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Abstract
The current practice of reliability analysis is both uniform and troublesome: most reports consider only Cronbach’s α, and
almost all reports focus exclusively on a point estimate, disregarding the impact of sampling error. In an attempt to improve
the status quo we have implemented Bayesian estimation routines for five popular single-test reliability coefficients in the
open-source statistical software program JASP. Using JASP, researchers can easily obtain Bayesian credible intervals to
indicate a range of plausible values and thereby quantify the precision of the point estimate. In addition, researchers may
use the posterior distribution of the reliability coefficients to address practically relevant questions such as “What is the
probability that the reliability of my test is larger than a threshold value of .80?”. In this tutorial article, we outline how to
conduct a Bayesian reliability analysis in JASP and correctly interpret the results. By making available a computationally
complex procedure in an easy-to-use software package, we hope to motivate researchers to include uncertainty estimates
whenever reporting the results of a single-test reliability analysis.

Keywords Credible interval · McDonald’s omega

“There is no excuse whatever for omitting to
give a properly determined standard error (...) All
statisticians will agree with me here (...)” Harold
Jeffreys (1961, p. 410)

The concept of reliability plays a key role in psychological
research involving tests and questionnaires. In general,
reliability quantifies the degree to which a measurement
instrument provides similar results in repeated application.
For instance, before buying a bathroom scale you may
decide to try it out several times in quick succession.
If the returned weights are equal, the scale is perfectly
reliable; if the returned weights vary substantially, the scale
is unreliable and any individual result ought to be viewed
with caution. Although in this example only one individual
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is measured and, classically, reliability is defined for a
group of individuals, the underlying idea remains the same:
The similarity of repeated measurements (of a group or
individual) indicates the degree to which the measurement
is reliable.

In most applications in psychology, memory effects
prohibit the use of repeated administrations of the same
test. Instead one may consider parallel tests – different
versions of the same test that are interchangeable except
for random measurement error. Reliability defined as the
correlation between two parallel tests mathematically equals
the proportion of test score variance that is not due to
random measurement error (Lord & Novick, 1968). When
parallel tests are infeasible, impractical, or unavailable,
researchers have to try and disentangle true score variance
from the overall test score variance using the data from a
single test administration (for more information, see, e.g.,
Sijtsma & Van der Ark, 2021).

Single-test reliability can be estimated by several
different coefficients, the dominant one being Cronbach’s
α (Cronbach, 1951). Coefficient α is a lower bound to
the reliability, and is based on the covariance between
the questionnaire items. When the underlying scale is
unidimensional and when every item captures the true score
equally well, then α equals reliability (Lord & Novick,
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1968). Under more general conditions, coefficient α is
considered as a lower bound on reliability (e.g., Dunn et al.,
2014; Sijtsma, 2009).

Despite ongoing methodological debate about the pros
and cons of the different single-test reliability coefficients
(e.g., McNeish, 2018), scientific practice manifests an
approach to reliability analysis that is both near-unanimous
and troubling. Point estimates of reliability coefficients
are virtually never accompanied by any measure of
precision. For instance, Flake et al. (2017) encountered
uncertainty intervals for fewer than 5 out of 301 coefficients
(personal communication, August 3, 2020); Moshagen et al.
(2019) did not encounter any uncertainty intervals for 549
coefficients (personal communication, August 3, 2020);
similarly, Oosterwijk et al. (2019) did not encounter any
uncertainty intervals for 1,024 coefficients. We suspect that
the lack of uncertainty reporting is partly due to a common
misunderstanding: Since reliability is a quantification of
measurement error itself, researchers fail to view reliability
as a parameter that is affected by measurement error and
thereby necessitates an uncertainty estimate.

As a running example throughout this manuscript we use
data from the Altman Self-Rating Mania Scale (ASRM)
which was used by Nicolai and Moshagen (2018) as a
possible control variable in a multiple regression model that
quantified the association between pathological buying and
the judgement of elapsed time. The ASRM consists of five
0-4 Likert-scored response items and was filled out by 78
participants. Standard reporting practice is to communicate
as a measure of single-test reliability (a) only Cronbach’s α;
(b) only the frequentist point-estimate, which for the ASRM
data equals α̂ = .79. Without an associated uncertainty
interval, this point estimate is impossible to interpret.

In this manuscript we present a Bayesian framework
which allows researchers to obtain Bayesian uncertainty
intervals (generally known as credible intervals) for five
different single-test reliability coefficients. More generally,
the methodology discussed below allows researchers to
obtain entire posterior distributions for single-test reliability
coefficients. A posterior distribution represents the relative
plausibility of the coefficient values after the observed
data have been taken into account. One obtains a posterior
distribution by updating a prior distribution by means of the
likelihood of the data. The prior distribution represents the
relative plausibility of the parameter values before the data
have been observed.

For the ASRM data, a default Bayesian analysis for
Cronbach’s α allows a researcher to draw the following
conclusions:

1. The posterior mean for Cronbach’s α equals 0.785. This
provides a Bayesian point estimate.

2. A 95% Bayesian credible interval for Cronbach’s α

ranges from .706 to .852.1 In other words, there
is a 95% probability that Cronbach’s α lies in the
interval [.706, .852]. This Bayesian credible interval is
analogous to the frequentist confidence interval, which
is often numerically similar (Pfadt et al., 2021).

3. Let the interval between α = .70 and α = .90 be
of particular interest. This interval contains 97.8% of
the posterior mass; in other words, there is a 97.8%
probability that Cronbach’s α is larger than .70 and
smaller than .90. This Bayesian interval estimate is
fundamentally unavailable in frequentist methodology
(e.g., Pratt et al., 1995; Wagenmakers et al., 2018).
Frequentist methods can produce (1 − α)% confidence
intervals (α being the significance level), but they
cannot produce the confidence that is associated with
any specific interval (Morey et al., 2016).

We assume that readers of this tutorial are sympathetic
to conducting a reliability analysis in the Bayesian instead
of the frequentist framework (e.g., Vandekerckhove et al.,
2018; Wagenmakers et al., 2018). For a comprehensive
tutorial on a frequentist reliability analysis in R, including
confidence intervals, see Revelle and Condon (2019).

Researchers interested in applying a Bayesian single-
test reliability analysis are confronted with three major
challenges: (1) How to develop and implement a statistical
procedure that produces the desired posterior distributions;
(2) How to execute a Bayesian reliability analysis in
available software; and (3) How to interpret the results
correctly.

The first challenge was overcome by Padilla and
Zhang (2011) and Pfadt et al. (2021). Padilla and Zhang
introduced a Bayesian version of Cronbach’s α and Pfadt
et al. described Bayesian versions of three additional
reliability coefficients: Guttman’s λ2 (Guttman, 1945),
the greatest lower bound (glb; Woodhouse & Jackson,
1977), and McDonald’s ω (McDonald, 1970; 1999).
Readers interested in the methodological background of the
Bayesian coefficients may consult Padilla and Zhang (2011)
and Pfadt et al. (2021). All formerly mentioned reliability
coefficients have been implemented in an R-package and
in JASP, an open-source statistical software program with
an intuitive graphical user interface.2 In this tutorial, we

1The software discussed in this paper uses the highest posterior density
(HPD) interval, that is, the shortest interval that covers 95% of the
posterior mass (e.g., Kruschke, 2015, chapter 4).
2The R-package Bayesrel can be downloaded from CRAN or,
for the latest version, https://github.com/juliuspf/Bayesrel. JASP
can be downloaded from https://jasp-stats.org/download. The full
functionality as described in this tutorial is available from JASP
version 0.16.1 onwards.

https://github.com/juliuspf/Bayesrel
https://jasp-stats.org/download
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describe how to overcome the second and third challenges:
we outline how to conduct a Bayesian reliability analysis
in JASP and how to correctly interpret the results. The
Appendix shows how to conduct the analysis in R.

JASP is a statistical software program with a graphical
user interface (GUI). It is aimed at researchers not versed
in programming languages such as R. Other GUI programs,
namely SPSS (v25), Stata (v16.1), Statistica (v13), Minitab
(v19.2), and JMP Pro (v15), offer limited functionality to
estimate uncertainty in a reliability analysis. Only JMP
Pro provides bootstrapping methods to obtain a confidence
interval for Cronbach’s α, whereas SPSS and Stata have
workarounds; none of these programs offers a credible
interval or a posterior distribution.

Although in this tutorial conducting a Bayesian reliability
analysis will seem relatively straightforward, we argue
that a comprehensive reliability analysis is rather complex.
In particular, one should first determine the reliability
approach one wishes to use, classical test theory, factor
analysis, or generalizability theory; one should check if the
assumptions of the chosen approach are met and then select
the reliability coefficients accordingly. For more guidance
on the measurement models underlying different reliability
coefficients, we refer readers to Flora (2020), McNeish
(2018), Savalei and Reise (2019), and Sijtsma (2009), or,
more generally, Sijtsma and Van der Ark (2021, Chapter 2).

Conducting a Bayesian single-test reliability
analysis in JASP

We will conduct a Bayesian reliability analysis for
the ASRM example in JASP. The ASRM data file
(example asrm.csv) and the associated article are
available in an OSF-repository at https://osf.io/s4qr5/.3

First we open the example asrm.csv file in JASP.
After the data have been loaded we click on the blue
“+” symbol in the top right corner of the JASP window
in order to access the module list. In the module list we
tick “Reliability”; the reliability module is now activated,
and the matching icon appears on the ribbon above,
next to the other analyses. Clicking the icon unfolds a
menu from which we select, under “Bayesian”, the option
“Unidimensional Reliability”. The left panel shown in Fig. 1
provides a screenshot of some of the resulting analysis input
options.

3Strictly speaking, the Bayesian reliability methods are developed for
continuous multivariate normal data, but we treat the ASRM example,
which is Likert-scaled, as quasi-continuous – a common practice in
reliability analysis.

Basic analysis

In order to initiate an analysis we select all five Likert items
from the input panel and move them to the “Variables”
pane. The resulting analysis output – a point estimate and
95% credible interval for McDonald’s ω– is then displayed
as a table in the output panel (cf. Fig. 1). Unfolding the
“Analysis” tab underneath the variables pane confirms that
McDonald’s ω has been pre-selected as the default choice.

JASP offers five estimators of single-test reliability:
McDonald’s ω, Cronbach’s α, Guttman’s λ2, Guttman’s λ6,
and the Greatest lower bound (glb). We retain McDonald’s
ω and tick Cronbach’s α.4 The table in the output panel is
then updated to include the point estimate and 95% credible
interval for Cronbach’s α (see the top table in Fig. 2). The
analysis is based on samples from the posterior distribution,
and therefore the estimates may vary slightly when rerun.5

The results may be reported as follows: “For McDonald’s
ω, the posterior mean equals .772 and the 95% credible
interval ranges from .690 to .851; for Cronbach’s α, the
posterior mean equals .785 and the 95% HPD credible
interval ranges from .706 to .852. The probability that
McDonald’s ω lies between .690 and .851 is 95%; the
probability that Cronbach’s α lies between .706 and .852 is
95%.”

In addition, researchers may be interested in the posterior
probability that a particular coefficient lies in a specific
interval of interest or exceeds a certain value. This interval
of interest can be defined by ticking the box “Probability
for:” and specifying the lower and upper limit. The
corresponding prior and posterior probabilities are then
displayed in a separate table (see the bottom table in Fig. 2).
For the ASRM data, the data have increased the probability
that McDonald’s ω falls in the .70 − .90 interval from
.132 (i.e., the prior probability) to .946 (i.e., the posterior
probability).

Displaying posterior distributions

Ticking the box “Plot Posteriors” produces a plot of the
posterior distributions of the reliability coefficients. The
HPD credible interval is indicated by a horizontal bar
above the density curve. Ticking “Display Priors” adds
the prior distributions; ticking “Shade posterior region in

4Multiple versions of McDonald’s ω exist, the version implemented
in JASP is appropriate for unidimensional data, see McDonald (1999,
Equation 6.20b). McDonald’s ω is computed from the parameters of a
single-factor model, which – in JASP – is estimated from the centered
data matrix, instead of the correlation matrix (see psych package in
R).
5To avoid varying results when rerunning the analysis, one can
either increase the number of posterior samples, or set a seed in the
“Convergence” tab. Users can set the seed to 1234 to obtain precisely
the values we report here.

https://osf.io/s4qr5/
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Fig. 1 Screenshot of the Bayesian reliability module in JASP as applied to the ASRM data. The options specified in the left analysis input panel
yield corresponding results displayed in the right output panel

plot” visualizes the interval of interest. The resulting output
for the ASRM data is shown in Fig. 3. The posterior
distribution shows the relative plausibility of the parameter
values and the informativeness of the data. Narrow posterior

distributions indicate that only a small subset of values are
plausible, and that the estimation has been relatively precise.
This information is also contained in the posterior mean
and the 95% credible interval, but ultimately these numbers

Fig. 2 JASP output tables. Top table: point estimates and credible intervals for McDonald’s ω, Cronbach’s α. Middle table: the “if item dropped”
statistics. Bottom table: the prior and posterior probability that a reliability coefficient lies between two user-defined cutoffs



Behavior Research Methods

only summarize the complete posterior distribution, the
proper interpretation of which usually benefits from a
visual inspection. For further information on probability
distributions and their interpretation, see, for example,
(Kruschke, 2015, chapter 4).

If-item-dropped statistics

The reliability module includes common item statistics,
such as the item-rest correlation (also known as the
corrected item-total correlation) and the values of reliability
coefficients when an item is dropped. Selecting McDonald’s
ω and Cronbach’s α “(if item dropped)” brings up the
middle table in Fig. 2. The deletion of item 3 improves
reliability by a minuscule amount (i.e., the posterior mean
for McDonald’s ω increases from .772 to .777; Cronbach’s
α increases from .785 to .787). Deleting any of the other
items leads to a decrease in reliability.

The consequences of dropping an item may be visualized
by clicking on “If item dropped plot” (see Fig. 4). The
resulting posterior distributions can be ordered in different
ways: (a) by the difference between the posterior means;
(b) by the Kullback-Leibler (KL) divergence (Kullback
& Leibler, 1951); and (c) by the Kolmogorov-Smirnov
(KS) distance (Kolmogorov, 1933; Smirnov, 1939). For
further information about the metrics to measure the
difference between distributions, see, for example, Gibbs
and Su (2002). Figure 4 orders the posterior distributions
by KL-divergence. This figure shows that the reliability
coefficients decrease the most when item 1 is deleted (i.e.,
the posterior distribution displayed in the top row). Deleting
item 3 does not change the posterior distributions in a
meaningful way. We note that the deletion of an item should
never be based purely on statistical information but preferably
involve theoretical considerations. We believe the display of
the posterior distributions for this purpose (see Fig. 4) may
prevent researchers from rash decisions by visualizing the loss
in information that would arise from deleting an item. Usually
for unidimensional data, the deletion of an item will result
in a wider posterior distribution, that is, more uncertainty
around the point estimate.

AssessingMCMC convergence

The reliability analysis in JASP uses the R-package
Bayesrel to compute the reliability estimates. The
R-package obtains posterior samples of the reliability
coefficients by means of Markov chain Monte Carlo
sampling (MCMC; e.g., Gilks et al., 1995).6 For further

6Common MCMC methods include Gibbs sampling (Geman &
Geman, 1984), the Metropolis-Hastings algorithm (Hastings, 1970;
Metropolis et al., 1953), and Hamiltonian Monte Carlo (Betancourt,
2017)

information about MCMC sampling and convergence, see,
for example, Van Ravenzwaaij et al. (2018). In JASP,
the details of the MCMC algorithm can be controlled
through options available under the menu “Convergence”.
We briefly summarize the rationale for these options below.

The MCMC sampling algorithm starts with random
parameter values and then converges to the posterior
distribution as more and more samples are drawn. In the
initial phase of this process (known as “burn-in”) the
sampled parameter values still depend on their starting
values and are therefore not representative of the posterior
distribution. Such burn-in samples should be discarded.
In order to help assess whether the MCMC sampling has
converged to the posterior distribution, it is customary to run
the algorithm several times with different starting values;
these different runs are known as chains. When the different
chains have converged to the posterior, they should “mix”
well. The extent to which the chains are mixing can be
quantified by the “R-hat” statistic (Gelman & Rubin, 1992)
which compares the within-chain variance to the between-
chain variance; for chains that mix well the R-hat statistic
is close to 1. An R-hat statistic larger than 1.1 is considered
problematic (Gelman et al., 2014, chapter 11.5). In our
example, R-hat is 1.000 and 1.003 for ω and α respectively
(see the top table in Fig. 2).

As the name “chain” suggests, consecutive MCMC
draws are usually correlated. High levels of autocorrelation
indicate that the sampling process moves slowly through
the posterior distribution, and this limits the efficiency
with which the posterior can be approximated. A common
method to reduce autocorrelation is known as “thinning”.
For instance, a thinning interval of 2 means that every
other value from the original chain is discarded. In order
to assess convergence it is usually helpful to display the
successive values of the chains; these displays are known as
“traceplots”.

In JASP, the options under the “Convergence” menu
allow users to adjust the number of chains, the number
of samples, the length of the burn-in, and the length of
the thinning interval. In addition, users can obtain the R-
hat statistic and inspect the traceplots. In our experience
it is rarely necessary to change the default options.
Figure 5 shows the traceplots for the ASRM-data. The
traceplots show that the sampled values do not differ
systematically depending on the chain or depending on
the number of iterations, suggesting convergence to the
posterior distribution.

Prior distributions

By unfolding the tab “Priors” one may adjust the
hyperparameters of the prior distributions for the reliability
coefficients. The prior distribution on Cronbach’s α and
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Fig. 3 Prior and posterior distributions for McDonald’s and ω and Cronbach’s α. The dashed and solid lines correspond to the prior and posterior
distribution, respectively. The 95% HPD credible interval is displayed on top, and the shading marks the interval specified in the “Probability for:”
input fields (here: .70 and .90). Figures from JASP

other CTT-coefficients is induced by the prior distribution
on the covariance matrix, which is an inverse Wishart
distribution. The parameters of the prior inverse Wishart
distribution are the identity matrix multiplied by a scalar
(denoted “Scale”) as a scaling matrix and the degrees of
freedom (denoted “Df”). The Scale value functions as a
precision parameter and is by default set to 10−10; the Df
are by default set to the number of items k and are always at
least as large as k.

Since McDonald’s ω is computed from the parameters
of the single-factor model, its prior distribution is induced
by the prior distributions on the single-factor model
parameters. Specifically, the prior distributions are, by
default, an inverse gamma distribution with shape α = 2 and
scale β = 1 on the residual variances; a normal distribution
centered on zero for the factor loadings and scores; and,
on the variance of the latent variables an inverse Wishart

distribution with the number of items k as a scaling matrix
(more precisely, a scalar, since only one latent variable is
specified) and k + 2 as the degrees of freedom. The choice
of relatively uninformative priors for the factor model
parameters results in a prior distribution of ω that is not
uniform, but assigns less mass near values of 1 (see Fig. 3).

JASP offers control over the inverse gamma prior on
the residual variances (“shape” and “scale” boxes) and the
mean of the normal prior on the factor loadings (“mean”
box). Among the prior parameters, the priors on the residual
variances and the factor loadings are the most influential for
the prior and posterior distribution of McDonald’s ω.

We consider the chosen prior parameters as relatively
uninformative about the covariance matrix and the factor
model. Users wishing to incorporate more prior knowledge
into their analysis may adjust the prior parameters to better
represent their assumptions. We advise to always compare
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Fig. 4 The ordered posterior densities when items are dropped. The bottom density shows the posterior with the original number of items. Going
from bottom to top, the difference to the original density increases. The ordering is based on the KL-divergence. Figures from JASP
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Fig. 5 Traceplots of the MCMC samples for reliability coefficients McDonalds ω (left panel) and Cronbach’s α (right panel) applied to the
ASRM-data with 1,000 iterations, a burn-in of 50, thinning interval of 1, and three chains (represented by different colors). Figures from JASP

the results from a more informative prior with the default
(relatively uninformative) priors.

Advanced options

Missing values

Unfolding the tab “Advanced Options”, we can treat missing
values either with “Bayesian imputation” or “Exclude cases
listwise”. For listwise deletion each row (participant) that
contains at least one missing value is deleted from the data
set in its entirety. When the data contain missing values
and the user chooses Bayesian imputation, the Bayesian
analysis will treat the missing data as to-be-estimated
parameters. The missing values are sampled conditional on
the remaining data and the sampled model parameters. This
way we obtain a posterior distribution of each missing value
(e.g., Schafer, 1999).

McDonald’sω estimation

McDonald’s ω is based on the unidimensional factor
model and quantifies the general factor saturation when
the unidimensional model fits.7 Post-hoc model fit can be
checked in JASP by ticking the box “Posterior predictive
check” (PPC; Gelman et al., 2014, chapter 6.3). The
resulting figure shows how closely the data resemble the
unidimensional factor model (see Fig. 6 for the ASRM-
data). Specifically, the PPC-plot displays the eigenvalues of
the data covariance matrix (black dots) together with 95%
intervals (grey bars) based on eigenvalues simulated from

7Contrary to common misconception the other coefficients including
Cronbach’s α do not assume data to be unidimensional. We elaborate
on this in the next section.

the unidimensional model.8 In Fig. 6, all black dots fall
inside of the intervals, suggesting that the unidimensional
model provides a satisfactory fit to the observed data. We
note that the PPC should only function as a post-hoc check
to confirm that the unidimensional factor model fits the
data, that is, McDonald’s ω is an appropriate reliability
coefficient. One may obtain fit measures for the Bayesian
single-factor model by checking the corresponding box “Fit
measures”. These measures include Bayesian versions of
the root mean square error of approximation (RMSEA),
comparative fit index (CFI), Tucker-Lewis index (TLI),
and a Bayesian version of the likelihood ratio (LR)
test-statistic (Garnier-Villarreal & Jorgensen, 2020; Levy,
2011). For the ASRM-data these are: BRMSEA = 0.131,
p (BRMSEA < .08) = 0.116; BCFI = .929,
p (BCFI > .90) = .771; BT LI = .863, p (BT LI >

.90) = .384; and BLR = 13.31. Interpreting the PPC-
plot together with these fit values we can merely confirm
mediocre fit of the single-factor model, and advise to
treat McDonald’s ω with caution. Ideally, when using the
factor analytic approach to reliability, researchers should
determine the proper measurement model for the data before
conducting a reliability analysis (see, e.g., Savalei & Reise,
2019).

Further, users can choose to display the standardized
loadings of the single-factor model by checking the
corresponding box. The resulting table displays the mean or

8To obtain the PPC in Fig. 6, we sample the parameters from a
unidimensional factor model, loadings and residuals, which we also
need to compute ω. We combine the posterior samples of the loadings
and residuals to construct a posterior sample of the model implied
covariance matrix. We generate random multivariate normal data sets
of the same size as the original data set with means of zero and
the posterior model implied covariance matrices. We compute the
eigenvalues of each of the generated data sets obtaining an empirical
distribution for each eigenvalue. We plot the 2.5% and 97.5% quantiles
of each eigenvalue sample as grey bars together with the eigenvalues
of the original data set as black dots.
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Fig. 6 The posterior predictive check for the fit of the unidimensional
factor model to the ASRM-data. The 95% intervals of the simulated
eigenvalues from the model-implied covariance matrix are shown as
grey lines, and the black dots represent the eigenvalues of the data
covariance matrix. The fit appears satisfactory. Figure from JASP

median (see “Posterior point estimate”) of the standardized
posterior factor loadings.

Guidance on estimators

In light of the many critiques on Cronbach’s α (e.g., Cho,
2016; McNeish, 2018) and the advocacy of alternative
estimators (Oosterwijk et al., 2016; Revelle & Zinbarg,
2009; Sijtsma, 2009), below we briefly mention some key
properties of the various single-test reliability coefficients.

First, Cronbach’s α is a lower bound for reliability,
meaning that it is an underestimate of the true reliability
(Lord & Novick, 1968). When data are unidimensional, the
degree of the underestimation is usually small (e.g., Dunn
et al., 2014). Guttman’s λ2 has the same properties as α

but is at least as large as α (Guttman, 1945; Oosterwijk
et al., 2016). Guttman’s λ6 usually has a larger positive
bias than λ2 with respect to its population value, and this
bias increases with the number of items (Oosterwijk et al.,
2016). In theory, the glb is the lower bound of choice for
both unidimensional and multidimensional data (Oosterwijk
et al., 2017; Sijtsma, 2009), but in practice the glb shows
considerable positive bias and should only be reported for
data sets with more than 1000 observations and fewer than
10 items (Ten Berge & Sočan, 2004).

McDonald’s ω is based on the unidimensional factor
model and therefore can only approximate reliability when
the factor model is an acceptable model for the data. In

addition to the interpretation of ω as a measure of reliability,
the coefficient also indicates how well a test measures a
single factor (when the data are unidimensional).

Although unidimensionality is not an assumption for
the derivation of the lower bound theorem for Cronbach’s
α (the same is true for Guttman’s λ2 and λ6; Lord &
Novick, 1968), the performance of the coefficient benefits
from unidimensional data. Therefore, we urge researchers to
make sure their data are unidimensional before estimating
McDonald’s ω, Cronbach’s α, and Guttman’s λ2 both in
the frequentist and the Bayesian framework.9 Whether data
are unidimensional or not, the issue of whether the item
set measures the intended attribute well is a validity issue.
It cannot be settled by ascertaining unidimensionality and
reliability.

Concluding comments

Whenever researchers report a single-test coefficient of
reliability they overwhelmingly resort to Cronbach’s α and
they almost never accompany the point estimate by an
uncertainty interval. This reporting routine is statistically
sub-optimal, but existing software does not offer an easy
alternative to researchers without programming expertise.
To facilitate a more complete reporting practice we
implemented five Bayesian reliability coefficients in JASP,
an open-source statistics program with an intuitive graphical
user interface.

In this tutorial paper we demonstrated how to conduct a
Bayesian reliability analysis in JASP and how to interpret
the results. With JASP, it is straightforward to obtain
a posterior distribution for a reliability coefficient. This
posterior distribution can then be interrogated in several
ways: one may obtain a point estimate, a credible interval,
and the probability that the coefficient falls within a specific
interval of interest. One may also explore the change in
the posterior distribution when an item is deleted, one may
adjust the settings of the MCMC sampling algorithm, and
one may check the extent to which the unidimensional factor
model fits the data.

By implementing the Bayesian reliability analysis in
JASP we offer practitioners a low-threshold entrance to
Bayesian parameter estimation and a concrete alternative
to the near-universal “Cronbach’s α, point estimate only”
approach. We hope that our work will stimulate researchers
to consider reliability estimates beyond Cronbach’s α, and
to accompany point estimates by credible intervals.

9If data are multidimensional, researchers may divide their scale into
unidimensional subscales and estimate reliability coefficients for each
subscale.
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Appendix

Analysis in R

In order to perform the same analysis in R as we did in
JASP, we need to install the R-package Bayesrel. For
the latest version we use the package remotes and run the
commandremotes::install github("juliuspf/
Bayesrel"). We load the package, set a seed, get the data
that is stored in the package, and run the full analysis by:
library(Bayesrel)
set.seed(1234)
# perform reliability analysis
# on the ASRM-data saved in
# the R-package:
res <- strel(data = asrm, estimates = c
("alpha", "omega"), item.dropped = TRUE,
freq = FALSE)
# full output summary:
summary(res)

The results echo those from JASP, which is why we do
not display them here.

Similar to Fig. 2, we can also calculate the posterior
probability that the reliability coefficients lie in the interval
[.70, .90] by:
pStrel(res, estimate = "omega", .7) -
pStrel(res, estimate = "omega", .9)
pStrel(res, estimate = "alpha", .7) -
pStrel(res, estimate = "alpha", .9)

The convergence statistics require the coda package
(Plummer et al., 2006):
library(coda)
samp <- res[["Bayes"]][["samp"]]
[["Bayes_omega"]]
# restructuring the chains
# for traceplot:
samp_list <- as.mcmc.list
(lapply(as.data.frame(t(samp)), mcmc))
traceplot(samp_list)

# for R-hat or potential
# scale reduction factor:
gelman.diag(samp_list)$psrf[, 1]

The fit of the unidimensional model may be examined by
calling
omegaFit(res, data = asrm)
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