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PENGANGKUTAN ENDAPAN DI SUNGAI KULIM, KEDAH

ABSTRAK

Kesan pembangunan yang mendadak telah membawa impak kepada hidrolagi

dan geomorfologi sesuatu kawasan tadahan. Pembangunan yang mendadak ini

terutamanya di kawasan tadahan sungai akan meningkatkan hasil endapan dan

seterusnya bukan sahaja menjejaskan morfologi sungai, kestabilan sungai dan

mengakibatkan kerosakan yang serius pada struktur hidraulik sepanjang saluran

sungai yang menyebabkan banjir di kawasan bandar. Dengan itu, kestabilan saluran

sungai berdasarkan pembangunan yang sedia ada dan masa hadapan perlu diramal

dan dinilai. Kajian ini dijalankan dengan menggunakan data yang dicerap sehingga

tahun 2006 untuk menilai pengangkutan endapan di Sungai Kulim, Kedah, Malaysia.

Kajian ini cuba memberi gambaran keseluruhan tentang perubahan saluran dan

fenomena pengangkutan endapan di Sungai Kulim. Sejumlah 24 sampel bahan dasar

telah dicerap dari empat lokasi (eH 20000, CH 14390, eH 3014 dan eH O) dan 14

data hidraulik serta endapan termasuk kadaralir, beban endapan dasar, beban

endapan terampai dan jumlah beban endapan telah dicerap dari dua lokasi (CH 14390

dan eH 3014) dalam tempoh 2004 ke 2006. Data tersebut digunakan untuk

menjalankan analisis dan penilaian terhadap persamaan Manning dan persamaan

pengangkutan endapan. Dua persamaan Manning baru iaitu Persamaan 4.3 dan 4.4

dengan pekali sekaitan, R2;;: 0.86 telah dibangunkan untuk diaplikasikan di sungai saiz

sederharna di Malaysia. Keputusan penilaian persamaan jumlahan pengangkutan

endapan yang sedia ada bagi dua lokasi di Sungai Kulim menunjukkan Persamaan

Engelund & Hansen memberikan keputusan yang paling baik untuk saluran pasir dan

mencapai peratusan data yang mempunyai nisbah kelainan antara 0.5 ke 2.0

sebanyak 33.33% di CH 14390 dan 62.50% di CH 3014. Model FLUVIAL-12,

merupakan model perbatas-hakis yang telah dipilih dalam kajian ini untuk meramalkan

perubahan profil dasar saluran, kelebaran dan topografi saluran. Persamaan

xx



EngeJund-Hansen dan pekali kekasaran Manning, n = 0.030 telah dipilih semasa

perbandingan profil paras air dan dasar dilakukan dalam proses penentukuran dan

penyelakuan model. Perbandingan antara data geometri saluran tinjauan dengan

pengukuran di tapak dari Oktober 2004 hingga November 2006 telah menunjukkan

terdapat perubahan terhadap keratan rentas setelah beberapa banjir berlaku dari 1991

hingga 2003. Ramalan paras dasar yang hampir dengan paras dasar cerapan semasa

2004 ke 2006 oleh FLUVIAL-12 telah mengesahkan hakisan berlaku di sepanjang 14.4

km saluran sungai. Keputusan model simulasi bagi penyelakuan keadaan sedia ada,

masa hadapan dan jangka panjang menunjukkan saiz endapan dan geometri saluran

Sungai Kulim mempunyai perubahan yang ketara. Walau bagaimanapun, keputusan

model menunjukkan perubahan terhadap keratan rentas adalah terhad dan hakisan di

sepanjang saluran akan berkurangan pada masa depan. Dengan ini, Sungai Kulim

diramal stabil pada kebanyakan lokasi.
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SEDIMENT TRANSPORT IN SUNGAI KULIM, KEDAH

ABSTRACT

Effect of rapid urbanization has accelerated the impact on the catchment

hydrology and geomorphology. Such rapid development which takes place in river

catchment areas will result in higher sediment yield and it will not only affects river

morphology, but also river channel stability, causing serious damages to hydraulic

structures along the river and also becoming the main cause for serious flooding in

urban areas. Therefore, it is necessary to predict and evaluate the river channel

stability due to the existing and future developments. This study was carried out at

Sungai Kulim in Kedah state, Malaysia, by means of evaluation on sediment transport

using recently observed data up to year 2006. The present study attempts to give an

overview of the channel changes and sediment transport phenomena in Sungai Kulim.

A total of 24 samples of bed materials were collected from four locations (CH 20000,

eH 14390, eH 3014 and eH O), and 14 river hydraulics and sediment transport data

sets including discharge, bed load, suspended load and total load were collected from

two locations (eH 14390 and eH 3014) from 2004 to 2006. The data were used to

analyze and evaluate existing Manning equations and sediment transport equations.

Attempts were also made to derive new Manning equations (Equations 4.3 and 4.4)

with a correlation coefficient, R2 = 0.86 for application to the moderate-size channels in

Malaysia. The results of evaluation for total load equations at the two locations along

Sungai Kulim show that Engelund & Hansen equation gave the best prediction for sand

bed stream and yielded highest percentage of data with discrepancy ratio in between

0.5 and 2.0 (33.33% at CH 14390 and 62.50% at eH 3014). An erodible-boundary

model, FLUVIAL-12 which simulates inter-related changes in channel-bed profile, width

variation and changes in bed topography was selected for this study. Engelund­

Hansen equation and roughness coefficient, n = 0.030 were selected for the model

which was calibrated and validated for water surface profile and bed elevation. The

xxii



comparison of the surveyed river geometry data in September 1991 and field

measurements from October 2004 to November 2006 shows that there has been a

change in cross section after several flood occurrences from 1991 to 2003. The

predicted bed levels by FLUVIAL-12 were almost similar to the observed bed level

from 2004 to 2006, this confirmed that channel bed degradation occurred along the

14.4 km study reach. The model simulation results for existing conditions. future

conditions and long-term modeling show that the sediment size and channel geometry

in Sungai Kulim changed significantly. However, modeled results show that future

changes in cross sectional geometry will be limited and erosion along the reach will

slow down from 2006 to 2016, thus Sungai Kulim was predicted to be stable at most

locations.
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CHAPTER 1

INTRODUCTION

1.1 Background

River is a dynamic system governed by hydraulic and sediment transport

processes. Over time, the river responses by changing in channel cross section,

increased or decreased sediment carrying capacity, erosion and deposition along the

channel, which affect bank stability and eventually cause morphology changes. Rapid

urbanization has accelerated impact on the catchment hydrology and geomorphology.

Developments in river catchment areas will cause dramatic increase in the surface

runoff and resulting in higher sediment delivery. When this happens, it will not only

affect river morphology, but also cause instability in the river channel and hence

inflicting serious damage to hydraulic structures along the river and reducing channel

capacity to convey the flood water to downstream. Therefore, it is necessary to

evaluate and predict the river channel stability for the purpose of river rehabilitation due

to the existing and future developments in the river catchment.

This study was carried out at Sungai Kulim, a natural stream in Kedah, Malaysia.

Frequent floods that occur in Sungai Kulim catchment have caused extensive damage

and inconvenience to the community, especially the flood event in October 2003, which

is an event of about 100 year ARI. Hence, previous studies for Sungai Kulim (DID,

1996; Yahaya, 1999; Lee, 2001; Ibrahim, 2002; Koey, 2004) were conducted to

determine the river behaviors and the effectiveness of the flood mitigation projects due

to rapid urbanization. The data available from these studies, including river survey

geometry data, sediment data and hydrology data were up to year 1999 and limited.

These data, together with those from the present study (up to 2006) will be evaluated

and used to predict river stability for future development. This will allow evaluation of

1



river stability over a 16-year period by considering the effect of changes in cross

section and sediment load.

1.2 Objectives

The primary objectives of the study are as follow:

1. To evaluate Sungai Kulim sediment transporting capability due to rapid urbanization

2. To examine river stability due to changes made by nature or human

3. To determine effect of flooding due to rapid urbanization

1.3 Study Site

This study was carried out on Sungai Kulim in Kedah state, Malaysia, by

analyzing and evaluating sediment transport using newly observed data up to 2006.

This study would give an overview of the channel changes and sediment transport

phenomena, which cause river bank and bed stability problems in Sungai Kulim.

Sungai Kulim catchment (Figure 1.1) is located in the southern part of the state

of Kedah and in the northwestern corner of Peninsular Malaysia. At the headwaters,

Sungai Kulim catchment is hilly and densely forested. Sungai Kulim originates from the

western slopes of Gunung Bongsu Range and flows in a north-westerly direction. The

river slopes are steep and the channel elevations drop from 500 m to 20 m above

mean sea level (AMSL) over a distance of g km. The central area of the catchment is

undulating with elevations ranging from 100 m down to 18 m AMSL.
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Figure 1.1: Topographical Map of Sungai Kulim Catchment

Currently, the catchment area is undergoing rapid urban development with oil

palm and rubber plantations being replaced by rapid urbanization. More specifically, the

areas around Kulim town and lower reach of Sun;g�i Kulim as shown in Figure 1 .•2, with

green color represent forested and purple color represent developed areas. This is

likely to increase the maqnitude of flood. This will also result in discharqe and bed

erosion increment or scouring and deposition.
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Figure 1.2: Areal Photo of Sungai Kulim Catchment

1.4 Scope of Research

The scope and limitations of the research are as foHow:

a) The extraction of hydraulic and sediment data were focused to the Sungai Kulim

(CH 14390 to CH O) in Kedah State.

b) Evaluation of existinq Mannin9"s n equations were limited to most commonly

used equations namely Strickler (1923), Meyer-Pet�r & Muller (1948). Lane &

Carlson (1'953), Limerinos (1970). Bray (1"979), Brownlie (1983) and Bruschin

(1985) equations. The evaluation of Abdul Ghaffar (2003)'s equation based on

Su.ngai Kinta catchment, Malaysia has also been carried out in this study.
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c) Evaluation of existing sediment transport equations were limited to most

commonly used equations namely Einstein bed load function (Einstein, 1942.

1950). Einstein-Brown's equation (Brown, 1950), Meyer-Peter-Muller's equation

(1948), Shields' equation (1936), Duboys' equation (1879), Yang's equation

(1972), Engelund-Hansen's equation (1967), Ackers-White's equation (1973)

and Graf's equation (1971). Besides that, the evaluation of Shanker's equation

which developed by Sinnakaudan (2003) based on Malaysian rivers has been

carried out in this study.

d) One dimension steady flow hydraulic model (FLUVIAL-12) was used to simulate

the sediment transport and flow condition in Sungai Kulim.

e) River hydraulic data used for sediment transport modeling using FLUVIAL-12

were limited to the data obtained from 1991 to 1993 June and 1997 to 2006

June.

1.5 Structure of Thesis

This thesis is divided into six (6) chapters. Chapter 1 briefly introduces the

research, including objectives and scope of works for the study. Chapter 2 contains

literature review of relevant studies regarding to data collection, sediment modeling and

river rehabilitation. Chapter 3 describes the research methodology which was used in

this research and site description, including the climate, hydrology, and geology of

Sungai Kulim. The river hydrology and hydraulic data, field measurements and

laboratory test are also included in this chapter. In Chapter 4, the result of sediment

analyses and summary are described.

modeling using FLUVIAL-12 and

recommendations for this research.

Chapter 5 presents the sediment transport

Chapter 6 contains conclusions and

5



Appendix A provides the comparison of sediment size distribution for a total of

24 data at four locations, while Appendix B shows the computation of bed load at CH

14390 and CH 3014 using seven-point measurement method. The summary of the

computed bed load and sediment characteristic at the two locations along Sungai

Kulim is shown in Appendix C. Appendix D and Appendix E provide the computation of

bed load using three-point measurement method and computed suspended load at CH

14390 and CH 3014. The summary of measured and computed n from the Equations

2.1 to 2.8, Equations 4.3 and 4.4 for representative data for Sungai Kulim, Sungai Kinta

and Sungai Langat are given in Appendix F. Appendix G is a sample of the FLUVIAL-

12 output.
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CHAPTER2

LITERATURE REVIEW

2.1 Sediment Transport

An alluvial river frequently adjusts its cross-section, longitudinal profile, course

of flow and pattern through the processes of sediment transport, scour and deposition.

In order to sustain cultural and economic developments along an alluvial river, it is

essential to understand the principles of sediment transport for application to the

solution of engineering and environmental problems associated with natural events

and human activities. Sediment can be defined as fragmented material which is formed

by physical and chemical weathering of rocks. The transport of sediment through a

river system consists of multiple erosional and depositional cycles. Many sediment

particles are intermittently stored in alluvial deposits along the channel or floodplain,

and ultimately re-entrained via bank and bed erosion. Total sediment loads consist of

suspended load (the fine-grained fraction transported in the water) and bed load (the

coarse-grained fraction transported along the channel bed). The transport of sediment

through the stream depends on the sediment supply (size and quantity) and the ability

of the stream to transport the sediment.

2.2 Sediment Data Collection and Analysis

River surveys, flow measurement and field data collection provide the basic

physical information such as sediment characteristics, discharge, water surface slope,

etc., which is needed for the planning and design of river engineering. For each

particular location, river surveys, flow measurement and field data are collected using

appropriate equipment and instrument. Various types of sampler, measuring and

procedures are used to obtain such information in Malaysia as well as other countries

around the world. The sediment data collection and analysis are discussed in the

following sections.
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2.2.1 Sungai Kinta Catchment

A total of 122 sediment data were obtained from May 2000 until October 2002

at Sungai Kinta Catchment (Figure 2.1) in the river sediment collection and analysis

project (Ab. Ghani et ai., 2003). Data collection including discharge, water-surface

width, flow depth, water-surface slope, bed load, suspended load and bed material has

been carried out at four rivers, namely Sungai Kinta, Sungai Pari, Sungai Raia and

Sungai Kampar by referring to Hydrological Procedure (DID, 1976; DID, 1977) and

recent manuals (Yuqian, 1989; USACE 1995, Edwards & Glysson, 1999; Lagasse et

al., 2001; Richardson et al., 2001). Details of data collection and analysis are given in

Ab. Ghani et al. (2003). Six study sites (Figures 2.1 and 2.2) were chosen based on

the following criteria:

(a) Natural reach (undeveloped upper or middle reach), which is less than 30%

catchment development: Sungai Kampar@ KM 34 (Figure 2.2a).

(b) Natural reach (Developed middle reach), which is more than 30% development:

Sungai Raia @ Kampung Tanjung (Figure 2.2b) and Batu Gajah (Figure 2.2c).

(c) Modified reach (Developed middle reach), which is more than 30%

development: Sungai Kinta (Figure 2.2d), Sungai Pari @ Manjoi (Figure 2.2e)

and Buntang (Figure 2f).

Range of Data

Table 2.1 shows a summary of the data collected at the six study sites with

respective range of discharge (a), water-surface width (B), flow depth (Yo). hydraulic

radius (R), water-surface slope (So), mean sediment size (d5o), aspect ratio (B/yo) bed

load (Tb), suspended load (Ts) and total load (TJ).
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Sungai Pari @
Buntang Study Site

N

.<::>.

Sungai Kinta
Study Site

Sungai Raia@
Kampung Tanjung
Study Site

Sungai Raia @ Batu

Gajah Study Site

- Sungai .Kinta Catchment

Figure 2.1: Study Sites at Sungai Kinta Catchment

(a) Sungai Kampar @ KM 34 (b) Sungai Raia @ Kg Tanjung (c) Sungai Raia @ Batu Gajah

(d) Sungai Kinta (e) Sungai Pari @ Manjci (f) StAngai Pari @ Buntong

Figure 2.2: Morphological View of Sungai Kinta Catchment Study Sites
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The mean sediment sizes for all sites showed that the study reaches are sand-

bed stream with dso range from DAD to 3.00 mm. The aspect ratios for the four rivers

are between 11 and 107 indicating that they are moderate-size channels. The water-

surface slopes of the study reaches were determined by taking measurements of water

levels over a distance of 200 m along the cross section is located (FISRWG, 2001).

For all the study sites, the water-surface slopes were found to be mild with ranges in

between 0.001 and 0.004.

Table 2.1: Range of Field Data for Sungai Kinta Catchment (Ab. Ghani et ai .• 2003)

Sungai Sungai Raia Sungai Raia Sungai
Study Site Kampar@ @ @Batu Kinta@ Sungai Pari SungaiPari

KM 34 Kampung Gajah Ipoh @Manjoi @ Buntang
Tanjung

No. of Sample 21 20 21 20 20 20

Discharge, Q (m%) 7.98 - 17.94 3.60·8.46 4.44 -17.44 3.80·9.65 9.72 - 47.90 9.66 -17.04

Water surface width. B (m) 20.2-21.1 22.2-25.6 17.3-20.8 24.6-28.0 20.3 19.3-19.5

Flow depth, Yo (m) 0.55-1.28 0.24-0.49 0.41-1.76 0.35-0.57 0.69·1.87 0.68-0.89

Hydraulic radius, R (m) 0.52-1.14 0.23-0.47 0.39-1.51 0.31-0.55 0.65-1.77 0.63-0.81

Water surface slope, So 0.0010 0.0036 0.0017 0.0011 0.0011 0.0012

Mean sediment size, dso 0.85 -1.10 0.60 -1.60 0.50 - 0.85 0.40 -1.00 1.70 - 3.00 0.85 -1.20
(mm)

Blyo 17-38 46 -107 12-45 48 -86 11- 29 22 -29

Bed load, Tb (kg/s) 0.40 -1.25 0.20 -1.82 0.25 - 1.37 0.02 - 1.21 0.40 - 0.80 0.35 - 0.79

Suspended load, T. (kg/s) 0.10 - 1.49 0.07 -1.39 0.09 - 2.04 0.21 -12.31 0.79 -16.81 0.67 - 4.41

Total load, T, (kg/s) 0.57 - 2.47 0.65 - 2.11 0.47 - 2.69 0.23 -12.82 1.25·17.62 1.03 - 4.89

Sediment Transport Data Analysis

The scatter plots of bed load transport against discharge and total load

transport against discharge are shown in Figures 2.3 and 204. The observed flow range

is between 3.60 m3Js to 47.90 m3/s. carrying total sediment load between 0.57 kgJs to

17.62 kg/s. The sediment ratings show that the points scatter widely, although the

transport rate is sensitive to discharge. These scatter plots will be used to compare

with the calculated sediment load by using existing sediment transport equations for

the study sites.
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Figure 2.3: Bed Load Rating Curves for Sungai Kinta Catchment

(Ab. Ghani et al., 2003)
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Figure 2.4: Total Load Rating Curve for Sungai Kinta Catchment
(Ab. Ghani et al., 2003)

The additional calculation of bed load transport rate by using three-point

measurement method (4 sections) has also been carried out (Ab. Ghani et al., 2003).

Figure 2.5 shows comparison of bed load transport rate obtained using seven-point
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measurement method (8 sections) and three-point measurement method (4 sections).

The bed load transport rates are not much difference between the two methods.

Therefore, the rusults suggested that bed load measurement in a small stream can be

carried out using the three-point measurement method with advantages in terms of

time, cost and man power.
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Figure 2.5: Comparison of Computed Bed Load Transport Rate between Seven-Point
Measurement Method and Three-Point Measurement Method (Ab. Ghani et al., 2003)

Flow Resistance

Research on determination of Manning n value at the Sungai Kinta catchment

was started by Abdul Ghaffar (2003). Six manning equations were chosen for

evaluation and the equations can be categorized as follow:

'.1!Il
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Category 1: Equations based on bed sediment size (d�

1 1/6
Strickler (1923): n = -- d50

21.1 (2.1)

Meyer-Peter & Muller (1948): n = _1_ d90
1/6

26
(2.2)

Lane & Carlson (1953): n::.
l

d
1/6

21. 14 75 (2.3)

Category 2: Equations based on the ratio of flow depth (Vs! ) or hydraulic radius (R) over
sediment size

Limerinos (1970): n=
O.1l3R1I6

0.35 + 2.0 log., (_B:_)d5ij

(2.4)

lliS

Bray (1979): n =
O.l13yo

1.09 + 2.210g\o( Yo )dso

(2.5)

Category 3: Equations include water-surface slope (Sg ) besides bed sediment size
and hydraulic radius or flow depth

1/6

( JI/7.3Bruschin (1985): n =� x � x So
12.38 dso

(2.6)

Category 1 was developed from data of large, wide rivers with gentai slopes

(Rahmeyer, 2006) and bed material is the primary source of resistance. Limerinos

(1970)'s equation was developed using 50 data from California rivers where d50 ranges

from 6 mm to 253 mm. The river channels are relatively wide stream of simple

trapezoidal shapes with inbank flow (Lang et al. 2004). Bray (1979)'s equation was

calibrated against data from 67 gravel-bed reaches in Alberta, Canada with dso range

from 18 mm to 147 mm and channel width between 14 m to 546 m (Lang et al. 2004).

Equation by Bruschin (1985) was based mainly on flume and sandy river data

(Raudkivi, 1993).
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The existing equations (Strickler, 1923; Meyer-Peter & Muller, 1948; Lane &

Carlson 1953; Limerinos, 1970; Bray, 1979 and Bruschin, 1985) were evaluated for

their suitability in predicting discharge for several streams along the Sungai Kinta

catchment. However, the evaluation of the existing equations for the six study sites at

Sungai Kinta catchment resulted in an unsatisfactory prediction of discharge, as shown

in Figure 2.6 (Abdul Ghaffar, 2003).

Two new equations (Equations 2.7 and 2.8) were proposed by Abdul Ghaffar

(2003) for determining Manning's n for rivers in Malaysia for moderate-size channels in

Malaysia with a correlation coefficient R2 = 0.61. Figures 2.7 and 2.8 plot Manning's n

against both yJdsor and R1dso, respectively. These equations were evaluated for their

suitability in predicting discharge for several streams along the Sungai Kinta catchment.

Abdul Ghaffar (2003): n=:2XIO-S( Yo J2 -3XIO-S( Yo J2 +0.0511dso dso
(2.7)

n=:3XIO-8(�J2 -4XIO-S(�J+0.0537 (2.8)
dso dso

Table 2.2 gives a summary of discrepancy (ratio of computed discharge over

measured discharge) by using Equations 2.7 and 2.8 for all the 122 data. The results

show that all the computed discharges are within the 0.5 to 2.0 range of discrepancy

ratio suggesting the viability of using these new equations for predicting discharge of

the rivers with similar characteristics as studied (Table 2.1).
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(Abdul Ghaffar, 2003)
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Figure 2.8: Development of Equation 2.8 to determine the, value of n based on Rldso
(Abdul Ghaffar,,2003)

Table 2.2: Summary of Discrepancy Ratio 'l,J�ing Equations 2.7 and 2.8 for
Sungai Kiota Catchment JAbdyl Ghaffar" 2(03)
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Sediment Transport Equation Assessment

The analysis for a total of 122 set of data was also carried out by applying four

sediment transport equations namely Yang's equation (1972), Engelund-Hansen's

equation (1967), Ackers-White's equation (1973) and Grat's equation (1971). The

performances of the equations were measured using the discrepancy ratio value,

which is the ratio of the predicted load to measured load. A discrepancy ratio of 0.5 to

2.0 was used in the evaluation of sediment assessment. From the results of sediment

transport assessment for total load (Table 2.3), it can be concluded that Yang and

Engelund & Hansen equations gave the best performance to predict the sediment load,

and it can be used to predict sediment transport rate for sand-bed rivers in Malaysia

(Ab. Ghani et al., 2003).

Table 2.3: Summary of Sediment Transport Equation Assessment for
Sungai Kinta Catchment (Ab. Ghani, 2003)

Discrepancy Ratio (0.5 to 2.0)
Total Engelund & Ackers &

River Study Site of Yang Hansen White
Graf

Data No. of No. of No. of No. of
data (%) data (%) data (%) data (%)

Sungai Pari Manjoi 20 6 30.0 19 95.0 2 10.0 4 20.0
Buntang 20 1 5.0 1 5.0 O O O O

Sungai Raia
Ko. Taniunc 20 1 5.0 O O 1 5.0 O O
Bt. Gajah 21 1 4.8 O O O O O O

Sungai Kinta Ipoh 20 6 30.0 3 15.0 4 20.0 6 30.0
Sungai Kampar KM34 21 7 33.3 7 33.3 O O O O

2.2.2 Sungai Langat Catchment

A total of 165 sediment data were obtained at Sungai Langat Catchment from

2000 until 2002 by Ariffin (2004). Data collection including flow discharge, water-

surface width, flow depth, water-surface slope, bed load, suspended load and bed

material has been carried out by refering to Ab. Ghani et al. (2003). The tributaries

Sungai Lui and Sungai Semenyih flow into the main river, Sungai Langat. In contrast,

the lower region of Sungai Langat has yet to be fully developed. There are rubber and
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oil palm plantations within the catchment. Four study sites (Figure 2.9) were chosen in

this study.

Figure 2.9: Study Site:;; at Sungai Lanqat Catchment

Range of Data

Table 2.4 shows a summary of the data collected at the four study sites. The

mean sediment sizes for all sites show that the study reaches are sand ..bed streams

where d50 range from 0.37 to .2.30 mm. The aspect ratios for the three' rivers (Sungai'

Langat, Sungai Lut and Sungai: Semenyih) are between g and 66 indic�ting that they

are moderate-size. channels:. For all study sites the water-surface slopes were found to

be mild with values range in between Q,,0003and O.O�7.
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Table 2.4: RanQe of Field Data for Sunqal Lanaat Catchment (Ariffin, 2004)
Sungai Langat Sungai langat Sungai lui @ Kg Sungai

Study Site @ Kajang @ Dengkil Lui Semenyih @ Kg
Sa Rinchinq

No. of Sample 20 3 92 50

Discharge, Q (m3/s) 3.75 - 39.56 33.49 - 87.79 0.74 -17.17 2.60-8.04

Water surface width, B (m) 15.0�20.0 30.0-33.0 15.0 -17.0 13.5 -15.0

Flow depth, Yo (m) 0.45-1.39 1.90-3.23 0.23 -0.99 0.36 -0.82

Hydraulic radius, R (m) 0.42-1.22 1.70-2.66 0.22 - 0.89 0.34 -0.73

Water surface slope, So 0.0043 - 0.0051 0.0167 0.0003 - 0.009 0.0023 - 0.015

Mean sediment size, dso (mm) 0.37 - 2.13 0.52 - 0.95 0.50 -1.74 0.88- 2.29

B/yo 14.4 - 33.5 9.30 -17.4 17.2 -65.8 17.1 -41.5

Bed load, Tb (kg/s) 0.02 -1.29 0.27 -0.65 0.04 -1.55 0.65-3.16

Suspended load, To; (kg/s) 0.66 -77.51 18.69 - 118.31 0.05 - 5.77 0.24 -10.77

Total load, TJ (kg/s) 0.78 -77.86 18.96 -118.93 0.27-6.16 1.08 � 12.08

Sediment TransportAnalysis

The observed flows range in between 0.74 m3/s to 87.8 m3/s carrying total

sediment load between 0.27 kg/s to 118.9 kg/s. The sediment concentration for Sungai

Langat as the main tributary exceeded those from the two tributaries. Figures 2.10 and

2.11 show the bed load rating curve and total load rating curve, which the sediment

ratings show that the points scatter widely, although the transport rate is sensitive to

discharge.

Sediment Transport Equation Assessment

The analysis for a total of 165 set of data was also carried out using four

sediment transport equations namely Yang's equation (1972), Engelund & Hansen's

equation (1967), Ackers-White's equation (1973) and Grafs equation (1971). From the

results of total load transport assessment (Table 2.5), it can be concluded that

applications of Yang and Engelund & Hansen equations yielded highest percentage of

discrepancy ratio in predicting sediment transport in sand-bed rivers.
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Figure 2.10: Bed Load Rating Curves for Sungai Langat Catchment (Ariffin, 2004)

1000

SungaiLangat@
100

Dengkil o

(l

OI <>

: 10

p

1·

0.1 .

0.1 1 10 100
Q (m'Is)

1000

Sungai Semneyih @
100

Kg. Sg. Rinching

"

:10 : 00
...
-

�r!1

0.1

0.1 1 10 100
Q(m"S'

Figure 2.11: Total Load Rating Curves for Sungai Langat Catchment (Ariffin, 2004)
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Table 2.5: Summary of Sediment Transport Equation Assessment for
Sun �ai Langat Catchment (Ariffin, 2004)

Discrepancy Ratio (0.5 - 2.0)
Total Engelund & Ackers &

River Study Site of Yang Hansen White
Graf

Data No. of No. of No. of No. of
data (%) data (%) data (%) data (%)

Kajang 20 4 20.0 5 25.0 O O O O
Sungai Langat

Dengkil 3 O O O O O O O O

Sungai Lui Kg. Lui 92 27 29.3 14 15.2 21 22.8 2 2.2

Sungai Kg. S9. 50 18 36.0 15 30.0 12 24.0 4 B.O
Semenyih Rinching

2.2.3 Nile River Catchment

Measurements of bed-load and suspended-load transport rates were carried

out at four study sites of the Nile River, Egypt by Abdel-Fattah (1997a,b,C,d) along the

entire length from Aswan to Cairo (Figure 2.12) using a mechanical sampler called

the Delft Nile Sampler.

Mediterranean Sea

Delta B_mile

aplbmmadlBamre

Figure 2.12: Study Sites along Nile River, Egypt (Abdel-Fattah et al., 2004)

21



The sediment load transport was measured using the Delft-Nile Sampler (Van

Rijn and Gaweesh, 1992; Van Rijn, 1993), which was operated from an anchored boat.

This mechanical sampler was designed to measure, in contact to the bed, the bed load

and the suspended load up to 0.5 m above the bed (the sampler height). A separate

device (Delft fish) equipped with a small nozzle connected to a suction pump, a

propeller meter, and an echo sounder for depth determination was used to measure

suspended load at different water depths above the bed and near the water surface

(Figure 2.13).

w.s.

Delft Fish Sampter

Delft Nile Sampler

Figure 2.13: Sketch of Measuring Technique (Abdel-Fattah et al., 2004)

The locations of the measurement cross sections were selected in a stable

reach to avoid unsteady bed conditions during the measurements. The measurements

of bed, suspended load, and velocity profiles were conducted at the six measurement

stations (St1 to St6, Figure 2.14). At each station, measurements were performed at

five locations (l1, l2, l3, l4, and l5) distributed over the length of the longitudinal

section, which is almost equal to the mean bed form length. Figure 2.14 shows the

layout of the measurement stations and locations.
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Figure 2.14: Layout of Measurement Stations and Locations (Abdel-Fattah et al., 2004)

The measurements were performed at 30 locations, and at each station the

following measurements were performed for the five locations:

• Ten instantaneous samplings using the Delft Nile Sampler with a bag of mesh

size 250 mm; the sampler was lowered to the bed and immediately raised up

after the nozzle had touched the bed.

• Eight bed load samplings of 3 minutes each using the Delft Nile Sampler with

the same bag size.

• Suspended load samplings over the water depth using the Delft Nile and the

Delft Fish Samplers. The suction of the samples was driven by a set of

pulsation pumps. The samples were collected (volume = 5 L) in plastic buckets.

• Velocity profiles over the water depth using propeller current meters installed

on the Delft Nile and the Delft Fish Samplers. The flow velocity measurements

were carried out as follows:

At 0.18, 0.37 and 0.50 m above the bed level by using three propeller-type

current meters attached to the Delft Nile Sampler

From 0.50 m above the bed level to the water surface by using a propeller-

type current meter attached to the Delft Fish.

• One bed material sample at the end of each measurement using a grab

sampler.
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• Water temperature was measured.

• At each station, a longitudinal bed profile for the five locations was sounded.

The main topographic and hydraulic characteristics of the four study sites were

summarized in Table 2.6 and measured data were presented in Tables 2.7.

Table 2.6: Main Characteristics of the Study Sites (Abdel-Fattah et al., 2004)
Location Aswan Quena Sohag 8ani-Sweif

River width 517 578 481 400

Local slope 3.5 4.2 5.7 8.5

Flow discharge 1,331 1,250 1,560 1,040
Average bed form length 44 22 24 28

Average bed form height 1.6 0.8 0.7 0.75

Table 2.7: Measured Data at Four Study Sites, Nile River (Abdel-Fattah et aI., 2004)
Standard

Velocity Suspended Bed Load
Distance Mean deviation Load

Slation
from left depth

dl0 d50 d90 of bed (m/s) (kg/m/s) (kg/m/s)
bank (m) (um) (Ilm) (Ilm) material, O"g

Mean
Mean

Mean

Aswan
1 60 4.98 207 313 493 2.0 0.482 0.0078 0.0056
2 140 5.72 187 322 580 1.8 0.487 0.0081 0.0012
3 220 4.78 215 359 577 1.7 0.587 0.0089 0.0038
4 300 5.02 234 389 635 2.0 0.618 0.009a 0.0058
5 380 4.82 266 542 1197 1.9 0.591 0.0092 0.0113
6 460 5.70 186 345 735 2.5 0.415 0.0077 0.0005

Quena
1 81 4.34 231 378 556 1.2 0.66 0.034 0.0167
2 164 4.65 141 282 429 2.0 0.67 0.033 0.0120
3 252 4.40 166 267 389 1.5 0.60 0.010 0.0064
4 338 3.55 161 277 354 1.5 0.49 0.006 0.0015
5 414 4.03 135 239 315 1.6 0.31 0.003 0.0001
6 517 3.88 184 267 344 1.4 0.36 0.003 0.0009

Sohaj
1 55 4.54 352 586 1155 2.0 0.82 0.0396 0.0117
2 124 4.58 177 453 594 1.4 0.77 0.1118 0.0313
3 183 4.13 236 472 987 1.8 0.88 0.1236 0.0291
4 274 4.19 160 258 412 1.1 0.78 0.2199 0.0259
5 355 4.12 176 251 330 1.7 0.75 0.0979 0.01
6 425 4.27 204 314 591 1.5 0.61 0.0175 0.002

Bani-Sweif
1 344 2.82 306 603 1661 1.77 0.81 0.0163 0.0191
2 282 2.76 415 490 1,216 1.64 0.74 0.0272 0.0152
3 221 2.76 359 409 700 1.43 0.72 0.0422 0.0178
4 179 3.40 305 343 543 1.39 0.66 0.0416 0.0126
5 120 4.28 295 350 697 1.56 0.71 0.0482 0.0057
6 60 5.04 251 296 619 1.63 0.73 0.0623 0.0040
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Three equations including Meyer-Peter-Muller (1948), Bagnold (1966), and Van

Rijn (19848) equations were tested for the prediction of bed-load transport using the

Nile data. Table 2.8 shows the comparison between the measured and predicted bed

load transport rates at the four study sites; Ratio of computed and measured transport

rate is given between brackets. From the results, the prediction of bed load transport

rate using Van Rijn's equation gives significantly better results than the 8agnold's

equation and slightly better results than the Meyer-Peter-Muller's equation.

Table 2.8: Measured and Predicted Bed Load Transport Rates at the Four Study Sites
(Abdel-Fattah et ai., 2004)

Site Measured
Predicted Bed-load transport rates (Kg/s)

Bagnold Meyer-Peter-Muller Van Rijn

Aswan 1.73
8.2 2.9 1.6
(4.7) {1.7} (0.93)

Quena 3.21
12.8 5.8 2.7
(4.0) (1.8) (0.86)

Sohag 7.21
31.2 19.1 14.0
(4.3) (2.7) (1.9)

Bani-Sweif 3.92
22.3 14.4 11.5
(5.7) (3.7) (2.9)

Note: Ratio of Computed and Measured Transport Rate is Given between Brackets

The suspended-load transport rates were computed using Bagnold (1966) and

Van Rijn (1984b) equations. Table 2.9 shows the comparison between the measured

and predicted suspended-load transport rates at the four study sites. These results

show that the predicted suspended transport rates of both equations are in good

agreement with the measured values.

Table 2.9: Measured and Predicted Suspended Load Transport Rates at the Four
Study Sites (Abdel-Fattah et al., 2004)

Site Measured
Predicted Bed-load transport rates (Kg/s)
Bagnold (1996) Van Rijn (19848.°)

Aswan 4.4
4.9 1.8
(1.1 ) (DA)

Quena 8.9
10.1 6.6
(1.1 ) (0.7)

Sohag 47.9
26.3 34
(0.6) (0.7)

Bani-Sweif 15.8
18.5 25
(1.2) (1.6)

Note: Ratio of Computed and Measured Transport Rate is Given between Brackets
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