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Abstract: We propose a model with two Higgs doublets and several SU(2) scalar singlets
with a global non-Abelian flavor symmetry Q6 ×Z2. This discrete group accounts for the
observed pattern of fermion masses and mixing angles after spontaneous symmetry breaking.
In this scenario only the third generation of fermions get their masses as in the Standard
Model (SM). The masses of the remaining fermions are generated through a seesaw-like
mechanism. To that end, the matter content of the model is enlarged by introducing
electrically charged vector-like fermions (VLFs), right handed Majorana neutrinos and
several SM scalar singlets. Here we study the processes involving VLFs that are within
the reach of the Large Hadron Collider (LHC). We perform collider studies for vector-like
leptons (VLLs) and vector-like quarks (VLQs), focusing on double production channels for
both cases, while for VLLs single production topologies are also included. Utilizing genetic
algorithms for neural network optimization, we determine the statistical significance for a
hypothetical discovery at future LHC runs. In particular, we show that we can not safely
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exclude VLLs for masses greater than 200 GeV. For VLQ’s in our model, we show that
we can probe their masses up to 3.8TeV, if we take only into account the high-luminosity
phase of the LHC. Considering Run-III luminosities, we can also exclude VLQs for masses
up to 3.4 TeV. We also show how the model with predicted VLL masses accommodates the
muon anomalous magnetic moment.

Keywords: Beyond Standard Model, vector-like quarks, Hadron-Hadron scattering (ex-
periments)
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1 Introduction

The Standard Model (SM) provides a successful framework to describe three out of four
known fundamental forces of nature, i.e. the electromagnetic, nuclear strong and weak
interactions. However, it does not account for the number of fermion generations and lacks
a natural explanation for the tremendous hierarchy in the fermion sector, which is extended
over a range of 13 orders of magnitude from the light active neutrino mass scale up to
the top quark mass. Moreover, there is no assertion for the smallness of the quark mixing
angles, which is in contrast with the sizable values of two of the three leptonic mixing
angles. This set of issues is the so called flavor problem which, among others, motivates the
construction of models where the SM particle content and symmetries are enlarged. One
way to tackle the flavor problem is offered in SM extensions that assume the existence of
discrete flavor symmetries.1 These scenarios feature relations in the Yukawa sector and
typically predict correlations between the observed fermion mixing patterns as well as the
fermion mass relations.

With the use of flavor symmetries it can be suggested that the existing number of
fermion families is because they transform as components of a three-dimensional irreducible
representation (irrep) of a non-Abelian discrete group, such as A4. Another option is to
have the heaviest fermion transforming as one-dimensional irrep and the lighter ones being
the components of a doublet under the symmetry group. The smaller non-Abelian discrete

1For more details about flavor symmetry groups see, for example [1–4].
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groups, containing one- and two-dimentional irreps, are [3]: S3, Q4, D4 and Q6.2 Both
assumptions point to the idea on how to account for the three generations of quarks and
leptons but not for their (very strong) mass hierarchies.

For this reason, apart of the flavor symmetry, the distribution of the fermion mass
spectrum could suggest the existence of new particles, resulting in phenomenologically richer
setups. One can add more scalars to the SM with non-zero vacuum expectation values
(vevs) whose contributions to the fermion masses or to different mass matrix elements are
restricted by the additional symmetry. Similar to the role of a Z2 symmetry in a 2-Higgs
doublet model (2HDM) [13]. One fashionable approach to explain the fermion mass and
mixing hierarchies is by using the Froggatt–Nielsen (FN) mechanism [14], where vector-like
fermions (VLFs) are introduced to the SM and transform under a new U(1)F symmetry
which is spontaneously broken by the vevs of SU(2) scalar singlets (flavons). The new
energy scale is much bigger than the electroweak one as well as the VLFs are heavier than
the SM ones, then all the new fields are effectively integrated out.

Here, we present a framework that somehow gathers the previous ideas. We consider
a multiscalar model with the flavor symmetry Q6 × Z2, where the Z2 symmetry assigns
one Higgs to the up-type fermion sector and the other to the down-type, both scalars are
Q6 singlets. In contrast, fermions transform as (doublet+singlet) under Q6, preventing the
Yukawa interaction between light fermions and the SU(2) scalar doublets. Therefore, one
Higgs doublet furnishes the top quark with a no-null mass, whereas the other one generates
the bottom quark and tau mass. In order to generate the mass of light fermions through a
seesaw (or FN) mechanism, we introduce VLFs and three different flavons with a non-trivial
transformation under the flavor symmetry. We also introduce right-handed (RH) Majorana
neutrinos to generate the small neutrino masses via a type-I seesaw mechanism.

In contrast to the FN mechanism, in our model, the VLFs are not decoupled. For
this reason, we study the processes involving VLFs that are within the reach of the Large
Hadron Collider (LHC). We perform collider studies for vector-like leptons (VLLs) and
vector-like quarks (VLQs), focusing on double production channels for both cases, while for
VLLs the single production topologies are also included. Furthermore, it has been known
that the experimentally measured muon anomalous magnetic moment deviates from the
SM prediction. The longstanding non-compliance of the muon (g − 2) with the SM was
first observed by the Brookhaven E821 experiment at BNL [15] and it has been recently
confirmed by the Muon (g − 2) experiment at FERMILAB [16]. Hence, we also show how
the muon (g − 2) anomaly is accommodated within our theory with the predicted VLLs.

The layout of the remainder of the paper is as follows. In section 2 we describe the
model, i.e. we provide the invariant Yukawa Lagrangian, the scalar potential and the
particle mass spectrum. Afterwards, in section 3, the consequences of our model in the
muon anomalous magnetic moment are analyzed. In section 4 we detail the methodology
for the collider analysis of the VLFs, for both the quark and lepton counterparts, with the
numerical results being showcased in the section 5. We finalize this paper with section 6,
where we take our conclusions.

2Pioneer works using these symmetries to tackle the flavor problem can be found in [5–12].
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H1 H2 QLD QL3 uRD uR3 dRD dR3 LLD LL3 `RD `R3

SU(2)L 2 2 2 2 1 1 1 1 2 2 1 1
U(1)Y 1/2 1/2 1/6 1/6 2/3 2/3 −1/3 −1/3 −1/2 −1/2 −1 −1
Q6 1+− 1+− 22 1++ 22 1+− 22 1+− 22 1++ 22 1+−
Z2 −1 +1 +1 +1 −1 −1 +1 +1 +1 +1 +1 +1

Table 1. Charge assignments of the SU(2) scalar doublets and SM fermions under the symmetry,
Q6 × Z2. We have arranged the Q6 doublets as, QLD

≡ (QL1 , QL2)T , uRD
≡ (uR1 , uR2)T , dRD

≡
(dR1 , dR2)T , LLD

≡ (LL1 , LL2)T and `RD
≡ (`R1 , `R2)T .

σ1 σ2 ξ NR1 NR2 TL TR BL BR EL ER
SU(2)L 1 1 1 1 1 1 1 1 1 1 1
U(1)Y 0 0 0 0 0 2/3 2/3 −1/3 −1/3 −1 −1
Q6 1++ 1+− 22 1+− 1+− 21 21 21 21 21 21
Z2 −1 −1 −1 +1 +1 +1 −1 −1 +1 −1 +1

Table 2. Assignments of the singlet scalars and exotic fermions under the Q6 flavor symmetry
irreps. For convenience we have not included a subindex D for Q6 doublets.

2 Model description

We propose a model where the SM gauge group is extended with a global flavor symmetry
group, i.e. the complete description is given by the symmetry, SU(3)C × SU(2)L ×U(1)Y ×
Q6×Z2. This theory adds to the SM particle content, a second SU(2) scalar doublet, three
flavon fields, two RH neutrinos, a flavor doublet of VLQs and flavor doublet of VLLs. The
charge assignments of the particle content under the flavor group are shown in tables 1
and 2.

Given the matter content in our theory, the invariant Yukawa Lagrangian is formed by
the contribution from each sector as,

LY = Lu + Ld + L` + Lν (2.1)

where

Lu = yu3QL3uR3H̃1 + yTQDTRH̃1 + yT1TLTRσ1 + yT2TLuRDσ2 + yT3TLuR3ξ

+ yT4TLTRξ + H.c., (2.2)
Ld = yd3QL3dR3H2 + yBQDBRH2 + yB1BLBRσ1 + yB2BLdRDσ2 + yB3BLdR3ξ

+ yB4BLBRξ + H.c., (2.3)
L` = y`3LL3`R3H2 + yELLDERH2 + yE1ELERσ1 + yE2EL`RDσ2 + yE3EL`R3ξ

+ yE4ELERξ + H.c., (2.4)

and

Lν =
2∑
i=1

1
Λ
(
yνiLL3NRiH̃1σ1 + y′νiLLDNRiH̃1ξ

)
+

2∑
i=1

MRiNRiN
C
Ri

+ H.c. (2.5)
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with H̃a = iσ2H
∗
a . We have defined the Q6 doublets as, QLD ≡ (QL1 , QL2)T ,

uRD ≡ (uR1 , uR2)T , dRD ≡ (dR1 , dR2)T , LLD ≡ (LL1 , LL2)T , `RD ≡ (`R1 , `R2)T , TL,R ≡
(TL1,R1 , TL2,R2)T and BL,R ≡ (BL1,R1 , BL2,R2)T . Using the multiplication rules of Q6 given
in appendix A, the above Yukawa interactions can be rewritten as follows

Lu = yu3QL3uR3H̃1 + yT
(
QL1TR1 −QL2TR2

)
H̃1 + yT1

(
TL1TR2 − TL2TR1

)
σ1

+ yT2
(
TL1uR1 − TL2uR2

)
σ2 + yT3

(
TL1ξ1 − TL2ξ2

)
uR3

+ yT4
(
TL1TR1ξ2 − TL2TR2ξ1

)
(2.6)

Ld = yd3QL3dR3H2 + yB
(
QL1BR1 −QL2BR2

)
H2 + yB1

(
BL1BR2 −BL2BR1

)
σ1

+ yB2
(
BL1dR1 −BL2dR2

)
σ2 + yB3

(
BL1ξ1−BL2ξ2

)
dR3

+ yB4
(
BL1BR1ξ2 −BL2BR1ξ1

)
+ H.c., (2.7)

L` = y`3LL3`R3H2 + yE
(
LL1ER1 − LL2ER2

)
H2 + yE1

(
EL1ER2 − EL2ER1

)
σ1

+ yE2
(
EL1`R1 − EL2`R2

)
σ2 + yE3

(
EL1ξ1−EL2ξ2

)
`R3

+ yE4
(
EL1ER1ξ2 − EL2ER2ξ1

)
+ H.c., (2.8)

Lν =
2∑
i=1

1
Λ
[
yνiLL3NRiH̃1σ1 + y′νi

(
LL1NRiH̃1ξ1 − LL2NRiH̃1ξ2

)]

+
2∑
i=1

MRiNRiN
C
Ri

+ H.c. (2.9)

In addition, the invariant scalar potential reads

V = V2HDM + V (H1,H2,flavons) (2.10)

where the first term corresponds to the 2HDM potential The second term in eq. (2.10) has
the contributions from the flavons fields, σ1, σ2 and ξ, i.e. the interactions among them and
with the SU(2) scalar doublets. Explicitly,

V2HDM = −µ2
1

(
H†1H1

)
− µ2

2

(
H†2H2

)
+ λ1

2
(
H†1H1

)2
+ λ2

2
(
H†2H2

)2
+ λ3

(
H†1H1

) (
H†2H2

)
+ λ4

(
H†1H2

) (
H†2H1

)
+ λ5

2

[(
H†1H2

)2
+ H.c.

]
(2.11)

where Hi =
(
Φ+
i ,Φ0

i

)T
with i = 1, 2 and

V (H1,H2,flavons) = −µ2
3σ
∗
1σ1 − µ2

4σ
∗
2σ2 − µ2

5ξ
∗
1ξ1 − µ2

6ξ
∗
2ξ2 − µ2

7(ξ∗1ξ2 + H.c.)

− µ8
(
σ1H

†
1H2 + H.c.

)
+ λ6

(
H†1H1

)
(σ∗1σ1) + λ7

(
H†2H2

)
(σ∗1σ1)

+ λ8
(
H†1H1

)
(σ∗2σ2) + λ9

(
H†2H2

)
(σ∗2σ2) + λ10

2 (σ∗1σ1)2 + λ11
2 (σ∗2σ2)2

+ λ12(σ∗1σ1)(σ∗2σ2) + λ
′
12(σ∗1σ2)(σ∗2σ1) + λ

′′
12

[
(σ∗1σ2)2 + H.c.

]
+ λ13

2 (ξ∗ξ)1−− (ξ∗ξ)1−− . (2.12)
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The terms µ5,6,7 in the last equation break softly the Q6 symmetry3 and prevent the
appearance of either Goldstone or tachyonic fields. Since the flavons are real fields, they
have no complex charge assignment, the λ12, λ′12 and λ′′12 terms are equivalent. Then,
eq. (2.12) can be rewritten (discarding redundant terms) as follows,

V (H1,H2,flavons) = −µ2
3σ

2
1 − µ2

4σ
2
2 − µ2

5ξ
2
1 − µ2

6ξ
2
2 − µ2

7ξ1ξ2 − µ8
(
σ1H

†
1H2 + H.c.

)
+ λ6

(
H†1H1

)
σ2

1 + λ7
(
H†2H2

)
σ2

1 + λ8
(
H†1H1

)
σ2

2 + λ9
(
H†2H1

)
σ2

2

+ λ10
2 σ4

1 + λ11
2 σ4

2 + λ12σ
2
1σ

2
2 + λ13

2 (2ξ1ξ2)2 . (2.13)

All these scalars contribute to the symmetry breaking, they get a no-null vev, and they
are shifted as follows

Φ0
i = 1√

2
(vi + ϕRi + iϕIi) , σi = 1√

2
(vσi + σRi) and ξi = 1√

2
(vξi + ξRi) , (2.14)

where i = 1, 2, the SU(2) scalar vevs satisfy v2
1 + v2

2 = v2
EW and vEW ≡ 246GeV.

Fermion mass spectrum. After the spontaneous breaking of the SU(3)C × SU(2)L
×U(1)Y ×Q6 ×Z2 symmetry, using eqs. (2.2), (2.3) and (2.4), we get 5× 5 fermion mass
matrices,

Mf = 1√
2


0 0 0 yF vH1 0
0 0 0 0 −yF vH1

0 0 yf3vH1 0 0
yF2vσ2 0 yF3vξ1 yF4vξ2 yF1vσ1

0 −yF2vσ2 −yF3vξ2 −yF1vσ1 −yF4vξ1

 =
(
Cf Af
Bf MF

)
, (2.15)

where the sub-indices f = u, d, ` and F = T,B,E. The block matrices, in the previous
equation, are defined as

Cf =

 0 0 0
0 0 0
0 0 Mf33

 , Af =

Mf14 0
0 Mf25

0 0

 , Bf =
(
Mf41 0 Mf43

0 Mf52 Mf53

)
, (2.16)

and
MF =

(
Mf44 Mf45

Mf54 Mf55

)
(2.17)

The mass matrices in eq. (2.15) are diagonalized via the following bi-unitary transfor-
mation: (

UfL

)†
MfU

f
R = diag (mf1 ,mf2 ,mf3 ,mF1 ,mF2) , (2.18)

where f = u, d, ` and F = T,B,E.
On can notice, from eq. (2.16), that only the third fermion family gets the mass through

the Yukawa interaction with one of the two Higgs doublets. That is, the top quark gets
3ξ does not mix with the other scalars because of the Q6 symmetry. We have, for real ξ, (ξ2)++ =

ξ1ξ2 − ξ2ξ1 = 0 and, if complex, (ξ∗ξ)++ + H.c. = 0.

– 5 –
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tree-level mass from its Yukawa interaction with H1, whereas the bottom quark and tau
lepton obtain their masses from their Yukawa interactions with the second Higgs doublet
H2. We will assume that the symmetry breaking and the masses of the VLFs are around
the TeV scale. Thus, the mass matrices for the SM charged fermions, resulting from a
seesaw-like (or FN-like) mechanism, are given by

M̃f = Cf −AfM−1
F Bf

= Mf14

M2
f45

+Mf55Mf44

−Mf55Mf41 −Mf45Mf41 −Mf55Mf43 −Mf45Mf53

Mf45Mf41 −Mf44Mf41 Mf45Mf43 +Mf44Mf53

0 0 Mf33

 (2.19)

where f = u, d, `, F = T,B,E and we have used Mf25 = −Mf14 , Mf54 = −Mf45 , Mf52 =
−Mf41 .

Furthermore, from the neutrino Yukawa interactions, we obtain a 5× 5 neutrino mass
matrix given by

Mν =
(

03×3 MDν

MT
Dν

MR

)
, (2.20)

whereMDν is the Dirac mass matrix and MR is the Majorana mass matrix for RH neutrinos.
These matrices are

MDν =

 Aν Cν
−Ãν −C̃ν
Bν Dν

 , MR =
(
MR1 0

0 MR2

)
, (2.21)

with Aν = y′ν1v1vξ1/2Λ, Ãν = y′ν1v1vξ2/2Λ, Cν = y′ν2v1vξ1/2Λ, C̃ν = y′ν2v1vξ2/2Λ, Bν =
yν1v1vσ1/2Λ and Dν = yν2v1vσ1/2Λ. Assuming that the right handed Majorana neutrinos
have masses much larger than the electroweak symmetry breaking scale vEW = 246GeV,
the type I seesaw mechanism can be implemented to generate the tiny masses of the light
active neutrinos. The resulting mass matrix for light active neutrinos takes the form

M̃ν = MDνM
−1
R MT

Dν
(2.22)

Then, the light active neutrino masses are given by

mν1 = 0, mν2,ν3 = κ± κ′2

2MR1MR2
, (2.23)

where we have defined

κ = C̃2
νMR1 + C2

νMR1 +D2
νMR1 + Ã2

νMR2 +A2
νMR2 +B2

νMR2 ,

κ′2 = −C̃2
νMR1 − C2

νMR1 −D2
νMR1 − Ã2

νMR2 −A2
νMR2 −B2

νM
2
R2)2−

− 4A2
νC̃

2
νMR1MR2 + 4B2

νC̃
2
νMR1MR2 − 8ÃνAνC̃νCνMR1MR2+

+ 4Ãν
2
C2
νMR1MR2 + 4B2

νC
2
νMR1MR2 − 8ÃνBνC̃νDνMR1MR2+

+ 8AνBνCνDνMR1MR2 + 4Ã2
νD

2
νMR1MR2 +A2

νD
2
νMR1MR2 .

(2.24)

– 6 –
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Scalar mass spectrum. Using eqs. (2.11) and (2.13) and solving the tadpole equations,
the CP-even squared mass matrix becomes,

M2
CP-even =

(
[M2]4×4 04×2

02×4 [M̄2]2×2

)
(2.25)

where

M2 =


λ1v

2
1 (λ3 + λ4 + λ5) v1v2 λ6v1vσ1 λ8v1vσ2

(λ3 + λ4 + λ5) v1v2 λ2v
2
2 λ7v2vσ1 λ9v2vσ2

λ6v1vσ1 λ7v2vσ1 λ10v
2
σ1 λ12vσ1vσ2

λ8v1vσ2 λ9v2vσ2 λ12vσ1vσ2 λ11v
2
σ2

 (2.26)

and

M̄2 =

 µ2
7vξ2

2vξ1
2λ13vξ1vξ2 −

µ2
7

2

2λ13vξ1vξ2 −
µ2

7
2

µ2
7vξ1

2vξ2

 . (2.27)

From the last equation we find that 〈ξi〉 6= 0. Notice that the flavon fields get decoupled
when 〈σi〉 � vEW or simply if one takes λ6,7,8,9 � 1. In this case, the CP-even parts of the
SU(2) scalar doublets do not mix with the scalar singlets and their masses are obtained by
diagonalizing the matrix

M2
2DHM ∼

(
λ1v

2
1 −µ2

12 + (λ3 + λ4 + λ5) v1v2
−µ2

12 + (λ3 + λ4 + λ5) v1v2 λ2v
2
2

)
(2.28)

The mass of the CP-odd and charged scalar are, respectively,

m2
A = µ2

12
v1v2

− λ5
(
v2

1 + v2
2

)
, (2.29)

and
m2
H± = µ2

12
v1v2

− (λ4 + λ5)
2

(
v2

1 + v2
2

)
(2.30)

Before concluding this section, let us briefly mention that even though the SU(2)
scalar H1 is only coupled to the SM up-type sector and H2 to the down-type sector the
Weinberg-Glasgow-Paschos theorem [17, 18] does not apply in this case, i.e. FCNCs might
appear at tree-level due to the mixing between SM and vector like fermions. However,
we expect these FCNCs to be under control since they will be proportional to the small
mixing angles4 and further suppressed by the square of the heavy non-SM scalar masses. A
thorough analysis on this regard is out of the scope of this paper.

3 Muon anomalous magnetic moment

In this section we start discussing the implications of our model for the muon anomalous
magnetic moment. It is worth mentioning that the Yukawa interactions, −yELL2ER2H2

4For instance, we have numerically checked that the mixing angles between SM and vector like quarks
are at most of the order of 10−3 which are sufficiently small to suppress FCNCs induced by these mixings.
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and −yE2EL2`R2σ2 in eq. (2.8) as well as the quartic scalar interaction λ9(H†2H2)(σ∗2σ2) in
eq. (2.13), provide the dominant contributions to the muon anomalous magnetic moment.
These contributions to (g − 2)µ are one-loop diagrams which involve the exchange of a
electrically neutral CP-even scalar and the VLL E2. To simplify our analysis, we consider a
benchmark close to the decoupling limit where ϕR2 and σR2 are mainly composed of two
orthogonal combinations involving two heavy CP-even S0

1 and S0
2 physical scalar fields.

Therefore, the muon anomalous magnetic moment takes the form:

∆aµ '
yEyE2m

2
µ

8π2

[
J
(
mE2 ,mS0

1

)
− J

(
mE2 ,mS0

2

)]
sin θ cos θ, (3.1)

where S0
1 ' cos θσR2 + sin θϕR2 , S0

2 ' − sin θσR2 + cos θϕR2 , and mE2 is the mass of the
VLL E2. Furthermore, the loop J (mE ,mS) function has the following form [19–22]

J (mE ,mS) =
∫ 1

0
dx

x2
(
1− x+ mE

mµ

)
m2
µx

2 +
(
m2
E −m2

µ

)
x+m2

S (1− x)
. (3.2)

It is worth mentioning that in this model there exit other BSM contributions to the muon
anomalous magnetic moment but they turn out to be subleading. For instance, the loop
contributions mediated by heavy neutrinos and the W gauge boson are strongly suppressed
by the quadratic power of both the very tiny active-sterile neutrino mixing angle and
the small effective Dirac neutrino Yukawa coupling. Notice that the smallness of this
coupling is due to the neutrino Yukawa interactions are dimension-5, eq. (2.9). Therefore,
Dirac neutrino Yukawas also suppress one-loop diagrams where neutrinos and electrically
charged Higgs are exchanged. Furthermore, following refs. [23–25], one can estimate that
the (g − 2)µ contribution that involve mediation of the Z gauge boson and heavy vector like
leptons turns out be ∆a(Z)

µ ∼ mµmE
8π2m2

Z
θ2Gloop. Hence, ∆a(Z)

µ ∼ O
(
10−11), for 200GeV masses

of charged vector like leptons and SM-heavy vector like lepton mixing angle satisfying
θ ∼ O

(
10−3).

Figure 1 shows the muon anomalous magnetic moment as a function of the VLL mass
ME2 . The solid horizontal lines correspond to the current upper and lower experimental
bounds for the muon anomalous magnetic moment which are set by [16]

(∆aµ)exp = (2.51± 0.59)× 10−9. (3.3)

In our numerical analysis we have considered the benchmark point with θ = π/4, MS1 =
1.5TeV and MS2 = 2TeV. Furthermore, we have set yE = yE2 = 0.2 and yE = yE2 = 0.3 for
the black and blue curves, respectively. The mass of the charged exotic lepton E2 has been
varied in the range 0.2TeV6ME2 6 2TeV. Figure 1 shows that our model can successfully
accommodate the current experimental anomaly ∆aµ within the considered mass range.
One can see that ∆aµ requires vector-like states below the TeV scale. For this reason,
in what follows, we will analyze how likely one can observe these VLLs at the upcoming
LHC searches.
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Figure 1. Muon anomalous magnetic moment as a function of the charged exotic lepton mass ME2 .
The black and blue curves correspond to yE = yE2 = 0.2 and yE = yE2 = 0.3, respectively. The
horizontal magenta and orange lines correspond to the 2σ upper and lower bounds for the muon
anomalous magnetic moment, respectively.

4 Exotic fermionic signatures: analysis setup

As it was shown in section 2, two generations of VLLs and four VLQs are present in the
model. For the VLQs, two are of the up-type whereas the other two are of the down-type.
Such states have masses at the TeV scale, within the range of future collider runs at the
LHC. In this section, we focus on a discussion of potential signatures characteristic of
these particles as well as on the numerical techniques that we propose to probe them.
Such analysis will be boosted via the implementation of neural networks (NNs), whose
hyperparameters are optimized through the use of genetic algorithms, based on previous
work by some of the authors [26]. We focus in pair-production topologies for both VLQs
and VLLs, while single-production is considered only for the VLLs.

The model, at the Lagrangian level, is implemented in SARAH [27], from which we
generate the relevant UFO [28] python codes that interface with Monte-Carlo simulators. In
particular, we employ MadGraph (MG5) [29] for simulation of particle collisions at parton-
level for both signal and background topologies. We add hadronization and showering effects
with Pythia8 [30] and Delphes [31] for fast detector simulation. Angular and kinematic
distributions are extracted from this last step, with the help of ROOT [32], which are used
as inputs in the NNs, for signal/background separation and computation of statistical
significance. All parton-level events are generated for proton-proton collisions at the LHC,
for a centre-of-mass energy

√
s = 14TeV and for the parton-distribution function nn23lo1,

which automatically fixes the strong coupling, αs, and its evolution. We generate 250
000 events for each individual topology (background and signal). We consider the MLM
matching scheme [33] for topologies with at least two jets as final states.

VLLs have long been motivated by various SM extensions and Grand Unified Theory
(GUT) frameworks (see, e.g. [23, 34, 35]), and like it was shown in section 3, are important
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Ē2 W+

W−

ν`

ν̄e

e−

ν`

µ+

νµ

(a)

q

q̄q̄

γ/Z0

Ē2
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Figure 2. Leading-order Feynman diagrams for the VBF topologies. Original quarks from colliding
protons are indicated as q and q̄, while E2 represents the lightest VLL. Besides the forward jets,
we have purely leptonic final states originating from W± decays, with one anti-muon, µ+, and an
electron e−, as well as their associated neutrino. ν` are the SM neutrinos.

in addressing the muon (g − 2) anomaly, whose relevance has recently come to the forefront
of new physics explorations [16].5 Despite the strong theoretical motivations, very limited
collider searches have been performed so far, with the most stringent constraints coming
from CMS [37], for doublet VLLs that strongly couple to the tau lepton. Older searches at
LEP [38] constrain these exotic states to be heavier than 101.2 GeV. Therefore, there is
still a plenty of parameter space left to be explored and as such, phenomenological studies
such as these may help pin-point regions of the model parameter space to look for at
collider experiments.

For the VLLs’ search, we consider topologies identical to some of those studied in
our previous work [26]. These include pair-production in the t-channel via vector-boson
fusion (VBF) processes (see figure 2), characterized by two light jets in the forward region
originating from colliding protons. We also include contributions from pair production via
the exchange of a virtual photon or a Z0 boson, which we name as “ZA” in what follows
(see figure 3). Both topologies are characterized by having two leptons and a large missing
transverse energy (MET) as final states. The single-production diagram is characterized
by a single lepton and a large MET in the final state (see figure 4), which we dub as the
“VLBSM topology”. For these processes, we consider the main irreducible backgrounds
as follows:

1. For ZA topologies, main backgrounds include top quark pair production, tt̄, with
two b-jets and fully leptonic decays for the W bosons. tt̄ plus Z0 production is also
considered, with the Z0 decaying in the fully invisible channel (two neutrinos) or into
two leptons;

2. For VBF topologies, diboson W+W− production is considered, with subsequent decay
into leptons. We also take into account tt̄ pair production plus one or two jets, that
is, the top decays into leptons and is accompanied by one or two light jets;

5For further constraints on VLLs we refer the reader to [36].
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Figure 3. Leading-order Feynman diagram for the ZA topologies. The same nomenclature as in
figure 2 applies here.

W−
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ν`

Figure 4. Leading-order Feynman diagrams for the VLBSM topologies. The same nomenclature
as in figure 2 applies here.

3. For VLBSM topologies, we consider all production channels with a single lepton in
the final state, that is, pp→ `ν`, with up to two light jets.

To maximize the signal region and to reduce the main irreducible backgrounds, specific
kinematic cuts are imposed in ROOT. In particular, we consider

1. For VBF and ZA topologies, we require at least two lepton candidates with an opposite
flavour and opposite charge. In particular, one anti-muon originating from W+ decays
and one electron candidate originating from W−. For VLBSM, we require only one
lepton, an electron.

2. Generic to all topologies, we impose kinematic constraints for the final charged lepton
states with pT > 25GeV and |η| ≤ 2.5. A minimum MET is also considered with
MET > 15GeV.

3. For jet reconstruction, we use the Cambridge/Aachen algorithm [39] with cone radius
∆R = 1.0, with kinematic constraints pT > 35GeV and |η| ≤ 2.5. For jets originating
from bottom quarks, we consider tight-working points with 90% b-tagging efficiency.

The reconstruction procedure via the use of invisible particles in the final states follows
the same approach as thoroughly described in [26]. The dimension-full and dimension-less
variables are extracted from the final states to train our Deep Learning models, for different
reference frames, including the laboratory frame, the W bosons frame and Ē2E2 frame. All
chosen observables for double production topologies are shown in table 3, while in table 4
we present the variables used for the VLBSM topology.
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Dimension-full Dimensionless

Lab.
frame

pT (e−), pT (µ+),pT (E2)
pT (Ē2), M(E2), M(Ē2)

MT (W−), MT (W+), pT (W+),
pT (W−), MET

cos(θν̄ee), cos(θν̄µµ+),
cos(θW−W+),

cos(∆φ), cos(∆θ),
η(e−), η(µ+), η(E2), η(Ē2)

η(W+), η(W−)

∆R(e, ν̄e), ∆R(µ+, νµ+)

W−

frame
pT (e−), pT (E2) cos(θν̄ee),

η(e−), η(E2)

W+

frame
pT (µ+), pT (Ē2) cos(θνµµ+),

η(µ+), η(Ē2)

E2Ē2
frame

cos(∆Φ), cos(∆Θ)

Table 3. Angular and kinematic observables selected for study of the pair-production topologies,
for different frames of reference, the laboratory frame (in the first row), W+ and W− frames (in
the second and third row, respectively) and the vector-like frame E2Ē2 (last row). θi,j denotes the
angle between different particles, either in the final state or reconstructed ones. In the E2Ē2 frame,
the angles ∆Φ and ∆Θ correspond to the azimuthal and polar angles formed by the decay plane of
the two W bosons (see [26]).

Dimension-full Dimensionless
Lab.
frame

pT (e−),MT (W−),
pT (W−), MET

cos(θe−), cos(θν̄ee−),
cos(θW−), η(e−), η(W−), φ(e−)

Table 4. Angular and kinematic observables selected to study the single production channel
(VLBSM). We compute observables in the laboratory frame. The same nomenclature of table 3 for
angles applies here.

A similar analysis is also built for the VLQs. The prediction of VLQs is not exclusive
to the model under consideration. In fact, the existence of such states has been predicted
by a series of distinct models in previous literature, such as in E6-inspired string and GUT
models [40, 41] or in other extensions to the SM [42, 43]. However, unlike VLLs, from an
experimental point-of-view, there is also a good history of searches, in particular, at the
LHC (see, for example, [44–46]), where the current constraints on parameter space constrain
the VLQ masses to be between 690GeV up to 1.85TeV (for current constraints, as of
March 2021, see the summary plots in [47]). See also [48, 49] where possible interpretations
of current VLQ searches at the LHC are undertaken and [50, 51] for a discussion about
Deep-Learning based methods that can be applied in direct VLQ searches. Naturally, the
constraints are heavily dependent on considered assumptions, mainly when it comes to
couplings to the SM states. In this regard, the majority of searches focus on dominant
couplings with the top quark, where the primary decay channel VLQ→ t(b)W is studied,
characterized by a final b-jet and two charged leptons. Of course, such assumption is not
the most general, as there is no reason for mixings with other SM quarks to not exist. For
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Figure 5. Leading-order Feynman diagram for the VLQ pair-production via gluon-gluon fusion. T1
represents the lightest up-type VLQ and u/ū indicate light up-type quarks (up or charm quarks).
This diagram provides a larger contribution than that with T1uZ

0 vertices. We refer to appendix E
for further details.

the purpose of this work, the proposed search topology is focused on a channel with light
jets as final states, as seen in figure 5.

Identical cuts to the VLL scenario are imposed, with two main differences. The more
obvious one is that we now require at least four lepton candidates (an anti-muon/muon
pair and a positron/electron pair) and at least two light jets. We also alter the minimum
transverse momentum for the jet candidates, with now pT > 50GeV. The reason for such
alteration comes from the fact that we plan to probe higher masses (m > 1.8TeV), and
therefore, the final jets emerging from VLQs will be highly boosted and energetic when
compared to SM processes, helping to reduce the number of relevant backgrounds. Without
any missing energy, both VLQs can be more easily reconstructed from the leptons and
light jets. For irreducible backgrounds, we consider the same tt̄+ Z0 background as for the
ZA topology, with Z0 decaying into two charged leptons. We also include all production
channels with the same final states pp → e+e−µ+µ−jj, where j is a light jet. Such a
process includes the main diboson production backgrounds. Similarly, dimension-full and
dimension-less variables from final and reconstructed states are used for NNs’ training in
three distinct reference frames: laboratory frame, j1 + γ frame and j2 + γ frame, where we
define j1 as the leading jet (greatest pT ), while j2 is the sub-leading jet. All distributions
are indicated in table. 5

For both VLQs and VLLs, the main objective is to combine the kinematic distributions
into multi-dimensional distributions that are then fed into the NN, whose job is to solve
a classification task, that is, to distinguish between the background and signal events,
so that we can evaluate the statistical significance. To obtain the most optimal results,
one must take special care in the employed architecture, the number of layers and nodes,
activation functions, etc. The selection of these parameters is often made based on arbitrary
decision-making, by choosing the set of hyperparameters that have shown to guarantee the
best results in earlier analyses. Such a method is often arbitrary and can not be generalised
to other applications.

For the purpose of this work, we implement the same techniques as in [26], via a
genetic algorithm, that chooses the parameters that best improve a given significance.
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Dimension-full Dimensionless

Lab.
frame

M(e+, e−), M(µ+, µ−), M(e−, µ−),
M(j1, j2), pT (e−), pT (e+), pT (µ+),
pT (µ−), pT (jn), M(e+, e−, jn),

M(µ+, µ−, jn)

η(e−), φ(e−), η(e+), φ(e+),
η(µ−), φ(µ−), η(µ+), φ(µ−),

η(jn), φ(jn),
cos(θe+e−), cos(θµ+µ−) cos(θj1j2)

cos(θe−µ−), cos(θe−µ+), cos(θe−jn)
cos(θe+jn), cos(θµ−jn), cos(θµ+jn),

∆φ(e+, e−), ∆φ(e−, jn), ∆φ(e+, jn),
∆φ(µ+, µ−), ∆φ(µ−, jn), ∆φ(µ+, jn),
∆φ(e−, µ−), ∆φ(e−, µ+), ∆φ(e+, µ−),

∆φ(e+, µ+)

∆R(e+, e−), ∆R(e−, jn), ∆R(e+, jn)
∆R(µ+, µ−), ∆R(µ−, jn), ∆R(µ+, jn),
∆R(e−, µ−), ∆R(e−, µ+), ∆R(e+, µ−),

∆R(e+, µ+)

j1 + γ

frame
cos(θµ−j1), cos(θµ+j1), cos(∆Φ1)

j2 + γ

frame
cos(θµ−j2), cos(θµ+j2), cos(∆Φ2)

Table 5. Angular and kinematic observables selected for study of VLQ pair-production, for different
frames of reference, the laboratory frame (in the first row), j1 + γ and j2 + γ frames (in the second
and third row, respectively). The same nomenclature of table 3 for angles applies here. ∆Φ1,2
corresponds to the azimuthal angle formed by the decay planes of the two virtual photons. To
simplify notation, it is defined jn = j1, j2.

A diagrammatic representation of the algorithm can be seen in figure 6. The entire process
starts by providing a list of possible input parameters which the algorithm chooses from.
From this list, the algorithm picks, in a random fashion, a series of parameters from which
it can build an arbitrary number of NNs. Once all the networks have been constructed,
we train them for fixed number of epochs. From the trained networks, we choose the top
networks, that is, the ones that better maximize a given metric. It is from this point that
the evolutionary part of the algorithm kicks in. The idea is inspired by the process of
natural selection. From the best networks, we create Father-Mother pairs, where 50% of
the father’s traits and 50% of the mother’s traits are used to construct new NNs, that we
dub “daughters”. We also impose a probability of mutation, P(M), meaning that after the
daughters have been built, we also add a non-zero probability that each of the traits may
change to another, leading to the creation of “mutated daughters”. Then, we train these
new daughter networks, and the loop repeats for a given number of generations. At the
end, we select the one with the better performance, for a given metric, in our case, the
Asimov significance.

We choose the same set of hyperparameters as in our previous work [26], which we
detail as follows:

• Number of hidden layers: 1 to 5;

• Number of nodes per layers: 256, 512, 1024 or 2048;

• Initialisers: ‘normal’, ‘he normal’ and ‘he uniform’;

• L2 regulariser, with penalties 1× 10−3, 1× 10−5 or 1× 10−7;
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Figure 6. Diagram representative of the iterations involved in the evolutive algorithm as used in
this work.

• Activation functions: ‘ReLU’, ‘eLU’, ‘tanh’ and ‘sigmoid’;

• Optimisers: ‘Adam’, ‘sgd’, ‘AdaMax’ and ‘NAdam’.

The networks are built in Keras [52] with TensorFlow 2.0 [53] as back-end. Some archi-
tectural considerations remain fixed during the evolution of the genetic algorithm. Namely,
the final output layer works as a prediction layer where we funnel the data into a vector
with dimensions dimN = 1 +Nb, with Nb the number of backgrounds. Each entry corre-
sponds to the probability of being a signal or background. For example, consider a vector
(S,B1, B2) = (0.98, 0.01, 0.01). The output of this form indicates that the network considers
this event as a signal with probability of PS = 0.98 whereas backgrounds have a probability
PB1,2 = 0.01. The inputs of the networks are also identical, with normalized and balanced
distributions of kinematic data. The normalized data are important for training due to
potentially high variability in numerical data structures. By normalizing the datasets, we
mitigate numerical errors when computing gradients during back propagation, which in
turn allows for faster learning and improved performance [54, 55]. The datasets are also
balanced, as the imposition of cuts in the kinematics of final states reduces the number
of entries for both background and signal classes. Such unbalanced nature may lead to
over-fitting problems and poor generalization to validation datasets. We use SMOTE [56]
algorithm to balance the data, by oversampling the minority classes. We also employ a
cyclic learning rate during the training, with the initial value of 0.01 and the maximum
allowed value of 0.1. A fixed batch size of 32544 is considered.

In this work we are interested in models that provide us with the best significance. Ss
such, we define the Asimov significance that can be modified to work as the loss function.
In our case we define our loss as 1/(ZA + ε), that we plan to minimize,6 with

ZA =
[
2
(

(s+ b) ln
(

(s+ b)(b+ σ2
b )

b2 + (s+ b)σ2
b

)
− b2

σ2
b

ln
(

1 + σ2
bs

b(b+ σb)

))]1/2

, (4.1)

6This methodology was first proposed by Adam Elwood and Dirk Krücker in [57].
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where s is the number of signal events, b the number of backgrounds and σ2
b is the variance

of backgrounds events. Note that in the limit of large backgrounds, ZA ≈ s/
√
b.

5 Exotic fermionic signatures: results

In this section we discuss the results obtained for collider signatures of exotic fermions in
the context of the Q6 flavored multiscalar model under consideration. Due to their distinct
nature, the mass range that the LHC can probe for the model’s VLLs differs from that
of the VLQs. In particular, and based on the current exclusion bounds, we focus on the
following two sets,

mE2 ∈ [200, 800] GeV, mT1 ∈ [2.2, 4] TeV, (5.1)

where the mass range chosen for mE2 was based on the ∆aµ analysis performed above.
Note that both the VLL and VLQ decay widths are automatically computed by MadGraph
for each mass.

In all studied signal events the internal vertices are gauge-interacting, always involving
couplings with the SM vector bosons (Z0, γ, W± or g). These do indeed provide the
dominant contributions and their strength is well known. However, the fermion-mixing
effects must be considered and typically provide a suppression factor. This is what happens
in flavor non-diagonal scenarios as is the case of the model that we study in this article. For
the purpose of this work, we assume vector-to-chiral fermion mixing of order O(10−2−10−3)
according to the structures specified in section 2, which in turn corresponds to the benchmark
point yE = yE2 = 0.2 shown in figure 1. For example, the lepton mixture is relevant when
probing the E2ν`W vertex via an extended Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing. In particular, we fix the PMNS matrix in such a way that the block that mixes the
charged chiral leptons and SM-like neutrinos is phenomenologically consistent [58]. The same
is done in the quark sector with an extended version of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix.

Using the cuts detailed in the previous section we can estimate the production cross-
section for each signal/background topology. For the VLL channel, and fixing mE2 =
200 GeV as well as the mixing matrix in eq. (2.18):

U eL =


−0.999997 0.00122671 −0.00196369 −2.41219× 10−6 −9.55935× 10−6

0.00123261 0.999993 −0.00300585 −0.00200382 1.1783× 10−8

0.00195999 −0.00300821 −0.999994 0.0000294637 9.03987× 10−8

−1.17835× 10−8 0.0080039 0.0000234357 0.999997 0.00123275
9.55951× 10−6 2.4701× 10−6 −4.27716× 10−8 0.00123275 −0.999999


(5.2)

we have obtained,

VLBSM signal: σ = 1.32× 10−4 fb;
ZA signal: σ = 6.77× 10−4 fb;
VBF signal: σ = 1.77× 10−4 fb;
pp→ e−ν̄e σ = 1.96× 106 fb;
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pp→ e−ν̄e(j, jj) σ = 8.02× 105 fb;
tt̄ σ = 1.21× 103 fb;
tt̄(j, jj) σ = 2.39× 103 fb;
W+W− σ = 1.63× 102 fb;
tt̄Z0(e−e+) σ = 0.18 fb;
tt̄Z0(ν̄`ν`) σ = 0.20 fb

and, as one notices, all backgrounds sit well above the expected cross sections for the
signal events. On the other hand, VLQ pair-production reveals the opposite behaviour.
Considering the scenario where mT1 = 2.2TeV and the mixing matrix in eq. (2.18):

UuL =


−1. 0.000177353 −0.000313111 −4.77474×10−8 −9.09229×10−6

0.0003595 −0.99997 0.005294 −0.0034525 3.26836×10−9

−0.00001530 0.005294 0.999968 0.003161 −1.07557×10−7

−9.09229×10−6 −9.64642×10−7 −6.00768×10−7 0.00039356 1.
3.2693×10−9 −0.00026828 −0.0016711 0.999995 −0.0003935

,
(5.3)

the cross sections for this analysis read as,

VLQ signal: σ = 5.09 fb;
pp→ e−e+µ+µ−jj σ = 0.16 fb;
tt̄Z0(µ−µ−) σ = 1.23× 10−2 fb

where we note that for the tt̄Z0(µ−µ−) background, the electron and positron originate
from W decays. As one can clearly see, the signal production cross-section sits above the
main irreducible backgrounds. This fact remains true up until mT1 ∼ 3.8TeV, after which
the suppression coming from the VLQ mass and its decay width becomes large enough
yielding an increasingly smaller cross-section. The noticeable difference between the VLQ
and VLL sectors can be mainly attributed to the chosen collider and couplings present in the
production channels. Proton-proton collisions heavily favour a pair-production of colored
particles, which is further maximized via the strong coupling in the three gluon ggg and
gT̄1T vertices, as opposed to the weak gauge coupling present in all VLL pair-production
processes. We show in figure 7 both the VLL and VLQ production cross-sections in terms
of the exotic fermion masses for each of the studied processes.

As mentioned in the previous section, the main goal is to compute the statistical
significance of a hypothetical discovery. As such, we need to extract the relevant kinematic
information that helps separating the signal from background. Let us first dedicate our
attention to VLL production focusing on a scenario where mE2 = 200 GeV. We show
in appendix C the distributions in the laboratory frame in figures 11, 12 and 13. In
these figures, the angular distributions in Ē2E2 frame are also presented. The remaining
distributions, in the W frame of reference, are shown in figure 14. It is common to all
topologies that the angular distributions are dominated by the imposed backgrounds, since
the signal events do not have major qualitative differences that help separating different
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Figure 7. The production cross-section as a function of the VLLs mass (left panel) and the VLQ
mass (right panel).

cos(θ) distributions. On the other hand, ∆R distributions are particularly interesting
in this regard, as signal topologies typically involve a peak around ∆R ∼ 1, as opposed
to the backgrounds, with a flatter structure and a peak at higher values, ∆R ∼ 1 − 2.
Kinematic information, such as pseudo-rapidity, offers additional discrimination as the
signal events are characterized by a strong peak at η = 0, while backgrounds typically either
possess a double-peak structure (see η distributions for reconstructed particles such as E2
and W+ in figure 11), or a more uniform distribution over the allowed pseudo-rapidity
range (see η plots for the electron and the anti-muon in figure 11). This is true for VBF
topologies, while for ZA and VLBSM events it is not (see figures 12 and 13). For instance,
pseudo-rapidity distributions for ZA and VLBSM typically follow the same characteristics
as the backgrounds. Therefore, they do not offer the same discriminating power. Transverse
momentum distributions, for both topologies, dot not provide a greater discriminating
power either. However, MET distributions supply some key differences such as longer tails
at large MET values, i.e. MET > 100 GeV. In fact, MET distributions are rather relevant,
as this observable is representative of the signal events that we propose, in particular for
the ZA/VBF cases where the final state contains four neutrinos. For the case of VLBSM
topologies this no longer applies. Even though the final state contains three neutrinos, MET
distributions have the same shape as the SM backgrounds (see middle panel in the second
row of figure 13).

Turning our attention to the quark sector, all relevant distributions are shown in
figure 10 where we fix the VLQ mass as mT1 = 2.2 TeV. For VLQ production, a substantial
amount of variables were used. As such, not all of them, but only a representative subset is
shown. As opposed to the VLLs, cos(θ) distributions do offer discriminating power over
backgrounds. For the pair of particles (e+, j1), (e−, j2) and (µ+, j2), the cosine distributions
preferably peak at cos(θ) = −1, i.e. at θ = π, for signal events, implying that the outgoing
particles are produced back-to-back. This contrasts with the studied backgrounds where a
significant portion of events feature highly collinear particles, i.e. cos(θ) = 1⇔ θ = 0. Other
angular variables such as ∆φ offer further distinction with a typical double-peak structure
of signal events at |∆φ| ≥ 2, whereas the corresponding backgrounds tend to populate near
∆φ = 0. The transverse momentum distributions of the final leptons are also relevant as
one notices from the bottom rows of figure 10. In particular, signal events tend to populate
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regions of phase-space with larger momentum (pT > 300GeV), in stark contrast with the
SM backgrounds, which preferably populate regions of much lower pT values.

A proper analysis requires a combination of the various kinematical variables into a
single multi-dimensional distribution that the NN uses as an input. This allows one to find
the regions of the parameter space that better enhance the signal region while minimizing
the background effects. More importantly, it also provides us with the ability to compute
the statistical significance as well as determining which mass regions can be excluded within
the studied model. For a complete analysis we calculate the significance focusing on three
distinct statistical metrics, each one being more conservative than the other, in order to
provide the most rigorous and realistic scenarios for further investigation.

We then consider the following

• ZA : The Asimov significance, as it is defined in eq. (4.1), assuming 1% systematic
errors;

• Z(< 1%) : An adapted version of the Asimov significance, as it is defined in eq. (4.1).
For this case we assume a much lower systematic uncertainty, in particular 10−3. As
such, this is the most lenient metric and typically offers the highest values for the
significance;

• s/
√
s+ b : A more traditional metric, which is the limiting scenario of the Asimov

significance when s� b.

With this in mind, we apply the genetic algorithm as described in the previous section
and calculate the aforementioned significance metrics in terms of the score that the NN
gives to each event. For the scenarios that have so far been discussed, mE2 = 200GeV
and mT1 = 2.2TeV, our results for the VLLs significance in each channel can be seen in
figure 15 of appendix D. Notice that the significance is calculated under an assumption of
the high-luminosity LHC, with an integrated luminosity of L = 3000 fb−1.

Let us first focus on the VLL sector. Provided that each topology is an independent
event we can safely combine their individual significances as

σC = σVBF + σVLBSM + σZA. (5.4)

With this in mind, we notice that the highest combined significance is obtained for the
Z(< 1%) metric, in particular, with σC = 3.78σ. The dominant contributions to this
value are those of the VLBSM and VBF channels with σVLBSM = 1.76σ and σVBF = 1.03σ,
respectively. Equally interesting is the s

√
s+ b metric, for which the combined significance is

slightly smaller, σC = 2.56σ, with the VLBSM topology providing the highest contribution,
with 1.13σ. While these results do not permit a confident exclusion at this mass range,
however it is sufficiently large to merit further inspection if an hypothetical anomaly
appears at the LHC experiments. If this turns out to be the case, we argue here that, if
the next generation of colliders beyond the LHC are still far from becoming operational,
a continuation of the high-luminosity program must be put on the table as we further
discuss below.
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Figure 8. Statistical significance as a function of the integrated luminosity in fb−1 for the three
different statistics adopted in the current analysis and for a fixed VLL mass, mE2 = 200GeV. The x
axis is on logarithmic scale. In (a) we showcase the Asimov significance, in (b) — the adapted Asimov
significance, and in (c) — the s/

√
s+ b metric. The colours represent the distinct signal processes

under consideration. In particular, the green curve is representative of VBF events, the red curve
indicates ZA topologies, while the blue curve refers to VLBSM single production events. The dashed
curves indicate that the considered values of the luminosity are beyond the LHC operation regime.

As expected, the most conservative metric, ZA, shows the lowest significance values
with σC = 0.032σ. Therefore, within the context of the model under consideration, we can
not safely exclude VLLs up to masses of 200 GeV. In fact, singlet VLLs do not couple
directly to W bosons as it happens for doublet VLLs (see [26] for a previous study.) Instead,
such interactions with W bosons relevant for the three signal processes under consideration,
are indirectly induced via off-diagonal Yukawa interactions becoming suppressed by a factor
of the mass of the VLL itself [59]. This implies that the larger the VLL mass, the smaller
the interaction strength with W bosons, thus, the smaller the cross section and significance.

We show in figure 8 the dependence of the significance as a function of the luminosity
for a VLL mass of 200 GeV. In particular, we see that by the end of the LHC program,
i.e. L = 3000 fb−1, a combined significance of σC = 3.78σ can be achieved, for the Z(< 1%)
metric. Alternatively, if the standard s

√
s+ b measure is considered, a σC = 2.56σ anomaly

could be observed. In either scenario, we argue that, if a new generation of colliders that
will succeed the LHC remains decades away from the beginning of operations, such an
anomaly (or any other excess) may justify a continuation of the high-luminosity runs.

As an example, we show in all panels of figure 8 the continuation of the significance
curves for higher luminosities choosing L = 6000 fb−1 and L = 9000 fb−1 as merely
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Mass of VLL s/
√
s+ b Z(< 1%) ZA

ZA VBF VLBSM σC ZA VBF VLBSM σC ZA VBF VLBSM σC
200GeV 0.70 0.73 1.13 2.56 0.99 1.03 1.76 3.78 0.02 0.011 0.0022 0.033
300GeV 0.37 0.38 0.59 1.34 0.57 0.54 0.91 2.02 0.018 3.08× 10−5 0.0012 0.019
400GeV 0.25 0.23 0.38 0.86 0.36 0.32 0.55 1.23 0.0086 0.0077 0.0022 0.019
500GeV 0.19 0.15 0.30 0.64 0.30 0.21 0.43 0.94 0.0079 0.0037 0.0020 0.014
600GeV 0.15 0.13 0.19 0.47 0.20 0.15 0.32 0.67 0.00023 0.0022 0.0013 0.0037
700GeV 0.0024 0.069 0.095 0.17 0.091 0.098 0.11 0.30 5.40× 10−5 0.0015 0.0016 0.0032
800GeV 0.0020 3.8849× 10−6 0.055 0.057 0.0034 0.071 0.077 0.15 2.78× 10−5 2.20× 10−5 0.0015 0.0015

Table 6. Signal significance for the lightest VLL. The computation follows an evolutive algorithm
that maximizes the Asimov significance metric. All significances are computed for L = 3000 fb−1

with centre-of-mass energy of
√
s = 14TeV. σC is the combined significance as defined in (5.4).

Mass of VLL s/
√
s+ b Z(< 1%) ZA

ZA VBF VLBSM σC ZA VBF VLBSM σC ZA VBF VLBSM σC
200GeV 1.22 1.26 1.95 4.43 1.71 1.79 3.04 6.54 0.034 0.016 0.0032 0.053
300GeV 0.63 0.66 1.03 2.32 0.99 0.93 1.57 3.49 0.030 3.73× 10−5 0.0025 0.033
400GeV 0.44 0.39 0.65 1.48 0.62 0.56 0.95 2.13 0.015 0.013 0.0036 0.032
500GeV 0.34 0.25 0.52 1.11 0.35 0.36 0.52 1.13 0.0079 0.0065 0.0035 0.0179
600GeV 0.23 0.20 0.33 0.76 0.23 0.29 0.40 0.92 0.0039 0.0064 0.0037 0.014
700GeV 0.10 0.12 0.20 0.42 0.13 0.17 0.23 0.53 0.00027 0.0026 0.0030 0.00587
800GeV 0.08 6.73× 10−6 0.095 0.18 0.07 0.12 0.13 0.32 0.00015 3.72× 10−5 0.0028 0.0030

Table 7. Signal significance for the lightest VLL. The computation follows an evolutive algorithm
that maximizes the Asimov significance metric. All significances are computed for L = 9000 fb−1

with centre-of-mass energy of
√
s = 14TeV. σC is the combined significance as defined in (5.4).

Mass of VLL s/
√
s+ b Z(< 1%) ZA

ZA VBF VLBSM σC ZA VBF VLBSM σC ZA VBF VLBSM σC
500GeV,

√
s = 28TeV 0.49 0.35 0.36 1.20 0.70 0.50 0.72 1.92 0.032 0.022 0.0022 0.0562

500GeV,
√
s = 14TeV 0.19 0.15 0.30 0.86 0.36 0.32 0.55 1.23 0.0086 0.0077 0.0022 0.019

Table 8. Signal significance for the lightest VLL. The computation follows an evolutive algorithm
that maximizes the Asimov significance metric. All significances are computed for L = 3000 fb−1 for
a fixed mass mE2 = 500GeV. In the first row, computations are performed for the centre-of-mass
energy of

√
s = 28TeV, while the case of

√
s = 14TeV is in the second row. σC is the combined

significance as defined in (5.4).

indicative values. In particular, we see that a signal confirmation or exclusion would be
realizable with σC = 6.54σ for the Z(< 1%) metric, at L = 9000 fb−1, and σC = 5.34σ at
L = 6000 fb−1. Note that we use dashed lines in the continuation of the significance curves
for the region beyond L = 3000 fb−1 to indicate that such a regime is beyond the planned
LHC operation program.

To further complement our analysis, we also perform a scan for different VLL masses,
summarizing our results in table 6 for 3000 fb−1 of integrated luminosity. For completeness,
in particular, in order to understand how much we would gain in prolonging the LHC
high-luminosity runs, we show in table 7 the same results but for an integrated luminosity
of 9000 fb−1.

First, in table 6 we obtain significances of the order of 2σ up until a mass of 300GeV,
whereas, in table 7, the same significance would be achieved for a mass of 400GeV. It is
also interesting to observe what would be the effect of a collider at a higher centre-of-mass
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Figure 9. Statistical significance as a function of the integrated luminosity for the three statistical
metrics under consideration. We fix the lightest VLQ mass as mT = 2.2 TeV. The green curve
represents the Z(< 1%) metric, the red curve indicates the s/

√
s+ b one while the blue curve shows

our results for the Asimov significance ZA.

energy. For this scenario, we focus our attention at a particular point, mE2 = 500GeV and
a centre-of-mass energy

√
s = 28TeV. The results are shown in table 8. As expected, the

discovery significance increases with the centre-of-mass energy. For example, combined
significance of the s/

√
s+ b metric increases by a factor of 1.4. Similarly, the other metrics

also showcase improvements with an increase by factors of 1.6 and 0.3 for the Z(< 1%)
and ZA metrics, respectively. We also note that, for the s/

√
s+ b and ZA measures of the

VLBSM topology, small variations in statistical significances are obtained, with ZA seeing
no deviation. These small fluctuations might be associated with the stochastic nature of
the tested NNs.

A similar analysis was performed for VLQ searches pair produced via gluon-gluon
fusion. In figure 16 of appendix D we show the significance in terms of the NN score where
it a massive significance increase is immediately noticeable in comparison to the VLL case.
This is mostly due to a far superior cross-section which, for L = 3000 fb−1, promptly results
in a large Asimov significance, i.e. ZA = 257.53σ, as well as equally large values for the
other two metrics, s/

√
s+ b = 121.71σ and Z(< 1%) = 275.76σ. As we show in figure 9,

the statistical significance for the VLQ searches is such that we can probe a large range
of masses from 2.2 TeV up to about 4.0 TeV. The corresponding numerical results can be
found in table 9. From this, we note that for a high-luminosity run, L = 3000 fb−1, one can
exclude, or claim a discovery, by over 5 standard deviations, of VLQ masses up to 3.8 TeV.
More interestingly, the VLQ sector of the model under consideration, can already be probed
at the forthcoming LHC Run-III, L = 300 fb−1, for VLQ masses of around 3.4 TeV.

It is relevant to mention that the obtained significance at low luminosity, in particular,
for Run-II data, may naively suggest that all such scenarios are excluded. However, one must
note that direct searches at the LHC are mostly focused in VLQ decays to third generation
quarks, so far not considering channels with light jets and di-leptons as we propose in this
article, making a comparison of our results with available data not suitable. With this in
mind, the key point of our analysis relies on the fact that the process in figure 5 results in a
cross-section significantly larger than that of the corresponding irreducible backgrounds,
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Mass of VLQ 300 fb−1 1000 fb−1 3000 fb−1

s/
√
s+ b Z(< 1%) ZA s/

√
s+ b Z(< 1%) ZA s/

√
s+ b Z(< 1%) ZA

2.2TeV 38.49 87.19 87.91 70.27 159.51 155.98 121.71 275.76 257.53
2.4TeV 31.22 67.13 67.96 57.00 122.70 121.85 98.73 212.29 202.30
2.6TeV 24.94 50.01 49.84 45.53 91.34 89.28 78.87 158.17 147.40
2.8TeV 19.51 36.10 35.94 35.62 65.92 64.62 61.70 114.16 107.57
3.0TeV 14.97 25.33 25.22 27.33 27.33 45.48 47.34 80.10 76.23
3.2TeV 11.22 17.28 17.21 20.49 31.55 31.11 35.49 54.65 52.42
3.4TeV 8.16 11.43 11.39 14.89 20.87 20.62 25.79 36.15 34.88
3.6TeV 4.51 4.91 4.98 8.52 8.10 9.11 16.32 17.10 15.43
3.8TeV 1.20 3.25 2.93 3.00 7.11 5.02 6.01 8.13 10.05
4.0TeV 0.44 0.66 0.47 1.01 1.33 1.28 2.20 2.51 1.91

Table 9. Signal significance for the lightest VLQ-pair production. The computation follows a
genetic algorithm that maximizes the Asimov significance metric. All significances are computed for
proton-proton collisions at the centre-of-mass energy of

√
s = 14TeV.

MVLQ = 2.2 TeV 5% 10% 20% 40% 80% 96%
sys : 1% 58.39σ 56.32σ 52.02σ 42.74σ 19.33σ 5.21σ
sys : 10% 43.14σ 41.80σ 39.00σ 32.83σ 16.13σ 4.70σ

Table 10. Asimov significance, ZA, for VLQ pair-production. The last six columns show the
Asimov significance assuming a suppression of 5% to 96% in the signal cross section coming from
unaccounted effects. In the first row a systematic uncertainty in ZA of 1% is considered, whereas in
the second row we assume a systematic uncertainty of 10%. We consider an integrated luminosity of
L = 139 fb−1 corresponding the acquired data after the LHC Run-II.

thus yielding a large significance for this particular channel. In fact, the evolutive algorithm
employed in this work was engineered to find Neural Network models that further enhance
such a discovery (or exclusion) significance. Since the architectures obtained with this
methodology can easily find regions on the feature phase space, in our case the kinematic
and angular observables described in tables 3 and 5, the separation between signal and
background can be maximized as it is shown in figure 16(a). For completeness of information
we show in table 10 how the significance drops with a decreasing cross-section and with
increasing systematic uncertainties. While our calculation has already been subject to
detector effects with Delphes as well as to systematic uncertainties in the definition of the
Asimov metric, one can take a conservative approach and consider that further unaccounted
effects can impose a larger suppression in the cross-section than the one obtained from the
Delphes output. It is remarkable to note that even for a suppression factor of 96%, a 2.2 TeV
VLQ can still be probed with a statistical significance of o 5.21σ with current LHC Run-II
data. If we further increase the systematic uncertainties up to 10%, we obtain a worst case
scenario lower bound on the discovery (or exclusion) significance of 4.7 standard deviations.
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6 Conclusions

In this paper, we have proposed a novel model where the SM gauge symmetry is enlarged by
the Q6×Z2 discrete group. Within this framework, new exotic VLFs are emergent, both of
quark and lepton types, as well as RH Majorana neutrinos. Furthermore, the scalar sector is
enlarged by the inclusion of a new doublet and singlet scalar fields. We show that tree-level
masses for third-generation fermions (top and tau) due to interactions with doublet scalars
(H1 and H2) are generated after the spontaneous breaking of the electroweak gauge and
the flavour Q6 × Z2 symmetries. The remaining SM charged fermions gain their masses
via a Universal seesaw mechanism mediated by VLFs. The tiny masses of the light active
neutrinos arise from a tree-level type I seesaw mechanism mediated by heavy right handed
Majorana neutrinos.

Due to sizeable couplings between the exotic VLL and the new scalar fields, contributions
to the anomalous magnetic moment of the muon are generated. For certain benchmark
scenarios for the couplings, we demonstrate that the model can successfully accommodate
the measured muon (g − 2) anomaly. More specifically, considering the two benchmark
scenarios yE = yE2 = 0.2 and yE = yE2 = 0.3 we can explain the observed muon (g − 2)
anomaly within 2σ error bars for masses of the E2 between 200GeV and 2TeV.

Phenomenological studies, in the context of collider physics at the LHC, are conducted
for both VLLs and their quark counterparts. For this purpose, we employ the genetic
algorithms to optimize the construction of neural networks, whose objective is to maximise
the statistical significance of an hypothetical discovery of these particles at future experi-
ments. For VLLs, we consider double production channels, either via production of a Z0

boson or virtual photon, or via vector-boson fusion. We also consider the channel for single
production. Using kinematic information of the final states, we determine that we can
not exclude VLLs with more than five standard deviations for masses above 200 GeV, at
the high-luminosity phase of the LHC, L = 3000 fb−1. Assuming a hypothetical extension
towards L = 9000 fb−1, one can exclude the lightest VLL with masses up to approximately
200 GeV. We also determine the impact from the increasing center-of-mass energy at future
colliders. For a mass of mE2 = 500GeV, we show that the combined significance improves
when moving from

√
s = 14TeV to

√
s = 28TeV. Specifically, the significance increases

from 0.86σ to 1.20σ for s
√
s+ b, 1.23σ to 1.92σ for Z(< 1%) and 0.0562σ to 0.019σ for ZA.

A similar analysis is made for VLQs, focusing on double production via strong-interaction
channels, which is characterized by four leptons and two light jets in the final states. We
found that VLQ masses up to 3.8 TeV can be excluded at a luminosity of L = 3000 fb−1 and
up to 3.4 TeV for L = 300 fb−1. To the best of our knowledge, the VLQ production channel
proposed in this article has so far not been adopted in direct searches by experimental
collaborations and must be considered both with currently available as well as with future
data to be collected in forthcoming LHC runs.
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A Q6 multiplication rules

The Q6 group contains 12 elements, ambn, with m = 0, 1, 2, 3, 4, 5 and n = 0, 1, where
the group generators a and b satisfy a6 = e, b2 = a3 and b−1ab = a−1. This discrete
group has four 1-dimensional irreducible representations, 1++, 1+−, 1−+, and 1−−, and
two 2-dimensional, 21 and 22. The representation matrices of a and b for each irreducible
representation are given by,

1++ : a = 1 b = 1
1−− : a = 1 b = −1
1+− : a = −1 b = −i
1−+ : a = −1 b = i

21 : a =
(
α 0
0 α−1

)
b =

(
0 i

i 0

)

22 : a =
(
α2 0
0 α−2

)
b =

(
0 1
1 0

)
(A.1)

with α = exp
{
i2π

6

}
. The tensor products for the Q6 representations are given by(

a

b

)
22

⊗
(
c

d

)
21

= (ac− bd)1+−
⊕ (ac+ bd)1−+

⊕
(
ad

bc

)
21

, (A.2)(
a

b

)
2k

⊗
(
c

d

)
2k

= (ad− bc)1++
⊕ (ad+ bc)1−− ⊕

(
ac

−bd

)
2k′

, (A.3)
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for k, k′ = 1, 2 and k′ 6= k,

(w)1++
⊗
(
a

b

)
2k

=
(
wa

wb

)
2k

, (w)1−− ⊗
(
a

b

)
2k

=
(
wa

−wb

)
2k

,

(w)1+−
⊗
(
a

b

)
2k

=
(
wb

wa

)
2k

, (w)1−+
⊗
(
a

b

)
2k

=
(

wb

−wa

)
2k

, (A.4)

1s1s2 ⊗ 1s′1s′2 = 1s′′1 s′′2 , (A.5)

where s1,2 ∈ {+,−}, s′′1 = s1s
′
1 and s′′2 = s2s

′
2.

The invariant Lagrangian of the theory is constructed with the use of eqs. (A.1)–(A.5).
To give an example of the field transformation under Q6, we take the yT term in eq. (2.2)
where

QLD ∼ 22 ∼
(
QL1

QL2

)
TR ∼ 21 ∼

(
TR1

TR2

)
H1 ∼ 1+− (A.6)

The generators a and b act in these fields as follows,

a : QLD → aQLD =
(
α2QL1

α−2QL2

)
, TR → aTR =

(
αTR1

α−1TR2

)
, and H̃1 → aH1 = −H̃1

(A.7)
where α3 = α−3 − 1 and

b : QLD → bQLD =
(
QL2

QL1

)
, TR → bTR = i

(
TR2

TR1

)
and H̃1 → bH̃1 = iH̃1 (A.8)

Therefore, the term yT invariant under the SM gauge group and Q6 × Z2 is formed
with the tensor product between the representation 1+− = (QL1TR1 −QL2TR2) ⊃ 22 ⊗ 21
and 1+− ∼ H̃1, i.e. QL1TR1H̃1 −QL2TR2H̃1 as in eq. (2.6). This term is invariant under a
and b transformations,

a :
(
QL1TR1H̃1−QL2TR2H̃1

)
→ (α2QL1)(αTR1)(−H̃1)−(α−2QL2)(α−1TR2)(−H̃1) (A.9)

b :
(
QL1TR1H̃1−QL2TR2H̃1

)
→ (QL2)(iTR2)(iH̃1)−(QL1)(iTR1)(iH̃1) (A.10)

B χ2-fit in the quark sector

In order to find the best fit point that successfully reproduces the SM quark masses and
CKM parameters, we proceed to minimize the following χ2 function:

χ2 =
∑
f

(mth
f −m

exp
f )2

σ2
f

+ (|Vth
12| − |V

exp
12 |)2

σ2
12

+ (|Vth
23| − |V

exp
23 |)2

σ2
23

+ (|Vth
13| − |V

exp
13 |)2

σ2
13

+
(J th
q − Jexp

q )2

σ2
J

, (B.1)
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where f = u, c, t, d, s, b and Jq is the Jarlskog parameter. The experimental values for the
quark masses are given by [60],

mexp
u (MZ) = 1.24± 0.22 MeV ,

mexp
c (MZ) = 0.626± 0.020 GeV ,

mexp
t (MZ) = 172.9± 0.04 GeV ,

mexp
d (MZ) = 2.69± 0.19 MeV ,

mexp
s (MZ) = 53.5± 4.6 MeV ,

mexp
b (MZ) = 2.86± 0.03 GeV ,

(B.2)

and CKM parameters are [58]

|Vexp
12 | = 0.22452± 0.00044 , |Vexp

23 | = 0.04214± 0.00076 , |Vexp
13 | = 0.00365± 0.00012 ,

Jexp
q = (3.18± 0.15)× 10−5 .

(B.3)

The parameters in the quark sector are varied considering real up-type quark Yukawa
couplings while the down-type ones are taken as complex. Under this assumption, we find
that the minimization of the χ2 function yields the following quark mass matrices:

MU =


0 0 0 13.2667 0
0 0 0 0 −13.2667
0 0 210.385 0 0

88.4086 0 −217.233 −847345. −314.094
0 −88.4086 −1358.2 314.094 −1932.57

GeV (B.4)

MD =


0 0 0 1.97436 +1.22717i 0
0 0 0 0 −1.97436−1.22717i
0 0 2.8349 0 0

−7.81061+35.4833i 0 −98.684+14.9212i 18807.−19287.6i 4650.77−4769.62i
0 7.81061−35.4833i 29.0364−6.86904i −4650.77+4769.62i 183.845−188.543i


It is important to mention that this solution is not unique. Therefore, given the large
amount of free parameters, there are many more viable solutions that provide consistent
values for the SM quark masses and CKM parameters and that give rise to same values of
vector like quark masses used in our benchmark scenario. Furthermore, let us note that the
lepton sector observables are easily fit using a similar procedure to the one described in
this section.
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C Kinematic and angular distributions for the VLLs and VLQs
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Kinematic and angular variables for VLQ pair-production with the ATLAS detector

Figure 10. Set of angular and kinematic observables for VLQ pair-production with a mass mT1 =
2.2TeV. All histograms are normalized, with each having 30 bins. Signal distributions are filled and
shown in red, while background distributions are unfilled and shown in blue (pp→ e+e−µ+µ−j1j2)
and green (tt̄Z). From top-left to bottom-right, we have ∆φ angles for final states combinations
(e+, µ−), (e+, j1), (µ+, j1) and (µ−, j2); ∆R distributions for the final states combinations (e−, j2),
(e+, j2), (µ+, j2) and (µ−, j1); distributions of the cosine of the angle within the pair of states
(e−, j2), (e+, j1), (e−, µ−), (µ−, j2) and (j1, j2); distributions for the cosine of the angle ∆Φ1 and
∆Φ2; pseudo-rapidity for e−, e+, µ− and µ+; transverse momentum for e−, e+, µ−, µ+ and invariant
mass distributions for the combinations (µ+, µ−, j1), (µ+, µ−, j2), (e+, e−, j1) and (e+, e−, j2).
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Figure 11. Set of angular and kinematic observables for VLL pair-production via the VBF topology
with a mass mE2 = 200GeV. All histograms are normalized, with each having 30 bins. Signal
distributions are filled and shown in red, while background distributions are unfilled and shown in
blue (W+W−) and green (tt̄+ (j, jj)). From top-left to bottom-right, we have ∆R distributions for
final states combinations (e−, ν) and (µ+, ν); distributions for cosine of angle ∆Φ and ∆Θ in the
laboratory and E2Ē2 centre-of-mass frames; distributions of the cosine of the angle between the
pairs of particles (ν, e−), ν, µ+ and W+W−; pseudo-rapidity for the particles e−, E2, Ē2, µ+, W+

and W−; mass distributions for E2 and Ē2; MET; transverse mass distributions for W+ and W−
and transverse momentum distributions for e−, E2, Ē2, µ+, W+ and W−.
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Kinematic and angular variables for VLL ZA pair-production with the ATLAS detector

Figure 12. Set of angular and kinematic observables for VLL pair-production via the ZA topology
with a mass mE2 = 200GeV. All histograms are normalized, with each having 30 bins. Signal
distributions are filled and shown in red, while background distributions are unfilled and shown in
blue (tt̄−), green (W+W−), yellow (tt̄+Z(``)) and pink (tt̄+Z(ν̄`ν`)). From top-left to bottom-right,
we have ∆R distributions for final states combinations (e−, ν) and (µ+, ν); distributions for cosine of
angle ∆Φ and ∆Θ in the laboratory and E2Ē2 centre-of-mass frames; distributions of the cosine of
the angle between the pairs of particles (ν, e−), ν, µ+ and W+W−; pseudo-rapidity for the particles
e−, E2, Ē2, µ+, W+ andW−; mass distributions for E2 and Ē2; MET; transverse mass distributions
for W+ and W− and transverse momentum distributions for e−, E2, Ē2, µ+, W+ and W−.
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Kinematic and angular variables for VLL single-production with the ATLAS detector

Figure 13. Set of angular and kinematic observables for VLL single-production via the VLBSM
topology with a mass mE2 = 200GeV. All histograms are normalized, with each having 30 bins.
Signal distributions are filled and shown in red, while background distributions are unfilled and
shown in blue (pp → e−ν̄e) and green (pp → e−ν̄e + (j, jj)). From top-left to bottom-right, we
have distributions for cosine of the angle for particles e− and W−; pseudo-rapidity for e− and W−;
MET; transverse mass of the W− boson, azimuthal angle for e− and transverse momentum for e−
and W−.
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Boosted kinematic and angular variables for VLL pair-production with the ATLAS detector

Figure 14. Set of angular and kinematic observables for VLL double-production for both VBF and
ZA topologies with a mass mE2 = 200GeV. All histograms are normalized, with each having 30 bins.
VBF channel corresponds to the plots where only two backgrounds are present, whereas ZA plots
show four backgrounds. From top-left to bottom-right, for both signals, we have pseudo-rapidity
distributions for Ē2, E2, e− and µ+ and transverse momentum distributions for E2, Ē2, e− and µ+.
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D Deep Learning significance plots

In this appendix, plots of the statistical significance as a function of the cut on the classifier
score are presented, for both a VLL with mass 200GeV (for every topology studied in this
paper) and for a 2.2TeV VLQ. The values for the cut on the classifier score are assigned by
the NN architecture. Such values are real numbers (often referred to as decision boundary
or decision surface) and can be interpreted as a continuous label that identifies whether a
set of features (kinematic and angular observables) is classified as signal or as background.
As an example, in figure 16(a), the values for the classifier score around ∼ 0.56 to ∼ 0.61
correspond to the region where the significance is maximized, i.e., where the NN has found a
maximal number of signal events for a non-zero background. Notice that from the definition
of the Asimov significance in eq. (4.1), for a region with zero background ZA would diverge
and therefore is not considered in our analysis. On the other hand, for scores above 0.61 the
number of background events increases and the statistical significance quickly drops to zero.

E Relevant Feynman rules for the collider analysis

For the diagrams that we have included in this appendix, we have defined θW as the
Weinberg angle, Uu, U e and Uν are up-quark, charged lepton and neutrino mixing matrices,
respectively, g2 the SU(2) coupling constant, g1 the U(1) gauge coupling constant and γµ/γ5
are Dirac gamma matrices. δαβ is a Kronecker delta in color space and δij is a Kronecker
delta in generation space.

ūiα

ujβ

γµ

ūiα

ujβ

Zµ

The Feynman rule for the quark-antiquark-photon interactions has the form:

− i

6δαβ
(
Uu,∗L,j1

(
3g2 sin θW + g1 cos θW

)
UuL,i1 + Uu,∗L,j2

(
3g2 sin θW + g1 cos θW

)
UuL,i2

+ g1U
u,∗
L,j3 cos θWUuL,i3 + 3g2U

u,∗
L,j3 sin θWUuL,i3 + 4g1U

u,∗
L,j4 cos θWUuL,i4

+ 4g1U
u,∗
L,j5 cos θWUuL,i5

)(
γµ ·

1− γ5
2

)
− 2i

3 g1 cos θW δαβδij
(
γµ ·

1 + γ5
2

)
, (E.1)

whereas the Z-boson quark-antiquark interaction is written as

− i6δαβ
(
Uu,∗L,j1

(
3g2 cosθW−g1 sinθW

)
UuL,i1+Uu,∗L,j2

(
3g2 cosθW−g1 sinθW

)
UuL,i2

+3g2U
u,∗
L,j3 cosθWUuL,i3−g1U

u,∗
L,j3 sinθWUuL,i3−4g1U

u,∗
L,j4 sinθWUuL,i4

−4g1U
u,∗
L,j5 sinθWUuL,i5

)(
γµ ·

1−γ5
2

)
+ 2i

3 g1δαβ sinθW δij
(
γµ ·

1+γ5
2

)
. (E.2)
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Figure 15. Statistical significance as a function of the classifier score given by NN for each signal
graph, assuming the lightest VLL with mass mE2 = 200 GeV and a luminosity L = 3000 fb−1.
All showcased plots are representative of the best NN found, following a genetic algorithm that
maximizes the Asimov significance. For plots (a), (d) and (g) we present the Asimov significance,
with 1% systematics, for (b), (c) and (h) — the standard significance s/

√
s+ b and for (c), (f) and (i)

— the adapted Asimov significance, where it is assumed that backgrounds are known with error 10−3.

From the expressions given above, using the unitarity of the UuL matrix and taking into
account that UuL,jn . 10−3 (n = 4, 3), (see eq. (5.3)), it follows that the above given flavor
violating photon interaction is strongly suppressed. Furthermore, it is worth mentioning
that there is also a quark flavor violating Z boson interaction, however its corresponding
amplitude is suppressed by the same unitarity arguments and that amplitude is lower than
the one corresponding to the photon by a factor of ∼ tan θW . Because of this reason we do
not show in figure 5 the subleading contribution arising from Z violating quark interaction
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(a) (b) (c)

Figure 16. Statistical significance as a function of the classifier score given by NN for each signal
graph, assuming the lightest VLQ with mass mT1 = 2.2 TeV and a luminosity L = 3000 fb−1.
All showcased plots are representative of the best NN found, following an genetic algorithm that
maximizes the Asimov significance. For (a) we present the Asimov significance, with 1% systematics,
for (b) — the standard significance s/

√
s+ b and for (c) — the adapted Asimov significance, where

it is assumed that backgrounds are known with error 10−3.

to the VLQ pair-production via gluon fusion mechanism.

ēi

νj

W−
µ

− i 1√
2
g2

3∑
a=1

U∗ν,jaU
e
L,ia

(
γµ ·

1− γ5
2

)
(E.3)
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