
Universidade de Aveiro
2022

RAQUEL
ANDRADE RAINHO

SpaceSheep: Comunicações de satélite para cenários
de agricultura inteligente

SpaceSheep: Satellite communications for smart
agriculture scenarios

Universidade de Aveiro
2022

RAQUEL
ANDRADE RAINHO

SpaceSheep: Comunicações de satélite para cenários
de agricultura inteligente

SpaceSheep: Satellite communications for smart
agriculture scenarios

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Professor Doutor Daniel Nunes
Corujo, Professor auxiliar do Departamento de Eletrónica, Telecomunicações e
Informática, da Universidade de Aveiro, e do Professor Doutor Pedro Alexandre
de Sousa Gonçalves, Professor adjunto da Escola Superior de Tecnologia e Gestão
de Águeda da Universidade de Aveiro.

Dedico este trabalho à minha família e amigos pelo incansável apoio.

o júri / the jury
presidente / president Professor Doutor Arnaldo Silva Rodrigues de Oliveira

Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Doutor Telemaco Melia
General Manager, Echostar Mobile

Professor Doutor Daniel Nunes Corujo
Professor Auxiliar em Regime Laboral, Universidade de Aveiro

agradecimentos /
acknowledgements

Depois de 6 anos de altos e baixos, dou por finalizada uma das etapas mais desafi-
antes da minha vida. Naturalmente, este percurso não foi feito sozinho e, portanto,
aproveito este momento para agradecer a todos os que me foram acompanhando,
em especial:
Aos meus orientadores, Daniel Corujo e Pedro Gonçalves, pelo constante apoio
que me deram durante o desenvolvimento deste trabalho e por se terem mostrado
sempre disponíveis para responder às minhas dúvidas.
À minha família, que me apoiou incansavelmente durante todos estes anos. Aos
meus pais, os pilares da minha vida, por todos os ensinamentos e por terem cri-
ado a base necessária para o meu crescimento, dando-me sempre liberdade para
explorar e apoiando todas as minhas decisões. Um grande obrigado por terem prio-
ritizado o meu bem-estar e o dos manos, deixando de parte muitos fins-de-semana
para estarem presentes nas nossas atividades. Aos meus irmãos, Inês e David, por
todas as "guerras" e brincadeiras que tornaram os meus dias menos aborrecidos.
Um obrigado também pelos momentos mais sérios que passámos e pela constante
ajuda que me proporcionam, nomeadamente na revisão deste documento.
Ao Miguel, por ter estado sempre ao meu lado quando mais precisei, motivando-me
e dando-me forças para continuar sempre que o percurso se tornava mais difícil.
Obrigada por me arrancares sorrisos todos os dias com as tuas piadas secas, por
ouvires as minhas queixas e por estares sempre pronto a ajudar-me, principalmente
na escrita desta dissertação.
Aos meus amigos, não só por todos os momentos de convívio e diversão, mas
também por todos os momentos de partilha e entreajuda, que foram fundamentais
ao meu bem-estar e me ajudaram a lidar melhor com o stress universitário. Em
particular, agradeço à Inês e à Mariana, as minhas parceiras de "guerra", a quem
estou enormemente grata por ter conhecido, por me aturarem e estarem sempre
disponíveis para mim. Um agradecimento especial também ao Tomás, por me ter
emprestado o seu Raspberry Pi, que foi necessário para o desenvolvimento deste
trabalho.
Finally, a note of gratitude to EchoStar Mobile, in particular to Telemaco Melia
and Jonathan Smith, for providing the access to their satellite terminal and mobile
satellite data services.

Palavras Chave Agricultura Inteligente, Internet das Coisas, Comunicações de Satélite, Formatos
de Serialização

Resumo A necessidade do aumento de produtividade de atividades diárias tem vindo a
contribuir para o desenvolvimento de novos sistemas que consigam otimizar essas
tarefas. Dentro do sector agrícola, soluções de IoT têm permitido a monitorização
autónoma de plantações e animais, reduzindo o esforço humano e, consequente-
mente, o custo do produto final. Uma dessas soluções foi desenvolvida no âmbito
do projeto SheepIT, um sistema de monitorização animal desenvolvido de forma a
remover espécies infestantes em vinhas atráves do controlo do comportamento de
rebanhos. Para isso, cada animal está equipado com um dispositivo com sensores
e atuadores (collar), que monitoriza e condiciona as suas ações. A informação
recolhida por estes dispositivos é enviada periodicamente para um nó agregador
(gateway) através de nós fixos espalhados pela área de pasto (beacon), onde é
então processada e transferida para uma plataforma computacional remota atráves
da Internet. Todavia, estes animais deslocam-se tipicamente por extensas áreas
com cobertura de rede terrestre fraca ou inexistente, inibindo o correto funciona-
mento de tal sistema.
Este trabalho visou mitigar a ausência de cobertura comum em áreas rurais. Para
tal, uma interface de comunicações satélite foi integrada no projeto SheepIT e,
consequentemente, as mensagens trocadas pelo sistema foram adaptadas e otimi-
zadas de forma a responder às limitações desta nova tecnologia. Estas modificações
extendem o projeto SheepIT para operar em cenários em que a cobertura de rede
terrestre não está disponível.

Keywords Smart Agriculture, Internet of Things, Satellite Communications, Serialization For-
mats

Abstract The need to increase productivity in daily activities has been contributing to the
development of new systems that can optimize those tasks. Within the agricul-
tural sector, IoT solutions are allowing the autonomous monitoring of crops and
animals, reducing human effort and, consequently, the cost of the final product.
One of those solutions was developed under the scope of the SheepIT project,
which is an animal monitoring system developed to remove weeds in vineyards by
controlling the behaviour of herds. To do so, each animal is equiped with a sensor-
and actuator-based device (collar), which monitors and conditions its actions. The
information these devices collect is periodically forwarded to an aggregator node
(gateway) through fixed nodes spread around the pasture area (beacon), where is
then processed and uploaded to a remote computational platform via the Inter-
net. However, these animals typically move around extensive areas with poor or
non-existent ground network coverage, which inhibits the proper communications
operation of such system.
This work aimed to mitigate the common lack of coverage in rural areas. To do so,
a satellite communications interface was integrated into the SheepIT project and,
consequently, the messages exchanged by the system were adapted and optimized
to meet the constraints of this new technology. These modifications extend the
SheepIT project to be able to operate in scenarios where ground network coverage
is not available.

Contents

Contents i

List of Figures iii

List of Tables v

List of Acronyms vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Outline . 2

2 State of the Art 3

2.1 SheepIT Project . 3

2.1.1 Architecture . 3

2.2 Satellite Communications . 8

2.2.1 EchoStar Mobile . 11

2.2.2 Satellite-based IoT . 12

2.3 Serialization Formats . 13

3 Architecture and Implementation 15

3.1 Architecture . 15

3.2 Implementation . 16

3.2.1 Integration of the satellite link . 16

3.2.2 Alarm manager . 17

3.2.3 Serialization Formats . 20

4 Results 29

4.1 Integration of the satellite link . 29

4.1.1 Setup . 29

i

4.1.2 Analysis . 30

4.2 Selection of the best serialization format . 32

4.2.1 Setup . 32

4.2.2 Analysis . 33

4.3 Optimization of the WSN information . 35

4.3.1 Setup . 35

4.3.2 Analysis . 35

4.4 Final system . 36

4.4.1 Setup . 36

4.4.2 Analysis . 37

5 Discussion and Conclusion 41

5.1 Future Work . 42

References 43

ii

List of Figures

2.1 Overall system architecture [2]. 4

2.2 Example of the system nodes: Collar (a), Beacon (b) and Gateway (c). 5

2.3 Gateway architecture. 6

2.4 micro-cycle (µC) structure [2]. 7

2.5 Computational Platform architecture [2]. 7

2.6 The space segment for a communications satellite network [5]. 8

2.7 SatCom System Architecture [6]. 9

2.8 Types of orbits. 10

2.9 Satellite spectrum [6]. 10

2.10 EchoStar Satellite Fleet [8]. 11

2.11 Hughes 4200 Portable Data Terminal (PDT) [9] . 11

3.1 System architecture. The red box highlights the modules changed in this work. 15

3.2 Satellite network integration. 16

3.3 Rules created to restrict the traffic of the satellite network. 17

3.4 Representation of two numbers present in the field "Additional Information", regarding the

example from the second row of Table 3.1. 18

3.5 The three stages a message follows to be forwarded to the broker. 19

3.6 Simplified scheme with the Computational Platform (CP) flow. 19

3.7 Example of an alarm represented in the JSON format. 20

3.8 Encoding of the alarm message using the MessagePack format. 21

3.9 Flowchart of the serialization of the Wireless Sensor Network (WSN) information. 23

3.10 Protocol Buffers schema used to represent an alarm. 24

3.11 Encoding of the alarm message using the Protocol Buffers format. 25

3.12 Apache Avro schema used to represent an alarm. 26

3.13 Encoding of the alarm message using the Apache Avro format. 27

4.1 Impact of the number of collars and data transfer period on the amount of data generated. 30

4.2 Latency of the system using a WiFi network (left) and a satellite network (right). 31

iii

4.3 Path taken to communicate with a server hosted at Instituto of Telecomunicações through

a WiFi (a) and satellite (b) connections. 32

4.4 Comparison of the average message size of the different alarm types. 33

4.5 Impact of the number of collars on the serialization formats’ message sizes - Battery alarm. 34

4.6 Impact of the number of collars on the serialization formats’ message sizes - Infraction

shock alarm. 34

4.7 Impact of the number of collars on the messages’ latency for the battery (left) and infraction

shock (right) alarms. 35

4.8 Comparison of the data generated before and after optimization with the MessagePack

serialization format. 36

4.9 Impact of the number of collars on the messages’ latency. 36

4.10 Variation of the number of alarms throughout the 12 days. 38

4.11 Impact of the number of collars on the time spent generating the alarms - for the battery

(upper left), absence (upper right) and infraction (bottom) types. 39

4.12 Impact of the number of collars on the time spent publishing the alarms - for the battery

(upper left), absence (upper right) and infraction (bottom) types. 40

4.13 Impact of the number of collars on the time spent publishing the information received by

the WSN. 40

iv

List of Tables

2.1 Communication micro-cycle types [4]. 7

3.1 Examples of alarm notifications. 18

3.2 Example of an alarm generated by the system. The middle column represents the alarm

displayed to the user and the right column represents the corresponding values that will be

encoded and sent to the CP. 20

3.3 Wire types used in this work. 26

4.1 Number of alarm messages tested for each type of device. 33

4.2 Size of each alarm type. 37

4.3 Number of alarms generated for alarm type. 38

v

List of Acronyms

Symbols

µC micro-cycle. iii, 6, 7

A

AMQP Advanced Message Queuing Protocol. 5,

7, 16, 19

APN Access Point Name. 17

C

CP Computational Platform. iii, v, 4–7, 15–17,

19, 20, 24, 26, 29, 32, 35, 37, 42

CSMA Carrier Sense Multiple Access. 6, 7

D

DM Data Mining. 7

G

GEO Geostationary Orbit. 9

GPS Global Positioning System. 9, 10, 16

GSO Geosynchronous Orbit. 9

H

HEO Highly inclined Elliptical Orbit. 9

I

IoRT Internet of Remote Things. 12

IoT Internet of Things. 1, 3, 12, 13

J

JSON JavaScript Object Notation. 5, 7, 13, 20,

26, 35

L

LEO Low Earth Orbit. 9

M

MAC Medium Access Control. 6, 7

MEO Medium Earth Orbit. 9

ML Machine Learning. 7

P

PDT Portable Data Terminal. iii, 11, 16

Q

QoS Quality of Service. 12

S

SW Synchronization Window. 6

T

TAW Turn-Around Window. 6

TDMA Time Division Multiple Access. 6, 7

U

USIM UMTS Subscriber Identification Module.

16

V

vii

VTW Variable Traffic-type Window. 6

W

WSN Wireless Sensor Network. iii, iv, 4–7, 16,

19, 22, 23, 29, 35, 37, 39, 40

X

XML Extensible Markup Language. 13

viii

CHAPTER 1
Introduction

1.1 Motivation

We witness the constant evolution of technology daily, from home appliances to the
infrastructures responsible for the world’s communications. This evolution allows us to expand
and improve the systems that enhance our lives to better fulfill their purpose. If in the past a
task like closing the blinds had to be done manually, now, with the support of a simple app
and equipment, it can be just a click away, even when away from home.

Moreover, by nature, we are driven by the information we collect from our surroundings,
which we use to make better decisions in our daily lives. This information-seeking characteristic
is even more evident in the Internet of Things (IoT) context, where the proliferation of sensors
allows us to access the data we need in a plethora of scenarios. This concept, firstly mentioned
in 1999, describes a system populated with sensors that communicate and exchange information
between them. Its applications can be seen in a wide number of areas[1], such as Smart
Homes (e.g. the control of lights and locks at home), Smart Cities (e.g. surveillance and
traffic management), and Smart Agriculture (e.g. irrigation control and herd supervision).

SheepIT1 is a practical example of a solution inserted in the agriculture sector, which
aims at using herds to control weeds in vineyards as a replacement for current non-ecological
methods. These vineyards are typically situated in rural areas with poor network coverage
in which the system cannot benefit from its full capabilities — the upload of data to the
cloud needs to be executed manually, in an asynchronous and costly process. Furthermore,
since these areas are remote or have low population density, the installation of ground-based
communications is not considered worth investing in by network service providers. However,
the COVID-19 pandemic outbreak has accentuated the need for connectivity in these regions
for more than its use in smart systems, since other necessities, such as access to education or
remote working, were dependent on it. Thus, satellite connections, which can easily cover
wide areas and provide reliable bi-directional connectivity, are a logical solution for these
scenarios.

1http://www.av.it.pt/sheepIT (accessed February 10th, 2022)

1

http://www.av.it.pt/sheepIT

This dissertation focuses its work on integrating an existing satellite network in the SheepIT
project and developing the adaptations necessary for this change. Thus, it explores a way to
take advantage of the satellite’s capabilities while complying with its restrictions, allowing the
system to benefit from all its functionalities independently of the region where it is located.

1.2 Objectives

Like every other system, SheepIT can and should be improved. This work proposes a
solution for its application in remote or poorly covered areas by relying on a new type of
communication technology, the satellite. This dissertation had the collaboration of EchoStar
Mobile2, which provided access to its satellite network through a portable data terminal.

The following topics summarize the tasks and objectives of this dissertation:

• Exploring and analyzing the EchoStar Mobile’s network and devices as well as the
SheepIT’s architecture to integrate the new communication technology into the system.

• Analyzing and modifying the type of traffic generated by the SheepIT system to meet
the restrictions imposed by satellite communications.

• Optimizing the information exchanged using different serialization mechanisms.
• Testing the impact of the modifications made in the previous tasks.

As a consequence of the work developed to achieve these objectives, the improved system
was documented in a paper and submitted for the 10th International Conference on ICT in
Agriculture, Food and Environment — HAICTA 2022.

1.3 Outline

Alongside this introductory chapter, this document presents other four:

• Chapter 2 – State of the Art, which addresses concepts that are relevant for this work,
namely satellite communications and serialization formats, and presents an introduction
of this dissertation’s baseline, the SheepIT project.

• Chapter 3 – Architecture and Implementation, which presents the system’s
architecture, and describes the stages and decisions made throughout this work, from
the integration of the EchoStar Mobile’s network to the optimization of messages
exchanged.

• Chapter 4 – Results, which presents and analyzes the results of the tests performed
in this work to evaluate the impact on the performance of the implemented changes.

• Chapter 5 – Discussion and Conclusion, which discusses and presents the con-
cluding thoughts of this dissertation’s work as well as relevant improvements for future
development.

2https://www.echostarmobile.com (accessed February 12th, 2022)

2

https://www.echostarmobile.com

CHAPTER 2
State of the Art

This dissertation covers some concepts that need to be addressed to understand the work
developed. This chapter serves as an overview of those topics and an exposition of relevant
related work. Firstly, it describes this dissertation’s starting point — the SheepIT project —,
portraying its architecture and interactions. Next, it introduces the definition and purpose of
satellite communications and indicates the characteristics of the EchoStar Mobile’s network,
which was the one used in this work. Lastly, it mentions few existing articles that support the
choice made for the serialization formats considered in this dissertation.

2.1 SheepIT Project

SheepIT is an IoT-based system developed to help control and monitor flocks, allowing
them to weed cultivated areas, such as vineyards, without affecting the cultures. This project
counts with different nodes spread over an area, constantly receiving every animal’s information
and acting accordingly.

2.1.1 Architecture

The development of this solution had to take some factors into consideration, which
resulted in the following characteristics of the system:

• The delimitation of the pasture area is easily defined by shepherds and the system is
able to maintain the herd inside it.

• The electronic devices carried by the sheep are light and small, to prevent discomfort,
and have long-lasting batteries, allowing a higher autonomy.

• The sheep’s posture, in particular, the neck and head position, is monitored to detect
undesired behaviors such as feeding on branches of the vines.

• These undesired behaviors are signaled with increasing warning sounds and, if necessary,
trigger an electrostatic discharge.

• The sheep’s posture and position is obtained frequently and processed locally so that
the stimulus can be applied whenever necessary. To do so, a microcontroller is included
in the device.

3

• The data collected and stored about each animal is also transferred to a central computer
or cloud service. This information is important to detect anomalous situations such as
predator attacks or health problems of an individual.

• The communication infrastructure is able to support thousands of sheep in areas with
few hectares while using a reduced number of devices to delimit it. The communica-
tion between nodes can consume a great amount of energy and, therefore, the radio
technologies and protocols chosen are energy-aware.

• The system is flexible to accommodate eventual expansion and the addition of other
sensors.

To make these features possible, the team developed an architecture, illustrated in Fig-
ure 2.1, with two main modules: the Wireless Sensor Network (WSN) and the Computational
Platform (CP). The former is responsible for all the local tasks, such as the communication
between devices and the detection of anomalous situations, while the latter, hosted in a
remote location, is responsible for the storage and analysis of the data gathered by the WSN.
The communication between these two blocks is supported by a gateway, using the Internet.
Additionally, the information was made accessible to the farmers through a user interface.

The following subsections describe the modules aforementioned in more detail.

Figure 2.1: Overall system architecture [2].

Wireless Sensor Network

The WSN is a local network and is composed of a set of different types of nodes that
communicate between them:

• Collars (Figure 2.2 (a)): are carried by the sheep and have a series of sensors, which
gather the animal’s information and supervise its behavior, and actuators, which act
whenever an infraction is detected. Since these nodes are mobile, they are powered
by a battery and the radio link included in the collar is used not only to report the
data collected but also to estimate the location of the sheep, to minimize the energy
consumed.

• Beacons (Figure 2.2 (b)): are fixed and are spread strategically throughout the delimited
pasture area. These nodes are responsible for collecting the data of the reachable collars
and rebroadcasting it to the neighboring beacons, since some of them may be unable to
communicate directly with the gateway.

4

• Gateway (Figure 2.2 (c)): usually, there is only one node of this type per pasture, and
it can be considered the bridge between the different networks (WSN and CP), allowing
them to communicate. It contains a beacon connected to an embedded microcontroller
through a serial interface. Due to it being in accessible locations connected to the
power grid, there are no restrictions in that regard. Therefore, its hardware is more
sophisticated than the nodes aforementioned and, consequently, has higher processing
and storage capacities, which enable the integration of the necessary services.

Figure 2.2: Example of the system nodes: Collar (a), Beacon (b) and Gateway (c).

As aforementioned, the gateway is a node with great processing and storage capacity. Thus,
the architecture of this type of node is more complex. Figure 2.3 illustrates its architecture,
which is composed by the following modules:

• Serial Port Interface: allows the communication with the WSN. This interface is
responsible for transmission operations, such as the synchronization with the beacon —
to send or receive data — and the decoding of the type of message received.

• Processing Unit: this module is responsible for the preparation — validation and
parsing — of the data received, as well as the localization of the collars with a trilateration
algorithm.

• Shared Memory: is the memory where the information is stored. It is shared by
almost every module of the system.

• Menu: it allows the interaction with the collars through the gateway, in which commands
can be sent to the collars to change some operations, such as the activation and
deactivation of algorithms.

• Local Web Socket: enables the communication with a web interface, where the
information is displayed.

• Display: where the operator can verify the position of the nodes, locally and without
accessing the web interface.

• Alarm Module: where all the systems’ anomalous situations are detected.
• WSN Information Module: it maps the data into JavaScript Object Notation (JSON)

structures and forwards it to the CP using the Advanced Message Queuing Protocol
(AMQP) protocol.

As for its workflow, whenever the gateway receives new information from the WSN, the
data is processed and marked with a timestamp. It is then stored in the shared memory and

5

made available to the other modules. Finally, the relevant fields are sent to the CP, alarm
situations are detected, if any, and the information in the web interface is updated.

Figure 2.3: Gateway architecture.

The gateway’s alarm system is prepared to detect different alarm situations related to
animal behaviour and the device’s operation. Within the situations related to the animal
behaviour, the system can detect infractions — by monitoring the position of the animal’s
head —, herd disturbances — by comparing the accelerations measured by the collars —,
and the absence of an animal — by tracking the time of the last detection of each collar. As
for the device’s operation, alarms are generated when the battery of a node drops below a
minimum threshold, a collar is abandoned, or there is an equipment failure.

As for the communication inside the WSN, a protocol developed by Temprilho, Nobrega,
Pedreiras, et al.[3] is used. Since the nodes share the same medium, the exchanged traffic is
synchronized and organized in periodic time frames (µC). The Medium Access Control (MAC)
policies adopted are used according to the message purpose, i.e., for periodic communications
it was used Time Division Multiple Access (TDMA), since it was important to avoid collisions
and packet losses, while for sporadic communications it was used Carrier Sense Multiple
Access (CSMA).

As illustrated in Figure 2.4, each µC is composed of the following components:
• Synchronization Window (SW), where the beacons transmit a synchronization

message identifying themselves and informing the type of µC they are sending (Table 2.1);
• Turn-Around Window (TAW), reserved for sensor reading and packet processing;
• Variable Traffic-type Window (VTW), where the different types of traffic are

exchanged.

6

Figure 2.4: µC structure [2].

Table 2.1: Communication micro-cycle types [4].

µC type Purpose MAC policy
1 Collar pairing CSMA
2 Collar communication TDMA
3 Inter-beacon relay TDMA

Computational Platform

The CP allows not only a centralization of the data collected by the WSN but also its
analysis in order to identify, for instance, behavioral patterns and health issues. To do so, its
architecture, illustrated in Figure 2.5, is composed of the following modules:

• AMQP Broker (RabbitMQ): the broker that stores in a queue the messages produced
by the WSN in order to be consumed by its subscribers.

• Processing Framework (Apache Spark): the only subscriber of the RabbitMQ
queue. It is the main processing framework and is responsible for translating the JSON
data structures, processing them with the aid of Data Mining (DM) and Machine
Learning (ML) techniques, and storing them in the database. It also includes a rule
management module.

• Data storage (PostgreSQL): the database where the information gathered is stored.
• RESTful API: used by the user to interact with the system.

Figure 2.5: Computational Platform architecture [2].

7

2.2 Satellite Communications

According to Ippolito [5], a communications satellite can be defined as "an orbiting
artificial earth satellite that receives a communications signal from a transmitting ground
station, amplifies and possibly processes it, then transmits it back to the earth for reception by
one or more receiving ground stations". The use of these satellites to provide connectivity
between different points on Earth is called satellite communication. Currently, there are
several applications for this type of communication, such as broadcasting services — e.g.,
radio and television —, weather forecasting and navigation.

The classification of the segments of a satellite system depends on the perspective from
which it is used. Ippolito [5] divides a satellite communication in a space segment and a
ground segment, where the former consists of one or more communications satellites as well
as the ground station responsible for their operational control, as illustrated in Figure 2.6,
and the latter comprises the earth terminals — fixed, transportable or mobile — that use the
space segment’s communications capabilities.

Figure 2.6: The space segment for a communications satellite network [5].

However, at the state-of-the-art level, the possibility of three segments co-existing is also
recognized [6]. Figure 2.7 shows this perspective, with two terrestrial segments — the User
segment, composed of the user terminals, and the Ground segment, composed of the operator’s
ground stations —, and a spacial segment — referred to as the Space segment and composed
by the satellite constellation.

8

Figure 2.7: SatCom System Architecture [6].

As aforementioned, these artificial satellites orbit our planet. The distance at which they
are from Earth determines the nature of their orbit as well as the type of service and coverage
they provide. Figure 2.8 displays the four most commonly used orbits, which are described
below:

• Geosynchronous Orbit (GSO): situated at, approximately, 36000 km from the
Earth’s surface, the satellites’ speed in this orbit matches the Earth’s rotation, having
always the same longitudinal coordinates. A Geostationary Orbit (GEO) is a special type
of GSO, where the satellite is orbiting the Earth’s equator and, consequently, it appears
consistently in the same spot in the sky. Their altitude provides them great ground
coverage, with only 3 to 4 satellites required for global coverage, and are well-suited for
broadcast services. However, their propagation delay is relatively high, rounding the
260 ms.

• Medium Earth Orbit (MEO): is commonly used for navigation systems, such as
Global Positioning System (GPS), and is located at an altitude of 5000 to 15000 km.
Contrary to GSO, these satellites move across the sky and need to be actively tracked
to maintain communications. The propagation delay of these satellites lies between 100
and 130 ms.

• Low Earth Orbit (LEO): located between 500 and 1000 km from the Earth’s surface,
these are the satellites with the lowest orbit and, consequently, the lowest propagation
delay — from 5 to 20 ms. Similarly to MEO, these satellites do not have a fixed position
in the sky.

• Highly inclined Elliptical Orbit (HEO): are the only ones with a non-circular orbit,

9

i.e., their distance to the Earth’s surface varies over time. These satellites are suitable
to provide coverage to high latitude locations.

Figure 2.8: Types of orbits.

Satellites communicate with Earth equipment using "electromagnetic waves to carry
information between ground and space"[7]. The performance of their transmission link depends
on the frequency of these electromagnetic waves, which can be more or less affected by the
obstacles in their propagation path. Moreover, "the satellite systems designer must operate
within the constraints of international and domestic regulations related to choice of operating
free space path frequency"[5]. Thus, satellites operate in eight different bands from 1 to 50
GHz, illustrated in Figure 2.9. Furthermore, these bands are separated in halves, one for the
communication from Earth to the satellite, named uplink, and the other for the communication
from the satellite to Earth, the downlink. According to Kodheli, Lagunas, Maturo, et al. [6],
the L-band is used in radio navigation systems, such as GPS, the S-band in weather and
surface ship radars, while TV broadcasting operates predominately in C and Ku bands.

Figure 2.9: Satellite spectrum [6].

10

2.2.1 EchoStar Mobile

The satellite network used in this work was provided by EchoStar Mobile.
Headquartered in the United Kingdom and subsidiary of EchoStar Corporation — a global

provider of satellite communication solutions with a fleet of ten geosynchronous satellites
(Figure 2.10) —, EchoStar Mobile is a mobile operator that provides mobile voice and data
services across Europe, using the EchoStar 21 S-band satellite. Since these services operate in
the S-band, the atmospheric conditions do not have any impact on their performance, which
remain stable and available even in adverse weather situations.

Figure 2.10: EchoStar Satellite Fleet [8].

EchoStar Mobile’s services are available for different sectors, such as maritime and agricul-
tural, through one of three Hughes devices:

• Hughes 4510 S-band Terminal
• Hughes 4500 S-band Terminal
• Hughes 4200 Portable Data Terminal (PDT)

For this work, the latter was used. This mobile device, presented in Figure 2.11, provides
Internet connectivity through WiFi or Ethernet — with a physical-layer data rate "up to 290
kbps forward and 256 kbps return"1 – and supports voice calls for VoIP users. Moreover, the
data transmission cost of this network lies between 4.79 and 9.58 € per Mbit.

Figure 2.11: Hughes 4200 PDT [9]

1https://www.echostarmobile.com/satellite-terminals/hughes-4200-portable-data-terminal/ (accessed
February 27th, 2022)

11

2.2.2 Satellite-based IoT

The market research firm IoT Analytics states that the number of connected IoT devices
is actively growing, revealing 11.3 thousand million of these devices spread around the world
in 2020 and forecasting more than 27 thousand million by 20252. However, some of these
devices are located in remote areas that are not covered by ground-based networks. Thus, the
role of satellites in the IoT has become more and more pivotal, especially in these situations,
since they "can solve the problem of ground coverage and solve the problem of communication
interruption caused by natural disasters"[10].

The integration of these two technologies is very important and research on the topic has
already been done. Article [11] presents three Internet of Remote Things (IoRT) scenarios
in which the application of satellites is a key element, and discusses some challenges arising
from this integration, such as Quality of Service (QoS) management and heterogeneous
networks interoperability. In [12], the authors describe the connectivity limitations of smart
farming in remote areas, highlighting their importance in this scenario, and explore satellite
communication systems that can provide remote connectivity in Australian smart farms.
According to Routray, Tengshe, Javali, et al.[13] the hybridization of IoT and satellite
networks can also be very important in the context of mission-critical applications. In [14],
Qu, Zhang, Cao, et al. present a LEO satellite constellation-based IoT system, describing its
architecture, routing protocols and heterogeneous networks compatibility, for instance. These
papers prove that the use of satellite communications is essential in these scenarios, offering
connectivity to IoT-based systems placed in remote areas.

Solutions based on the satellite IoT are currently a reality and its market is expanding
globally with applications in different sectors. Optiweigh’s product3 is one of these solutions:
a cattle weighing unit with a Swarm embedded modem that tracks the animals’ weight and
transmits the information to the cloud through Swarm’s satellites4. Also in the agricultural
sector, another animal monitoring solution is available, the Ceres Tag5. Ceres Tag uses a smart
ear tag with satellite capability — provided by Globalstar’s satellite network6 — to collect
animal data, which is transferred to the cloud to be further analyzed. Finally, in the maritime
sector, a mobile satellite company named Inmarsat offers a service to ship operators, which
allows them to access the data gathered from onboard sensors. This data is also uploaded to
a secure database via the Inmarsat network7.

2https://iot-analytics.com/number-connected-iot-devices/ (accessed February 28th, 2022)
3https://www.optiweigh.com.au/ (accessed March 2nd, 2022)
4https://swarm.space/finding-the-right-iot-connectivity-provider-an-agtech-companys-journey/

(accessed March 2nd, 2022)
5https://www.cerestag.com/ (accessed March 2nd, 2022)
6https://www.globalstar.com/en-gb/blog/case-studies/satellites-and-iot-combine-in-best-of-breed-tr-(1)

(accessed March 2nd, 2022)
7https://www.inmarsat.com/en/solutions-services/maritime/services/fleet-data.html (accessed

March 2nd, 2022)

12

https://iot-analytics.com/number-connected-iot-devices/
https://www.optiweigh.com.au/
https://swarm.space/finding-the-right-iot-connectivity-provider-an-agtech-companys-journey/
https://www.cerestag.com/
https://www.globalstar.com/en-gb/blog/case-studies/satellites-and-iot-combine-in-best-of-breed-tr-(1)
https://www.inmarsat.com/en/solutions-services/maritime/services/fleet-data.html

2.3 Serialization Formats

When compared to other wireless networks, the data transmission cost of a satellite
network is higher, therefore it is important to resort to mechanisms that reduce the size of
the messages exchanged, such as data serialization.

The concept of data serialization comprehends the transformation of data objects that
are part of a complex structure into a sequence of characters (string) or a stream of bytes
in order to be stored or sent over the network. The two approaches that are commonly
mentioned in the literature are textual if the transformation results in a string, and binary
serialization if it results in a stream of bytes. Within each approach, several formats can
be chosen, depending on the application’s requirements, such as memory and bandwidth
constraints or the maximum acceptable latency.

In the context of the IoT, more specifically in smart grid communication, Petersen, Bindner,
You, et al. [15] compared several serialization formats, both textual and binary, driven by
the idea that, depending on the circumstances, there were more adequate formats than the
one used by the general communication standards: Extensible Markup Language (XML).
To do so, messages similar to the ones transmitted in smart grid use cases were serialized
and, in order to also understand the impact of using compression techniques, the serialized
messages were compressed. The performance of both the serialization and compression was
evaluated based on the time needed for the operations, its memory use and message size.
From various conclusions drawn, it was pointed out that, for systems with low-bandwidth,
where the most important factor was to reduce the size of the messages, the best serialization
formats were MsgPack and Avro, despite being slower. Moreover, although the compression of
the serialized messages allowed a slight size reduction, in these cases it was not advantageous
as the processing time increased significantly.

A narrower choice of serialization formats was made in the study of Proos and Carlsson
[16], where the trade-offs of two Google-developed formats were analyzed in the context
of vehicle-to-cloud communication over WiFi or cellular networks. In order to evaluate its
performance, real messages from vehicles were used and the metrics chosen for the comparison
were the time and memory consumption for serialization and deserialization and the size of
the serialized data. For every message, the measurements were performed 1000 times and the
average was considered. Proos and Carlsson [16] concluded that the best serialization format
for the scenario in question was Protobuf, since it presented a greater serialization speed as
well as smaller messages and, consequently, lower latency and bandwidth usage. On the other
hand, the deserialization time of Flatbuffers made it a good candidate for scenarios where the
communication was reversed (cloud-to-vehicle communications), where the data received in
the vehicle needed to be accessed quickly.

An article carried out by Sumaray and Makki [17] compared two textual (XML and
JSON) and two binary (Thrift and ProtoBuf) serialization formats in order to optimize the
efficiency in a mobile platform. The serialization was applied to two types of messages similar
in structure to what could be seen in mobile applications, and the performance was measured

13

in terms of data size, serialization speed and ease of use. It was concluded that, for storage
purposes and when creating new web services from scratch, the binary formats were the best
as they provided a greater size reduction and serialization speed. Although the differences
between them were minor, ProtoBuf revealed to be faster when deserializing the messages,
while Thrift performed better in the serialization. Furthermore, Protobuf presented the
smallest messages.

In an embedded environment with great resource constraints, Hamerski, Domingues,
Moraes, et al. [18] assessed the performance of six implementations of serialization formats:
FlatBuffers, ProtoBuf, YAS and three implementations of MessagePack. A producer-consumer
application was used to test those libraries using different messages with data types of increasing
complexity. The comparison was performed using the serialization and deserialization execution
times as well as the data and code sizes. The authors concluded that the best library evaluated
was MsgPuck, one of the MessagePack implementations, as it was superior in every aspect
considered. Regarding the data size, although the results were slightly worse, the other
MessagePack libraries also had a satisfactory performance.

14

CHAPTER 3
Architecture and Implementation

This chapter describes the work underlying this dissertation’s goal of implementing satellite
communication capabilities into an existing project and achieving the objectives planned in
Section 1.2. The system’s architecture is described, as well as the decisions that led to the
implementation proposed.

3.1 Architecture

This dissertation’s objective consists in the improvement of a smart agricultural system —
SheepIT —, by optimizing the messages exchanged and expanding its availability to areas
without ground-based network coverage. To do so, the work developed was focused on the
connection between the gateway and the CP, where network access is needed.

Figure 3.1: System architecture. The red box highlights the modules changed in this work.

Figure 3.1 displays the architecture of the system. From a macroscopic view, the final
architecture remains almost the same as the one already described in Section 2.1, with the

15

exception of a new connection between the "Alarm Module" and the broker. The red box
highlights all the modules that required modifications throughout this work.

As previously described, the information gathered in the WSN is transferred to the gateway
through a beacon connected to it via a serial port. Then, the data follows a series of processing
stages until it is stored and made available for the other modules. This work changed the
behavior of two of those modules. The "Alarm Module", which was only responsible for the
detection of alarm events, now also uploads that information to the CP. In the case of the
"WSN Information Module", the transfer of information to the cloud now only occurs in
situations where the communication is not done through a satellite network, which means
that this module is only active in non-remote areas. On the CP side, the AMQP broker stores
the two types of messages in separated queues, and both are consumed by the "Processing
Framework" and stored in the cloud "Database".

3.2 Implementation

3.2.1 Integration of the satellite link

The system uses the satellite communications as an access technology. Thus, as mentioned
in Subsection 2.2.1, EchoStar Mobile provided a terminal — Hughes 4200 PDT — to be used
in this work to communicate with their network. Although the device also includes a built-in
WiFi access point, the interaction with the gateway was achieved using its Ethernet port to
minimize the latency between these components. Figure 3.2 illustrates this integration: a
gateway is directly connected to the terminal, forwarding messages to the CP through the
satellite network.

Figure 3.2: Satellite network integration.

The operation of this terminal requires an initial setup. Assuming that the device is
powered up and its UMTS Subscriber Identification Module (USIM) and battery are already
placed, the first step is to obtain a GPS fix to locate its position. Then, in order to be

16

connected to the network, an Access Point Name (APN) Profile needs to be defined. Lastly,
it is necessary to register the terminal in the network.

As aforementioned, the data transmission cost of a satellite network is higher than other
wireless networks, and, in this case, the price per Mbit lies between the 4.79 and 9.58 €. Thus,
it is important that this connection is used exclusively for the data transferring to the CP,
denying the remaining traffic, since unnecessary traffic can easily lead to an increase of the
communication expenses. To do so, the rules presented in Figure 3.3 were created. As can be
seen on the left, the traffic with CP’s destination address is allowed, while on the right, other
information generated in the gateway is blocked.

Figure 3.3: Rules created to restrict the traffic of the satellite network.

3.2.2 Alarm manager

After the analysis of the results presented in Section 4.1, it was concluded that the traffic
generated by the system needed to be reduced to minimize the communication expenses due
to the high transmission cost of the satellite network. To do so, it was decided to alter the
information exchanged, i.e., instead of sending the data collected directly by the collars and
beacons, only the alarm situations detected by the alarm module are sent. This modification
allows not only a lower quantity of data transferred but also enables the users to access the
alarms remotely. The following subsections describe the adaptations made both in the gateway
and the CP.

Gateway

Since the alarms that are being generated were only stored in a file, the first step was to
create a structure that represented an alarm notification in order to be stored in a queue and
later be sent to the CP. Considering the examples presented in Table 3.1, taken from a real
scenario and before optimization, this structure must contain the following attributes:

• Timestamp: the date at which the alarm was generated. Although in the examples
this field is represented by strings, its data type was optimized to a long.

17

• Device Type: the type of device that triggered the alarm. Since there are currently
only three types of devices — beacon, collar and herd —, it was used an unsigned char

to represent it.
• Id: the device’s identifier. Similar to the examples, it is an int.
• Alarm Type: the type of the alarm situation. Currently, there is a set of alarm types

defined — panic, absence, battery, infraction, lost and equipment malfunction — that,
like the device type, can be represented by an unsigned char.

• Priority: the priority level. There are only three levels: low, medium and high. For
this reason, it is only necessary to use an unsigned char.

• Additional Information: optional field with complementary information. Table 3.1
shows some examples that this attribute may contain. As these illustrate (see first and
third rows), notifications with the same alarm type usually contain similar additional
information strings. Thus, this element was optimized in order to be represented by an
int. There are three possibilities: there is no additional information — represented by
the number 0 —, there is only one number — represented by itself —, and there are
two numbers — which are converted to an int, where the two most significant bytes
represent the first number and the two less significant represent the other, as shown in
Figure 3.4.

Table 3.1: Examples of alarm notifications.

Timestamp Device type ID Alarm type Priority Additional Information
Sat Nov 20 07:22:36 2021 Beacon 1 Battery Low Battery: 18 (%)
Sat Nov 20 07:36:12 2021 Collar 2 Infraction Low #Warnings = 21 (in 3 min)
Sat Nov 20 08:19:47 2021 Beacon 1 Battery High Battery: 6 (%)
Sat Nov 20 08:37:14 2021 Collar 2 Equipment High

Figure 3.4: Representation of two numbers present in the field "Additional Information", regarding
the example from the second row of Table 3.1.

The second step consisted in creating the aforementioned queue and all the necessary
methods, such as inserting — required to store the notifications generated —, removing —
to delete the alarms already published — and reading — to access the information in the
serialization process.

Lastly, when all the algorithms finish their detection, the alarms stored in the queue
need to be forwarded to the cloud. Figure 3.5 shows the three stages to do so: initially,
the connectivity with the broker where the messages will be published is verified, as well as
the existence of notifications in the queue. Afterward, all the alarms are mapped into the

18

MessagePack1 format (see implementation in Subsection 3.2.3). Finally, the serialized message
is published to the AMQP broker. Note that, in non-remote locations, for instance, with
access to WiFi, the system can continue to send the information received by the WSN in
addition to the alarms, similarly to the Gateway 2 of Figure 3.6. So, instead of reusing the
existing broker queue, a different one was created for the alarms, in order to be possible to
differentiate the messages’ content.

Figure 3.5: The three stages a message follows to be forwarded to the broker.

CP

As aforementioned, another queue was created in the AMQP broker. Therefore, some
modifications were made in the CP.

Firstly, the stream responsible for the consumption of the data stored in the broker was
transformed into a distributed stream in order to be possible to subscribe both queues.

Figure 3.6: Simplified scheme with the CP flow.

Then, as illustrated in Figure 3.6, depending on which queue is read, the message flow
can follow the blue arrows, if it was an alarm, or the black arrows, otherwise. For the second
case, since most of the modules were already implemented, the only adaptation needed was
the creation of the module "WSN info deserialization", where the MessagePack messages
were transformed into Beacon and Collar objects. On the other hand, since in the previous
version the alarms were not sent, the first case required the creation of all the modules from
scratch. For this, it was required to build a new class that represented an alarm with all the
methods necessary to handle the particularities mentioned in Section 3.2.2, i.e., the "Additional
Information" field decoding and the conversion of the unsigned char attributes into strings.

1Apache Avro should have been used instead. Refer to Chapter 5 for more details on this issue.

19

Then, the "Alarm deserialization" was implemented to convert the MessagePack messages into
Alarm objects. Finally, the alarms were stored in the database. To do so, two more elements
were created: a class to map the objects into database entries and a table where these entries
are stored.

3.2.3 Serialization Formats

This dissertation’s baseline used the JSON format to serialize the information sent to the
CP. However, this approach is not the best option when using a resource-constrained network,
since it is very verbose and, consequently, the size of the messages is unnecessarily large. The
use of this format for the encoding of a simple alarm, such as the one in Table 3.2, would
result in a message with 100 bytes (excluding the whitespace), as can be seen in Figure 3.7.
Therefore, the adoption of a more optimized approach for the mapping of the alarm messages
was necessary.

The research presented in Section 2.3 revealed that the best formats for these environments
with bandwidth constraints are the MessagePack, Protocol Buffers, and Apache Avro. The
following subsections present their characteristics as well as the implementation of each format
in this context, describing how they encode the data. To do so, the example of Table 3.2 was
considered for comparison.

Table 3.2: Example of an alarm generated by the system. The middle column represents the alarm
displayed to the user and the right column represents the corresponding values that will
be encoded and sent to the CP.

Information for the user Value to encode
Timestamp Wed Apr 6 15:04:02 2022 1649253842

Device Type Collar c
Id 5 5

Alarm Type Panic p
Priority Medium m

Additional Information Acceleration: 450 450

Figure 3.7: Example of an alarm represented in the JSON format.

MessagePack

MessagePack is a binary serialization format with support for a plethora of languages,
including the ones used in the SheepIT project — C and Java. The libraries applied in this

20

work are both official implementations2.
Of the three formats, MessagePack is the only one that does not use any schema to describe

how the alarm fields are organized and how they are interpreted. Thus, when performing the
serialization and deserialization of messages, the same order must be followed, i.e., the first
field that is encoded is the first one to be decoded.

The implementation of MessagePack’s serialization in this work consists initially of the
creation of a buffer — to store the bytes of the data serialized — and a packer — to convert
each field into a sequence of bytes. The first information packed into the buffer is the number
of elements that compose the serialized message. Since all the alarms stored in the queue will
be sent in a single message, the number of elements is equivalent to the number of alarms
times the number of fields in each alarm. Then, for each alarm, the 6 fields — timestamp,
deviceType, id, alarmType, priority, and additionalInfo — are serialized according to
their data type and added to the buffer.

The implementation of the reverse process — the deserialization — follows the same logic.
To do so, an unpacker is created, which is then used to decode the information related to the
number of elements the message carries as well as the fields of each alarm. Every set of the 6
aforementioned fields is used to create an alarm object.

Figure 3.8: Encoding of the alarm message using the MessagePack format.

Considering the example in Table 3.2, since it represents only one alarm, the number of
elements is 1 alarm × 6 fields = 6 elements. Figure 3.8 shows MessagePack’s strategy to
encode this message, which is as follows:

• Preceding the information regarding the elements, MessagePack adds 1, 3 or 5 bytes
depending on the length of the array. In this case, the number of elements does not

2https://github.com/msgpack (accessed May 12th, 2022)

21

https://github.com/msgpack

exceed 15 and therefore a single byte is used: the four most significant bits identify the
information as a fixarray, and the four least significant bits represent the actual number
of elements.

• The encoding of long and int data types follows a big-endian system. Moreover,
MessagePack tags the fields to identify them. These tags depend on the value that is
encoded, i.e., even though a field is packed as a long, if its value only requires 2 bytes
to be represented, then MessagePack chooses the tag corresponding to the format uint16
and encodes the value in just 2 bytes. In this case, the timestamp field starts with a
byte that labels it as an uint32 and is followed by the encoding of the value. For the id,
since its binary representation does not exceed 7 bits, the value is encoded in a single
byte, where the most significant bit identifies its format — positive fixint. Similarly to
the timestamp, the additionalInfo field uses a byte for its identification — uint16 —
and the others for the value.

• For the char data type, the UTF-8 character encoding is used. In this case, the
deviceType, alarmType and priority only require a byte to encode their information.

The resulting message is the concatenation of the encoded fields. For this example, the
serialization of the alarm using MessagePack produces a message with 13 bytes.

After performing the tests of Section 4.2 and concluding that MessagePack was the most
suitable format for this scenario, this serialization format was also applied in the exchange of
messages related to the WSN information. This process was slightly more complex, since two
types of objects need to be sent in the same message — the beacons and the collars. As a way
to distinguish which information is being sent, the first packed byte is a char with the value
of ’a’ — for both collars and beacons —, ’b’ — only for beacons — or ’c’ — only for collars.
Then, the flow displayed in Figure 3.9 is followed. Firstly, it is verified if there are any collars
stored in the queue. If there are, an array is created — with a size equal to the number of
collars times the number of fields in a collar (34) — and each collar is read from the queue
and serialized into the array. Then, a similar process is performed for the beacons, with the
verification of the existence of beacons, the creation of an array — with a size equal to the
number of beacons times the number of fields in a beacon (8) — and the serialization of each
one into the array. As for the chosen data types, the majority of the fields were defined as a
form of integer — for instance, int8, int16, uint8, uint16 and long —, whose serialization
was already described. Moreover, both collars and beacons had two float fields. For this
data type, MessagePack uses one byte to identify the field as a float and four or eight others
to encode the 32 or 64-bit values, respectively. The IEEE 754 format is used for this type and
the bytes are ordered following a big-endian system.

22

Figure 3.9: Flowchart of the serialization of the WSN information.
23

Protocol Buffers

Protocol Buffers3 is a binary serialization format developed by Google and the most
commonly used by the company. It supports languages such as Java, Python, and C++.
Although the official format does not include C, there is an unofficial implementation made
compatible by Dave Benson4, which was used in this work. Its installation is dependent on
the installation of a C and C++ compiler, the official C++ Protocol Buffer runtime and
compiler5, the pkg-config6, and the autotools (autoconf7, automake8, and libtool9).

For this format, a schema is required to describe the structure of the message, which
is then used for the generation of source code in C — for the gateway — and Java — for
the CP. Figure 3.10 displays the schema implemented for this scenario. As mentioned in
the previous subsection, several alarms can be sent in the same message. Therefore, two
messages were created: the AlarmMessage — which defines the fields of each alarm — and
the AlarmMessages — which is composed of 0 or more AlarmMessage messages. The data
types available in Protocol Buffers are different from the ones that are used in the C structure.
Thus, compatible alternatives were chosen, as can be seen, for instance, in the timestamp

field, where int64 is used instead of long. Moreover, each field has an associated identifier.
For the implementation of the serialization and deserialization with this format, the

functions generated with the schema were used. In both, the process was similar to the one
followed in MessagePack. For the serialization, the alarms were read from the queue, one by
one, and each field was serialized, producing a single message. For the deserialization, the
message was parsed according to the schema and every set of 6 fields was used to rebuild the
alarms.

Figure 3.10: Protocol Buffers schema used to represent an alarm.

3https://developers.google.com/protocol-buffers (accessed May 12th, 2022)
4https://github.com/protobuf-c/protobuf-c (accessed May 12th, 2022)
5https://github.com/protocolbuffers/protobuf (accessed May 12th, 2022)
6https://www.freedesktop.org/wiki/Software/pkg-config/ (accessed May 12th, 2022)
7https://www.gnu.org/software/autoconf/ (accessed May 12th, 2022)
8https://www.gnu.org/software/automake/ (accessed May 12th, 2022)
9https://www.gnu.org/software/libtool/ (accessed May 12th, 2022)

24

https://developers.google.com/protocol-buffers
https://github.com/protobuf-c/protobuf-c
https://github.com/protocolbuffers/protobuf
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/libtool/

Figure 3.8 shows the strategy used by Protocol Buffers to encode the alarm in Table 3.2,
which is explained as follows:

• Every field starts with a byte that carries two values: its associated number — the
numbers 1 to 6 that are provided in the schema — and a wire type. Protocol Buffers
groups the different scalar types into 6 wire types. The scalar types of the same wire
type are encoded following the same pattern. For this work, two of them were used and
are displayed in Table 3.310.

• For length-delimited fields, two values are encoded in separate bytes: the length, in
bytes, of the information in the field plus the actual information. In this case, there
are four fields marked as length-delimited : alarms, deviceType, alarmType, and
priority. For all fields, a byte is used to encode the length of the information. The
alarms field is an embedded message and its length is equal to the sum of the bytes
used to encode the fields of the AlarmMessage — 20. As for the other three fields, their
length is 1 and their information is the UTF-8 encoding of a character.

• The value stored in the fields indicated as varint is encoded in one or more bytes, using
a variable-length encoding11. In this case, the timestamp is serialized into 5 bytes, the
id into 1, and the additionalInfo into 2.

Akin to MessagePack’s process, the resulting message is the concatenation of each encoded
field. For this format, the encoding of the alarm presented in Table 3.2 results in a 22-byte
message.

Figure 3.11: Encoding of the alarm message using the Protocol Buffers format.

10See the complete table in https://developers.google.com/protocol-buffers/docs/encoding
11In this type of encoding, the most significant bit of every byte is used to indicate whether or not further

bytes exist. Thus, the value is split in groups of seven bits. The most significant byte that is encoded holds the
least significant group.

25

https://developers.google.com/protocol-buffers/docs/encoding

Table 3.3: Wire types used in this work.

Wire Type Meaning Used for
0 varint int32, int64, ...
2 length-delimited bytes, embedded messages, ...

Apache Avro

Similarly to MessagePack and Protocol Buffers, Apache Avro12 is a binary serialization
format with support for multiple languages, including C and Java. For this work, the official
implementations were used. The installation of the C library also required the installation of
a dependency — the Jansson JSON parser13.

This format works with schemas, which are defined in JSON. In contrast to Protocol
Buffers, the generation of source code is not a requirement. Nevertheless, the same schema
needs to be available at both endpoints so that the information is correctly handled. The
schema developed for the representation of the alarms is shown in Figure 3.12. In this format,
the char data type is not available and therefore the bytes type was chosen to represent the
deviceType, alarmType and priority fields. The remaining fields were defined accordingly
with the data types used for the C structure — int and long.

Figure 3.12: Apache Avro schema used to represent an alarm.

For the implementation of the serialization and deserialization of Apache Avro, the schema
is read from an Apache Avro Schema file and parsed into a schema data structure. The
remaining process is similar to the other formats: in the gateway, each alarm is read from
the queue and its fields are encoded with the help of the schema; in the CP, the fields are
decoded and used to restore the original alarm messages.

Figure 3.13 demonstrates how Apache Avro encodes the example of Table 3.2, which is as
follows:

• Long and int fields are handled in the same manner. The encoding of their value
requires two steps, since they use a combination of two types of encoding — zig-zag14

12https://avro.apache.org/ (accessed May 12th, 2022)
13https://github.com/akheron/jansson (accessed May 12th, 2022)
14This type of encoding allows negative numbers with small absolute value to also have a small encoded

26

https://avro.apache.org/
https://github.com/akheron/jansson

and variable-length11. In this case, since the three fields of this category are positive —
timestamp, id, and additionalInfo —, the value is shifted 1 bit to the left and split
into groups of seven bits, which are then reorganized. The timestamp is encoded into 5
bytes, the id into 1 and the additionalInfo into 2.

• For the fields defined as bytes, two values are encoded. The first value holds a long

with the length, in bytes, of the information encoded. The last value holds a sequence
of bytes of information. In this case, the deviceType, alarmType, and priority fields
are composed of only a byte of information, which is the UTF-8 encoding of a character.
Therefore, these fields are encoded in 2 bytes.

Similarly to the other formats, the produced message is the concatenation of the encoded
alarm fields. The encoding of this example using Apache Avro produces a binary message
with 14 bytes.

Figure 3.13: Encoding of the alarm message using the Apache Avro format.

value by mapping signed integers into unsigned integers. Considering a number n with 32 bits, the value is
encoded using (n << 1) ∧ (n >> 31). For positive numbers, only the left shift is necessary.

27

CHAPTER 4
Results

Throughout the development of the work described in Chapter 3, several tests were
performed, which are presented, along with their results, in the following sections. This
chapter analyzes the system before and after the implemented changes in terms of the volume
of information exchanged as well as its latency, measured through a network sniffer. The
three serialization formats previously mentioned are compared in order to determine the one
with the best performance. Lastly, the processing time of the modules modified is analyzed.

The generation of different volumes of data was simulated using a fictitious client of the
gateway. For the majority of the tests, only a virtual machine hosted on a computer with
8GB of RAM and a dual-core processor was used to run the gateway. The temporal analysis
tests were also performed using a Raspberry Pi 3 Model B+ in addition to the mentioned
virtual machine.

4.1 Integration of the satellite link

4.1.1 Setup

Before the integration of the satellite communications interface, the performance of the
system was tested. To assert the need of optimizing the information uploaded to the CP,
the first test consisted on the measurement of the volume of data produced. Then, the
latency of the system with WiFi connectivity was measured. After the satellite connection
was established, the latency test was repeated. The messages used in both tests simulate the
transport of the collar information received by the WSN.

Regarding the first test, the periodicity at which the system uploads the data can be
configured to transfer more or less information daily. Moreover, different systems can monitor
a different number of animals. Thus, these two metrics were used to assess the daily volume
of traffic exchanged. The tests were run with the following values:

• Number of collars: 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000
• Periodicity (s): 30, 60, 90

29

In this scenario, the same amount of messages was simulated for each combination. Thus,
the duration of the experiment varied according to the periodicity, with higher duration for
the period of 90 seconds. From the results obtained, the amount of data generated in a
24-hour interval was extrapolated and its cost was calculated.

Regarding the second test, the latency of the system for the transmission of the collar
information was registered at different times of the day, both using WiFi connectivity and the
EchoStar’s satellite link. This experiment was repeated 10 times for both 1 and 100 collars.
Moreover, the results were registered with a 95% confidence interval, using a t-distribution.

4.1.2 Analysis

As expected, the results of the first test show an increase in the amount of data generated
with the increase of the number of collars and the decrease of the period, as can be seen in
Figure 4.1. In these conditions, the maximum volume of data is achieved for 1000 collars
and a period of 30 seconds, with a daily volume of 1931.9 MB ≈ 1.89 GB. Regarding the
maximum data rate allowed by this technology — 290 kbps, as stated in Subsection 2.2.1

—, it is possible to send up to 290 ÷ 8 × 86400 = 3132000 kB ≈ 2.99 GB daily. Therefore,
the data rate provided by this network is sufficient for the volume of data generated by the
system.

However, considering the data transmission cost of this network — of 4.79 to 9.58 € per
Mbit, as previously mentioned —, even the unrealistic scenario of a herd with a single sheep
would have a significant cost: for a period of 90 seconds, the daily cost would be between
9.0 × 8 × 4.79 ≈ 345 € and 9.0 × 8 × 9.58 ≈ 690 €. These considerably expensive values
would be even greater for larger herds as they are directly proportional to the values of data
generated displayed in Figure 4.1. As such, the increase of the data transfer period is not a
viable solution, since the volume of data produced continues to represent a great expense for
the system. Therefore, the optimization of these messages is required.

Figure 4.1: Impact of the number of collars and data transfer period on the amount of data generated.

30

As for the results of the second test, Figure 4.2 shows the variation in the time taken to
send information. As can be seen, in both cases the latency increases with the increase of
the message size. Both technologies show some fluctuation throughout the day, although this
would have no impact when applied in a realistic scenario.

Moreover, the satellite connection presents a considerably greater latency time than the
WiFi, due to two major factors. Firstly, the path taken by the messages is not the same in
each technology. As shown in Figure 4.3, the information sent via the satellite link travels to
the destination using a greater number of hops. Lastly, the data rate available for the satellite
connection is limited. Thus, the same information takes more time to be uploaded in the case
of this connection.

Figure 4.2: Latency of the system using a WiFi network (left) and a satellite network (right).

31

Figure 4.3: Path taken to communicate with a server hosted at Instituto of Telecomunicações through
a WiFi (a) and satellite (b) connections.

4.2 Selection of the best serialization format

4.2.1 Setup

To evaluate the best solution for the optimization of the messages exchanged between
the gateway and the CP, three serialization formats were tested, namely Apache Avro,
MessagePack and Protocol Buffers. To do so, for each existing type of alarm, a varied number
of messages was generated through an alarm simulator created in the gateway. Table 4.1
shows the different amounts tested. The maximum number of messages simulated for the two
types of devices is different, since a real system uses a reduced number of beacons to cover

32

the pasture area while monitoring a herd that is typically composed of a greater number of
animals.

The tests were repeated 10 times for each combination and the average was registered
with a 95% confidence interval, using a t-distribution. The performance of the encoding APIs
was measured regarding the message size. The latency of the system in the upload of alarms
was also tested for the format with the best performance.

Table 4.1: Number of alarm messages tested for each type of device.

Type of device Number of messages
Collar 1, 2, 10, 50, 100, 500
Beacon 1, 2, 5, 10, 15, 20

4.2.2 Analysis

Although every type of alarm was represented by the same data structure, Figure 4.4 shows
that the messages produced by them have different sizes, revealing a relationship between
these two metrics. Moreover, for the simulation of 10 alarms, MessagePack produced the
lowest volume of data for almost every type of alarm, while Protocol Buffers was clearly the
one with the worst results.

Figure 4.4: Comparison of the average message size of the different alarm types.

The impact of the number of alarms on the size of the messages produced by the serialization
formats is slightly different for alarm types with smaller and larger messages, as can be seen
in Figure 4.5 and Figure 4.6, respectively. In the former, the growth of the message size starts
to be distinct from the 50 alarms upwards for all formats, but with MessagePack presenting

33

the best size reduction. In the latter, both MessagePack and Apache Avro have a similar
behaviour.

Overall, MessagePack was the format that provided the greater size reduction and, therefore,
achieved the best performance.

Figure 4.5: Impact of the number of collars on the serialization formats’ message sizes - Battery
alarm.

Figure 4.6: Impact of the number of collars on the serialization formats’ message sizes - Infraction
shock alarm.

Moreover, Figure 4.7 shows the evolution of the system’s latency in the transport of two
alarm types using the MessagePack format. As expected, the alarm types that produce bigger

34

messages also take longer to transfer the information. Comparatively to the initial system,
the modification and optimization of the information uploaded allows the reduction of the
sending time from an average of approximately 4 seconds to less than 1.6 seconds, regarding
the information of 100 collars.

Figure 4.7: Impact of the number of collars on the messages’ latency for the battery (left) and
infraction shock (right) alarms.

4.3 Optimization of the WSN information

4.3.1 Setup

The test of the previous section revealed that MessagePack was the adequate format to
encode the information forwarded to the CP. Thus, this format was also applied to the part
of the system that sends the WSN information, which was previously encoded in JSON. To
assess the impact of these changes, two metrics were measured: the volume of traffic produced
and the corresponding latency.

The conditions of both tests were similar to the ones in Section 4.1, with the exception of
the periodicity for sending the information, which was set at 60 seconds. These results were
compared to the results obtained before the system’s optimization.

4.3.2 Analysis

Figure 4.8 compares the volume of traffic generated in the system before and after the
optimization. As can be seen, the modification of the message encoding allowed a significant
reduction on the amount of information exchanged daily, with approximately 10 times less
data from the 100 collars upwards. Regarding the data transmission cost, the simplest scenario
of a herd with a single sheep continues to represent a great daily expense, although with lower
values — from 2.9 × 8 × 4.79 ≈ 111 € to 2.9 × 8 × 9.58 ≈ 222 €.

This optimization has also an impact on the latency of the system. Figure 4.9 shows the
evolution of the information sending time, reaching 4 seconds for the maximum number of
collars tested. Compared to the results of Figure 4.2 regarding the satellite network, the
latency for 100 collars decreased to, approximately, 2.9 times less.

35

Figure 4.8: Comparison of the data generated before and after optimization with the MessagePack
serialization format.

Figure 4.9: Impact of the number of collars on the messages’ latency.

4.4 Final system

4.4.1 Setup

After implementing the changes proposed in this dissertation, the final system was tested
through the evaluation of the traffic generated and the temporal analysis of the modules
modified during this work.

Regarding the first test, the experiment performed analysed the volume of data produced
by the final system over 12 days while monitoring a herd. To do so, a dataset containing the
alarms generated during that interval was considered. The system was composed by 20 collars
and 1 beacon, which did not cover all the pasture area. Moreover, since the animals were not
in a vineyard, the conditioning was not enabled, so the devices did not trigger any stimuli
upon detecting infractions.

The dataset was analysed and the alarms were grouped by alarm type and by day. The
volume of data was calculated using the values of Table 4.2, which were measured in Section 4.2.

36

Table 4.2: Size of each alarm type.

Device Alarm Type Size (Bytes)

Collar

Panic 1159
Absence 1147
Battery 1134

Infraction Shock 1161
Infraction Buzzer 1126

Lost 1134
Equipment 1157

Beacon Absence 1159
Battery 1134

As for the second test, the execution time of the modified modules was analyzed, with the
system running both on a computer and a raspberry Pi. For each device, the following times
were measured:

• Time spent generating alarms: the time it takes from the moment the alarm is detected
to when it is stored in the queue.

• Time spent publishing alarms: the time necessary to serialize the alarms and forward
them to the CP.

• Time spent publishing WSN information: the time necessary to serialize the information
of the WSN and forward it to the CP.

Each test was performed 100 times, the average was considered and the 95% confidence
interval was calculated using a z-distribution. A varied number of alarms and collars were
simulated, with the values of 1, 20, 100, 500, and 1000.

4.4.2 Analysis

Regarding the first test, Figure 4.10 shows the number of alarms that were generated
for the days observed. The measurements of three days were discarded due to the system
being switched off. Since most of the alarms are associated with the behavior of living beings,
the amount of alarms generated daily does not follow any regular pattern. Furthermore,
the number of alarms reached its maximum value on November 24th, when 192 alarms were
detected. Approximately 44% of the daily values are in the range of 100 and 140 and 22%
of the days generated less than 10 alarms. Moreover, the system registered an average of,
approximately, 100 alarms per day.

Table 4.3 displays the number of alarms, grouped by alarm type, that were produced
during those days. Some alarm types have greater values than the expected (in a realistic
scenario), which is explained by the characteristics of the system in question:

• The infraction alarms were produced despite the conditioning being disabled. Thus, the
animals were not warned when committing an undesirable behavior and continued to
have the same actions, triggering these alarms repeatedly.

• In the case of the absence alarms, the beacon did not cover the entire pasture area,
which means that some animals were not being detected even though they were inside
the designated area.

37

Figure 4.10: Variation of the number of alarms throughout the 12 days.

Considering the size of each alarm type, given in Table 4.2, and the number of alarms
produced for each type, presented in Table 4.3, the volume of data produced during the 9
days considered was approximately 1 MB, with an average of 114.2 kB/day. This result shows
a great reduction in the daily volume of information generated when compared to the initial
system. Likewise, considering the cost of transmission mentioned in Subsection 2.2.1, the
daily cost of the system can now be reduced to a value between 114.2 ÷ 1024 × 8 × 4.79 ≈ 4
€ and 114.2 ÷ 1024 × 8 × 9.58 ≈ 9 €.

Table 4.3: Number of alarms generated for alarm type.

Device Alarm Type Number of alarms

Collar

Panic 6
Absence 75
Battery 2

Infraction Shock 303
Infraction Buzzer 386

Lost 0
Equipment 141

Beacon Absence 3
Battery 4

As for the temporal analysis results, the computer presents a greater performance than
the Raspberry Pi in every test, which was expected due to its higher processing capacity.

Figure 4.11 and Figure 4.12 show the results for the time measured when generating and
publishing the alarms, for three types of alarms. As expected, the execution time increases
along with the number of alarms detected.

In the case of Figure 4.11, the results obtained by the raspberry are similar for every type
of alarm. However, for the computer, the absence alarm presents a slightly greater execution
time for a greater number of alarms, which was not expected, since the function is similar for
every type of alarm. This result is likely due to other processes that could be running at the
moment and interfered with the test.

38

Figure 4.11: Impact of the number of collars on the time spent generating the alarms - for the battery
(upper left), absence (upper right) and infraction (bottom) types.

For the Figure 4.12, the results of the raspberry are similar for the battery and absence
alarms. In the case of the infraction, the execution time is greater for greater number of
alarms. This difference is likely due to the differences on the size of the messages produced by
each alarm type. For the computer, the same behaviour was expected. However, the infraction
alarm presents lesser execution time from 100 alarms upwards, which can be explained by the
interference of some processes in progress during the test of the battery and absence alarms.

Finally, Figure 4.13 shows the results for the publishing of the information of the WSN.
As can be seen, the greater the number of collars, the greater is the execution time.

39

Figure 4.12: Impact of the number of collars on the time spent publishing the alarms - for the battery
(upper left), absence (upper right) and infraction (bottom) types.

Figure 4.13: Impact of the number of collars on the time spent publishing the information received
by the WSN.

40

CHAPTER 5
Discussion and Conclusion

The use of automated and intelligent systems to support everyday activities is increasing in
popularity. Within the agricultural sector, the development of solutions for animal supervision
allows shepherds to focus on other agricultural tasks, increasing their productivity. An example
of this type of solution is the baseline of this dissertation — the SheepIT project — which
provides remote monitoring as well as identifies and alerts for the existence of anomalous
situations. Moreover, it allows the use of cattle to control infesting species in vineyards by
conditioning their behavior. Similarly to most systems, some of SheepIT’s functionalities
depend on Internet access. However, most vineyards are situated in rural areas, where the
lack of network coverage is common, which hampers the proper operation of SheepIT.

This dissertation aimed to mitigate this gap by extending the system with a satellite
communications interface, broadening the scenarios where it could be used. This required
various modifications in the system’s internal functioning, such as the optimization and
replacement of the messages forwarded to the cloud service. For this purpose, the alarm
system existing in the gateway was adapted.

Initial testing on the SheepIT solution confirmed the need to reduce the volume of data
that was continuously exchanged, so that the requirements of the satellite network could
be met. This reduction involved two tasks: the preparation of the alarm system to upload
the alarms detected during the animal monitoring, and the optimization of those messages,
modifying the encoding strategy that was being used so far. To do so, following some research,
three serialization formats were implemented in this work: MessagePack, Protocol Buffers,
and Apache Avro. These formats were then compared and the one with the greatest message
reduction was chosen. According to the results, MessagePack proved to be the one with the
best performance in this context, although Apache Avro presented similar values for alarm
types with larger messages. However, the data types chosen to encode the chars in the
implementation of Apache Avro and Protocol Buffers influenced these results. Regarding the
example of Subsection 3.2.3, switching the data type from bytes to int would result in 1
byte produced instead of 2, which would reduce the payload to 11 and 19 bytes, respectively.

41

Therefore, Apache Avro would have been the best format, since it requires less bytes to
serialize the information.

The system was functionally validated through the evaluation of the volume of information
produced as well as its latency during the message exchange. Regarding the first metric,
the substitution and optimization of the messages allowed fewer data to be transferred daily.
On the other hand, the system experienced higher latency, which is common for a satellite
network. Moreover, a temporal analysis was performed to understand the impact of these
changes in the gateway’s performance. Overall, the results obtained made it possible to verify
that the changes performed during this work are perfectly acceptable and compatible with
the system, contributing to its improvement. Consequently, the results of this work allowed
the submission of a paper for the 10th International Conference on ICT in Agriculture, Food
and Environment — HAICTA 2022.

5.1 Future Work

The work described throughout this dissertation allowed the proposed objectives to be
achieved. Nevertheless, some aspects can be improved. As previously mentioned, Apache
Avro and Protocol Buffers can be further optimized through the modification of some fields’
data type. Thus, a new implementation of those formats is suggested as well as the repetition
of the comparison tests.

The upload of the alarm information to the CP allowed the creation of a history of alarms,
although this information is not accessible to users. This can be resolved by modifying the
CP’s API to display them. Moreover, it would be interesting to use this data to generate
useful statistics, such as which animals usually commit more infractions, panic or get lost
more often or which equipment depletes its battery quicker than expected.

Regarding the satellite communications, it would be beneficial to explore alternatives to the
EchoStar Mobile network with the purpose of understanding the advantages and disadvantages
of using different networks in this context. To do so, it would be useful to evaluate and
compare different metrics, such as coverage, latency of messages and data transmission cost.

42

References

[1] S. Nižetić, P. Šolić, D. López-de-Ipiña González-de-Artaza, and L. Patrono, “Internet of Things (IoT):
Opportunities, issues and challenges towards a smart and sustainable future,” Journal of Cleaner
Production, vol. 274, 2020, issn: 09596526. doi: 10.1016/j.jclepro.2020.122877.

[2] L. Nóbrega, P. Gonçalves, P. Pedreiras, and J. Pereira, “An IoT-based solution for intelligent farming,”
Sensors (Switzerland), vol. 19, no. 3, pp. 1–24, 2019, issn: 14248220. doi: 10.3390/s19030603.

[3] A. Temprilho, L. Nobrega, P. Pedreiras, P. Goncalves, and S. Silva, “M2M Communication stack for
intelligent farming,” 2018 Global Internet of Things Summit, GIoTS 2018, 2018. doi: 10.1109/GIOTS.
2018.8534560.

[4] L. Nobrega, P. Pedreiras, P. Goncalves, and S. Silva, “Energy efficient design of a pasture sensor
network,” Proceedings - 2017 IEEE 5th International Conference on Future Internet of Things and
Cloud, FiCloud 2017, vol. 2017-Janua, pp. 91–98, 2017. doi: 10.1109/FiCloud.2017.36.

[5] L. J. Ippolito, Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design
and System Performance. 2008, pp. 1–376, isbn: 9780470754443. doi: 10.1002/9780470754443.

[6] O. Kodheli, E. Lagunas, N. Maturo, et al., “Satellite Communications in the New Space Era: A Survey
and Future Challenges,” IEEE Communications Surveys and Tutorials, vol. 23, no. 1, pp. 70–109, 2021,
issn: 1553877X. doi: 10.1109/COMST.2020.3028247. arXiv: 2002.08811.

[7] B. R. Elbert, Introduction to Satellite Communications. 2008, pp. 1–463, isbn: 9781630812638.

[8] “Echostar corporation.” (), [Online]. Available: https : / / www . echostarsatelliteservices . com /
Satellites# (visited on 02/25/2022).

[9] “Satellite terminals.” (), [Online]. Available: https://www.echostarmobile.com/satellite-terminals/
(visited on 02/25/2022).

[10] J. Wei, J. Han, and S. Cao, “Satellite iot edge intelligent computing: A research on architecture,”
Electronics (Switzerland), vol. 8, no. 11, 2019, issn: 20799292. doi: 10.3390/electronics8111247.

[11] M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, “Satellite communications supporting
internet of remote things,” IEEE Internet of Things Journal, vol. 3, no. 1, pp. 113–123, 2016, issn:
23274662. doi: 10.1109/JIOT.2015.2487046.

[12] N. Islam, M. M. Rashid, F. Pasandideh, B. Ray, S. Moore, and R. Kadel, “A review of applications
and communication technologies for internet of things (Iot) and unmanned aerial vehicle (uav) based
sustainable smart farming,” Sustainability (Switzerland), vol. 13, no. 4, pp. 1–20, 2021, issn: 20711050.
doi: 10.3390/su13041821.

[13] S. K. Routray, R. Tengshe, A. Javali, S. Sarkar, L. Sharma, and A. D. Ghosh, “Satellite Based IoT for
Mission Critical Applications,” 2019 International Conference on Data Science and Communication,
IconDSC 2019, 2019. doi: 10.1109/IconDSC.2019.8817030.

[14] Z. Qu, G. Zhang, H. Cao, and J. Xie, “LEO Satellite Constellation for Internet of Things,” IEEE Access,
vol. 5, pp. 18 391–18 401, 2017, issn: 21693536. doi: 10.1109/ACCESS.2017.2735988.

[15] B. Petersen, H. Bindner, S. You, and B. Poulsen, “Smart grid serialization comparison: Comparision of
serialization for distributed control in the context of the Internet of Things,” in Proceedings of Computing
Conference 2017, vol. 2018-Janua, 2018, pp. 1339–1346, isbn: 9781509054435. doi: 10.1109/SAI.2017.
8252264.

43

https://doi.org/10.1016/j.jclepro.2020.122877
https://doi.org/10.3390/s19030603
https://doi.org/10.1109/GIOTS.2018.8534560
https://doi.org/10.1109/GIOTS.2018.8534560
https://doi.org/10.1109/FiCloud.2017.36
https://doi.org/10.1002/9780470754443
https://doi.org/10.1109/COMST.2020.3028247
https://arxiv.org/abs/2002.08811
https://www.echostarsatelliteservices.com/Satellites#
https://www.echostarsatelliteservices.com/Satellites#
https://www.echostarmobile.com/satellite-terminals/
https://doi.org/10.3390/electronics8111247
https://doi.org/10.1109/JIOT.2015.2487046
https://doi.org/10.3390/su13041821
https://doi.org/10.1109/IconDSC.2019.8817030
https://doi.org/10.1109/ACCESS.2017.2735988
https://doi.org/10.1109/SAI.2017.8252264
https://doi.org/10.1109/SAI.2017.8252264

[16] D. P. Proos and N. Carlsson, “Performance Comparison of Messaging Protocols and Serialization
Formats for Digital Twins in IoV,” IFIP Networking 2020 Conference and Workshops, Networking 2020,
no. i, pp. 10–18, 2020.

[17] A. Sumaray and S. K. Makki, “A comparison of data serialization formats for optimal efficiency on
a mobile platform,” in Proceedings of the 6th International Conference on Ubiquitous Information
Management and Communication, ICUIMC’12, 2012, isbn: 9781450311724. doi: 10.1145/2184751.
2184810.

[18] J. C. Hamerski, A. R. Domingues, F. G. Moraes, and A. Amory, “Evaluating Serialization for a Publish-
Subscribe Based Middleware for MPSoCs,” 2018 25th IEEE International Conference on Electronics
Circuits and Systems, ICECS 2018, pp. 773–776, 2019. doi: 10.1109/ICECS.2018.8618003.

44

https://doi.org/10.1145/2184751.2184810
https://doi.org/10.1145/2184751.2184810
https://doi.org/10.1109/ICECS.2018.8618003

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Outline

	State of the Art
	SheepIT Project
	Architecture

	Satellite Communications
	EchoStar Mobile
	Satellite-based IoT

	Serialization Formats

	Architecture and Implementation
	Architecture
	Implementation
	Integration of the satellite link
	Alarm manager
	Serialization Formats

	Results
	Integration of the satellite link
	Setup
	Analysis

	Selection of the best serialization format
	Setup
	Analysis

	Optimization of the WSN information
	Setup
	Analysis

	Final system
	Setup
	Analysis

	Discussion and Conclusion
	Future Work

	References

