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1. Introduction

Fractional derivatives play an important role in modeling real-world events, mainly
when the past process influences the current state, or when there are uncertainties that
can affect the dynamics of the system. The dependence of the derivative on a parame-
ter (the fractional order) allows us to adjust the order of the derivative to the real data,
and thus creating more realistic models to describe a system and predict its future dynamics.
The question that is always asked is the following: Which fractional derivative are we going
to consider? There are several definitions, each with its advantages and disadvantages [1,2].
One way to overcome this problem is to introduce more general concepts of fractional
operators, such as the Hilfer operator [3,4], derivatives depending on another function [5–7],
or involving arbitrary kernels [8,9].

One area where fractional calculus has been shown to be useful is in the calculus of
variations. Here, instead of considering integer-order derivatives, fractional derivatives are
considered in the system [10,11]. In recent years, numerous studies have appeared for differ-
ent types of fractional operators and with different formulations of the problem under study.
To cite a few, we can refer the ones dealing with the Riemann–Liouville fractional deriva-
tive [12,13], the Caputo derivative [14], symmetric fractional derivative [15], or the Riesz
derivative [16]. Due to this high number of definitions, to overcome this problem, more
general definitions of fractional derivatives are used. For example, in the works [17–19],
some results of the calculus of the variations are presented in the generalized form.

One possible way to generalize the concept of the fractional derivative has recently
been presented. Starting from the definition of tempered fractional derivative, and through
a convex combination of the state function u and its derivative u′, we define the generalized
proportional derivative. Despite being a very recent idea, we have already found numerous
works on this subject. For example, in [20–22] we find some fundamental properties of it,
stability of fractional differential equations were addressed in [23–25], in [26] is studied
stochastic differential equations, and a more general form of the derivative, with depen-
dence of an arbitrary kernel, was considered in [27–29]. However, with regard to the
calculus of variations, no study has yet been carried out and with this work, we intend to
contribute to this area. The aim of our paper is to study optimization conditions dealing
with this form of fractional derivative. Thus, we intend to generalize some already known
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results and obtain new ones that can not be deduced from previous works. We will consider
the fundamental problem (minimize a functional, where the Lagrange function depends on
a fractional derivative) and then some other cases will be considered. We will study the
case when there exist constraints on the formulation of the problem, with the presence of a
time delay, or the Herglotz variational problem.

The organization of the paper is as follows. In Section 2 we present some needed
definitions and prove a result needed for our proofs. In the following Section 3 we formulate
the problem of the calculus of variations and prove the respective Euler–Lagrange equation.
Some generalizations are also proven in the last section.

2. Preliminaries

We start by reviewing some needed definitions for our work (see [21]).

Definition 1. Let γ > 0 be the fractional order and ρ ∈ (0, 1] be a fixed parameter. Given an
integrable function u : [a, b]→ R, we define the left and right generalized proportional fractional
integrals of u, of order γ, as

Iγ,ρ
a+u(t) =

1
ργΓ(γ)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)γ−1u(s) ds

and

Iγ,ρ
b−u(t) =

1
ργΓ(γ)

∫ b

t
e

ρ−1
ρ (s−t)

(s− t)γ−1u(s) ds,

respectively.

Definition 2. Let γ ∈ (0, 1) be the fractional order and ρ ∈ (0, 1] be a fixed parameter. Given a
C1 function u : [a, b]→ R, the generalized Caputo proportional fractional derivative of u, of order
γ, is defined as

CDγ,ρ
a+u(t) = I1−γ,ρ

a+ Dρu(t) =
1

ρ1−γΓ(1− γ)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−γDρu(s) ds,

where Dρu = (1− ρ)u + ρu′.

When ρ = 1, the generalized Caputo the proportional fractional derivative reduces to
the usual Caputo fractional derivative. For the following, we also need a concept similar to
generalized Riemann–Liouville proportional right fractional derivative of u:

Dγ,ρ
b−u(t) =

1
ρ1−γΓ(1− γ)

	Dρ

[∫ b

t
e

ρ−1
ρ (s−t)

(s− t)−γu(s) ds
]

,

where 	Dρ f = (1− ρ) f − ρ f ′.
To end this section, a fractional integration by parts formula is proven, fundamental

for the continuation.

Theorem 1. For two given functions u and v, where u is a continuous function and v a continu-
ously differentiable function, the following formula holds:

∫ b

a
u(t) · CDγ,ρ

a+v(t) dt = ρ
[
I1−γ,ρ

b− u(t) · v(t)
]b

a
+
∫ b

a
Dγ,ρ

b−u(t) · v(t) dt. (1)

Proof. If we interchange the order of integration, we obtain
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∫ b

a
u(t) · CDγ,ρ

a+v(t) dt =
∫ b

a

∫ t

a

1− ρ

ρ1−γΓ(1− γ)
u(t)e

ρ−1
ρ (t−s)

(t− s)−γv(s) ds dt

+
∫ b

a

∫ t

a

ρ

ρ1−γΓ(1− γ)
u(t)e

ρ−1
ρ (t−s)

(t− s)−γv′(s) ds dt

=
∫ b

a

∫ b

t

1− ρ

ρ1−γΓ(1− γ)
u(s)e

ρ−1
ρ (s−t)

(s− t)−γv(t) ds dt

+
∫ b

a

∫ b

t

ρ

ρ1−γΓ(1− γ)
u(s)e

ρ−1
ρ (s−t)

(s− t)−γv′(t) ds dt.

(2)

Integrating by parts the second term, Formula (2) becomes

∫ b

a

∫ b

t

1− ρ

ρ1−γΓ(1− γ)
u(s)e

ρ−1
ρ (s−t)

(s− t)−γv(t) ds dt

+

[(∫ b

t

ρ

ρ1−γΓ(1− γ)
u(s)e

ρ−1
ρ (s−t)

(s− t)−γ ds
)

v(t)
]b

a

−
∫ b

a

d
dt

(∫ b

t

ρ

ρ1−γΓ(1− γ)
u(s)e

ρ−1
ρ (s−t)

(s− t)−γ ds
)

v(t) dt

= ρ
[
I1−γ,ρ

b− u(t) · v(t)
]b

a
+
∫ b

a
Dγ,ρ

b−u(t) · v(t) dt.

3. Problem Formulation and the Euler–Lagrange Equation

The calculus of variations consists in finding maxima and minima of differentiable
functions defined over some functional space. Such functions (or functionals) are usually
formed by integrals involving time t, an unknown function u, and its derivative u′. In the
fractional calculus of variations, such integer order derivative is replaced by a fractional
derivative. Due to the existence of different types of fractional derivatives, we encounter
different types of problem formulations of the calculus of variations. In this work, our
goal is to generalize some of them, by considering the generalized Caputo proportional
fractional derivative. The functional spaces considered here are the sets

Ω = C1[a, b] and ΩB = {u ∈ C1[a, b] : u(a) = τa, u(b) = τb},

where τa and τb are the fixed values of the state function at the boundaries. The functional
we consider is F : Ω→ R (or F : Ωb → R) defined as

F (u) =
∫ b

a
L(t, u(t), CDγ,ρ

a+u(t)) dt. (3)

Function L : [a, b]×R2 → R is assumed to be continuously differentiable. We seek
what conditions must a function u∗ satisfy in order to be a minimizer of functional (3).
The next necessary condition is known as the Euler–Lagrange equation for the variational
problem. To simplify notation, we use the following one:

∂2L =
∂L
∂u

and ∂3L =
∂L

∂CDγ,ρ
a+u

.

Similar notations will appear during the paper, with respect to other functions and
variables, with obvious meanings.
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Theorem 2. If u∗ ∈ ΩB minimizes functional F , then u∗ satisfies the fractional differential
equation

∂2L(t, u∗(t), CDγ,ρ
a+u∗(t)) +Dγ,ρ

b−∂3L(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0, t ∈ [a, b]. (4)

If u∗ ∈ Ω, that is, u(a) and u(b) are free, then besides Equation (4), the following two
transversality conditions

I1−γ,ρ
b− ∂3L(t, u∗(t), CDγ,ρ

a+u∗(t)) = 0

are satisfied, at t = a and t = b.

Proof. If u∗ is the optimal solution for the variational problem, consider an auxiliary
function f , defined in a neighbourhood of zero, given by the rule f (δ) = F (u∗ + δξ).
Here, ξ ∈ Ω (if u∗ ∈ ΩB, then the conditions ξ(a) = ξ(b) = 0 will be imposed). Since u∗

extremizes the functional, then f ′(0) = 0. Computing f ′(0), we get

∫ b

a
∂2L(t, u∗(t), CDγ,ρ

a+u∗(t))ξ(t) + ∂3L(t, u∗(t), CDγ,ρ
a+u∗(t))CDγ,ρ

a+ ξ(t) dt = 0.

Using Formula (1), we obtain that

∫ b
a

[
∂2L(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−∂3L(t, u∗(t), CDγ,ρ

a+u∗(t))
]
ξ(t) dt

+ ρ
[
I1−γ,ρ

b− ∂3L(t, u∗(t), CDγ,ρ
a+u∗(t))ξ(t)

]b

a
= 0.

(5)

If u∗ ∈ ΩB then ξ(a) = ξ(b) = 0 and so∫ b

a

[
∂2L(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−∂3L(t, u∗(t), CDγ,ρ

a+u∗(t))
]
ξ(t) dt = 0.

Since ξ may take any value in the open interval (a, b), we prove that, for all t ∈ [a, b],

∂2L(t, u∗(t), CDγ,ρ
a+u∗(t)) +Dγ,ρ

b−∂3L(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0. (6)

If the state function u can take any value at t = a and t = b, then ξ(a) and ξ(b) are
also arbitrary, and by replacing (6) into (5), we conclude that

I1−γ,ρ
b− ∂3L(t, u∗(t), CDγ,ρ

a+u∗(t)) = 0

at t = a and t = b.

Remark 1. In order to conclude Equation (6), some continuity assumptions are needed, namely the
map

t 7→ Dγ,ρ
b−∂3L(t, u∗(t), CDγ,ρ

a+u∗(t))

must assumed to be continuous in [a, b].

Remark 2. If u = (u1, u2, . . . , un) and Fn : Ωn → R is defined as

Fn(u) =
∫ b

a
Ln(t, u1(t), u2(t), . . . , un(t), CDγ,ρ

a+u1(t), CDγ,ρ
a+u2(t), . . . , CDγ,ρ

a+un(t)) dt,

the result is similar: if u∗ ∈ Ωn minimizes functional Fn, then u∗ satisfies the fractional differential
equations

∂Ln

∂ui
(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−

∂Ln

∂CDγ,ρ
a+ui

(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0, t ∈ [a, b],
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and also the two transversality conditions

I1−γ,ρ
b−

∂Ln

∂CDγ,ρ
a+ui

(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0

are satisfied, at t = a and t = b, for every i ∈ {1, 2, . . . , n}. For example, for n = 2, the functional
becomes

F2(u) =
∫ b

a
L2(t, u1(t), u2(t), CDγ,ρ

a+u1(t), CDγ,ρ
a+u2(t)) dt,

and we obtain two fractional differential equations

∂L2

∂u1
(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−

∂L2

∂CDγ,ρ
a+u1

(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0, t ∈ [a, b],

and

∂L2

∂u2
(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−

∂L2

∂CDγ,ρ
a+u2

(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0, t ∈ [a, b],

u∗ = (u∗1 , u∗2), and four transversality conditions

I1−γ,ρ
b−

∂L2

∂CDγ,ρ
a+u1

(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0,

and
I1−γ,ρ

b−
∂L2

∂CDγ,ρ
a+u2

(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0,

at t = a and t = b.

4. Some Generalizations

We proceed the study when restrictions are imposed in the formulation of the problem,
namely the isoperimetric and holonomic constraints. For simplicity, we will assume that
u∗ ∈ ΩB, that is, boundary conditions are imposed on the state functions (if not, transver-
sality conditions similar to the ones presented in Theorem 2 are deduced).

Theorem 3 (Isoperimetric problem). Let u∗ ∈ ΩB be a solution of the following isoperimetric
problem: minimize functional F , subject to the integral constraint

G(u) =
∫ b

a
M(t, u(t), CDγ,ρ

a+u(t)) dt = C, C ∈ R,

whereM : [a, b]×R2 → R is a C1 function. Then, there exists a vector (λ, λ0) ∈ R2 \ {(0, 0)}
such that, if we define the Hamiltonian functionH asH = λ0L+ λM, u∗ satisfies the equation

∂2H(t, u∗(t), CDγ,ρ
a+u∗(t)) +Dγ,ρ

b−∂3H(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0, t ∈ [a, b].

Proof. First, suppose that u∗ verifies the condition

∂2G(t, u∗(t), CDγ,ρ
a+u∗(t)) +Dγ,ρ

b−∂3G(t, u∗(t), CDγ,ρ
a+u∗(t)) = 0, t ∈ [a, b]. (7)

In this case, the desired result is proven considering (λ, λ0) = (0, 1). Otherwise, define
the two functions f and g, in a neighbourhood of (0, 0), as

f (δ1, δ2) = F (u∗ + δ1ξ1 + δ2ξ2) and g(δ1, δ2) = G(u∗ + δ1ξ1 + δ2ξ2)− C,
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where ξ1, ξ2 ∈ Ω with ξi(a) = ξi(b) = 0, for i = 1, 2. Observe that

∂g
∂δ2

(0, 0) =
∫ b

a
∂2M(t, u∗(t), CDγ,ρ

a+u∗(t))ξ2(t)

+∂3M(t, u∗(t), CDγ,ρ
a+u∗(t))CDγ,ρ

a+ ξ2(t) dt

=
∫ b

a

[
∂2M(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−∂3M(t, u∗(t), CDγ,ρ

a+u∗(t))
]
ξ2(t) dt.

Since u∗ does not verify Equation (7), we conclude that there exists a function ξ2 such
that ∂g/∂δ2(0, 0) 6= 0. Also, since g(0, 0) = 0, applying the Implicit Function Theorem, we
ensure the existence of a function χ such that g(δ1, χ(δ1)) = 0, for all δ1 in a neighbourhood
of zero. In other words, we can ensure the existence of an infinite family of variations
u∗ + δ1ξ1 + δ2ξ2 of the optimal solution that verify the isoperimetric constraint. To prove
the desired result, we will apply the Lagrange multiplier method to prove the existence of
a real λ such that the pair (1, λ) verifies the needed condition. Since (0, 0) is a solution of
the problem:

minimize function f s.t. g(δ1, δ2) = 0,

and since ∇g(0, 0) 6= (0, 0), there exists a real λ such that ∇( f + λg)(0, 0) = (0, 0).
Computing ∂( f + λg)/∂δ1(0, 0) and setting it equal to zero, we prove the desired result.

Theorem 4 (Holonomic constraint). Let u∗ ∈ Ω2
B (u∗ = (u∗1 , u∗2)) be a solution of the following

problem: minimize functional F2 : Ω2
B → R, given by

F2(u) =
∫ b

a
L2(t, u(t), CDγ,ρ

a+u(t)) dt,

subject to the holonomic constraint

g(t, u(t)) = 0, t ∈ [a, b], (8)

where L2 : [a, b]×R4 → R and g : [a, b]×R2 → R are two continuously differentiable functions.
Suppose that

∂3g(t, u∗(t)) 6= 0, ∀t ∈ [a, b].

Then, there exists a function λ ∈ C0[a, b] such that, for i = 2, 3 and for all t ∈ [a, b],

∂iL2(t, u∗(t), CDγ,ρ
a+u∗(t)) +Dγ,ρ

b−∂i+2L2(t, u∗(t), CDγ,ρ
a+u∗(t)) + λ(t)∂ig(t, u∗(t)) = 0.

Proof. Define λ : [a, b]→ R as

λ(t) = −
∂3L2(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−∂5L2(t, u∗(t), CDγ,ρ

a+u∗(t))
∂3g(t, u∗(t))

.

Then, the case i = 3 is proven. For the case i = 2, we prove it using variational
arguments. Consider the curve

t 7→ u∗ + δξ = (u∗1 + δξ1, u∗2 + δξ2),

where ξ ∈ Ω2
B, with ξ(a) = ξ(b) = (0, 0), and δ ∈ R. This variation curve must satisfy

Equation (8), that is,
g(t, u∗ + δξ) = 0, t ∈ [a, b].

Differentiating both sides of this equation with respect to δ, and setting δ = 0, we get

∂2g(t, u∗)ξ1 + ∂3g(t, u∗)ξ2 = 0, t ∈ [a, b]. (9)
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Also, since u∗ minimizes F2, its first variation must vanish at u∗:

∫ b

a
∂2L2(t, u∗(t), CDγ,ρ

a+u∗(t))ξ1(t) + ∂3L2(t, u∗(t), CDγ,ρ
a+u∗(t))ξ2(t)

+ ∂4L2(t, u∗(t), CDγ,ρ
a+u∗(t))CDγ,ρ

a+ ξ1(t) + ∂5L2(t, u∗(t), CDγ,ρ
a+u∗(t))CDγ,ρ

a+ ξ2(t) dt = 0.

Integrating by part (see Equation (1)), we obtain

∫ b

a

[
∂2L2(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−∂4L2(t, u∗(t), CDγ,ρ

a+u∗(t))
]
ξ1(t)

+
[
∂3L2(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−∂5L2(t, u∗(t), CDγ,ρ

a+u∗(t))
]
ξ2(t) dt = 0.

Using Equation (9), we prove that[
∂3L2(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−∂5L2(t, u∗(t), CDγ,ρ

a+u∗(t))
]
ξ2

= −λ(t)∂3g(t, u∗)ξ2 = λ(t)∂2g(t, u∗)ξ1.

Thus,

∫ b

a

[
∂2L2(t, u∗(t), CDγ,ρ

a+u∗(t)) +Dγ,ρ
b−∂4L2(t, u∗(t), CDγ,ρ

a+u∗(t)

+ λ(t)∂2g(t, u∗))
]
ξ1(t) dt = 0,

and since ξ1 is arbitrary in (a, b), the other formula is proven.

We now formulate and solve the problem when the Lagrange function depends on a
time delay.

Theorem 5 (Time delays). Let τ > 0 be such that a + τ < b. Consider the space of functions

Ωτ
B = {u ∈ C1[a− τ, b] : u(t) = U(t), for all t ∈ [a− τ, a], u(b) = τb},

where U ∈ C1[a− τ, a] is a fixed function and τb ∈ R a fixed number. Let u∗ ∈ Ωτ
B be a solution

of

minimize
Fτ : Ωτ

B → R

u 7→
∫ b

a
Lτ(t, u(t), u(t− τ), CDγ,ρ

a+u(t)) dt
,

where Lτ : [a, b]×R3 → R is a function of class C1. Then, for all t ∈ [a, b− τ],

∂2Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ
a+u∗(t)) + ∂3Lτ(t + τ, u∗(t + τ), u∗(t), CDγ,ρ

a+u∗(t + τ))

+Dγ,ρ
(b−τ)−∂4Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ

a+u∗(t))

+	 Dρ

[
1

ρ1−γΓ(1− γ)

∫ b

b−τ
e

ρ−1
ρ (s−t)

(s− t)−γ

× ∂4Lτ(s, u∗(s), u∗(s− τ), CDγ,ρ
a+u∗(s)) ds

]
= 0,
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and for all t ∈ [b− τ, b],

∂2Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ
a+u∗(t)) +Dγ,ρ

(b−τ)−∂4Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ
a+u∗(t))

+	 Dρ

[
1

ρ1−γΓ(1− γ)

∫ b

b−τ
e

ρ−1
ρ (s−t)

(s− t)−γ

× ∂4Lτ(s, u∗(s), u∗(s− τ), CDγ,ρ
a+u∗(s)) ds

]
= 0.

Proof. Let ξ ∈ C1[a − τ, b] with ξ(t) = 0, for all t ∈ [a − τ, a] ∪ {b}, and
let f (δ) = Fτ(u∗ + δξ). From f ′(0) = 0, we get

∫ b

a
∂2Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ

a+u∗(t))ξ(t) + ∂3Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ
a+u∗(t))

× ξ(t− τ) + ∂4Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ
a+u∗(t))CDγ,ρ

a+ ξ(t) dt = 0.

Obviously

∫ b

a
∂3Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ

a+u∗(t))ξ(t− τ) dt

=
∫ b−τ

a
∂3Lτ(t + τ, u∗(t + τ), u∗(t), CDγ,ρ

a+u∗(t + τ))ξ(t) dt.

On the other hand,

∫ b

a
∂4Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ

a+u∗(t))CDγ,ρ
a+ ξ(t) dt

=
∫ b

a
Dγ,ρ

b−∂4Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ
a+u∗(t)) · ξ(t) dt

=
∫ b

a
Dγ,ρ
(b−τ)−∂4Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ

a+u∗(t)) · ξ(t)

+	 Dρ

[
1

ρ1−γΓ(1− γ)

∫ b

b−τ
e

ρ−1
ρ (s−t)

(s− t)−γ

× ∂4Lτ(s, u∗(s), u∗(s− τ), CDγ,ρ
a+u∗(s)) ds

]
· ξ(t) dt.

In conclusion,
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∫ b−τ

a

[
∂2Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ

a+u∗(t))

+ ∂3Lτ(t + τ, u∗(t + τ), u∗(t), CDγ,ρ
a+u∗(t + τ))

+Dγ,ρ
(b−τ)−∂4Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ

a+u∗(t))

+	 Dρ

[
1

ρ1−γΓ(1− γ)

∫ b

b−τ
e

ρ−1
ρ (s−t)

(s− t)−γ

× ∂4Lτ(s, u∗(s), u∗(s− τ), CDγ,ρ
a+u∗(s)) ds

]]
ξ(t) dt

+
∫ b

b−τ

[
∂2Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ

a+u∗(t))

+Dγ,ρ
(b−τ)−∂4Lτ(t, u∗(t), u∗(t− τ), CDγ,ρ

a+u∗(t))

+	 Dρ

[
1

ρ1−γΓ(1− γ)

∫ b

b−τ
e

ρ−1
ρ (s−t)

(s− t)−γ

× ∂4Lτ(s, u∗(s), u∗(s− τ), CDγ,ρ
a+u∗(s)) ds

]]
ξ(t) dt = 0.

The theorem is proven by the arbitrariness of function ξ.

In our next problem, we solve the Herglotz problem with dependence on this new
fractional derivative. This problem can be regarded as a generalization of the usual calculus
of variation problem. For more studies on this topic, we suggest [30].

Theorem 6 (Herglotz problem). Let u∗ ∈ ΩB and z∗ ∈ Ω be a solution of the problem:
minimize z(b)
z′(t) = LH(t, u(t), CDγ,ρ

a+u(t), z(t)), t ∈ [a, b]
z(a) = τz, τz ∈ R,

where LH : [a, b]×R3 → R is a continuously differentiable function. Then, (u∗, z∗) satisfies

λ(t)∂2LH(t, u∗(t), CDγ,ρ
a+u∗(t), z∗(t)) +Dγ,ρ

b− (λ(t)∂3LH(t, u∗(t), CDγ,ρ
a+u∗(t), z∗(t))) = 0,

for all t ∈ [a, b], where λ : [a, b]→ R is the function defined as

λ(t) = exp
(
−
∫ t

a
∂4LH(s, u∗(s), CDγ,ρ

a+u∗(s), z∗(s)) ds
)

.

Remark 3. Observe that function z not only depends on time t, but also on the state function u.
So, we emphasize this dependence by writing z = z(u, t) when needed.

Proof. A variation of the curve u∗ is the curve t 7→ u∗ + δξ, with ξ(a) = ξ(b) = 0.
The variation of z∗ is defined as

Z(t) =
d
dδ

z∗(u∗ + δξ, t)
∣∣∣
δ=0

.
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Computing its derivative with respect to time t, we get

Z′(t) =
d
dδ

d
dt

z∗(u∗ + δξ, t)
∣∣∣
δ=0

=
d
dδ
LH(t, u∗ + δξ, CDγ,ρ

a+u∗ + δCDγ,ρ
a+ ξ, z∗(u∗ + δξ, t))

∣∣∣
δ=0

= ∂2LH(t, u∗(t), CDγ,ρ
a+u∗(t), z∗(t))ξ(t) + ∂3LH(t, u∗(t), CDγ,ρ

a+u∗(t), z∗(t)))CDγ,ρ
a+ ξ(t)

+ ∂4LH(t, u∗(t), CDγ,ρ
a+u∗(t), z∗(t))Z(t).

The solution of the differential equation

Z′(t)− ∂4LH(t, u∗(t), CDγ,ρ
a+u∗(t), z∗(t))Z(t)

= ∂2LH(t, u∗(t), CDγ,ρ
a+u∗(t), z∗(t))ξ(t) + ∂3LH(t, u∗(t), CDγ,ρ

a+u∗(t), z∗(t)))CDγ,ρ
a+ ξ(t)

is the function

λ(t)Z(t) = λ(a)Z(a) +
∫ t

a
λ(s)∂2LH(s, u∗(s), CDγ,ρ

a+u∗(s), z∗(s))ξ(s)

+ λ(s)∂3LH(s, u∗(s), CDγ,ρ
a+u∗(s), z∗(s))CDγ,ρ

a+ ξ(s) ds.

Since z(a) is fixed, Z(a) = 0, and since z attains an extremum at t = b, Z(b) = 0. Thus,

∫ b

a
λ(t)∂2LH(t, u∗(t), CDγ,ρ

a+u∗(t), z∗(t))ξ(t)

+ λ(t)∂3LH(t, u∗(t), CDγ,ρ
a+u∗(t), z∗(t))CDγ,ρ

a+ ξ(t) dt = 0

and integrating by parts,

∫ b

a

[
λ(t)∂2LH(t, u∗(t), CDγ,ρ

a+u∗(t), z∗(t))

+Dγ,ρ
b− (λ(t)∂3LH(t, u∗(t), CDγ,ρ

a+u∗(t), z∗(t)))
]
ξ(t) dt = 0,

proving the result.

This problem can be extended for functions depending on several independent vari-
ables. We denote those variables by t ∈ [a, b] and s = (s1, . . . , sn) ∈ S = ∏n

i=1[ai, bi],
for −∞ < ai < bi < ∞, for each i ∈ {1, . . . , n}. Given a function u ∈ C1([a, b]× S), we
define its fractional derivative as

CDγ,ρ
+ u(t, s) = (CDγ,ρ

a+u(t, s), CDγ,ρ
a1+

u(t, s), . . . , CDγ,ρ
an+)u(t, s) ∈ Rn+1,

where each of these fractional derivatives are regarded as partial fractional derivatives with
respect to the variables t, s1, . . . , sn. The space of the state functions is given by

ΩH
B = {u ∈ C1([a, b]× S) : u(t, s) is fixed if t ∈ {a, b} or si ∈ {ai, bi}, i = 1, . . . , n}.

Theorem 7 (Multi-dimensional Herglotz problem). Let u∗ ∈ ΩH
B and z∗ ∈ Ω be a solution of

the problem: 
minimize z(b)
z′(t) =

∫
S LH2(t, s, u(t, s), CDγ,ρ

+ u(t, s), z(t)) ds, t ∈ [a, b]
z(a) = τz, τz ∈ R,
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where LH2 : [a, b]×R2n+4 → R is a continuously differentiable function. Define the function
λ : [a, b]→ R as

λ(t) = exp
(
−
∫ t

a

∫
S

∂2n+4LH2(τ, s, u(τ, s), CDγ,ρ
+ u(τ, s), z(τ)) ds dτ

)
.

Then, (u∗, z∗) satisfies

∫
S

λ(t)∂n+2LH2(t, s, u(t, s), CDγ,ρ
+ u(t, s), z(t))

+Dγ,ρ
b− (λ(t)∂n+3LH2(t, s, u(t, s), CDγ,ρ

+ u(t, s), z(t)))

+
n

∑
i=1

Dγ,ρ
bi−(λ(t)∂n+i+3LH2(t, s, u(t, s), CDγ,ρ

+ u(t, s), z(t))) ds = 0, t ∈ [a, b].

Proof. Let ξ = ξ(t, s) ∈ C1([a, b] × S) with ξ(t, s) = 0 if t ∈ {a, b} or si ∈ {ai, bi}, for
i = 1, . . . , n. Define

Z(t) =
d
dδ

z∗(u∗ + δξ, t)
∣∣∣
δ=0

.

Again,

Z′(t) =
∫

S
∂n+2LH2(t, s, u(t, s), CDγ,ρ

+ u(t, s), z(t))ξ(t, s)

+ ∂n+3LH2(t, s, u(t, s), CDγ,ρ
+ u(t, s), z(t))CDγ,ρ

a+ ξ(t, s)

+
n

∑
i=1

∂n+i+3LH2(t, s, u(t, s), CDγ,ρ
+ u(t, s), z(t))CDγ,ρ

ai+
ξ(t, s)

+ ∂2n+4LH2(t, s, u(t, s), CDγ,ρ
+ u(t, s), z(t))Z(t) ds.

Then, for λ given above, the solution of this equation verifies

∫ b

a

∫
S

λ(t)
(

∂n+2LH2(t, s, u(t, s), CDγ,ρ
+ u(t, s), z(t))ξ(t, s)

+ ∂n+3LH2(t, s, u(t, s), CDγ,ρ
+ u(t, s), z(t))CDγ,ρ

a+ ξ(t, s)

+
n

∑
i=1

∂n+i+3LH2(t, s, u(t, s), CDγ,ρ
+ u(t, s), z(t))CDγ,ρ

ai+
ξ(t, s) ds dt = 0,

and integrating by parts, we prove the desired result.

5. Conclusions and Future Work

In our present work we proved several conditions that allow us to find the optimal
solution for several variational problems, in the fractional calculus context. These are
necessary conditions that every extremizer of the function must satisfy, and by solving
them we determine the candidates for the problem. Unfortunately, in most situations, there
is no way to solve them directly and numerical methods must be applied. To our best
knowledge, there is no numerical procedure already available to deal with such fractional
operators and so an important question is to develop a proper numerical tool for such
derivatives. Another line of investigation, depending on this derivative, is the optimal
control with the generalization of the Pontryagin maximum principle. Here, the state
equation is of the form CDγ,ρ

a+ x(t) = f (t, x(t), u(t)) and the Lagrange function depends
only on time t, the state function x, and the control u. So, the previous results are just a
special case. However, this problem is much more complex and prior studies are needed.
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