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Abstract: Most of contamination source localization methods for water distribution systems (WDSs)  26 

assumes the availability of accurate water quality models and multi-parameter online sensors, which 27 

are often out of reach of many water utilities. To address this, a novel manual grab-sampling method 28 

(MGSM) is developed to effectively and efficiently locate continuous contamination sources in a 29 

WDS using a dynamic and cyclical sampling strategy. The grab samples are collected at a pre-30 

specified number of hydrants by the corresponding teams followed by laboratory tests. The MGSM 31 

optimizes the sampling plan at each cycle by making the probability of contamination source(s) in 32 

each sub-network as equal as possible, where sub-networks are determined by the selected hydrants 33 

and current flow pipe directions. The CS’s size is reduced at each cycle by exploting sample testing 34 

results obtained in the previous cycle until there are no further hydrants to sample from. Two real-35 

world WDSs are used to demonstrate the effectiveness of the proposed MGSM. The results obtained 36 

show that the MGSM can significantly reduce the spatial range of the CS (to about 5% of the entire 37 

WDS) for a range of scenarios including multiple contamination sources and pipe flow direction 38 

changes. We found that an optimal number of sampling teams exists for a given WDS, representing 39 

a balanced trade-off between detection efficiency and sampling/testing budgets. Due to its relative 40 

simplicity the proposed MGSM can be used in engineering practice straightaway and it represents a 41 

viable alternative to the methods associated with water quality models and sensors. 42 

Keywords: Water distribution systems, manual grab-sampling method, contamination sources, 43 

water quality 44 
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1. Introduction 46 

A water distribution system (WDS) represents a basic lifeline infrastructure that closely relates to 47 

the daily life and health safety of its served population (Qi et al., 2018). Typically, a WDS is spatially 48 

distributed and thus inherently vulnerable to accidental and/or intentional contamination intrusion 49 

(Ostfeld et al., 2014; Yang and Boccelli 2016; Zhang et al., 2020). For instance, over a five-day 50 

period in October 2007, a boil-water notice was served on the majority of Oslo, Norway, as a result 51 

of a combination of bacteriological, Cryptosporidium oocysts and Giardia cysts found in the samples 52 

taken from the WDS (Robertson et al., 2008). More recently, on 26 July 2020, a contamination event 53 

was reported in Hangzhou, China, where a sewer pipe was misconnected to a drinking water pipe in 54 

a small suburb (ChinaNews, 2020). Unfortunately, these events were not detected by the water 55 

quality warning systems of the local water utilities. The events were reported by the residents and/or 56 

diagnosed by the hospitals. This implies that monitoring and protecting water quality safety are 57 

still nontrivial challenges for many WDSs (Asheri Arnon et al. 2019).  58 

To secure water quality safety in a WDS, extensive studies have been carried out to develop 59 

contamination response systems (CRSs) (Giudicianni et al. 2020a). In principle, an effective CRS 60 

should at least consist of a contamination warning and source identification (Rodriguez et al. 2021). 61 

Regarding the contamination warning, a straightforward manner is to deploy online water quality 62 

sensors within the WDS (Hart and Murray 2010). A warning is triggered once the concentration 63 

of some particular water quality parameters (e.g., pH, turbidity) is above or below the sensor’s 64 

safety threshold. Ideally, placing a sensor at each possible location in the WDS can maximise the 65 

capability to generate a warning when a contamination intrusion event occurs (Zheng et al. 2018). 66 

However, it is difficult, if not impossible, to implement this approach due to the high capital and 67 

maintenance costs associated with so many water quality sensors (Winter et al. 2019).  68 

Consequently, many studies have focused on optimally deploying a limited number of water 69 

quality sensors to maximize their detection/warning performance (Rathi and Gupta 2014). These 70 

studies range from the use of different objective functions to identify appropriate water quality 71 

sensor placement strategies (He et al. 2018; Naserizade et al. 2018), to the development of various 72 

algorithms to enable effective optimization on this design problem (Hu et al. 2017). More recently, 73 

efforts have been increasingly made to identify design solutions that provide a resilient water 74 
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quality sensor strategy. The approach does not only perform well when all sensors function 75 

perfectly, but also can detect contamination events even under possible sensor failures (Ostfeld et 76 

al., 2008; Zhang et al., 2020). Typically, the objective functions designed for the water quality 77 

sensor placement problems are very complex as different aspects of contamination detection need 78 

to be taken into account (e.g., detection likelihood, detection time delay, sensor reliability, different 79 

consequences of non-detection, various uncertainties, Khorshidi et al. 2018). Studies have been 80 

undertaken to develop various algorithms to effectively identify optimal water quality sensor 81 

placement strategies based on these objective functions (Ung et al. 2017). Specifically, those 82 

studies focus on developing either sophisticated search algorithms that enhance the design 83 

solution’s quality (Di Nardo et al. 2018; Hu et al. 2020) or advanced water quality modelling 84 

approaches that improve the optimization efficiency (Naserizade et al. 2018; Ohar et al. 2015).  85 

In parallel to the research progress on the early warning systems for contamination detection, 86 

efforts have also been made to develop various algorithms for sourcing/localizing the 87 

contamination injection locations according to the analysis of sensor data (Pries and Ostfeld, 2007). 88 

These developments started by using the traditional optimization techniques, such as linear 89 

programming (LP) scheme (Pries and Ostfeld, 2006). This was followed by the use of various 90 

evolutionary algorithms (EAs) as they possess superior search capabilities compared to the 91 

traditional LP and nonlinear programming (NLP) techniques (Pries and Ostfeld, 2008; Hu et al., 92 

2015; Li et al., 2021). While these algorithms have reliable performance in locating contamination 93 

sources in hypothetical case studies, their practical application can be highly challenging. This is 94 

mainly due to the “equifinality” issue associated with the identification of the source of the incident 95 

(Jia et al., 2021a), where many different injection scenarios (contaminant concentration and 96 

starting time) indicate a similar contamination impact. To address this issue, the Bayesian based 97 

approaches have been proposed to identify contaminant sources, where the location with the 98 

highest posterior probability is interpreted as the most plausible (Yang and Boccelli, 2014; Sankary 99 

and Ostfeld, 2019; Jerez et al., 2021). More recently, machine learning algorithms have been 100 

increasingly employed to facilitate contamination localization, such as the Random Forest 101 

algorithm (Grbčić et al., 2020) and Convolutional Neural Network (Sun et al., 2019).  102 

Detailed analysis of previous studies in terms of the CRS research shows that the majority of 103 

contamination warning and source identification methods rely heavily on an accurate water quality 104 
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model (Vrachimis et al. 2020). This is one of the main reasons that may hinder their 105 

implementation as a well-calibrated water quality model is usually not available for many water 106 

utilities (Sankary and Ostfeld 2018). In addition, existing water quality modelling techniques are 107 

still incapable of accurately reproducing contaminant reaction dynamics in WDSs, especially for 108 

biochemical contaminants (Hart et al. 2019). While online sensors may provide reliable warning 109 

information by measuring the contaminant concentration in real-time, they generally can only 110 

measure a limited number of water quality parameters such as pH, turbidity, chlorine and 111 

conductivity (Sun et al. 2019). Consequently, many other contaminants such as organics and 112 

pathogenic microorganisms cannot be detected with certainty using online in-situ sensors. In 113 

addition, water quality sensors are often expensive in both the purchase and maintenance, 114 

especially for advanced sensors that are used to measure complex substances (He et al., 2018). 115 

Therefore, the water quality sensors are often sparsely distributed in many WDSs (Ostfeld et al., 116 

2014).  117 

The contamination events within the WDS can be classified into three different types, which are 118 

intentional events (Type 1), accidental events (Type 2) and events caused by the WDS itself (Type 119 

3). For Type 1, the contamination can be toxic substances that are intentionally injected into the 120 

WDS, typically during a short time period. Such events can result in serious consequences and hence 121 

need a quick response at all costs (Ostfeld et al., 2014). Type 2 is often represented by the 122 

misconnections between water supply pipes and greywater /sewer pipes that have been reported in 123 

China (He et al., 2018). Type 3 can be caused by structural damages to pipes (e.g., contamination 124 

due to pipe corrosion or leaks, Zhang et al., 2020) or biochemical substances (e.g., microorganisms) 125 

activated by the water at a particular level of turbulence (He et al., 2019).  126 

Typically, within Types 2 and 3, the contamination exists continually in the WDS until the source(s) 127 

is localized and eliminated. These contamination substances (e.g., metal, microorganism, organic) 128 

often have the following properties: (i) they can be colorless and tasteless, and hence cannot be 129 

directly detected by tap-water users; (ii) they do not induce quick, serious public health consequences 130 

(i.e., this study focuses on the contamination events with chronic but no acute health effects) and 131 

hence their source(s) localization needs to be conducted without interrupting water supply; and (iii) 132 

they may not be directly detected by online water quality sensors as the majority sensors typically 133 

monitor simple quality parameters such as chlorine, pH, turbidity and conductivity. These properties 134 
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motivate the development of the proposed manual grab-sampling method (MGSM) to efficiently 135 

and effectively identify continuous contamination sources of Types 2 and 3 in WDSs.  136 

The proposed MGSM is an iterative manual grab-sampling method (MGSM) to enable effective 137 

contaminant detection and localization. This is followed by gathering comprehensive water quality 138 

parameter information with the aid of laboratory tests. The MGSM is particularly useful for the 139 

cases that the online quality sensors are sparsely distributed (or completely unavailable) or sensors 140 

cannot measure the contaminants (Wong et al., 2010). The MGSM does not need water quality 141 

modelling and can identify the contamination location without encountering the “equifinality” 142 

issue. In addition, for the cases that the labour is plentiful with low cost, the MGSM is preferred 143 

as it provides the spatial distribution of water quality measurements at a reduced cost when 144 

compared to fixed sensors (Mann et al., 2012). Therefore, manual grab-sampling can be an 145 

important strategy for water utilities interested in water quality safety in the WDS, which can 146 

supplement the information obtained from existing online sensors.  147 

Despite the merits and practical significance of the MGSM for the cases with sparsely distributed 148 

sensors and relatively low labor costs, relevant research on this topic is surprisingly rare. Amongst 149 

few relevant studies, one significant example is from the work of Wong et al. (2010), where a 150 

Mixed-Integer Linear Programming formulation is proposed to determine optimal locations for 151 

manual grab sampling after a contamination event is detected in a WDS. In their study, the optimal 152 

manual grab sample locations are identified by maximizing the total pair-wise distinguishability 153 

of candidate contamination events (eliminate unlikely events as much as possible). While Wong 154 

et al. (2010) showed that a contamination event can be identified by their proposed method with 155 

significantly improved efficiency, its success was conditioned on a few critical assumptions. These 156 

assumptions include: (i) each node in the WDS has an equal probability of being the source of 157 

contamination intrusion, (ii) only one contamination event can occur in the WDS, and (iii) the pipe 158 

flow direction cannot change during the entire sampling process. However, these assumptions can 159 

significantly violate the real conditions as the contamination intrusion can occur at any pipe 160 

location and a long pipe is typically associated with a higher contamination probability (He et al., 161 

2018). Furthermore, although the probability of simultaneous multiple contamination intrusions is 162 

low, their occurrence is still possible in large WDSs (Butera et al., 2021). In addition, flow 163 
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direction changes are likely to occur in some pipes in a large WDS with multiple supply sources 164 

(Qi et al., 2018).  165 

The main contribution of this paper is the proposal of an improved water quality MGSM for 166 

detecting and localizing continuous contamination sources in WDSs. The newly developed method 167 

employs a dynamic and cyclical sampling strategy based on the hydrant locations in a WDS. The 168 

novel aspect of the proposed method is the simple and effective way developed to split the network 169 

after each round of sampling, thereby significantly enhancing the efficiency of the entire detection 170 

process. In addition, the proposed method is novel in that the optimal sampling locations are 171 

determined by making the probability of contamination source in each sub-network based on the 172 

current flow pipe directions as equal as possible at each cycle. The results of these samples are 173 

subsequently analyzed and employed to drive the sampling strategy for the next cycle. It is 174 

highlighted that the proposed MGSM is an alternative to these literature methods (sensor-based 175 

methods) in the cases where: (a) sensors are sparsely distributed or not available (e.g. lack of 176 

existence of suitable sensors), (b) the low-cost labour force is available, and (c) the contamination 177 

events have slow or low impacts to the water quality in the WDSs.  178 

2. Methods 179 

The basic premise of the proposed MGSM is: (1) select a given number of sampling points (hydrants 180 

of the WDS) in the studied area based on the testing capacity of the laboratory (i.e., the number of 181 

samples that can be tested simultaneously) and the number of sampling teams, with all pipes within 182 

the candidate area considered as possible contamination sources, (2) narrow down the range of the 183 

candidate areas containing contamination source(s) based on sample testing results, and (3) repeat 184 

steps (1) and (2) until the range of candidate areas with contamination source(s) cannot be further 185 

narrowed down. The key to effectively implementing this new MGSM is how to automatically select 186 

the appropriate hydrants in each cycle of the above methodology to reduce the total number of cycles, 187 

thereby quickly localizing the pollution source(s) in the WDS. It is noted that every length of pipe 188 

between two hydrants within the WDS is considered as the contamination source. Therefore, the 189 

proposed MGSM can account for both the scenarios that the contamination sources are in pipes or 190 

junctions. While the proposed MGSM is demonstrated using hydrants in this study, any other 191 
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sampling facilities (e.g., taps) can be easily handled by simply treating them as hydrants within the 192 

algorithm implementation.  193 

Section 2 presents the details of the proposed MGSM, including the associated theoretical 194 

foundations (e.g., the development of the objective function), the MGSM algorithm structure, the 195 

illustration of the proposed MGSM and the optimization method to implement the MGSM.  196 

2.1 Theoretical foundations for the proposed MGSM  197 

Section 2.1 introduces the theoretical foundations of the proposed MGSM, including the proposal of 198 

a method to enable the WDS partitioning and the development of the objective function of the 199 

proposed MGSM. The details are given below.  200 

2.1.1 WDS partitioning based on sampling locations and flow directions  201 

As previously stated, the proposed MGSM attempts to identify the optimal sampling locations 202 

(hydrants) at each cycle, aimed to minimize the total number of cycles (equivalent to the efficiency 203 

and cost of the entire process). Within the MGSM, the entire WDS is partitioned into different sub-204 

networks based on sampling locations and flow directions at a given point in time. Specifically, if a 205 

hydrant H in the system is selected as the sampling point, all pipes in the WDS can be divided into 206 

two sub-networks: all upstream pipes relative to the selected hydrant H, denoted as UH, and 207 

remaining pipes whose flows do not go through H, denoted as NH. If two hydrants (H1 and H2) are 208 

selected as the sampling points, four sub-networks can be identified, respectively representing the 209 

common group of pipes upstream of both selected hydrants (U1∩U2), the unique group upstream of 210 

one hydrant only (U1∩N2 and U2∩N1), and not the upstream of both hydrants (N1∩N2). Using this 211 

process, for a number of n sampling points in a WDS, e.g., {H1, H2, …, Hn}, a total of T=2n sub-212 

networks, {S1, S2, …, ST}, can be obtained theoretically.  213 

Figure 1 illustrates how the proposed MGSM identifies the WDS sub-networks based on two 214 

sampling locations. A total of 16 hydrants are available that can be considered as the potential 215 

sampling points, where the arrows represent pipe flow directions. For illustration, hydrants 10 (H10) 216 

and 15 (H15) are selected as sampling points to enable network partitioning. Four different sub-217 

networks are identified using the proposed MGSM, which are S1={P1, P2, P4}, S2={P3, P5, P6, P7, 218 

P8, P10, P11, P13, P14, P17, P18}, S3={P9, P12}, S4={P15, P16, P19}. It can be observed that pipes in S1219 
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are in the common upstream group for H10 and H15 and flows for pipes in S4 do not go through any 220 

of the two hydrants. Pipes in S2 are those that are upstream of H15 but not H10, and Pipes in S3 are 221 

upstream of H10 but not H15.  222 

223 

Figure 1: Illustration of the WDS sub-networks identified by the proposed MGSM based 224 

on two sampling locations, with arrows representing pipe flow directions 225 

For the n sampling points A={H1, H2, …, Hn}, the outcome of the test at each sampling point is 226 

either that the sample is contaminated or non-contaminated. Therefore, there are 2n possible results 227 

for n sampling points, in which each contaminated outcome corresponds to the contamination source 228 
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being located in a certain sub-network or many sub-networks when contaminations are found in 229 

many sampling locations. For example, if the contamination is detected at both H10 and H15, as in 230 

Figure 1, it can be derived that the contamination source(s) may be located in the common upstream 231 

group of pipes (S1 in Figure 1). The source can also be in the two sub-networks (S2 and S3) upstream 232 

of one of the two sampling locations. When only one sampling point indicates contamination, it can 233 

be determined that the source is located in the area upstream of the sampling point where 234 

contamination is detected, that is, S2 or S3. When results show no contamination at both sampling 235 

points, then the contamination source(s) is located in an area outside all the upstream parts of the 236 

two sampling points, that is, S4 in Figure 1. This is the basic localization principle used in the 237 

proposed MGSM in this study. 238 

Once a sub-network or a few sub-networks are selected as potential contamination sources based on 239 

the sample testing results, all pipes in this/these sub-network(s) are considered as candidates. This is 240 

followed by the further use of the partitioning method to narrow down the spatial range to localize 241 

the source. In other words, the network partitioning needs to be carried out at each cycle of the entire 242 

sampling process based on the updated candidate pipes with potential contamination sources.  243 

2.1.2 The development of the objective function of the proposed MGSM 244 

Conditioned on the identified T sub-networks, the mathematical expectation (E(A)) of a given set of 245 

sampling points (A) in localizing the location of the contamination source can be expressed as  246 

1

(A)
T

i i
i

E p L


  (1) 

where pi is the probability of the ith sub-network that have the contamination source, and Li is the 247 

corresponding total pipe length of this sub-network. Since the proposed MGSM mainly aims to 248 

detect contamination types 2 and 3 (see section 2 for details), the probability of a contamination 249 

source being located on each unit length of pipe can be considered identical. This results in the 250 

probability of contamination source being in any sub-network i equal to the ratio of the pipe length 251 

of the sub-network Li to the total pipe length Lall in the entire WDS. Mathematically, it gives, 252 

2

1 1

1
(A)

 

   
T T

i
i i

i iall all

L
E L L

L L
(2) 
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Thus, the objective function for calculating the optimal sampling group can be expressed as follows: 253 

Minimize: 
2

2
1

(A) 1
(A)



  
T

i
iall all

E
F L

L L
(3) 

where F(A) is a dimensionless number by dividing E(A) using Lall, representing the ratio of candidate 254 

area with contamination source identified by the sampling group relative to the total pipe length of 255 

the entire WDS being considered. A is the decision variables, representing the hydrant sampling 256 

strategy. The minimization of F(A) physically indicates a minimum pipe length of the sub-network 257 

with contamination source(s) to be identified by the selected sampling points. 258 

Cauchy–Schwarz Inequality (Bhatia and Davis, 1995) can be used to further explain the 259 

minimization of Equation (3), which is 260 

2 2 2 2
1 2 1 2) ( )             （ T TT L L L L L L (4) 

Namely 
2

2
1

1 1
A)



 （
T

i
iall

F L
L T

(5) 

For L1=L2,…,=LT, the equation holds. Under this condition, when only one hydrant is selected as the 261 

sampling point in each cycle, the optimal hydrant divides the WDS into two sub-networks such the 262 

pipe length of its upstream section is half of the total length. When n hydrants are selected as the 263 

sampling points in each cycle, theoretically, the optimal hydrant group bisects the WDS to 2n sub-264 

networks with identical pipe lengths across different sub-networks. In other words, the minimization 265 

of Equation (3) (i.e., L1=L2,…,=LT) can be interpreted as using a specified number of sampling points 266 

to assign the pipes into T sub-networks with the minimum difference in pipe length at each cycle. 267 

This is equivalent to the bi-section approach in computer science, and hence it is expected that such 268 

a method can achieve a statistically efficient sampling strategy to localize the contamination source. 269 

It is noted that the proposed optimization method may not be able to guarantee global optimality, but 270 

it can offer a near-optimal solution that can be efficiency found at each cycle. 271 

The pipe length is used to split the WDS in this study due to its simplicity and efficiency. However, 272 

a more refined method may need to account for water velocities or flow volumes, both of which can 273 

be correlated with pipe diameters, as well as can account for the amounts of contaminants moving 274 
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through the pipes. Therefore, partitioning the WDS with the aid of both pipe length and water 275 

velocity can be an important future research focus.  276 

2.2 The algorithm of the proposed MGSM  277 

The implementation of the proposed MSGM can be triggered by (i) the routine water quality 278 

checking operation required by the water utilities, (ii) abnormal signals from online water quality 279 

sensors (e.g., chlorine sensors) that are often installed at the outlets of the districted metering areas 280 

(DMAs), or (iii) positive testing results of samples at the outlets of the DMAs or at the important 281 

locations within the WDS area. Figure 2 shows the algorithm details of the proposed MGSM in 282 

localizing contamination source(s). As shown in this figure, when the number of sampling locations 283 

at each cycle is n=1, the sampling hydrant is selected by minimizing Equation (3), where the 284 

minimization method is elaborated in Section 2.4. The candidate sub-network (CS) that may contain 285 

contamination source(s) is updated at each cycle based on the sample testing results (Case A1 and 286 

Case A2 in Figure 2). If n is greater than 1, the algorithm of the proposed MGSM becomes more 287 

complex, with details given in Figure 2. At the beginning (i.e., flag=0, and the MGSM is triggered), 288 

the n optimal sampling locations are identified by minimizing Equation (3) for the entire WDS being 289 

considered (i.e., CS is the entire WDS). This is followed by the application of selection strategy 1 290 

(SA1) to update the CS for the next cycle, where three different cases (Case B1, B2 and B3) can be 291 

available. For Case B2 (only one sample hydrant has contamination) and B3 (all sample hydrants 292 

are contamination free), it is straightforward to select the CS for the next cycle as shown in Figure 293 

2.  294 

Specify the number of sampling points n
Set the cycle c=1, flag=0, the candidate sub-network (CS) as the entire WDS 
While True 
{ 

If n = 1 
{ 

Select n sampling hydrant for the CS by minimizing Equation (3) 
Update the CS according to sample testing results  

Case A1: the sample is contaminated  
Select the sub-network (US) upstream of the selected hydrant 

Case A2: the sample is contamination free 
Select the sub-network that is not the upstream of the selected hydrant  

c = c + 1 
}
Else 
{ 

If flag=0
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        { 
Select n sampling hydrants for the CS by minimizing Equation (3) 
Update the CS according to sample testing results using Selection strategy 1 (SA1):

Case B1: more than one hydrant sample are contaminated  
Select the common sub-network (CUS) upstream of the contaminated hydrants 
Set flag=1 

Case B2: only one hydrant sample is contaminated 
Select the unique sub-network upstream of the contaminated hydrant  

Case B3: no hydrant samples are contaminated 
Select the sub-network that is not the upstream of the selected hydrant 

c = c + 1 
}
If flag=1 
{ 

If the CUS exists and its most downstream hydrant is not sampled  
Assign one sample point at the most downstream hydrant of the CUS
Select n-1 sampling hydrants for the CS by minimizing Equation (3) 
Update the CS(s) according to testing results at the end hydrant 

If the end hydrant is contaminated  
Select the CS using the SA1 mentioned above 

Else  
Selection strategy 2 (SA2): 
 Select the CS(s) as the union of USs of the hydrants showing evidence of 
contamination minus the union of USs of contamination-free hydrants and the CUS

c = c + 1 
Else If the CUS does not exist

Select the CS(s) using the SA2 mentioned above 
Set flag=0 

} 
} 
If no hydrant can be sampled in the selected sub-network  

break  
}

Figure 2: The algorithm of the proposed MGSM 295 

When more than one sample hydrant is contaminated (Case B1), the common upstream sub-network 296 

(CUS, which is theoretically available) is selected as the CS for the next cycle (c=c+1). If this CUS297 

exists and its most downstream hydrant is not sampled, one sampling location is assigned to this 298 

hydrant. The remaining n-1 sampling locations are determined by minimizing Equation (3). The CS, 299 

which is temporally considered as the CUS, is now updated using the following method based on 300 

test results of the most downstream hydrant. If that hydrant is contaminated, the SA1 is employed to 301 

update the CS, otherwise, the SA2 (see Figure 2) is used to update the CS. Specifically, the SA2 302 

selects the CS(s) as the union of all upstream sub-networks (USs) of hydrants where contamination 303 
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was detected, minus the union of USs of contamination-free hydrants and the CUS. Note that if the 304 

selected CUS does not exist in the WDS, the SA2 is used to update the CS(s). 305 

The proposed MGSM in Figure 2 can handle both the single and multiple contamination sources in 306 

a DMA of a WDS. However, each MGSM run identifies only a sub-network that contains a 307 

contamination source of the smallest spatial extent. This identified region may need to be blocked 308 

for engineering operations (e.g., disconnect the misconnections, repair the leaks, or replace the pipes), 309 

to remove the contamination source(s). Sampling tests with a few contaminated hydrants may 310 

indicate the presence of multiple contamination sources in different WDS regions. For such cases, 311 

once the identified contamination source(s) is fixed, the proposed MGSM can be applied to the 312 

potential CSs (instead of the entire WDS) derived by the sampling test results combined with 313 

knowledge of pipe flow directions. Such a CS selection can be easily performed by engineering 314 

experience, but it is difficult to be shown by formal procedures. However, it is also straightforward 315 

to simply apply the MGSM to the entire WDS to identify the other contamination source(s), after 316 

the already localized source(s) are fixed. 317 

The methodology assumes that all hydrants selected in one cycle can be sampled at the same flow 318 

direction status. This assumption is practically reasonable as the time required to grab samples is 319 

often short and the frequency of flow direction change is typically low (e.g., once a day, Wong et 320 

al., 2010). While flow direction changes may exist within the supply boundary of some real large 321 

WDSs, its associated region is often rather small. Therefore, the change of the flow directions will 322 

not significantly affect the application of the proposed MGSM. If the WDS region with changing 323 

flow direction is large and known, it can be easily accounted for by the proposed MGSM based on 324 

an important assumption. This assumption is that the time between the start of the flow direction 325 

change and the next sampling cycle is significantly greater than the longest travel time from the 326 

source to the sample locations. In other words, the contaminant distribution has to be consistent with 327 

the current flow regime and can have no residual effects from the previous flow regime. Based on 328 

this assumption, the flow direction changes can be considered by the WDS partitioning process as 329 

described in Section 3.1.1, which would accordingly affect the formulation of sub-networks and 330 

hence the identification of the optimal sampling locations (Equation 3).  331 

2.3 Illustration of the proposed MGSM 332 
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The proposed MGSM is illustrated with two scenarios, including the single contamination source 333 

and the two contamination sources simultaneously exist in the WDS, with details given below.  334 

2.3.1 Single contamination source 335 

We first illustrate the application of the proposed MGSM (Figure 2) using a single contaminating 336 

source as shown in Figure 3. The single contamination source is in P2, and two sampling locations 337 

(n=2) are identified at each cycle. At the first cycle, the entire WDS is set as a candidate sub-network 338 

(CS), and a total of 120 sampling combinations (two out of 16 total hydrants) are possible. The 339 

mathematical expectations (Equation 3) corresponding to these 120 combinations are calculated by 340 

enumeration and the combination with the minimum F(A) value is selected. Consequently, two 341 

hydrants {H11, H12} are identified as the sampling points yielding the lowest objective function value 342 

(Equation 3), as shown in Figure 3(a). Based on the assumed location for the contamination source, 343 

the sample from hydrant H11 is contaminated while the sample from H12 is not based on the 344 

laboratory tests. Therefore, the CS is updated to be a unique sub-network upstream of H11 (and not 345 

pipes upstream of H12) based on Case B2 in Figure 2, that is, the red pipes shown in Figure 3(a). 346 

In the second cycle of sampling, the mathematical expectations corresponding to different hydrant 347 

groups are calculated according to the updated CS determined in the previous cycle. The resultant 348 

optimal strategy is the combination of H5 and H9 as it produces the lowest objective function value. 349 

Testing results on these two hydrant samples show that both are contaminated, indicating that the 350 

contamination source exists in the common upstream sub-network (CUS) of H5 and H9. Therefore, 351 

the CS is updated as the CUS based on Case B1 (Figure 2), which is {P2, P4} as represented by red 352 

lines in Figure 3(b). In the third cycle of sampling, there is only one hydrant location, H2, so the 353 

contamination source is successfully detected on P2, which is the exact location of the contamination 354 

source. 355 
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356 

Figure 3: Source localization process for the contamination at P2: (a) the first cycle (c=1) of 357 

sampling and testing; (b) sampling and testing at c=2; (c) sampling and testing at c=3 358 

2.3.2 Two contamination sources 359 

Figure 4 illustrate the application of the proposed MGSM (Figure 2) in dealing with two 360 

contamination sources. In this figure, the contamination sources are in P7 and P10, and two sampling 361 

locations (n=2) are identified at each cycle. As the same with the single contamination source in 362 

Figure 3(a), the hydrants H11 and H12 are selected as the sampling points at the first cycle by 363 

minimizing Equation (3) (the enumeration method is used for this small WDS). The testing results 364 

show both hydrants are contaminated, and accordingly, the CS is updated to be the common 365 

upstream sub-network (CUS, red pipes in Figure 4(a)) using Case B1 in Figure 2. Since the CUS366 

exists and its most downstream hydrant (H4) is not sampled, H4 is selected as one sampling location 367 

and the other location (H1) is identified with the aid of Equation (3) in the second cycle (c=2).  368 

Based on the locations of the two contamination sources, the end hydrant H4 should show no 369 

contamination in the laboratory test and selection strategy 2 (SA2) is used to update the CS. More 370 

specifically, for such cases, the CS can be described as UA-UB-CUS (CUS ={P1, P3, P5}), where 371 

UA is the union of sub-networks (USs) upstream of contaminated hydrants (i.e., H11 and H12 at c=1) 372 

and UB is the union of USs sampling hydrants without contaminations (it is null at c=1). This is 373 

followed by the application of the proposed method at c=3, where two hydrants (H5 and H9) are 374 

selected as the sampling points. The resultant CS is P10 using Case B2 in Figure 2 based on test 375 
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results (H5 is not contaminated, but H9 is), which is the unique upstream sub-network of H9. Since 376 

no hydrants can be sampled in the current CS (i.e., P10), P10 is successfully identified with the 377 

contamination source. The run of the proposed MGSM (Figure 2) is finalized.  378 

379 

Figure 4: Source localization process for two contamination cases at P7 and P10: (a) the first 380 

cycle (c=1) of sampling and testing; (b) sampling and testing at c=2; (c) sampling and 381 

testing at c=3; (d) the CS identified (shaded pipes) for the next MGSM run, where the red 382 

and green dots represent test results of the previous MGSM run 383 

To identify the second contamination source in P7, the s localized source in P10 needs to be fixed 384 

before the implementation of the next MGSM run. This is because the proposed MGSM identifies 385 
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only one contamination source for each run. Prior to the application of the next MGSM run, the 386 

identified contamination source(s) need to be eliminated. In addition, all the test results of hydrant 387 

samples and pipe flow direction information can be jointly used to derive the potential CS for the 388 

next MGSM run. For the given example, the CS can be identified as the red pipes in Figure 4 (d) 389 

based on the test results of the previous MGSM run (red and green dots) since (i) the test on H4390 

shows no contamination but H12 does, and (ii) the identified source at P10 is not upstream of H12. 391 

This CS is only a small proportion of the entire WDS, thereby greatly improving the efficiency of 392 

the next MGSM run. However, for cases when the CS cannot be determined by the existing 393 

information provided by sample test results and pipe flow directions, the entire WDS (after the 394 

identified contamination source(s) is eliminated) is considered as the CS again to enable the 395 

application of the proposed MGSM.  396 

In this subsection, one and two contamination sources are used to illustrate the proposed MGSM due 397 

to the high likelihood of those events occurring in real WDS. In addition, two sampling locations are 398 

used at each cycle for illustration purposes, where the pipe flow directions are not changed. However, 399 

the application procedures with details given in Figure 2 are generic, and hence can be applied to 400 

other scenarios such as different number of sampling locations, different contamination sources and 401 

the WDS with possible pipe flow changes (further explanation of which is given in Section 4) 402 

2.4 Optimization method to minimize the objective function  403 

As shown in Figure 2, the proposed MGSM algorithm requires an optimization method to minimize 404 

the objective function (Equation 3). While the enumeration method can be effective when dealing 405 

with small WDSs and with a low number of sampling locations at each cycle, it is computationally 406 

intractable for real and large WDSs. More specifically, for a case with n sampling points applied to 407 

a WDS with a total of N hydrants, the number of all possible combinations is 
M
NC . This value 408 

increases exponentially with n and N becoming larger, leading to a rapid increase in computing time 409 

and deterioration of detection effectiveness.  410 

To solve the computational issue, the Monte Carlo (MC) method is used in this study as an alternative 411 

to the enumeration approach in the process of determining the optimal sampling group to improve 412 

detection efficiency for large-scale WDSs. The selection of the MC method is mainly due to its 413 
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simplicity and reasonable performance in offering near-optimal solutions (Maier et al., 2014). This 414 

is practically meaningful as in many engineering cases providing near-optimal solutions within a 415 

given time framework are more important than identifying global optimums with large 416 

computational overheads (Maier et al., 2014). Nevertheless, an advanced optimization algorithm can 417 

be developed for the proposed MGSM in future, which is not the focus of the present paper.  418 

3. Case studies 419 

420 

Figure 5: (a) the DMA case study and (b) the MOD case study, where arrows indicate flow 421 

directions  422 

Two distribution networks (Figure 5) are used to demonstrate the utility of the proposed MGSM. 423 

Specifically, the DMA (district meter area) case study is a part of a real-world WDS in China (Figure 424 

5a) that consists of 149 pipes (58.7 km in length) and 78 fire hydrants. It has two inlets and one outlet, 425 
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and the flow direction in this network (shown in Figure 5(a)) does not change. The MOD pipe 426 

network is a benchmark WDS of the city of Modena in Italy (Bragalli et al., 2012). This network 427 

consists of 4 reservoirs (sources), 287 pipes (71.8 km in length) and 143 fire hydrants. Due to the 428 

water level changes in the four reservoirs and variations in residential water consumption, the flow 429 

directions of some pipes (shaded pipes in Figure 5(b)) in the MOD network change over time. 430 

While the demonstration of the proposed MGSM using a very large WDS is academically necessary, 431 

but in practice the MGSM is mainly used for a DMA or a region of the entire WDS. This is because 432 

(i) many WDSs have been managed by DMAs, which can greatly enhance the operation efficiency, 433 

and (ii) for the WDSs with no DMAs, water quality safety checking or contamination sourcing is 434 

likely to be conducted region by region. It is highly unlikely to simultaneously consider all the pipes 435 

of the entire large network as the contamination sources. Therefore, we demonstrate the proposed 436 

method using two case studies at a DMA scale level. 437 

For both case studies, we have analyzed a series of different combinations of sampling locations (i.e., 438 

the number of hydrants that can be simultaneously sampled) at each cycle, with n ranging from 2 439 

to 10. The number of potential contamination sources varies from one to three for these two WDSs. 440 

The size of the MC method is determined to be 10,000 based on a preliminary analysis for both case 441 

studies, but a larger value may be required for larger WDSs. The proposed MGSM is coded in C++ 442 

computing language with the aid of EPANET2.0 as the hydraulic solver to identify pipe flow 443 

directions (He et al., 2018). For the DMA case study with 78 hydrants and two contamination sources, 444 

the proposed method was tested using two and 10 potential sampling locations at each cycle required 445 

an average of 102 and 54 seconds, respectively, on a PC with Intel i5-9400F CPU@2.90GHz. For 446 

the MOD network with 143 hydrants and two contamination sources, the proposed MGSM with two 447 

and 10 sampling locations at each cycle needs an average of 212 and 92 seconds, respectively. This 448 

implies that the proposed method is very efficient to identify the optimal sampling locations based 449 

on the test results. To enable the statistically rigorous analysis, for the single contamination source, 450 

we considered all possible scenarios with one source assigned to each pipe of the network. For two 451 

and three contamination sources, a total of 100 different randomly generated scenarios are 452 

considered. 453 

4. Results and Discussion 454 
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The proposed MGSM is demonstrated using the effectiveness (Section 4.1), the efficiency (Section 455 

4.2) and the cost (Section 4.3) as shown in Section 4. The effectiveness is measured by the length of 456 

finally identified pipes relative to the total pipe length of the entire WDS. The efficiency is measured 457 

by the total number of sampling cycles, and the cost associated with the sampling process is 458 

measured by the total number of samples that need to be tested in laboratory.  459 

4.1 Effectiveness of the proposed MGSM 460 

Figure 6 illustrates the application procedures of the proposed MGSM in dealing with the DMA case 461 

study with two contamination sources (1 and 2 in Figure 6a) and two sampling locations at each 462 

cycle. Two different MGSM runs (MR1 and MR2) are performed for this scenario, where the second 463 

run assumed that the contamination source identified in the first run was eliminated. As shown in 464 

this figure, in the beginning, the entire DMA is considered as the candidate sub-network (CS, Figure 465 

6(a)) assuming that the water sample test at the outlet of this DMA shows contamination. This is 466 

followed by the application of the MGSM, where six and four cycles were carried out to localize 467 

contamination sources 1 and 2, respectively. The final identified pipe lengths associated with 468 

contamination sources 1 and 2 are 741 and 762 meters, which represent only 1.26% and 1.30% of 469 

the entire DMA, respectively. This implies that the proposed MGSM is able to effectively narrow 470 

down the spatial range of pipes that contain contamination sources, which can greatly facilitate the 471 

subsequent field investigations to eliminate the cause of the problem.  472 
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473 

Figure 6: Source localization for the DMA case study with two contamination sources and 474 

two sampling locations at each cycle, where arrows indicate flow directions 475 
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476 

Figure 7: Source localization for the MOD case study with one contamination source and two 477 

sampling locations at each cycle, where arrows indicate flow directions 478 

Figure 7 illustrates the proposed MGSM applied to the WDS with possible pipe flow changes. As 479 

shown in this figure, if the pipe flow directions do not change, the two sampling locations identified 480 

by the proposed MGSM are 1 and 2 (Figure 7b) based on the candidate sub-network (CS) determined 481 

at c=3 (Figure 7a). However, if the flow directions change after the sample tests at c=3, the CS for 482 

the next cycle needs to account for such variation. For the given example, one pipe is added to the 483 

CS due to its flow changing. This addition affects the optimal sampling locations selected by the 484 

MGSM (the location of 2 is changed as shown in Figure 7c). Based on this example, the flow 485 

direction changes can be easily handled by the proposed MGSM. For the MOD case study, we 486 

assume the change in the flow direction status occurs (Figure 7c) after c=3, followed by a change to 487 

the original direction of flow after another two cycles.  488 
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It is found that the proposed MGSM is able to identify the contamination sources for all scenarios 489 

considered in both case studies, implying its great effectiveness to localize contamination sources. 490 

In this study, we define a detection effectiveness (%) metric as follows, 491 

Detection effectiveness (1 ) 100%  f

all

L

L (6) 

Where Lf is the pipe length of the finally identified sub-network with contamination source(s) and 492 

Lall is the total pipe length of the entire WDS being considered. A high detection effectiveness 493 

represents that the proposed method can greatly reduce the efforts or budgets of the subsequent field 494 

investigations that are needed to micro-locate and eliminate contamination sources.  495 

496 

Figure 8: Detection effectiveness (%) of the proposed MGSM applied to the two case studies 497 

Figure 8 presents the probability density of the detection effectiveness (%) for all contamination 498 

scenarios considered, where the distribution of the ratio between the length of the finally identified 499 

pipes and the total pipe length of the WDS for all contamination events is presented. It is seen from 500 

this figure that the majority of the detection effectiveness (%) is higher than 95% and 98% for the 501 

DMA and MOD case study respectively. This indicates that the finally identified pipes with 502 

contamination source(s) represent a very small portion of the entire network, which can greatly 503 

improve the efficiency of the subsequent engineering effort to fix the contamination problem. The 504 

detection effectiveness (%) ranges between 80% and 90% for some contamination scenarios for the 505 
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DMA case study as shown in Figure 8(a). This is due to the sparse distribution of hydrants for these 506 

events, and hence the length of the candidate sub-network identified by the proposed MGSM is 507 

relatively large. The detection effectiveness (%) decreases when dealing with a larger number of 508 

contamination sources that simultaneously exist in the WDS. It is noted that the detection 509 

effectiveness (%) values are the same with those obtained using the average pipe length distance 510 

between hydrants divided by the total pipe length of the network. This implies that the proposed 511 

method is able to identify the pipe with contamination source between the two hydrants for each 512 

scenario considered. 513 

4.2 Detection efficiency of the proposed MGSM 514 

The detection efficiency of the proposed MGSM can be evaluated using the number of total cycles 515 

required for the entire procedure. The total time used in each cycle includes the time required to 516 

collect and test samples, as well as the computation time needed to identify the sampling locations. 517 

As previously stated, both the computation time and for sample collection are negligible compared 518 

to the laboratory tests. Figure 9 shows the total number of cycles used to localize contamination 519 

sources of the two case studies as a function of the varying number of samples per 100 km of pipe 520 

length at each cycle ( kn ), where / 100k alln n L  . Such a normalization is used to enable the 521 

generalization of the results to other WDSs.  522 

As shown in Figure 9, an obvious trend that can be observed is that the detection efficiency is 523 

improved when n increases for all different contamination scenarios ( kn  ranges from about 1.5 to 5) 524 

for both case studies. A significant increase in efficiency occurs for kn  >1.5, with improvements 525 

diminishing when kn >6. This is expected as a high kn  value indicates a larger number of available 526 

teams for collecting samples and a significant laboratory capacity for simultaneously testing multiple 527 

samples. The diminishing efficiency improvement for large kn  implies that an optimal sampling size 528 

exists for the WDS when the efficiency is considered. For the DMA and MOD case studies, the 529 

optimal kn  value can be between 7.0 and 8.5 as a further increase in kn  value does not significantly 530 

improve the MGSM’s detection efficiency, as shown in Figure 9. However, the optimal kn  value for 531 

detection efficiency can be case study dependent as it can be related to the size of the WDS being 532 
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considered. In addition, a large kn  value corresponds to a significant financial commitment, and 533 

hence the decision process can be also affected by the budgets available.  534 

Interestingly, for the same number of sampling locations at each 100 km pipe length kn , when kn is 535 

relatively low, the total number of cycles can vary significantly. For example, for the DMA case 536 

study if kn =1.7, the detection efficiency can vary from 5 to 15 cycles for the one contamination 537 

source, and range from 7 to 25 cycles when three contamination sources are simultaneously 538 

considered. Similar observations can be made for the MOD case study. This implies that the location 539 

of the contamination sources can appreciably affect the detection efficiency when there is a low 540 

number of sampling teams available and/or a limited laboratory capacity for testing multiple samples. 541 

When a sufficiently large kn  is considered, the detection efficiency variations become small, as 542 

observed in Figure 9. This implies that the choice of kn  will also affect the uncertainty associated 543 

with method efficiency, which should be also accounted for in engineering practice.   544 

545 

Figure 9: The number of cycles used to localize contamination sources versus the number of 546 

sampling points for every 100 km pipe length at each cycle ( kn ) for the proposed MGSM 547 

applied to the two case studies 548 

4.3 Detection cost of the proposed MGSM 549 
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In this study, the detection cost of the proposed MGSM is measured by the total number of samples 550 

that have been tested to localize the contamination sources. Figure 10 shows the detection cost as a 551 

function of varying kn  for both case studies. Despite some variations, a large kn  value is generally 552 

associated with a greater detection cost for both case studies. In addition, the simultaneous presence 553 

of a larger number of contamination sources also causes an overall increase in detection costs. This 554 

information combined with the efficiency results in Figure 9 can be used as guidance for developing 555 

effective water quality sampling plans or budgets for a given WDS.  556 

557 

Figure 10: Detection cost (i.e., the number of total samples) versus the number of sampling 558 

points for every 100 km pipe length at each cycle ( kn ) for the proposed MGSM applied to the 559 

two case studies 560 

5. Summary and Conclusions 561 

Existing research on water quality management and contamination source localization in WDSs has 562 

focused mainly on developing methods that assume availability of accurate water quality models 563 

and multi-parameter online sensors. However, that is not true for many water utilities. A promising 564 

way to address such problems is through the iterative manual grab-sample strategies, thereby 565 

enabling effective contaminant localizing. To this end, this study proposes a new method for water 566 
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quality manual grab-sampling (termed as MGSM in this paper) to enable identification of 567 

contamination sources in WDSs.  568 

The proposed MGSM is suitable for situations where online multi-parameter water quality sensors 569 

are sparsely available or completely missing, which is the case with many utilities. This is mainly 570 

due to the high purchase and maintenance cost associated with these sensors, as well as their inability 571 

(or inaccurate) to detect the complex water quality parameters (e.g., metals, microorganism and 572 

personal care products, Jia et al. (2021b)). In addition, a grab-sampling method is tailored for the 573 

cases when contamination is continually present in the WDS and with slow or low impacts to the 574 

WDSs. That is the case with misconnections between water supply pipes and sewer (or grey) pipes 575 

and contaminations caused by pipe leaks, corrosion or hydraulic turbulence. For events with serious 576 

consequences, the candidate sub-networks (CSs) with contamination sources may need to be shut 577 

down or sampled manually as much as possible. 578 

Based on the results obtained for two real-world cases, the following findings and conclusions can 579 

be drawn: 580 

(1) The newly proposed MGSM can successfully detect and locate continuous contamination 581 

source(s) for a wide range of scenarios, including multiple contamination source(s) in complex 582 

WDSs with varying pipe flow directions. This is a significant advantage over the traditional 583 

approach that works only with one contamination source and fixed flow directions, as described 584 

in Wong et al. (2010).  585 

(2) For the two case studies, the new MGSM identified contamination source(s) within 5% of 586 

the total pipe length of the WDS. This indicates the high effectiveness of the proposed MGSM in 587 

narrowing narrow down the spatial range of the sub-network with potential contamination sources. 588 

From the practical point of view, it also improves the efficiency of maintenance efforts to eliminate 589 

the sources of contamination.  590 

(3) The detection efficiency (measured by the number of sampling and testing cycles) of the 591 

MGSM can be significantly improved when the number of sampling points per 100 km pipe length 592 

at each cycle ( kn ) increases from about 1.5 to a moderate value (e.g. 7kn  ). The increase in 593 

efficiency diminishes with further increases in kn . This implies that there exists an optimal kn  value 594 

for a given WDS, representing the balanced trade-off between detection efficiency and costs 595 
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associated with methodology. The detection cost grows with the increase in the number of sampling 596 

points per 100 pipe length, kn . All these findings are important for the implementation of the 597 

method as they can guide the process of selecting the optimal number of sampling teams and 598 

required laboratory capacity. 599 

In view of the practical application, the proposed MGSM can be used to regularly check water 600 

quality safety for WDSs with a low density of sensors as this is routine work in many water utilities. 601 

For instance, in China, many water utilities need to take water samples from hydrants or end users 602 

every month, with the number of samples depending on the scale of the WDS and importance level 603 

of the city. These water samples are comprehensively measured in the laboratory following the 604 

Water Quality Standard that has 106 parameters. Many water utilities collect grab samples from 605 

large WDSs at fixed locations based on specialists’ engineering expertise. For example, a 606 

practitioner may collect grab samples from all established fixed locations (if say, 50 locations) and 607 

test for a combination (or all) of the specified water quality parameters in the laboratory. Such a 608 

strategy is time-consuming and expensive (labor and measurement costs). Therefore, the sampling 609 

strategy can be improved with the aid of the proposed MGSM in order to save the cost. It can be 610 

concluded that the MGSM is an alternative to the sensor-based detection methods.  611 

The limitation of the method proposed here is the potentially high cost and time required to identify 612 

the source(s) as all grab samples need to be collected manually (with technicians moving between 613 

different locations during multiple cycles) and processed (in the lab). In addition, the pipes identified 614 

as the potential contamination sources need to be inspected in the field to micro-locate the 615 

contamination source(s) with the aid of manual checking or detection robots (Huang et al., 2020). 616 

This too requires time and has a cost associated with it. This, however, applies to most of the existing 617 

sensor-based methods as well. Another limitation is that the proposed MGSM can be only applicable 618 

to contamination events with continuous injections to the WDS conditioned on known pipe flow 619 

directions. Furthermore, when dealing with scenarios with pipe flow changes, there is likely that 620 

such changes would affect the utility of the proposed MGSM, which needs attention within practical 621 

implementation. While the practical application of the developed MGSM can be simple as it only 622 

requires flow direction information (Zhang et al., 2021), it should be also acknowledged the flow 623 

information can be challenging for some old pipes due to system uncertainties. 624 
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Future studies along this research line include (i) the application of the proposed method to further 625 

large real WDSs; (ii) the extension of the graph partitioning strategy within the proposed MGSM to 626 

account for both the pipe length and pipe velocity; (iii) the extension of the proposed MGSM to deal 627 

with contamination events with intermittent injections to the WDS. 628 
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