

This is the **accepted version** of the journal article:

Guimerà, Xavier; Mora Garrido, Mabel; Dorado, Antonio David; [et al.]. «Optimization of SO2 and NOx sequential wet absorption in a two-stage bioscrubber for elemental sulphur valorisation». Environmental Science and Pollution Research, Vol. 28, Issue 19 (May 2021), p. 24605-24617. DOI 10.1007/s11356-020-09607-1

This version is available at https://ddd.uab.cat/record/266907 under the terms of the $\bigcirc^{\mbox{\footnotesize IN}}$ license

1 Optimization of SO2 and NOx sequential wet absorption in a two-stage

2 bioscrubber for elemental sulphur valorisation

- 3 Xavier Guimerà^{a*}, Mabel Mora^b, Antonio David Dorado^a, Anna Bonsfills^a, David
- 4 Gabriel^b, Xavier Gamisans^a

5

11

- ^aDepartment of Mining Industrial and ICT Engineering, Universitat Politècnica de
- 7 Catalunya, Avinguda de les Bases de Manresa 61-73, 08240 Manresa, Spain.
- 8 bGENOCOV Research Group. Department of Chemical, Biological and
- 9 Environmental Engineering. Universitat Autònoma de Barcelona. Edifici Q. 08193
- 10 Bellaterra, Barcelona, Spain.
 - *Corresponding autor: Xavier Guimerà (xavier.guimera@upc.edu)

12 **ABSTRACT**

13 Flue gases contain SO₂ and NO_x that can be treated together for elemental sulfur 14 recovery in bioscrubbers, a technology that couples physical-chemical and biological 15 processes for gaseous emissions treatment in a more economic manner than classical 16 absorption. Sequential wet-absorption of SO₂ and NO_x from flue gas is thoroughly studied 17 in this work in a two-stage bioscrubber towards elemental sulphur valorisation pursuing 18 reuse of biological process effluents as absorbents. The optimal operating conditions 19 required for SO₂ and NO_x absorption in two consecutive spray-absorbers were defined 20 using NaOH-based absorbents. Overall, removal efficiencies of 98.9 and 55.9% for SO₂ and NO_x abatement were obtained in two in-series scrubbers operated under a gas contact 21 22 time of 1 and 100 s, and a liquid-to-gas ratio of 7.5 and 15 L·m⁻³, respectively. Higher 23 NO_x removal efficiency to clean gas emission was obtained by oxidants dosing in the 24 absorber for NO_x absorption. High NaHCO₃ concentration in two-stage bioscrubber 25 effluent was exploited as alkaline absorbent for flue gas treatment. The performance of 26 scrubbers using an absorbent mimicking a reused effluent exhibited same removal 27 efficiencies than those observed using NaOH solutions. In addition, the reuse of 28 bioprocess effluent reduced reagents consumption by a 63.7%. Thus, the two-stage 29 bioscrubber proposed herein offers an environmentally friendly and economic alternative 30 for flue gas treatment.

KEYWORDS

31

34

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

32

1. INTRODUCTION

35 Combustion processes give rise to one of the main air pollution sources from the 36 release of harmful chemicals such as CO₂, SO₂ and NO_x to the atmosphere (Liu et al. 37 2010; Sun et al. 2016). Depending on the fuel and the characteristics of the combustion 38 facilities, concentrations of SO₂ and NO_x in off-gases range typically between 200 and 39 4000 ppm_v, (Shen and Ayer 1975; Hu et al. 2000; Zevenhoven and Kilpinen 2001) and 40 200 and 1500 ppm_v (Chen et al. 2007; Winnes and Fridell 2010; Tian et al. 2012), 41 respectively, which significantly exceeds the levels required by the global regulations. 42 Hence, reduction of flue gas emissions is in the public administration and industrial sector 43 agenda and their treatment has become critical to avoid health and welfare problems both 44 for living organisms and ecosystems (Ağar et al. 2000; Bai and Meng 2005; Kan et al. 45 2010; Altuğ et al. 2013; Mathieu et al. 2013).

Several technologies have been developed to remove SO₂ and NO_x from off-gases in combustion processes. Wet and dry absorption processes are the traditional physicalchemical desulphurization processes (Majeed et al. 1995; Wang et al. 2012), since SO₂ presents a high solubility in aqueous solutions (11.29 g SO₂·100 g⁻¹ H₂O (Perry and Green 1997)). On the other hand, NO_x removal by scrubbing mechanisms is quite challenging because NO, which is the major component of NO_x comprising the 90-95% of the entire emission (Adewuyi and Sakyi 2013), is sparingly soluble in aqueous solutions (0.00618 g NO·100 g⁻¹ H₂O (Perry and Green 1997)). For this reason, advanced treatment technologies, such as selective catalytic reduction were developed for flue gas denitrification (Zhu et al. 2004; Jin et al. 2005; Liu et al. 2010; Ding et al. 2014; Sun et al. 2016). High removal efficiencies can be obtained for flue gas desulfurization and denitrification combining these technologies (Adewuyi and Sakyi 2013; Ding et al. 2014; Hao et al. 2017). However, the treatment of both acid gases through absorption and catalytic technologies requires a high consumption of alkalis (Karatepe 2000) and catalysts (Sun et al. 2016), which increases recurring operating costs and generates large amounts of waste. Therefore, the development of novel low-cost, sustainable technologies is essential. For this reason, flue gas treatment has been recently addressed using biological techniques such as bioscrubbers (Lens et al. 2003; Lin et al. 2015; Sun et al. 2018) and biotrickling filters (Philip and Deshusses 2003). Compared to physical-chemical technologies, biological alternatives for flue gas treatment (bio-FGD) allowed the recovery of pollutants as an innocuous or even a valuable product (Ottengraf and Diks 1992; An et al. 2010).

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

To this aim, a promising bioscrubbing process is presented herein to valorise pollutants such as SO₂ contained in flue gases as elemental sulfur. This novel bio-FGD alternative is based on the sequential absorption of SO₂ and NO_x from flue gas in two consecutive scrubbers, coupled to the biological treatment of sulphate/sulphite and nitrate/nitrite contained in scrubbing liquors (Philip and Deshusses 2003; Wang et al. 2013; Sun et al. 2018). Biological treatment of the resulting sulphate/sulphite rich-streams is performed through a two-steps bioprocess consisting of sulphate/sulphite biological reduction to H₂S followed by its partial oxidation to elemental sulphur under anoxic conditions using nitrate/nitrite rich-stream as electron acceptor. The biological reduction of sulphate, which is catalysed by sulphate reducing bacteria, has been studied over the past two decades and have been developed using a different organics as carbon source (Rao et al. 2007; Mora et al. 2018) or an electron donor such as H₂ (Van Houten et al. 1997; Lens et al. 2003), and under a wide range of operating conditions. In addition, some alternatives have coupled SO₂ and NO_x abatement from flue gases using absorbed NO_x as electron acceptor for autotrophic sulphide oxidation (Lee and Sublette 1991; Qian et al. 2015). However, bio-FGD technologies still presents important limitations, mainly the large consumption of alkali for SO₂ absorption (Lens et al. 2003), but also the use of expensive carbon sources for sulphate reduction (glucose, VFA or alcohols), low NO_x removal due to low NO solubility in water solutions (Adewuyi and Sakyi 2013) and reduced removal efficiencies when treating SO₂ loads above 0.6 kg S·m⁻³·d⁻¹ (Wang et al. 2013; Lin et al. 2015).

Recently, crude glycerol has been proposed as a competitive substrate to reduce high loads of sulphate to H₂S (Mora et al. 2018). Crude glycerol is an organic waste produced during biodiesel production, having the potential to improve the biological treatment of flue gas scrubbing effluents. Fernández-Palacios et al. (2019) demonstrated that glycerol can be successfully used for the long-term operation of a sulphidogenic, uplow anaerobic sludge blanket (UASB) reactor, treating high sulphate loads (4.3 kg S·m⁻³·d⁻¹). The operation of this reactor was included in a potential alternative process to recover elemental sulphur from flue gases called two-stage bioscrubber and consisting on a three

stages process: (1) SO₂ and NO_x sequential absorption, (2) sulphate reduction in the UASB and (3) aerobic or anoxic sulphide oxidation in a continuous stirred tank reactor (CSTR).

The sequential absorption of SO_2 and NO_x in two-stage bioscrubber is essential to ensure optimal characteristics of bioreactor influents. To this aim, optimal conditions required for the selective absorption of SO_2 and NOx in two consecutive spray-absorbers have been studied in this work. In addition, the reduction of reagents consumption in the absorption unit has been assessed studying the alkaline character of the effluent of a biological process for biosulfur recovery and its performance as specific absorbent for flue gas treatment. The optimization of flue gas depuration was completed studying oxidative reagents dosing in absorbents to increase NO oxidation and thus, overall NOx removal efficiency.

2. EXPERIMENTAL METHODS

2.1.Process chemistry

2.1.1. Mechanisms of SO_2 and NO_x absorption

Based on the sulphur dioxide absorption mechanism (Eq. 1 to 6), flue gas desulphurization through wet processes is generally performed using an alkaline solution as absorbent for chemical absorption.

Sulphur dioxide diffuses from the gas phase to the gas-liquid interphase and it is dissolved according to Henry's law (Eq. 1). In addition, a small amount of SO₂ can be dissociated following Eq. 2, a first order reaction with a reaction rate of 3.4·10⁶ s⁻¹ at 20°C (Chang and Rochelle 1981). The dissolved SO₂ reacts in the presence of hydroxide ions through the second order reaction presented in Eq. 3 with a rate constant exceeding 10° L·mol⁻¹·s⁻¹ at 25°C, while the generated hydrogen sulphite reacts instantaneously to sulphite with additional hydroxide through proton transfer reaction defined in Eq. 4. Caustic soda is usually used as absorbent since is a strong alkaline and thus a big a source of hydroxide ions. In this sense, caustic soda will provide a surplus of hydroxide ions in the aqueous phase and the overall reaction in the scrubber can be described according to Eq. 5. On the other hand, under low pH conditions, the reaction of sulphite with dissolved sulphur dioxide (Eq. 6) should be also considered.

$$SO_{2(q)} \leftrightarrow SO_{2(l)}$$
 (1)

$$SO_{2(l)} + H_2O \leftrightarrow HSO_{3(aq)}^- + H_{(aq)}^+$$
 (2)

$$SO_{2(l)} + OH^- \leftrightarrow HSO_{3(ag)}^-$$
 (3)

$$HSO_{3(aq)}^{-} + OH^{-} \leftrightarrow SO_{3(aq)}^{2-} + H_2O$$
 (4)

$$SO_{2(g)} + 2OH_{(aq)}^{-} \to SO_{3(aq)}^{2-} + H_2O_{(l)}$$
 (5)

$$SO_{2(q)} + SO_{3(q)}^{2-} \leftrightarrow 2HSO_{3(q)}^{-}$$
 (6)

- The wet-type processes can be implemented using other alkaline reagents such as calcium compounds (Sakai et al. 2002) or NaHCO₃/Na₂CO₃ solutions (Ebrahimi et al. 2003). The absorption of SO₂ into HCO₃-/CO₃²- solutions and concomitant CO₂ desorption is presented in Eq. 9. For this reason, it is important to also consider CO₂
- desorption is presented in Eq. 7. For this reason, it is important to also consider C
- hydrolysis both at pH below 8 (Eq. 7) and at pH above 10 (Eq. 8).

$$CO_{2(q)} + H_2O \leftrightarrow H_{(aq)}^+ + HCO_{3(aq)}^-$$
 (7)

$$CO_{2(q)} + OH_{(aq)}^- \leftrightarrow HCO_{3(aq)}^-$$
 (8)

$$SO_{2(l)} + HCO_{3(aq)}^{-} \to CO_{2(q)} + HSO_{3(aq)}^{-}$$
 (9)

134

- Gaseous NO_x is a complex mixture of nitrogen species of different oxidation states.
- Several reactions in gas phase can be considered in a NO_x mixture (Newman and Carta
- 137 1988; Suchak et al. 1990; Thomas and Vanderschuren 1997). Reactions of NO and NO₂
- in presence of oxygen are shown in Eq. 10-12, and include NO oxidation to NO₂ and the
- instantaneous production of nitrogen species such as N₂O₃ and N₂O₄.

$$2NO_{(g)} + O_{2(g)} \to 2NO_{2(g)} \tag{10}$$

$$NO_{(g)} + NO_{2(g)} \to N_2O_{3(g)}$$
 (11)

$$2NO_{2(g)} \to N_2O_{4(g)} \tag{12}$$

140

Absorption of NO_x into liquid phase takes place both from dissolution and reaction of the different species present in gas phase. The NO₂, N₂O₃ and N₂O₄ are soluble gases (Joshi et al. 1985) that are transferred to the liquid phase through instantaneous and irreversible reaction with water to form nitrous and nitric acids as follows:

$$2NO_{2(q)} + H_2O_{(l)} \to HNO_{2(aq)} + NO_{3(aq)}^- + H^+_{(aq)}$$
(13)

$$N_2 O_{3(g)} + H_2 O_{(l)} \to 2HNO_{2(aq)}$$
 (14)

$$N_2 O_{4(g)} + H_2 O_{(l)} \to HNO_{2(ag)} + NO_{3(ag)}^- + H^+_{(ag)}$$
 (15)

Nitrous oxide can also be generated from NO. Despite NO is sparingly insoluble and non-reactive with water, under low concentrations reacts with NO₂ (Joshi et al. 1985) forming nitrous acid (Eq. 16).

$$NO_{(g)} + NO_{2(g)} + H_2O_{(l)} \rightarrow 2HNO_{2(aq)}$$
 (16)

149

In aqueous solution and especially under high nitric acid concentrations, nitrous acid is very unstable and can be discomposed to NO (Eq. 17) that can be desorbed. In strong alkaline solutions HNO₂ decomposes through an instantaneous proton transfer reaction (Eq. 18) preventing NO release.

$$3HNO_{2(ag)} \rightarrow HNO_{3(ag)} + 2NO_{(g)} + H_2O_{(l)}$$
 (17)

$$HNO_{2(aq)} + OH^{-}_{(aq)} \rightarrow NO_{2(aq)}^{-} + H_2O_{(l)}$$
 (18)

154

155

156

157

158

159

160

161

2.1.2. Chemistry of NO oxidation

NO oxidation using oxidative reagents in the liquid phase takes place through heterogeneous reactions between gaseous NO and aqueous species. Although several reagents have been used for NO oxidation and absorption (Sun et al. 2016), the current study is only focused on few of them. In the present work, the NO oxidation through H₂O₂, NaClO, Na₂S₂O₇ and KMnO₄ solutions has been explored. Such oxidation reactions are presented in Eq. 19-24.

$$NO_{(g)} + 2H_2O_{2(l)} \rightarrow 2NO_{3(aa)}^- + H_2O_{(l)} + 2H_{(aq)}^+$$
 (19)

$$2NO_{(g)} + ClO_{(aq)}^{-} + H_2O_{(l)} \rightarrow 2NO_{2(aq)}^{-} + Cl_{(aq)}^{-} + 2H_{(aq)}^{+}$$
 (20)

$$NO_{(g)} + S_2 O_8^{2-}{}_{(ag)} + H_2 O_{(l)} \rightarrow NO_{2(g)} + 2SO_4^{2-}{}_{(ag)} + 2H^{+}{}_{(aq)}$$
 (21)

$$2NO_{(g)} + S_2 O_8^{2-}{}_{(aq)} + 2H_2 O_{(l)}$$

$$\rightarrow 2NO_{2(aq)}^{-} + 2SO_4^{2-}{}_{(aq)} + 4H^{+}{}_{(aq)}$$
(22)

$$2NO_{(g)} + 3S_2O_8^{2-}{}_{(aq)} + 4H_2O_{(l)}$$

$$\rightarrow 2NO_{3(aq)}^{-} + 6SO_4^{2-}{}_{(aq)} + 8H^{+}{}_{(aq)}$$
(23)

$$3NO_{(g)} + MnO_{4(aq)}^{-} + H_2O_{(l)} \rightarrow 3NO_{2(aq)}^{-} + MnO_{2(s)} + 2H^{+}_{(aq)}$$
 (24)

2.2. Two-stage bioscrubber concept

2.2.1. Integrated flue gas bioscrubbing process

The two-stage bioscrubber integrates in a single process the removal of SO₂ and NO_x from flue gases towards elemental sulphur valorisation. The conceptual process diagram of the two-stage bioscrubber is detailed in Figure 1a and consisted of an absorption unit, where sequential SO₂ and NO_x absorption is performed, and two biological reactors in series for the treatment of resulting scrubbing liquors. To this aim, two consecutive spray-scrubbers were designed and operated specifically for the absorption of SO₂ and NO_x, respectively, obtaining separately two streams rich in sulphate/sulphite and nitrite/nitrate. The first scrubber liquor is biologically treated in a heterotrophic UASB using crude glycerol as carbon source. The sulphite and sulphate fed to the reactor are reduced to sulphide, which is, in turn, oxidized to elemental sulphur in a consecutive CSTR operated under anoxic conditions using nitrite and nitrate from the second scrubber effluent. The biological sulphate reduction and the anoxic sulphide oxidation have been widely studied (Jiang et al. 2013; Qian et al. 2015) and optimal conditions are described in detail in Fernández-Palacios et al. (2019).

The absorption efficiency obtained for NO_x treatment is generally low due to the scarce solubility of NO in water. Nevertheless, the biological production of elemental sulphur is performed using nitrite or nitrate as electron acceptor. For this reason, spray scrubbing was also selected for NO_x abatement in order to obtain a nitrogen laden aqueous stream. The absorption stage was experimentally assessed herein through a lab-scale absorber.

2.2.2. Biosulphur recuperation

The technological feasibility of the biological process for biosulphur production consisting of the sequential UASB-CSTR experimental setup was demonstrated in Mora et al. (2020). The operation of the UASB reactor resulted in a sulphate removal efficiency of 68.1% treating high sulphate concentrations (1000 mg S L⁻¹) corresponding to a maximum elimination capacity of 9.3 kg S m⁻³ d⁻¹. The production of intermediate

compounds, such as organosulfur compounds, caused a decrease of elemental sulfur productivity. These results showed that the compertitiviness of the process can be improved enhancing the yield of sulphate reduction to sulfide.

Sulfide was not detected in CSTR effluent during elemental sulphur production. Besides, sulfate concentration in the effluent of the CSTR was similar than sulfate concentration in the influent which indicated the full capacity of the culture to oxidize partially sulfide to sulfur. These results confirmed the proper design of the CSTR aeration and fed. The implementation of a aeration/stirring control system based on redox potential measurement ensured sulfide limiting conditions and avoided the accumulation of dissolved sulfide in the CSTR and the consequent H₂S release. The operation of CSTR resulted in a sulfur productivity up to or 2.3 kg S m⁻³ d⁻¹. Results also showed that residual COD from the UASB outlet was partially adsorbed on on biosiulfur surface affecting its structure and composition.

Elemental sulphur recovery from the CSTR effluent still requires to be optimized. Nevertheless, a first approach showed that centrifugation is an effective biosulfur recovery. The centrifugation allowed the separation of biomass layer deposited on elemental sulfur. The obtained product exhibited a high purity (between 87.5% and 95%) and a humidity content of 46%. However, costs associated to this specific separation process are considerably high. For this reason, raw biosulphur sedimentation through the addition of chemical agents (coagulants and flocculants) was assessed as an economical alternative to centrifugation. Sedimentation was settled up through the addition of a commercial cationic coagulant (FL4820) obtaining a product with a sulfur purity of 74.3% and 64.4% of sedimented solids. Further optimization through tailor-made surfactants in to obtain higher biosulphur purity and solids recovery capacity.

Finally, dried biosulfur was obtained through a thermal treatment. From the thermogravimetric results drying conditions biosulphur oxidation and melting were established. Then the appropriate process to recover biosulfur from the CSTR was defined as a sequence of settling after coagulant addition and air drying at 100°C.

2.2.3. Experimental setup for flue gas absorption characterization

The schematic diagram of the spray-absorber used for the characterization of flue gas treatment is detailed in Figure 1b. Absorption was characterized separately for each pollutant generating synthetic gas by mixing metered amounts of SO₂/NO and air. The

spray tower was fabricated in polyvinyl chloride (PVC) and consisted of a gas-liquid contact section (5.9 cm of internal diameter and 30 cm high) and a liquid reservoir (11 cm of internal diameter and 20 cm height) with a working volume of 1800 mL. The absorbent is injected into the top of the column using a peristaltic pump (7554-94 L/S pump, Masterflex, USA) and is atomized in drops of 50-100 µm of diameter through a spray nozzle (490.403.1Y.CA, Lechler, Germany). The pH and the ionic conductivity were continuously measured at the reactor outlet using a multi-analyte probe (Multi 3420, WTW, Germany). The synthetic flue gas was prepared using mass flow controllers (EL-Flow Select, Bronkhorst, The Netherlands), and was fed counter-currently from the bottom of the gas-liquid contactor. Continuous monitoring of SO₂ or NO_x (as a mixture of NO and NO₂) in the outlet gas phase was performed using an electrochemical SO₂ sensor (SO2-B4, Alphasens, UK), an electrochemical NO sensor (4NO-2000, EuroGas, UK) and an electrochemical NO₂ sensor (4NO2-2000, EuroGas, UK), all of them with a measuring range from 0 to 2000 ppm_v. Measurement of higher pollutants concentrations required flue gas dilution performed by two flowmeters (2100, Tecfluid, Spain). Residual flue gas was bubbled through a NaOH filter before its emission to the atmosphere. The selected fresh absorbent was continuously fed to ensure constant pH and composition at reactor inlet. The compounds concentration, pH and ionic conductivity at liquid outlet were continuously monitored until steady-state conditions were achieved. Experiments were performed at constant temperature of 20±1 °C and atmospheric pressure. Absorption efficiency was evaluated for each pollutant by means of the following expression:

$$RE = \frac{C_{in} - C_{out}}{C_{in}} \cdot 100 \tag{25}$$

243

244

245

246

247

248

249

250

251

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

Where C_{in} is the inlet pollutant (SO₂, NO or NO₂) concentration and C_{out} is the outlet pollutant (SO₂, NO or NO₂) concentration, both in ppm_v. To ensure experiments accuracy, three replicate measurements were made, obtaining relative errors below 5%. In this paper only average values are shown.

2.3.Experimental design

The characterization of wet-absorption of SO₂ and NO_x was performed assessing the influence of relevant operational parameters on process removal efficiency (RE). The selected parameters presented in Table 1 were the gas contact time, the liquid-to-gas

flowrate (L/G) ratio, the sulphate and nitrate concentration in the phase, the absorbent pH (adjusted using HCl 1M and NaOH 1M), SO₂ and NO_x concentration and the gas temperature. The integrated process include the recovery of energy contained in flue gases for elemental sulfur drying. For this reason, it was considered that flue gases temperature at scrubber inlet would be always below 80°C. The value of listed parameters in the characterization assays is detailed in Table 1.

258

259

260

261

- According to NO_x reactions in gas phase presented in Eq. 10-12, NO contained in synthetic flue gas stream was partially oxidized to NO₂. For this reason, NO_x absorption was performed considering NO_x concentration as the sum of NO and NO₂ concentration and assessing NO_x RE considering both NO RE and NO₂ RE.
- 262 The reuse of the alkalinity generated during sulphate reduction in the biological stage, 263 as absorbent in the flue gas scrubbing stage was evaluated by using different NaHCO₃ 264 concentrations. According to Fernández-Palacios et al. (2019) during the biological 265 sulphate reduction in an UASB using crude glycerol as electron donor, the dissolved CO₂ 266 concentration in the biological process effluent ranged between 0.05 and 0.20 g C-HCO₃·L⁻¹. The suitability of reusing the biological process effluent for flue gas spray 267 268 scrubbing was assessed quantifying the SO₂ RE using NaHCO₃-based absorbents of 0.05 269 and 0.2 g C-HCO₃·L⁻¹. The UASB HCO₃⁻ concentration range was selected for the study 270 because no carbonate lost was detected during elemental sulphur production in CSTR. 271 Both NaHCO₃-based were prepared by dissolving NaHCO₃ in distillate water and 272 adjusting pH at the CSTR outlet pH (pH 7.5). The spray scrubbing using NaHCO₃ 273 solutions was studied considering the effect on RE of gas contact time (between 0.6 and 4 s), the L/G ratio (between 5 and 15 L·m⁻³) and SO₂ concentration in flue gas (between 274 275 2000 and 4000 ppm_v).
- 276 Finally, optimization of NO_x absorption using specific absorbents was assessed 277 including different additives in alkaline absorbent prepared with NaOH solutions at pH 278 8. The additives were selected from their oxidative character (Thomas and Vanderschuren 279 1998; Zhao et al. 2011; Li et al. 2014; Han et al. 2015; Hao et al. 2017). To this aim, 280 alkaline absorbent including KMnO₄ (0.3 M), NaClO (0.4 M), Na₂S₂O₇ (0.2 M), H₂O₂ 281 (0.15 M) were prepared and tested for NO_x absorption. The potential of additives dosing 282 for NO_x abatement was evaluated maintaining the same stoichiometric ratio between NO 283 and the different oxidative reagents was maintained for the preparation of absorbents. The 284 RE of prepared absorbent for NO_x absorption was experimentally evaluated in a lab-scale

spray-scrubber fed with a gas stream of 500 ppm_v of NO at a gas contact time of 10 s and under a L/G ratio of 15 L·m⁻³.

3. RESULTS

3.1. Flue gas wet-absorption

3.1.1. Characterization of SO₂ wet-absorption

Several sets of experiments were performed to characterize SO₂ wet absorption.

Results shown in Figure 2 depict the effect of the tested operating variables on SO₂

absorption efficiency.

Flue gas inlet velocity was increased resulting in a gas-liquid contact time decrease from 10 to 0.6 s (Figure 2a) while the L/G ratio was maintained at 7.5 L·m⁻³. Results showed a RE improvement of the 50%, from 20.6 to 68.4%. Keeping a constant L/G within the scrubber ensures a constant gas-liquid contact-area. On the other hand, Wang et al. (2015) showed that the resistance of the gas film declines due to the intensification of the turbulences when the flues gas flowrate increases, enhancing SO₂ mass transfer to the liquid bulk. According to these results, SO₂ absorption RE was not limited by the shorter reaction times resulting from the decrease of the gas-liquid contact time highlighting that absorption takes place through instantaneous irreversible reaction (Eq. 5), as is proposed in several studies (Hikita et al. 1977; Wang et al. 2012, 2015).

The L/G ratio refers to the volumetric ratio between absorbent and flue gas flowrates. It is an important parameter for scrubbing performance since a higher L/G ratio results in a higher SO₂ RE but a higher energy consumption and operating costs. The L/G ratio in spray absorbers for the removal of SO₂ is typically set between 8 L·m⁻³ and 25 L·m⁻³. Considering the high performance of NaOH solutions, the desulphurization efficiency was evaluated between 5 L·m⁻³ and 15 L·m⁻³. To maintain the absorption characteristics, experiments were performed at a gas-liquid contact time of 2 s. As showed in Figure 2b, RE increased from 38.7% to 58.7% when L/G ratio rose from 5 L·m⁻³ to 12 L·m⁻³, and from 68.7% to 79.8% when L/G ratio rose from 12 L·m⁻³ to 15 L·m⁻³ (until 70.8%). This trend was in agreement with results found in literature (Gao et al. 2011; Wang et al. 2012, 2015). Increasing the L/G ratio at a constant value of flue gas flowrate rises absorbent flowrate within the scrubber. Raising absorbent flowrate in the spray absorber means

increasing the interface area between droplets and gas, and more SO₂ is absorbed (Zhao et al. 2007). However, when the ratio was increased above 10 L·m⁻³, the droplets area was large enough, and the increase in the ratio became negligible (Wang et al. 2015).

In Figure 2c, it can be observed an increase in RE from 50 to 60% when ionic sulphur species concentration in absorbent increased to 10 g S·L⁻¹. This results are in agreement with Wang et al. (2012) that found stronger absorption capacities when Na₂SO₃ concentration in the absorbent exceeded 0.3 M.

The influence of NaOH concentration on scrubbing performance was evaluated assessing the influence of absorbent pH on SO₂ RE. The pH was ranged between 3 and 15. The operation at pH below 7 was also evaluated to study scrubbing performance under NaOH depletion conditions. Results presented in Figure 2d show two different trends along the studied pH range. In this sense, at pH below 12 RE decreased linearly from 60.8% to 29.6% while at pH above 12 a constant RE ranging between 59.5% and 60.8% was observed. At low pH, SO₂ absorption takes place through Eq. 2 which is much slower than Eq. 3 and Eq. 4 (Hikita et al. 1977). This phenomenon indicated that mass transfer of SO₂ to the liquid phase is governed both by gas film and liquid film resistance (Wang et al. 2015), leading to low efficiencies. Nevertheless, absorption took place through Eq.3 and Eq.4 when pH raised due to a higher hydroxide ions concentration, and liquid film resistance fell quickly (Wang et al. 2012). Under this conditions, process is governed by gas mass transfer and a higher and constant overall RE was obtained.

The SO_2 concentration in flue gas is a parameter highly unstable depending on the fuel composition or combustion facilities operation. For this reason, it is important to establish the influence of SO_2 inlet concentration on sulphur removal efficiency. Results presented in Figure 2e showed that the SO_2 inlet concentration increase from 1000 to 9000 ppm $_V$ promoted mass transfer limitations. Since the L/G ratio was kept constant at 7.5 L·m $^{-3}$, the exhaustion of the absorbent took place at higher SO_2 concentration. Under these conditions, mass transfer limitations described above for low pH absorbents become important resulting in a RE decrease from 70.9 to 35.1%. This results are in agreement with results in literature (Gao et al. 2011; Wang et al. 2012, 2015; Rahmani et al. 2014), and suggests that some actions (such as increasing L/G ratio or absorbent pH) should be taken to increase RE at higher SO_2 inlet concentrations.

The effect of temperature on SO₂ absorption process is complex. Temperature rise can reduce the solubility of SO₂ but improve mass transfer coefficient and also accelerate chemical reactions rates (Wang et al. 2012). For this reason, the flue gas influence on SO₂ RE was evaluated. The liquid temperature at the beginning of the experiments was kept at 25°C. A flue gas temperature effect on RE was not observed within the tested range (Figure 2f), since liquid phase temperature and thus SO₂ solubility, kept steady during absorption.

3.1.2. Characterization of NOx wet-absorption

The experimental results obtained during the characterization of NO_x absorption are presented in Figure 3. Results obtained during NO_x wet-absorption characterization showed RE below 50% both for NO and NO_x abatement. These results highlighted strong mass transfer limitations during NO_x removal through absorption technologies due to low solubility of NO in water (0.00618 g $NO \cdot 100$ g⁻¹ H₂O). Also, small differences were observed between NO and NO_x RE, since nitrogen species generated due to NO removal presented a high and fast reactivity in water.

As observed in Figure 3a, an increase on gas retention time from 0.6 to 120 s resulted in an improvement on NO_x RE from 5.4 to 50.5% because the larger gas contact time increased the time available for NO oxidation through Eq. 10-12. Higher solubility of oxidized nitrogen species reduced gas side mass transfer limitations, and higher overall NO_x RE were obtained. Thus, the scrubbing performance for NO_x abatement can be enhanced by increasing retention time of flue gas in the scrubber.

However, the rise of L/G ratio from 5 to 15 L·m⁻³ (Figure 3b) only improved NO_x RE from 5.9 to 9.2%. These results evidenced that at the low contact time (2 s) maintained during these assays, NO was not oxidized. Therefore, mass transfer rate of gaseous species to the bulk liquid is controlled by gas film resistance. In this sense, the increase of mass transfer interface at higher absorbent flowrate does not improve NO_x transfer rate resulting in low RE (below 10%).

Results presented in Figure 3c-d showed again that at a short contact time low NO oxidation took place within the scrubber. NO is still the main component of NO_x mixture and under these conditions absorption is limited by Eq. 10 and gas film mass transfer resistance. For this reason, an enhancement of NO_x removal was not obtained increasing reaction rate of aqueous species (Eq. 13-15). In this sense, no significant effects on NO_x

RE were observed when liquid side mass transfer and bulk liquid kinetic characteristics were modified both increasing nitrate absorbent concentration (Figure 3c) and absorbent pH (Figure 3d).

The same phenomenon was observed when NO inlet concentration was increased. In Figure 3e, a RE drop from 13.9% to 5.8% is observed when inlet NO concentration raised from 500 to 2000 ppm_v. These results highlighted the necessity of sharply reduce NO mass transfer limitations, both increasing mass transfer rate or Eq. 10 reaction rate, in order to obtain higher RE and to accomplish environmental requirements.

Similar to that observed in Figure 2, gas temperature had a no effect on NO_x absorption. The absorbent was not warmed by the hotter flue gas stream and no changes on liquid temperature were observed during experimental assays. For this reason, a constant RE between 6.8% and 7.3% was obtained when inlet gas temperature ranged between 298 and 333 K.

3.1.3. Sequential SO_2 and NO_x wet-absorption

The segregation of sulphur and nitrogen ionic species in two separated liquid effluents required for optimal performance of biological reactors was obtained through the sequential absorption of SO₂ and NO_x from flue gas. To this aim, flue gas treatment unit was designed as two scrubbers in series and selective absorption of both pollutants was achieved exploiting different chemical properties of both pollutants. The first scrubber was designed for SO₂ absorption while the second one was designed for NO_x absorption. The operating conditions of scrubbers were defined from the experimental data obtained in the characterization of flue gas absorption. The operating conditions of both scrubbers established for sequential absorption of both pollutants in two consecutive units are presented in Table 2. The removal efficiencies of both scrubbers for SO₂ and NO_x abatement treating a gas stream with 2000 ppm_v of SO₂ and 1500 ppm_v of NO_x are included in Table 2.

The difference in water solubility of both gaseous pollutants allowed sequential absorption in two consecutive scrubbers. The gas contact time was set at 1 s in the first scrubber. Under these operating conditions SO₂ absorption was enhanced but NO_x absorption capacity was strongly limited. Removal efficiencies obtained in the first scrubber for SO₂ and NO_x absorption are presented in Table 2. Higher SO₂ solubility resulted in a RE of 72.9% while RE for NO_x absorption was kept at 5.4%. This spray-

scrubber was also operated under moderate L/G ratio and absorbent pH in order to increase NO_x gas-liquid mass transfer limitations and to reduce operating costs.

The second spray-absorber was operated at higher gas contact time to increase time available for NO oxidation (Eq.10-12) and thus NO_x absorption. The L/G ratio was also increased to 15 L·m⁻³ to intensify NO oxidation products absorption from the gas to the liquid phase. Under these operating conditions NO oxidation was increased and the NO_x generated were successfully absorbed, obtaining a RE for NOx removal of 50.5%. Results showed that most of SO₂ still remaining in flue gas was also absorbed.

Although overall removal efficiencies of 98.9% and 55.9% were obtained in two consecutive spray-absorbers for SO_2 and NO_x , respectively, complete flue gas treatment unit should be optimized to improve overall two-stage bioscrubber performance. In this sense, it is necessary to explore the reduction of operating costs, to raise SO_2 RE in the first scrubber to increase sulphur recovery capacity of the process and to raise NO_x RE to ensure clean gas release.

3.2. Optimization of flue gas treatment

3.2.1. SO₂ absorption using recovered NaHCO₃/Na₂CO₃

Flue gas treatment through wet-absorption technology implies a high consumption in alkali reagents and thus high recurring operating costs. To this aim, the two-stage bioscrubber was designed including bioprocess effluent recirculation to the absorption unit (Figure 1a) in order to recover the NaHCO₃/Na₂CO₃ generated during heterotrophic sulphate reduction due to glycerol oxidation. The optimization of flue gas absorption from an economic point of view was performed evaluating the suitability of aqueous NaHCO₃ solutions as absorbent for SO₂ removal within the concentration range in biological process effluent (Fernández-Palacios et al. 2019) in order to simulate the closed-loop process. This study was performed quantifying the effect of the L/G ratio, the gas contact time and the SO₂ concentration on system RE.

Results obtained in the characterization of SO₂ absorption using mimicking absorbents of biological origin are presented in Fig. 4. NaHCO₃ absorbent, both with low and with high concentration, showed a RE for SO₂ absorption above 80% and 40% in the most and less favourable case, respectively. A strong effect of L/G ratio, gas contact time and SO₂ concentration on absorption capacity was also observed. Experimental results obtained

working with an absorbent of 0.05 g C·L⁻¹ concentration showed that a L/G ratio increase

from 5 to 15 L·m⁻³ produced an increase on SO₂ RE from 55.6 to 76.3% and from 43.6

444 to 73.7% feeding a SO₂ concentration of 2000 ppm_v and 4000 ppm_v, respectively.

Conversely, increasing gas contact time from 0.6 to 4 s, the RE for SO₂ absorption

decreased from 81.6 to 59.7% and from 67.9 to 43.4% when lab-scale spray-scrubber was

fed with a 2000 ppm_v and a 4000 ppm_v SO₂ concentration, respectively.

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

448 The comparison of NaOH-based and NaHCO₃ absorbent performance for SO₂ 449 treatment is presented in Table 3. Experimental results presented in Figure 2a-b and 450 Figure 4 have been summarized in Table 3, and no differences were observed between 451 both absorbent. These results demonstrate that the use of a regenerated absorbent does 452 not introduce technical limitations in the absorption stage. In addition, according to results 453 obtained working with NaOH absorbent (in Figure 2a), higher RE were also observed at 454 a low flue gas contact time. These results proved that alkalinity release due to dissolved 455 CO₂ stripping in spray-scrubber (Eq. 9) was more efficient when operating at high gas 456 flow rates. This is explained by turbulences in reactor under these operating conditions 457 that enhanced mass transfer of dissolved CO₂.

Results obtained using NaHCO₃ absorbent with higher concentration (Figure 4c-d) showed the same trend. In this case, RE for SO₂ removal, when L/G ratio increased from 5 to 15 L·m⁻³, rose from 62.1 to 81.8% and from 65.4 to 85.4% when a flue gas of 2000 and 4000 ppm_v of SO₂ was studied. On the other hand, an increase of gas contact time from 0.6 s to 4 s also reduced RE for SO₂ abatement. In this sense, RE decreased from 85.7% to 70.4% and from 84.8% to 69.3% was observed working at 2000 ppm_v and 4000 ppm_v, respectively.

These results showed that RE for SO₂ absorption obtained using the absorbent with the highest CO₂ concentration are about a 10% higher. This trend confirmed that the utilisation of NaHCO₃/Na₂CO₃ solutions as flue gas absorbents was not limited by CO₂ stripping in the spray scrubber since most of the alkalinity contained in these solutions can be released during scrubbing process. These results also confirmed spray-scrubber as a good alternative for flue gas treatment.

Therefore, it can be concluded that biological effluents can be a good alternative to replace conventional NaOH-based absorbent in wet flue gas absorption Thereby, the

reduction of reagents consumption in absorption stage showed that two stage bioscrubber reduced recurring operating costs related to NaOH consumption.

3.2.2. NO_x oxidation

The reduction of mass transfer limitations for NO_x absorption were evaluated dosing oxidative reagents in the spray-scrubber in order to reduce the release of pollutants to the atmosphere. NO oxidation enriches NO_x composition in NO_2 as well as in N_2O_3 and N_2O_4 (according to Eq. 10-12), which react irreversibly with water forming aqueous nitrogen species. This alternative was evaluated assessing several oxidants for NO_x absorption. Results are presented in Figure 5, considering RE for NO oxidation and RE for the absorption of oxidation products (RE- NO_x).

Experimental results of NO_x abatement including oxidizing agents in the scrubbing solution showed higher RE for NO oxidation than for NO_x absorption. Absorbents based on H₂O₂, NaClO and Na₂S₂O₇ presented similar oxidation efficiencies, ranging from 12 to 18%. However, Na₂S₂O₇ is an acid salt and, therefore, presented low absorption efficiencies. As can be seen in Eq. 13-15, despite NO oxidation products presented a higher solubility, the alkaline character of the absorbent is key for NO_x absorption. Absorption based on NaOH solutions presented similar efficiencies both for NO oxidation and NO₂ absorption, close to the 30% and higher than the exhibited for most of the tested oxidants. On the other hand, the KMnO₄ solution stands out from the other absorbents showing oxidation and absorption efficiencies close to 50 and 60%, respectively. According to experimental results, the dosing of oxidative reagents in the absorbent can be considered as a suitable alternative to increase RE for NO_x scrubbing and to ensure clean gas emissions.

3.3.Economic viability assessment

The improvement of the treatment of combustion gases through the two-stage bioscrubber was quantified from an economic point of view by calculating the savings in operating costs introduced by the proposed alternative. To this aim, the treatment of a flue gas stream of 20000 Nm³·h⁻¹ with a SO₂ concentration of 3000 ppm_v and a NO_x concentration of 500 ppm_v in a spray-scrubber was defined as case study. In addition, a RE of 90% was considered for both alternatives and a stripping efficiency of the 55% of dissolved CO₂ in the regenerated absorbent was supposed for the two-stage bioscrubber. These conditions were selected according to typical emissions in combustion facilities

(Moore 1987; Karatepe 2000; Srivastava and Jozewicz 2001). According to process chemistry defined in Eq. 1-18, operating costs for the treatment of the target emission in a wet-absorption facility using NaOH-based absorbent and in the two-stage bioscrubber considering costs-savings introduced by NaHCO₃ rich stream reuse in absorption were calculated (Table 4).

The treatment of flue gas stream of the case study through a conventional spray scrubber using NaOH-based absorbents implies a reagents consumption of 1685 Tn NaOH·year⁻¹. On the other hand, the biological treatment of the 76.94 kg SO₂·h⁻¹ resulting from flue gas treatment was assessed using experimental results presented in Fernández-Palacios (Fernández-Palacios et al. 2019) for the characterization of biological reactors performance. According to the authors, treatment of the scrubber effluent under optimal operating conditions must be performed using crude glycerol as carbon source fed at a carbon/sulphur ratio of 5 g O₂·g⁻¹ S. The operation of both biological reactors under these conditions gives rise to a process effluent with an average dissolved CO₂ concentration of 0.10 g C·L⁻¹, equivalent to an annual amount of 2558 Tn. The reuse of the NaHCO₃ produced during the bioprocess allows annual NaOH savings of 1074 Tn, reducing the operating costs of wet-absorption by a 63.7%. These results demonstrate the economic competitiveness of the bio-FGD alternative proposed herein.

4. CONCLUSIONS

Experimental results obtained in this work enable to establish the optimal operating conditions for the sequential wet-scrubbing of SO_2 and NO_x from flue gas. The SO_2 and NO_x wet-absorption presented different performances caused by the difference in their solubility. While high RE can be obtained for the treatment of SO_2 working at low RT (below 2 s) and at moderate L/G ratios (7.5 L·m⁻³), mass transport limitations for NO_x absorption resulted in RE below 10% under these operating conditions. The RT for NO_x abatement must be increased above 60 s in order to enable enough time for NO_x partial oxidation and increase NO_x absorption efficiency. Thus selective absorption of both pollutants can be performed in two spray-scrubbers in series designed to work under clearly differentiated RT. In addition, second scrubber can include the dosing of oxidative reagents in order increase NO_x oxidation and capture NO_x from flue gas. Thus, sequential wet-scrubbing process allows to ensure clean gas emissions. The reuse of the two-stage

537	bioscrubber effluent as absorbent in the scrubbing unit showed the same RE than using a
538	NaOH-based absorbent. Economic comparison of proposed bio-FGD alternative against
539	spray-scrubber operated using NaOH-bases absorbents showed 63.74% savings on
540	operational costs due to the reduction in reagents consumption.
541	
542	ACKNOLEDGEMENTS
543	Authors acknowledge the Spanish Government, through the project RTI2018-099362-
544	B-C21 MINECO/FEDER, EU for the financial support provided to perform this research.
545	
546	REFERENCES
547	Adewuyi YG, Sakyi NY (2013) Simultaneous absorption and oxidation of nitric oxide
548	and sulfur dioxide by aqueous solutions of sodium persulfate activated by
549	temperature. Ind Eng Chem Res 52:11702–11711.
550	https://doi.org/10.1021/ie401649s
551	Ağar A, Küçükatay V, Yargiçoğlu P, et al (2000) The effect of sulfur dioxide inhalation
552	on visual evoked potentials, antioxidant status, and lipid peroxidation in alloxan-
553	induced diabetic rats. Arch Environ Contam Toxicol 39:257-264.
554	https://doi.org/10.1007/s002440010103
555	Altuğ H, Gaga EO, Döğeroğlu T, et al (2013) Effects of air pollution on lung function
556	and symptoms of asthma, rhinitis and eczema in primary school children. Environ
557	Sci Pollut Res 20:6455-6467. https://doi.org/10.1007/s11356-013-1674-1
558	An T, Wan S, Li G, et al (2010) Comparison of the removal of ethanethiol in twin-
559	biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. J
560	Hazard Mater 183:372–380. https://doi.org/10.1016/j.jhazmat.2010.07.035
561	Bai J, Meng Z (2005) Effects of sulfur dioxide on apoptosis-related gene expressions in
562	lungs from rats. Regul Toxicol Pharmacol 43:272-279.
563	https://doi.org/10.1016/j.yrtph.2005.09.002
564	Chang CS, Rochelle GT (1981) SO2 absorption into aqueous solutions. AIChE J 27:292–
565	298. https://doi.org/10.1002/aic.690270217

- 566 Chen JC, Liu ZS, Huang JS (2007) Emission characteristics of coal combustion in
- different O2/N2, O2/CO2 and O2/RFG atmosphere. J Hazard Mater 142:266–271.
- 568 https://doi.org/10.1016/j.jhazmat.2006.08.021
- 569 Ding J, Zhong Q, Zhang S, et al (2014) Simultaneous removal of NOX and SO2 from
- coal-fired flue gas by catalytic oxidation-removal process with H2O2. Chem Eng J
- 571 243:176–182. https://doi.org/10.1016/j.cej.2013.12.101
- 572 Ebrahimi S, Picioreanu C, Kleerebezem R, et al (2003) Rate-based modelling of SO2
- absorption into aqueous NaHCO3/Na2CO3 solutions accompanied by the
- desorption of CO2. Chem Eng Sci 58:3589–3600. https://doi.org/10.1016/S0009-
- 575 2509(03)00231-8
- 576 Fernández-Palacios E, Lafuente J, Mora M, Gabriel D (2019) Exploring the performance
- limits of a sulfidogenic UASB during the long-term use of crude glycerol as electron
- 578 donor. Sci Total Environ 688:1184–1192.
- 579 https://doi.org/10.1016/j.scitotenv.2019.06.371
- Gao H, Li C, Zeng G, et al (2011) Flue gas desulphurization based on limestone-gypsum
- with a novel wet-type PCF device. Sep Purif Technol 76:253-260.
- 582 https://doi.org/10.1016/j.seppur.2010.10.013
- Han Y, Li X, Fan M, et al (2015) Abatement of SO2–NOx binary gas mixtures using a
- ferruginous active absorbent: Part I. Synergistic effects and mechanism. J Environ
- 585 Sci 30:55–64. https://doi.org/10.1016/j.jes.2014.10.012
- Hao R, Yang S, Yuan B, Zhao Y (2017) Simultaneous desulfurization and denitrification
- through an integrative process utilizing NaClO2/Na2S2O8. Fuel Process Technol
- 588 159:145–152. https://doi.org/10.1016/j.fuproc.2017.01.018
- 589 Hikita H, Asai S, Tsuji T (1977) Absorption of sulfur dioxide into aqueous sodium
- 590 hydroxide and sodium sulfite solutions. AIChE J 23:538–544.
- 591 https://doi.org/10.1002/aic.690230419
- 592 Hu Y, Naito S, Kobayashi N, Hasatani M (2000) CO 2, NO x and SO 2 emissions from
- the combustion of coal with high oxygen concentration gases. Fuel 79:1925–1932.
- 594 https://doi.org/http://dx.doi.org/10.1016/S0016-2361(00)00047-8
- Jiang F, Zhang L, Peng G-L, et al (2013) A novel approach to realize SANI process in

596	freshwater sewage treatment - Use of wet flue gas desulfurization waste streams as
597	sulfur source. Water Res 47:5773–5782.
598	https://doi.org/10.1016/j.watres.2013.06.051
599	Jin Y, Veiga MC, Kennes C (2005) Bioprocesses for the removal of nitrogen oxides from
600	polluted air. J Chem Technol Biotechnol 80:483-494.
601	https://doi.org/10.1002/jctb.1260
602	Joshi JB, Mahajani VV, Juvekar VA (1985) Absorption of NOx Gases. Chem Eng
603	Commun 33:1–92. https://doi.org/10.1080/00986448508911161
604	Kan H, Wong C-M, Vichit-Vadakan N, et al (2010) Short-term association between sulfur
605	dioxide and daily mortality: The Public Health and Air Pollution in Asia (PAPA)
606	study. Environ Res 110:258–264. https://doi.org/10.1016/j.envres.2010.01.006
607	Karatepe N (2000) A comparison of flue gas desulfurization processes. Energy Sources
608	22:197–206. https://doi.org/10.1080/00908310050013983
609	Lee KH, Sublette KL (1991) Simultaneous combined microbial removal of sulfur dioxide
610	and nitric oxide from a gas stream. Appl Biochem Biotechnol 28-29:623-634.
611	https://doi.org/10.1007/BF02922637
612	Lens PNL, Gastesi R, Lettinga G (2003) Use of sulfate reducing cell suspension
613	bioreactors for the treatment of SO2 rich flue gases. Biodegradation 14:229-240.
614	https://doi.org/10.1023/A:1024222020924
615	Li Y, Zhong W, Ju J, et al (2014) Experiment on simultaneous absorption of NO and SO2
616	from sintering flue gas by oxidizing agents of KMnO4/NaClO. Int J Chem React
617	Eng 12:539-547. https://doi.org/10.1515/ijcre-2014-0066
618	Lin J, Li L, Ding W, et al (2015) Continuous desulfurization and bacterial community
619	structure of an integrated bioreactor developed to treat SO2 from a gas stream. J
620	Environ Sci (China) 37:130–138. https://doi.org/10.1016/j.jes.2015.05.029
621	Liu Y, Bisson TM, Yang H, Xu Z (2010) Recent developments in novel sorbents for flue
622	gas clean up. Fuel Process Technol 91:1175-1197.
623	https://doi.org/10.1016/j.fuproc.2010.04.015
624	Majeed JG, Korda B, Békássy-Molnár E (1995) Comparison of the efficiencies of sulfur
625	dioxide absorption using calcium carbonate slurry and sodium hydroxide solution in

626627	an ALT reactor. Gas Sep Purif 9:111–120. https://doi.org/10.1016/0950-4214(95)93948-J
628 N 629 630	Mathieu Y, Tzanis L, Soulard M, et al (2013) Adsorption of SOx by oxide materials: A review. Fuel Process Technol 114:81–100. https://doi.org/10.1016/j.fuproc.2013.03.019
631 N 632 633	Moore DJ (1987) Conditions in which power stations contribute to high ground level SO2 concentrations in the U.K. Atmos Environ 21:1849–1853. https://doi.org/10.1016/0004-6981(87)90126-0
634 N 635 636	Mora M, Fernández-Palacios E, Guimerà X, et al (2020) Feasibility of S-rich streams valorization through a two-step biosulfur production process. Chemosphere 253:1–10. https://doi.org/10.1016/j.chemosphere.2020.126734
637 N 638 639	Mora M, Lafuente F javier, Gabriel D (2018) Screening of biological sulfate reduction conditions for sulfidogenesis promotion using a methanogenic granular sludge. Chemosphere 210:557–566. https://doi.org/10.1016/j.chemosphere.2018.07.025
640 N 641	Newman BL, Carta G (1988) Mass transfer in the absorption of nitrogen oxides in alkaline solutions. AIChE J 34:1190–1199. https://doi.org/10.1002/aic.690340715
642 C 643 644	Ottengraf SPP, Diks RMM (1992) Process technology of biotechniques. Biotechnoques Air Pollut Abat Odour Control Policies 51:17–31. https://doi.org/10.1016/S0166-1116(08)70673-3
645 P	Perry RH, Green DW (1997) Perry's chemical engineer's handbook, 7 Edition. Mc Graw-Hill
647 P 648 649	Philip L, Deshusses MA (2003) Sulfur dioxide treatment from flue gases using a biotrickling filter - Bioreactor system. Environ Sci Technol 37:1978–1982. https://doi.org/10.1021/es026009d
650 C 651 652 653	Qian J, Lu H, Jiang F, et al (2015) Beneficial co-treatment of simple wet flue gas desulphurization wastes with freshwater sewage through development of mixed denitrification-SANI process. Chem Eng J 262:109–118. https://doi.org/10.1016/j.cej.2014.09.066
654 R 655	Rahmani F, Mowla D, Karimi G, et al (2014) SO2 removal from simulated flue gas using various aqueous solutions: Absorption equilibria and operational data in a packed

656	column. Sep Purif Technol 153:162–169.
657	https://doi.org/10.1016/j.seppur.2014.10.028
658	Rao AG, Ravichandra P, Joseph J, et al (2007) Microbial conversion of sulfur dioxide in
659	flue gas to sulfide using bulk drug industry wastewater as an organic source by
660	mixed cultures of sulfate reducing bacteria. J Hazard Mater 147:718-725.
661	https://doi.org/10.1016/j.jhazmat.2007.01.070
662	Sakai M, Su C, Sasaoka E (2002) Simultaneous removal of SOx and NOx using slaked
663	lime at low temperature. Ind Eng Chem Res 41:5029–5033
664	Shen TT, Ayer LG (1975) Determination of S02 Emission from Oil Combustion Sources
665	by Fuel Analyses and S02 /C02 Relations. J Air Pollut Control Assoc 25:851-855.
666	https://doi.org/10.1080/00022470.1975.10470150
667	Srivastava RK, Jozewicz W (2001) Flue gas desulfurization: The state of the art. J Air
668	Waste Manag Assoc 51:1676–1688.
669	https://doi.org/10.1080/10473289.2001.10464387
670	Suchak NJ, Jethani KR, Joshi JB (1990) Absorption of Nitrogen Oxides in Alkaline
671	Solutions: Selective Manufacture of Sodium Nitrite. Ind Eng Chem Res 29:1492-
672	1502. https://doi.org/10.1021/ie00103a059
673	Sun J, Li L, Zhou G, et al (2018) Biological Sulfur Reduction to Generate H 2 S As a
674	Reducing Agent to Achieve Simultaneous Catalytic Removal of SO 2 and NO and
675	Sulfur Recovery from Flue Gas. Environ Sci Technol 52:4754-4762.
676	https://doi.org/10.1021/acs.est.7b06551
677	Sun Y, Zwolińska E, Chmielewski AG (2016) Abatement technologies for high
678	concentrations of NOx and SO2 removal from exhaust gases: A review. Crit Rev
679	Environ Sci Technol 46:119–142. https://doi.org/10.1080/10643389.2015.1063334
680	Thomas D, Vanderschuren J (1998) Removal of tetravalent NOx from flue gases using
681	solutions containing hydrogen peroxide. Chem Eng Technol 21:975-981.
682	https://doi.org/10.1002/(SICI)1521-4125(199812)21:12<975::AID-
683	CEAT975>3.0.CO;2-H
684	Thomas D, Vanderschuren J (1997) Modeling of NOx absorption into nitric acid solutions
685	containing hydrogen peroxide. Ind Eng Chem Res 36:3315-3322.

- https://doi.org/10.1021/ie960436g
- 687 Tian H, Gao J, Lu L, et al (2012) Temporal trends and spatial variation characteristics of
- hazardous air pollutant emission inventory from municipal solid waste incineration
- in China. Environ Sci Technol 46:10364–71. https://doi.org/10.1021/es302343s
- 690 Van Houten RT, Yun SY, Lettinga G (1997) Thermophilic sulphate and sulphite
- reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon
- 692 source. Biotechnol Bioeng 55:807-814. https://doi.org/10.1002/(SICI)1097-
- 693 0290(19970905)55:5<807::AID-BIT11>3.0.CO;2-8
- Wang J, Cao Y, Zhong Q (2013) Formulation and optimization of biological removal of
- flue gas pretreatment wastewater and sulfur recycling process by Box-Behnken
- design. Water Sci Technol 67:2706–2711. https://doi.org/10.2166/wst.2013.175
- Wang W, Yang C, Zhang J (2012) Absorption of Sulphur Dioxide from Flue Gas with
- Sodium Alkali Solution in Packed Columns. Adv Mater Res 383–390:6409–6415.
- 699 https://doi.org/10.4028/www.scientific.net/AMR.383-390.6409
- Wang Z, Peng Y, Ren X, et al (2015) Absorption of sulfur dioxide with sodium hydroxide
- 701 solution in spray columns. Ind Eng Chem Res 54:8670–8677.
- 702 https://doi.org/10.1021/acs.iecr.5b02146
- Winnes H, Fridell E (2010) Emissions of NOX and particles from manoeuvring ships.
- 704 Transp Res Part D Transp Environ 15:204–211.
- 705 https://doi.org/10.1016/j.trd.2010.02.003
- Zevenhoven, Kilpinen (2001) Chapter 2 Flue gases and fuel gases 2.1. Flue Gases Fuel
- 707 Gases 1–12
- 708 Zhao J, Jin B, Zhong Z (2007) The degree of desulphurization of a limestone/gypsum wet
- FGD spray tower using response surface methodology. Chem Eng Technol 30:517–
- 710 522. https://doi.org/10.1002/ceat.200600347
- 711 Zhao Y, Han Y, Ma T, Guo T (2011) Simultaneous desulfurization and denitrification
- from flue gas by ferrate(VI). Environ Sci Technol 45:4060-4065.
- 713 https://doi.org/10.1021/es103857g
- 714 Zhu Q, Van Teeffelen RM, Van Santen RA, Hensen EJM (2004) Effect of high-
- 715 temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3

II. Nitrous oxide decomposition, selective oxidation of benzene to phenol, and selective reduction of nitric oxide by isobutane. J Catal 221:575–583. https://doi.org/10.1016/j.jcat.2003.09.025

719