems and baseline using the VMAF

score.

6.3.1 Our Evaluation Framework

In the baseline step, we show a sample of the output from each of the tested systems in

Figure 6.4. We can note that our system presents the output with less zoom, highest

detail level, and no distortion or blur. One proof of less zoom can be seen with the red

circles in the Figure: while our outputs contain the scene within the circle, the other

systems either have cropped it entirely or have maintained it, close to the border. It

is proof that our efforts in not performing image transformation on the video frames

work. However, since our camera path smoothing only performs translations in the x
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Fig. 6.4 Sample outputs for the translation-based DVS.

and y axis, we allow certain level of jitter left, in a trade-off between video stability

and overall frame quality.

Since the evaluation framework we utilize [6] runs frame-wise, we use ffmpeg [130] to

extract frames from each test video. Figures 6.5 and 6.6 show the experimental results

for the video tests, the former showing average results and the latter, video specific

results. Table 6.1 shows a more thorough experimental result, with the addition of the

standard deviation, for the sake of completeness. For plotting the chart in Figure 6.6,

we select a group of 10 videos from the dataset provided by [6]. Most videos present

a challenge, and are not easily stabilized by traditional methods: they are either dark,

present high motion, parallax, zoom, moving camera, crowds, textureless objects, or
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RESPREV
Ours1 Ours2 StabNet Estadeo G.Photos

AVG 0.978 0.977 0.609 0.830 0.805
STD 0.023 0.023 0.043 0.112 0.053

MSE
Ours1 Ours2 StabNet Estadeo G.Photos

AVG 744.489 770.095 1,936.189 1,487.433 1,306.550
STD 783.345 809.539 1,315.196 1,261.247 1,104.298

SSIM
Ours1 Ours2 StabNet Estadeo G.Photos

AVG 0.610 0.607 0.447 0.497 0.500
STD 0.192 0.193 0.204 0.216 0.217

dx
Ours1 Ours2 StabNet Estadeo G.Photos

AVG 0.096 0.102 0.077 0.081 0.056
STD 0.071 0.075 0.062 0.095 0.072

dy
Ours1 Ours2 StabNet Estadeo G.Photos

AVG 0.056 0.056 0.031 0.053 0.044
STD 0.025 0.024 0.013 0.024 0.024

Table 6.1 Experimental Results for translation-based DVS (our evaluation framework).

occlusion. We utilize a wide range of scene contents and video categories, in an attempt

to observe how robust our proposed system is. As mentioned in Section 6.2, our system

has two outputs. In these Figures, Ours1 represents the long term smoothing output (i),

whereas Ours2 represents the long and short term smoothing output (ii).

Overall, our system presents better MSE results. This is expected, since we do not

transform the frames of the input videos, avoiding distortion and blur. The second best

system in this metric is GPhotos, which presents similar MSE values to ours in some

cases. For videos 2, 7, and 9, all systems present high MSE: they present challenging

scenes, since they contain high motion, close object, and zoom. For SSIM values, our

system presents the best results, followed by GPhotos and Estadeo.

The ResPrev results show that, although we crop 10% of each frame on height and

width, our system can preserve more information. This is another proof that the lack of

image transformation allows frame quality preservation and its sharpness. The second

best system in this metric is Estadeo, followed by GPhotos.



6.3 Experimental Results 89

Fig. 6.5 Experimental Results for translation-based DVS (our evaluation framework):
average results.

The dx and dy charts show the normalized mean distance between features in the x and

y axis. Comparing the scale in dx and dy, we can note that the distance in the x axis

is normally higher than in the y axis for all systems (which agrees with our results in

Chapter 5).

We also note a slight difference in performance between our two systems: this is

caused by the camera path in the different videos, which leads the long term (present

in Ours1) and long and short term smoothness (present in Ours2) to present different

performances. In these metrics, our system does not perform as well as our baseline.

In fact, this is a compromise that we make, by allowing certain jitter to remain in

our resulting videos, so that we can avoid distorting and blurring the videos. On the

other hand, our system provides better performance with respect to the other metrics,

which are as important for the viewing experience. Hence, we conclude that our system

outperforms our baseline, although there is room for improvement.

In the ablation studies step shown in Figure 6.6, we compare the performance of six

different outputs to our system. For each of the videos tested in the baseline studies,

we test: i) the output using full homography transformations (Ours1 and Ours2); ii) the
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Fig. 6.6 Experimental Results for translation-based DVS (our evaluation framework):
video specific results.

output using only translations in the frame transformations (Ours1-tra and Ours2-tra),

i.e., we perform homographies with all but the x and y translation parameters equal

to zero; iii) the output described in Figure 6.2 (Ours1-pad and Ours2-pad). Since we

intend to observe how much frame quality is preserved using our method, we only

show the frame preservation results.

Although the frame preservation values for Ours1-tra and Ours2-tra present good results

in some cases, they are not as good as the result for Ours1-pad and Ours2-pad. This

confirms our idea of not performing homographies using just the translation parameters,
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since homography transformations require interpolation, even if only the translation

parameters are utilized.

6.3.2 VMAF

In this Section, we evaluate the performance of our systems and our baseline using a

widely utilized metric in the academia and industry, VMAF. Figures 6.7 and 6.8 show

average and video specific results, respectively. The charts show VMAF scores divided

by the maximum VMAF score (100).

Fig. 6.7 Experimental Results for translation-based DVS (VMAF): average results.

Fig. 6.8 Experimental Results for translation-based DVS (VMAF): video specific
results.

The charts show higher VMAF scores for both our systems in the average results,

which confirms the results in the previous Section, by showing that our proposed DVS

methods are better than our baseline. However, as it is seen in Figure 6.8, for some

specific videos our baseline is better, e.g. in videos 3, 5, and 6. It confirms that our

systems are sensitive to content, and that we still have room for improvement. However,

since these were isolated results and in average our systems provide better VMAF, we

conclude that, overall, our systems outperform the state-of-the-art.
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6.4 Outcomes

We proposed a video stabilization system that does not perform image transformation,

to avoid blurring and distorting the resulting frames. Instead, we simulate translations

in the x and y axis by padding the edges of the frames. Although this approaches allow

some jitter in the stabilized video, it avoids blurring and distorting the output video, so

we argue that this is a good tradeoff.

Our experimental results show that both translation-based system outperforms the state-

of-the-art proposals and one commercial application. Our ablation studies demonstrate

the advantages of not transforming frames to the final output.
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Deep Filter-Based Video Stabilization

7.1 Motivation

After the translation-based stabilization, we progress with another DVS approach. This

time, we utilize a number of filters (including Kalman and low-pass), some of them

have been constantly utilized for video stabilization. However, we would like to discuss

their performances more deeply, by comparing them to other filters, that have not been

utilized for video stabilization. We test a number of filters, and some parameters, to

select one, or a few, that present the best overall performance.

We select the ideal filters for both the homography and the translation-based sys-

tems. Then, we compare their performances to our state-of-the-art. Followed by that,

we compare the performances of our three proposed systems: homography-based,

translation-based, and filter-based. Finally, we carry out a performance analysis that

considers the possibility of using our filters added to one of our baselines, StabNet, and

compare three combinations: our system, StabNet, and our system added to StabNet.
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The contribution with this Chapter is threefold: 1) we carry out an in-depth filter

selection for DVS systems, considering both our homography-based and translation-

based systems. 2) we compare the performance of our three different proposals,

selecting the best between them. 3) we consider the possibility of adding our filters to

StabNet, and carry out a performance evaluation.

7.2 Deep Filter-Based DVS

So far, we have presented DVS strategies that leverage moving averages and EWMAs

for smoothing the camera path of unstable videos. However, although using damping

techniques for video stabilization (i.e., MVI) is a good strategy, using filters (i.e., FPS)

tend to present a better performance. In this Section, we discuss our utilization of filters

and their selection.

To this end, we implement a number of different filters (low-pass and Kalman), with

a different set of parameters each, to remove high frequencies from the camera path.

For the homography-based system, we filter each of the parameters of a homography

matrix, and for the translation-based system, we filter the x and y translation. The

filters we implement are: Butterworth filter, Gaussian filter, Kalman filter, and FFT

filter. The Butterworth, Gaussian, and Kalman filters have been discussed in Chapter 2.

We have not previously discussed the FFT filter because of its simplicity. It consists of

a frequency analysis that is performed on the camera path of the unstable video. We

eliminate the highest frequencies of the camera path, considering a cutoff frequency, and

keep low frequencies in a step-like process, without any smooth transition. Although

this and the Butterworth filter are not widely utilized in DVS, we choose to compare

them as alternatives to the popular Gaussian and Kalman filters, in an attempt to test a

wide variety of possibilities for filters.
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Filter Parameter Levels

Butterworth Cut-off frequency 20, 30, 50, 60, 70

Gaussian Sigma 6, 8, 9, 10, 12

Kalman Prediction Error Covariance 1, 5, 10, 30, 50

FFT Cut-off frequency 40, 50, 75, 85, 100

Table 7.1 Filters, Metrics and Levels utilized in our filter selection experiments.

We first obtain the accumulated global motion vector of the unstable video using our

image alignment module. Then, we perform camera path smoothing using all the

filters and factors shown in Table 7.1, which have been selected during preliminary

experiments. Followed by that, we evaluate the performance of each filter and parameter

using a stability metric Stab, which takes into account the Mean distance between

features, from our evaluation framework: it measures how much a given feature has

moved from the frames in the ground truth to the frames in the stabilized videos. This

metric indirectly measures the stability of the output video: the less the features move

from ground truth to stabilized videos, the more stable the latter is.

We use a single metric from our evaluation framework in this case because we have

previously observed that our system presents similar performances for MSE, SSIM,

and Resolution Preservation for different filtering methods.

Stab also considers a metric proposed by [50], which takes into account the frequency

domain of the camera path. We obtain the accumulated global motion in the parameter

to be filtered: a parameter from the homography matrix (for the homography-based

system) or x and y translation (for the translation-based system). Then, we compute

the ratio of the sum of lowest (2nd to 6th) frequency energies and the total energy, and

take the minimum value. Hence, we describe Stab with Eq. 7.1:
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Stab = D f (x)+D f (y)+α× 1
Enlow

(7.1)

, where D f (x) and D f (y) represent the mean distance between features in the x and

y axis, Enlow is the percentage of energy within the lowest frequencies, and α is a

proportionality index, which leads all variables to be within similar lengths. With Stab,

we select the most stable output videos from our experiments with filters and their

different parameters.

Fig. 7.1 Filters, their levels, and the amount of results: homography-based DVS.

We run our experiments on the datasets provided by [6] and [23], in an attempt to

observe the largest possible number of video types and camera paths, so we can more

accurately select the most suitable filter for stabilizing videos. Both datasets present a

wide variety of scenarios and camera paths, which allow us to confidently choose the

most robust filter out of the tested ones.
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Fig. 7.2 Filters, their levels, and the amount of results: translation-based DVS.

For each video, we run our video stabilization code, using the filters and levels shown

in Table 7.1. We then use our Stab metric to choose a range of filters that present better

performance for the given video. After choosing a set of 1 to 3 best filter-parameter

for each video, we obtain the sunburst charts shown in Figures 7.1 and 7.2 for the

homography and translation-based systems, respectively. The inner circle of the charts

show the most frequent filters, and the outer circles show the most frequent parameters.

The biggest arcs in the circles, which represent the most frequent filter and parameter,

are the Butterworth 60 and Kalman 1 for the homography-based system and the

Butterworth 70 and Kalman 50 for the translation-based system. It shows that,

although the Kalman filter is widely utilized, it is not the best one from our test results.

It is caused by the fact that such filter assumes simple environment conditions for fast

calculation, which are not always the case for the camera paths. Also, as mentioned by

[138], using Kalman filter with fixed parameters during the whole video is not suitable,

once the camera path jitter may vary along the video. While we use the same parameter
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with the Butterworth filter, is is widely utilized in gait analysis, hence we argue that its

behavior is more robust to changes in the camera path, and that the the filter selection

has played an important role in the effectiveness of the filter.

The other filters (i.e., Gaussian, FFT) have been selected very few times for both

systems. This is a surprising result for the Gaussian filter, which has been widely

utilized in the academia for DVS applications. The same argument by [138] made

regarding the Kalman filter applies for the Gaussian filter: the Gaussian filter is not

suitable to smooth the camera path with fixed parameters. In fact, the authors of [138]

propose an adaptive Gaussian filter for smoothing the camera path. This is proof that a

filter should not be selected only because of its simplicity, but its performance should

be taken into account as well. As for the FFT filter, its low effectiveness is expected,

once cutting off high frequencies without the proper use of a low-pass filter tends to

add unwanted jitter to the original camera path.

It is clear that the Butterworth and Kalman are the most frequent filters. In the end, we

select the filters and parameters shown in Tables 7.2 and 7.3 for the homography and

translation-based systems, respectively.

Filter Parameter Levels

Butterworth Cut-off frequency 60

Kalman Prediction Error Covariance 1

Table 7.2 Filters, Metrics and Levels selected in our experiments: homography-based
DVS.

With the selected filters, we present our new DVS system, based on filters (Kalman and

low-pass), in Figure 7.3. We input an unstable video with n frames, then use our STN

to obtain the accumulated global motion vector (considering both our homography and
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Filter Parameter Levels

Butterworth Cut-off frequency 70

Kalman Prediction Error Covariance 50

Table 7.3 Filters, Metrics and Levels selected in our experiments: translation-based
DVS.

translation-based systems separately). After that, we calculate the corrected vector

using our filters for frames 2 to n and perform translations to frames 2 to n, providing a

stabilized video.

Fig. 7.3 Filter-Based Video Stabilization method.

7.3 Experimental Results

7.3.1 Our Evaluation Framework

In the baseline test, we first extract the frames from each video using ffmpeg [130]. In

this case, we use two different filters for each system, namely Butterworth and Kalman,

which we name Tra.B and Tra.K for the translation-based systems and Homo.B and
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Homo.K for the homography-based systems in the charts, for the sake of simplicity.

For testing, we use the videos we provide in our dataset.

Figures 7.4 and 7.5 show the average and video specific experimental results. Table 7.4

show average results, with the addition of standard deviation. For plotting the chart in

the video specific Figures, we select 10 videos from our test dataset. This set of vides

contains challenging and diverse content, to test how robust our systems are.

Fig. 7.4 Experimental Results for filter-based DVS (our evaluation framework): average
results.

The Resolution Preservation values show that our systems present slightly better results,

even though we crop the frames of our output videos, which confirms our choice of

using translation only. The translation-based systems present better results than the

homography-based ones. The MSE values are significantly better for the translation

and homography-based filters, which shows that their outputs present higher similarity

with the ground truth. SSIM results are better for our systems, although the difference

in performance is not as high as the MSE values.

The dx and dy results (which show the normalized mean distance between features in

the x and y axis from stabilized to ground truth videos) confirm our observations from
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Fig. 7.5 Experimental Results for filter-based DVS (our evaluation framework): video
specific results.

the previous experiments, that the x axis is not as stable in the output frames as the y

axis. In this scenario, our systems present comparable results to our baseline, although

they are not the best in both scenarios. In the video specific results, it is possible to

observe that although our average dx and dy are not the best between the tested systems,

they are still significantly better than our baseline in some cases.

The viewing experience of an end user does not only rely on the stability of the video,

but also on the blur, distortion, and scale of the same video. Since our systems present

overall better results in these other characteristics, we conclude that our system provides

better performance than our baseline.
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Fig. 7.6 Experimental Results for filter-based DVS (our evaluation framework): ablation
studies.

In the ablation studies step shown in Figure 7.6, we compare the performance of all

the filters that we have compared in our filter selection, namely: Butterworth, Gaussian,

Kalman, and FFT. For most of the filters, we test a single parameter, however for

the Butterworth and Kalman ones we test more than one parameter. The parameter

values are presented in the legend of the chart, next to the filter name. We test eight

combinations of filters and their parameters, for the feature displacement metric. We

test only one metric since we have noticed in previous experiments that the performance

of our systems present similar performance in the other metrics.

The latter two filters (B.Worth 60, Kalman 1 for the homography-based system, B.Worth

70 and Kalman 50 for the translation-based system) are the ones that have been selected

for the performance evaluation just presented. It is clear that, although we have

selected these filters, the other filter options present similar performances in some cases.

However, overall the selected filters provide better performance, which confirms our

selection.
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RESPREV
Tra.B Tra.K Homo.B Homo.K StabNet Estadeo G.Photos

AVG 0.922 0.920 0.800 0.800 0.609 0.830 0.805
STD 0.042 0.043 0.010 0.010 0.043 0.112 0.053
MSE

Tra.B Tra.K Homo.B Homo.K StabNet Estadeo G.Photos
AVG 699.686 736.992 678.594 781.594 1936.189 1487.433 1306.550
STD 729.733 772.923 408.040 454.904 1315.196 1261.247 1104.298
SSIM

Tra.B Tra.K Homo.B Homo.K StabNet Estadeo G.Photos
AVG 0.621 0.627 0.580 0.560 0.447 0.497 0.500
STD 0.191 0.185 0.116 0.122 0.204 0.216 0.217
dx

Tra.B Tra.K Homo.B Homo.K StabNet Estadeo G.Photos
AVG 0.071 0.071 0.065 0.073 0.077 0.081 0.056
STD 0.040 0.040 0.056 0.052 0.062 0.095 0.072
dy

Tra.B Tra.K Homo.B Homo.K StabNet Estadeo G.Photos
AVG 0.042 0.043 0.031 0.036 0.031 0.053 0.044
STD 0.051 0.052 0.044 0.045 0.013 0.024 0.024

Table 7.4 Experimental Results for filter-based DVS (our evaluation framework).

7.3.2 VMAF

In this Section, we present a performance evaluation using VMAF in Figures 7.7 and

7.8, which show average and video specific results, respectively. Both charts show

the obtained VMAF scores divided by the maximum VMAF score, 100. The average

results show higher VMAF scores for the Butterworth and Kalman filters applied to

the homography-based and translation-based cases.

In the video specific results, our systems either present better performance or similar,

which allows us to confirm that we have outperformed the baseline in both performance

evaluations.

7.4 DVS Proposals Comparison

We have proposed three different approaches to DVS, namely: 1) homography-based, 2)

translation-based, and 3) filter-based. In this Section, we compare the three approaches
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Fig. 7.7 Experimental Results for filter-based DVS (VMAF): average results.

Fig. 7.8 Experimental Results for filter-based DVS (VMAF): video specific results.

using the metrics in our evaluation framework (namely Resolution Preservation, MSE,

SSIM, and feature displacement) and VMAF.

Figure 7.9 shows the average experimental results using our evaluation framework for

our three systems: Ours-1 and Ours-2 show the results of our pure homography-based

systems, while Ours1 and Ours2 show the results of our pure translation-based system.

On the other hand, Tra.B and Tra.K show the results of our filter-based approach applied

to translation only, while Homo.B and Homo.K show the results of our filter-based

approach applied to homographies.

Overall, our pure translation-based systems present better Resolution Preservation

results, while the MSE results are similar to all systems, apart from the homography-

based results, which present degraded performance when compared to others. The

SSIM results, on the other hand, show that the filter-translation-based DVS has better

results. For dx and dy, all filter-based results presented better performance, both in the

x and y axis, the filter-homography-based being the best between them.
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Fig. 7.9 Performance evaluation to assess our proposals: our evaluation framework.
The purple bars represent the results obtained with our pure homography-based DVS,
while the light blue bars represent the results for our pure translation-based DVS, the
navy blue bars represent the results for our filter-translation-based DVS and the mild
blue bars represent the results of our filter-homography-based DVS.

Figure 7.10 shows the VMAF results. Our filter-translation-based system provides

the best results for this metric. In all metrics, our homography-based does not present

comparable results to our other systems. It is expected, since the homography part of

the system allows a certain degree of blur and distortion, and using moving averages has

not shown comparable results. Hence, we are ought to choose which system, between

our translation-based and our filter-based, is the best. While the pure translation-based

approach presents the best performance in the Resolution Preservation metric, the

filter-based approaches present the best performance in the SSIM (filter-translation),

dx/dy (filter-homography), and VMAF (filter-translation) metrics.

Resolution preservation compares how much a frame has been cropped and how much

detail has been lost in each frame. On the other hand, the feature displacement is a

good measurement of how stable the video is. However, VMAF is an important factor

to be taken into account, since it considers the Human Visual System in its calculation.

Plus, SSIM results show how similar the output frames are to the ground truth.

Hence, considering the combination of the SSIM, and VMAF, we believe that, even

though pure translation-based and filter-homography-based systems present good



106 Deep Filter-Based Video Stabilization

Fig. 7.10 Performance evaluation to evaluate our proposals: VMAF. The purple bars
represent the results obtained with our pure homography-based DVS, while the light
blue bars represent the results for our pure translation-based DVS, the navy blue
bars represent the results for our filter-translation-based DVS and the mild blue bars
represent the results of our filter-homography-based DVS.

performance, the filter-tranlation-based approach is the best among the ones we have

proposed.

7.5 Proposed Systems and StabNet: a Comparison

In this Section, we consider the possibility of adding our filter-based approaches to our

DL-based baseline, StabNet. Although our filter-based approaches and StabNet are

significantly different, it is a good approach to evaluate whether they can be combined

to provide better stabilization results.

With this in mind, we carry out a performance evaluation using our evaluation frame-

work and VMAF. To obtain the filter-based+StabNet results, we run our filter-based

approach on the videos that have been stabilized by StabNet. We run these experiments

on a set of 60 videos from our dataset, which contains both unstable and ground truth

videos. The experimental results are shown in Figures 7.11 and 7.12, respectively.

From left to right, the three different colours show 1) the combination of our filter-based

systems and StabNet, 2) our pure filter-based systems, and 3) pure StabNet.
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One can observe that our pure filter-based approaches present higher Resolution Preser-

vation than the other approaches. Such result is expected, as the resolution preservation

from the videos stabilized by StabNet are initially low, hence the further stabilization

by our systems would not be able to provide better results, since information (such as

frame sharpness and resolution) has already been lost.

The MSE results show that our pure filter-based systems provide the best results.

Since the StabNet’s MSE results are high, it shows that our filter-based approach

helps improve StabNet’s results. However, since the outputs to StabNet tends to be

distorted, both because of the homographies performed and the patch stitching the

system performs, we believe that our STN does not reliably estimate motion parameters.

Also, the output to StabNet tends to be blurry, which tends to deliver higher MSE.

Since our filter-based+StabNet results present better MSE results than StabNet, we

argue that it is a result of a better stabilization provided by our filter-based approaches.

Fig. 7.11 Proposed systems and StabNet: a comparison using our evaluation framework.
The light blue bars represent our systems added to StabNet, while the mild blue bars
represent our pure systems and the navy blue bars represent pure StabNet.
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Fig. 7.12 Proposed systems and StabNet: a comparison using VMAF. The light blue
bars represent our systems added to StabNet, while the mild blue bars represent our
pure systems and the navy blue bars represent pure StabNet.

The SSIM results are similar between our pure filter-based system and our filter-

based+StabNet results, with pure StabNet showing the lowest results. It shows that

our system helps improve the SSIM from the StabNet output, and that the structure of

the frames tend to be preserved. In this case, our systems have managed to improve

StabNet’s results.

The dx/dy metrics confirm our thoughts from the MSE results. The combined filter-

based+StabNet results are higher than both original systems: we believe this result is a

cause of low performance of our STN, lead by the initially distorted frames that have

been fed to the network. Hence, the combination of both systems present high dx and

dy results.

The VMAF results show that, although the filter-based+StabNet outputs have high

dx/dy systems, our filter-based approach has helped improve StabNet’s VMAF results,

which leads us to believe that, overall, the combination is beneficial to StabNet. How-

ever, the combination has rather degraded the performance of our systems. Hence,

after observing the experimental results, we can conclude that our pure filter-based

approaches are still the best option for DVS systems.
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7.6 Outcomes

In this Chapter, we have presented a filter-based approach to DVS. Taking into account

our homography-based and translation-based approaches, we carry out a performance

evaluation comparing a number of filters and parameters for stabilizing videos. We

define a stability metric to select the best filters and parameters for each system. Our

filter selection results show that the best filters are the Butterworth and Kalman, the

former being newly introduced to DVS, to the best of our knowledge. The Butterworth

filter has outperformed widely utilized filters, such as Kalman and Gaussian, which

shows that there is room for improving camera path smoothing, by possibly experi-

menting with other alternative filters. We have successfully shown that our filter-based

approaches, applied to both the homography and translation cases, outperform our

baseline.

The performance evaluation comparing our three proposed systems shows that the

filter-translation-based system is the best option between the considered cases. Finally,

comparing our filter-based approaches and StabNet to a combination of our filter-based

approach and StabNet, we conclude that although the combination improves StabNet

results, it tend to present poor performance when compared to our pure filter-based

approach.



Chapter 8

Conclusions and Future Developments

The research described in this thesis was a scientific endeavor in improving the currently

available Digital Video Stabilization systems. For doing so, we have proposed a novel

DVS system that uses STNs, a DL approach to estimate the camera path and moving

averages and filters, which are traditional approaches, for smoothing the camera path.

8.1 Summary of Scientific Achievements

The first milestone was a comprehensive video dataset for learning-based video sta-

bilization, which consists of stable-unstable video pairs, with the motion parameters

between them, presented in Chapter 3, Section 3.2. This was followed by the develop-

ment of a Full-Reference evaluation framework, which considers the presence of the

ground truth videos, simplifying the evaluation process and avoiding any possible bias,

presented in Chapter 3, Section 3.4.

Secondly, we trained and tested an STN for motion estimation between images in

Chapter 4. In this step, we utilized the COCO dataset, a popular image dataset. With
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this approach, we have simplified the learning process for DVS, by avoiding the need

of stable/unstable video pairs.

In a third step, we proposed a number of approaches for video stabilization. Having in

mind that the video stabilization problem faces hurdles both in the traditional and in the

DL fields, we decided to take advantage of their strengths and simplify the problem. To

this end, we leveraged the capabilities of our STN to estimate motion between images

and the simplicity of using moving averages or filters to smooth the camera path.

i) Our first approach, presented in Chapter 5, was to use moving averages and full

homographies to stabilize videos. We performed a number of motion estimation

parameters between the current frame and the previous frames to provide two outputs.

The first one consisted of long-term smoothing, and the second, of long and short-term

smoothing. Although the output videos outperformed the state of the art, they had

added blur due to the interpolation performed during the frame transformation and

distortion due to the homography.

ii) To avoid blur and possible distortions caused by the homographies, we proposed a

video stabilization system that uses EWMA and moving averages that do not perform

full frame transformation, presented in Chapter 6, Section 6.2. Instead, we proposed an

approach that performs translations in the x and y axis, so we can avoid interpolating

the frames, hence avoiding blur. Because we didn’t perform any rotations, we also

avoided introducing distortions to the frames. However, this approach allowed some

jitter left in the stabilized video, in a tradeoff between video stabilization and overall

frame quality. Although our approach presented good performance, we believed that

a single camera smoothing strategy was not enough to stabilize videos with the most

diverse camera paths.
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iii) Having this in mind, we next proposed a filter-based video stabilization in Chapter

7. In this system, we implemented a number of filters (including Kalman and low-pass)

and evaluated their performances with a large number of videos, with different camera

paths characteristics. With this, we could choose the filters that would provide the best

overall performance to the tested videos. We applied our filter-based approach to both

our homography-based and translation-based systems.

We carried out our performance evaluation experiments using our evaluation framework,

proposed in Chapter 3, and a perceptual metric that has been trained on subjective

studies, VMAF, discussed in Chapter 2. Hence, we consider that we have carried out

a thorough performance evaluation, since we took into account both objective and

subjective metrics.

Then, after proposing three different DVS systems, we compared their performances

in Chapter 7, Section 7.4. After careful evaluation, we came to the conclusion that,

although the EWMA and filter-based solutions presented similar results, our filter-based

DVS system is the best among them, especially the filter-translation-based approach.

Laastly, we have considered the possibility of adding our filter-based approaches to

StabNet. We have shown that, although our filters have improved StabNet’s results,

such improvement was not enough against our pure filter-based approaches, which we

considered the best option for DVS.

With our new system, we intend to handle textureless objects, parallax, occlusion, high

motion, and to filter unwanted motion while keeping wanted motion. We also intend to

avoid blur, distortion, zoom, ghost effect, while being able to accurately smooth the

camera path without adding extra unwanted motion.
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Indeed, in Chapters 5, 6, and 7 we have been able to prove the robustness of our

systems with their effectiveness in a wide range of scenarios, which include textureless

objects, parallax, occlusion, and high motion. Since our systems present either damping

techniques or low-pass filters, we argue that we have managed to accurately smooth the

camera path, by filtering out unwanted motion without adding extra unwanted motion.

Although our system in Chapter 5 performs homographies, our system in Chapter 6

perform translation only, which allows us to avoid blur, distortion, and zoom. Also,

since our approaches perform either 2D transformations or translation only, we do not

add ghost effect, which is a result of 3D DVS systems. In a nutshell, we argue that we

have successfully achieved our goals.

8.2 Potential Future Developments

We have presented a number of DVS systems, which present good performance,

especially the filter-based approach. However, there is room for complementing our

proposal. Our first suggestion is an extension of our filter selection studies. Our studies

compared the traditional filters and parameters against three alternative filters. However,

there is a wide variety of other potential filters that could be taken into account. Another

possibility is a combination of filters.

Another front is the filter selection based on certain camera path profiles. A good

question to be asked is if the selected filter and parameter change according to certain

camera path characteristics, such as peak frequency or ratio between highest and lowest

frequencies. Such a study might lead to a rich discussion based on signal processing

and Deep Learning.

However, we are aware that the DL community is working hard towards addressing

several different challenges, and we believe that in the future a pure DL-based DVS
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approach will be feasible, possibly with the creation of new networks or with the

development of novel loss functions, which could address video stability.
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