
Algebraic Techniques for Universal Succinct
Arguments

Victoria Arantxa Zapico Barrionuevo

TESI DOCTORAL UPF / 2022

SUPERVISORS: Vanesa Daza and Carla Ràfols

Department of Information and Communication Technologies

ii

A la memoria de mi abuela,
Nelly Colombres,

iii

y a Alejandra.

iv

Acknowledgments

After these years, all the places, experiences, things I learned, tried and changed,
the big conclusion is the same as in any other big step: it has all been about the
people.

Four years ago I had a terrible concept of myself as a mathematician and almost
no expectation of this thesis but thanks to the patience, love, support, and knowledge
of my supervisors, Carla Ràfols and Vanesa Daza, I happen to want to, and am sure
I can, work on this for the rest of my life. I am struggling to find the words to express
how grateful I am for the luck of working with them because they are not only good
cryptographers, but amazing women, and I admire them in many senses. Moltes
gràcies for being an example, for letting and actually pushing me to prioritize what
excites me and makes me happy. To both of you, thanks for taking the time to know
me and find the best way to guide me, and for making it fun. To Vanesa, for always
having a solution to everything. To Carla, for talking to me as a pair, and therefore
forcing me to be up to it. I have enjoyed every day of the last four years, inside and
outside the office, the last hours before deadlines and entire weeks of holidays, and
that is almost entirely thanks to them.

Thanks to the Crypto Community, for the effort on making science open, inclu-
sive, and collaborative, which gives a bit of sense to all of this. To Mary Maller,
for being such a role model and later giving me the academic honour and personal
pleasure of working with her. To the Ethereum Foundation research group for being
so welcoming and patient.

Thanks to my co-authors: Vitalik Buterin, Matteo Campanelli, Vanesa Daza,
Abida Haque, Dmitry Khovratovich, Mary Maller, Carla Ràfols, Alessandra Scafuro,
Mark Simkin, Alexandros Zacharakis, and Anca Nitulescu. To the latter, for being
nice and friendly since day zero to a very novice me. To Dario Fiore, Chaya Ganesh
and Markulf Kohlweiss, for accepting being part of my jury. To the Criptolatino
community, for building the perfect place for my career and convictions to live
together.

For the privilege of working with friends, starting every day with a bunch of
smiles and always having someone close by to complain with, I want to thank Pablo
Aragón, Javier Silva, Zaira Pindado, Rasoul Silab, Federico Franzoni, Sergi Rovira,
Conor McMeimam, Mohamed Ben Zaghta, and Masoud Sadeghian. Thank you guys
for always letting me win Catan.

I am not sure where to name Alexandros Zacharakis, if as one of my supervisors,
the friends I had the privilege to share work with every day, the brilliant co-authors,
or the people who blew up my mind. In any case, it has been nothing but a pleasure
(and somewhat cheating, I am sure) to share this path with him. Thanks Alex for
making everything more interesting, exciting, and easier.

v

To all the great people that work and have worked in the DTIC, building such
an international, open, interesting and friendly environment. It is difficult for me to
confess this, but joining the Volleyball tournament has been a great decision, almost
as good as going to Sopena that very first time. Kudos to Adrià Arbués, for being
so good at being only himself, and letting me be mine.

To my favourite and safest place in Europe: Yasmin Soares de Lima and Silvia
Butti. When I look back and think about all the amazing things that have happened
to me these four years, I can not see myself alone at any point, they have been by
my side at every step of this journey. They have been love, lessons, challenges,
example, support, convictions, encouragement, home, fun, science, feminism and
even the never-thought vegetarianism. You girls are a huge part of what I am and
like to be today, thanks.

To LaCaixitos, the strongest and funniest support network I could have asked
for, for giving this experience that extra touch that made it so special, for blowing
up my mind and for the opportunity to know and travel the world in so many
ways. Especially, to Bradley Higginson, Christoph Herbert, Enrico Almici, Ifeanyi
Ezeonwumelu, Ignasi Granero, Iván Fernández, Ivan Milenkovic, Löıc Reymond,
Luca Morelli, Maximilian Loeck, and Poonam Nebhnani, because their friendship
summarizes pretty much everything I left Argentina looking for.

To all the amazing friends I have made these years in Barcelona, for keeping me
mentally safe and sound. To Savvas and Bruno, for being home and hugs.

A la Universidad Nacional, pública y gratuita de Córdoba por formarme no sólo
en el ámbito académico, si no también en el ámbito social y personal, creando los
valores que hoy me definen y de los que espero estar a la altura el resto de mi carrera
profesional. A las personas que forman la FaMAF, por transmitir tanta pasión por
la ciencia y por la calidez humana. A mis compañerxs durante esos años, a Belén y
Franco por hacerlo siquiera un poco más fácil.

A mis amigas y amigos de Córdoba, por estar siempre del otro lado, a pesar
de los años y la distancia, para multiplicar la felicidad y alivianar las tristezas con
tanto amor. Si hay algo que aprend́ı en estos años es que soy muy afortunada de
tener un lugar al cual siempre quiero volver, un hogar tan mio. Por hacerlo todo
tan simple y auténtico, gracias.

A Mart́ın, porque su tan contagioso amor por la vida y la ciencia me llevaron a
lugares incréıbles, y este doctorado es uno de ellos.

A mi familia, porque su apoyo, felicidad y amor son mis mayores tesoros y los
motores de todo lo que hago. Por ayudarme a crecer, madurar y después volar lejos.
Por estar siempre para abrazarme y decirme que siga cuando todo falla y miro atrás.

A Patricia, Norma, Luis y Hugo, por ser gúıa y paciencia. A Marcelo y Mariano,

vi

por desafiarme de las peores formas posibles, y a Daira, por hacerlo siempre de la
mejor. A mis mejores amigas, Patricia, Daiana y Candelaria, por la sabidura, la
generosidad, y la complicidad, desde siempre y para siempre.

El gracias más grande es, sin duda, a las tres personas que más me apoyan, exigen
e impulsan en cada una de mis ocurrencias. A mi papá, por las convicciones y la
libertad de hacer con ellas lo que se me dé la gana. A mi mamá, por la inagotable
perseverancia, por ser ejemplo y encontrar siempre la manera de adaptarse para
ayudarme. A mi hermana Alejandra, la persona más leal y compañera de mi mundo,
por su infinito amor y enseñanzas.

Por último, a mi primera y mejor maestra, mi abuela Coca, por impulsarme
(obligarme) a ir siempre por más, y darme la confianza, las herramientas y la familia
para hacerlo, por enseñarme a ser yo y a ser feliz. Esta tesis es para ella y por
nosotras, nuestras tardes y el d́ıa en que me enseñó a contar con tapitas de colores.

vii

viii

Abstract

In this thesis, we make theoretical and practical contributions to the design of suc-
cinct arguments with universal setups in the pairing-based setting. We first intro-
duce a new primitive, Checkable Subspace Sampling (CSS) schemes, and use it to
build a framework for designing zero-knowledge succinct arguments of knowledge
(zkSNARKs) for NP-complete problems. We present several instantiations of CSS
that lead to zkSNARKs whose efficiency is competitive, and in most of the cases su-
perior to all previous constructions in the state-of-the-art. Our second contribution
is to present a framework for constructing Linear-Map Vector Commitment schemes
with updatability and unbounded aggregation from simpler arguments, that prove a
committed vector satisfies an inner product relation. We present two constructions
of such arguments, that can be used as building blocks in many different succinct
arguments, and the first pairing-based maintainable linear-map vector commitment
scheme with flexible space/time trade-offs in the univariate, universal SRS model.
Finally, we introduce the definition of Position-Hiding linkability for vector commit-
ments and the first scheme that achieves logarithmic prover and constant proof for
membership proofs and lookup tables.

Resumen

En esta tesis, contribúımos en los ámbitos práctico y teórico al desarrollo de ar-
guments sucintos en grupos bilineales y con parámetros universales. Como primer
resultado, definimos esquemas verificables de sampleo en un subespacio (CSS), y
los empleamos en la construcción de un marco para el diseño de argumentos de
conocimiento, sucintos, no interactivos y de conocimiento nulo (zkSNARKs) para
problemas NP completos. Asimismo, presentamos diversos esquemas CSS que con-
ducen a zkSNARKs cuya eficiencia es competitiva, y en la mayora de los casos
superior, a la de todas las construcciones existentes en la literatura. Nuestra se-
gunda contribución es un marco para el diseño de esquemas de compromiso a vec-
tores para mapeos lineales que permite actualizar y agregar pruebas, a partir de
argumentos más simples que prueban a partir de su compromiso, que un vector
satisface una relación de producto interno. Presentamos dos construcciones de este
tipo de argumentos, que pueden ser usadas en diferentes esquemas sucintos, y el
primer argumento que, en el escenario de los grupos bilineales con parmetros uni-
versales y univariados, permite al probador elegir de manera flexible un equilibrio
entre el coste en tiempo y espacio, y actualizar eficientemente las pruebas almace-
nadas. Finalmente, definimos enlazabilidad con conocimiento nulo para esquemas
de compromiso a vectores y el primer esquema con probador logaŕıtmico y prueba
de tamaño constante para argumentos de pertenencia a un conjunto y tablas de
búsqueda.

ix

Resum

En aquesta tesi, contribüım en els àmbits pràctic i teòric al desenvolupament d’argu-
ments succints en grups bilineals i amb paràmetres universals. Com a primer resul-
tat, definim esquemes verificables de sample en un subespai (CSS), i els fem servir
en la construcció d’un marc per al disseny d’arguments de coneixement, succints, no
interactius i de coneixement nul (zkSNARKs) per a problemes NP complets. Aix́ı
mateix, presentem diversos esquemes CSS que condueixen a zkSNARKs l’eficincia
dels quals és competitiva, i en la majoria dels casos superior, a la de totes les con-
struccions existents a la literatura. La nostra segona contribució és un marc per al
disseny d’esquemes de compromı́s a vectors per a mapeigs lineals que permet ac-
tualitzar i afegir proves, a partir d’arguments més simples que proven a partir del
seu compromı́s, que un vector satisfà una relació de producte intern. Presentem
dues construccions d’aquest tipus d’arguments, que poden ser usades en diferents
esquemes succints, i el primer argument que, a l’escenari dels grups bilineals amb
paràmetres universals i univariats, permet al provador escollir de manera flexible
un equilibri entre el cost en temps i espai, i actualitzar eficientment les proves em-
magatzemades. Finalment, definim enllaabilitat amb conoixement nul a esquemes
de compromás a vectors i el primer esquema amb provador local i prova de mida
constant per a arguments de pertinena a un conjunt i taules de cerca.

x

Contents

List of figures xvi

1 Introduction 1

2 Preliminaries 7

2.1 Security proofs . 7

2.2 Polynomials . 8

2.2.1 Lagrange Polynomials . 8

2.3 Cryptographic Primitives . 9

2.3.1 Non-Interactive Arguments of Knowledge 9

2.3.2 Universal and Updatable Parameters 11

2.3.3 Polynomial Commitments . 13

2.3.4 Vector Commitments . 15

2.3.5 Linear-map Vector Commitment 17

2.3.6 Homomorphic Properties for LVC 19

2.3.7 Polynomial Holographic Proofs 19

2.4 Cryptographic Assumptions . 22

2.5 Other Preliminaries . 24

xi

2.5.1 The KZG Polynomial Commitment Scheme 24

2.5.2 KZG as Vector Commitment Scheme 25

2.5.3 Subset openings . 26

2.5.4 Pedersen Commitment Schemes 28

3 Universal and Updatable SNARKs 29

3.1 Introduction . 29

3.1.1 Related Work . 30

3.1.2 Contributions . 32

3.2 A Generalized Constraint System . 34

3.3 Generalized Univariate Sumcheck . 36

3.3.1 Application to Linear Algebra Arguments 38

3.4 Algebraic Framework for W-R1CS . 39

3.4.1 Checkable Subspace Sampling: Definition and Implications . . 39

3.4.2 Linear Arguments from Checkable Subspace Sampling 41

3.4.3 W-R1CS from Linear Arguments 44

3.4.4 Adding Zero Knowledge . 45

3.5 Instantiation of CSS Arguments . 48

3.5.1 Basic Matrices . 50

3.5.2 Sums of Basic Matrices . 52

3.5.3 Sparse Matrices . 54

3.5.4 Linear Combination of Sparse Matrices 56

3.5.5 Extension to Low Tensor Rank Matrices 58

3.5.6 Extended Vandermonde Sampling 58

xii

3.5.7 Amortized CSS argument . 60

3.6 CSS for Specific Relations . 61

3.6.1 Permutation Matrix . 62

3.6.2 Bounded Fan-out . 63

3.6.3 Mixing the Bounded Fan-out and the Permutation Approach. 64

3.7 zkSNARKs from CSS arguments . 66

3.7.1 Compiler . 66

3.7.2 Eliminating Non-Trivial Degree Checks 68

3.7.3 Rolled-out zkSNARK for Circuits with Bounded Fan-Out . . . 69

4 Linear-map Vector Commitments 71

4.1 Introduction . 71

4.1.1 Motivation . 72

4.1.2 Related Work . 73

4.1.3 Contributions . 75

4.2 Generic Constructions from Homomorphic
Proofs . 76

4.2.1 New Notion: Unbounded Aggregation 77

4.2.2 Unbounded Aggregation for LVC 79

4.2.3 Updability for LVC . 81

4.2.4 From Inner-Products to Arbitrary Linear-Maps 81

4.3 Constructions for Inner-Pairing VC 84

4.3.1 Lagrange Basis . 84

4.3.2 Monomial Basis . 88

xiii

4.4 Subvector Openings . 91

4.4.1 Native SV Openings for the Monomial Basis 92

4.4.2 Non-native SV Openings for the Monomial Basis 92

4.4.3 Lagrange Basis . 93

4.5 Maintainable Vector Commitment Schemes 94

4.5.1 Cosets of Roots of Unity . 95

4.5.2 The Scheme . 98

5 Position-Hiding Linkability 103

5.1 Introduction . 103

5.1.1 Contributions . 104

5.1.2 Related Work . 106

5.2 Position-Hiding Linkable VC schemes 108

5.3 Linking Vectors with Elements . 110

5.3.1 Our Blinded Evaluation Construction 110

5.3.2 Correct computation of z(X) 114

5.4 Lookup tables for hiding values . 120

5.4.1 Multi-Unity Proof or Proving well formation of f(X) 127

5.5 Efficiency . 134

5.6 Implementation . 136

A Publications 151

xiv

List of Figures

3.1 Argument for proving membership inW⊥, parameterized by the poly-
nomial encoding EY : WY → F[X]k, and the set WY ⊂ Fkm. 43

3.2 PHP for the universal relation RW-R1CS. 44

3.3 Modification of the PHP for RW-R1CS to achieve zero-knowledge. . . 46

3.4 A simple CSS scheme for matrices with at most one non-zero element
per column. 51

3.5 A CSS scheme for matrices with at most V non-zero elements per
column. 53

3.6 CSS argument for M, with K such that |M| ≤ |K|. 55

3.7 CSS Argument for matrices with at most K non-zero entries. 57

3.8 CSS argument with verifier sampling 59

3.9 Amortized CSS scheme from [MBKM19]. 60

3.10 CSS Argument for P ∈ F3m×3m. 63

3.11 CSS Argument for a matrix Wc with two blocks F,G where F,G
have at most V non-zero elements per column. 65

3.12 Basilisk’s KeyGen and KeyGenD algorithms. 69

3.13 Basilisk’s Prove and Verify algorithms. 70

4.1 Unbounded aggregation for LVC schemes with homomorphic proofs. 79

4.2 Cross-commitment aggregation for LVC schemes with homomorphic
commitments and proofs. 80

xv

4.3 Aggregation for Inner Product arguments with homomorphic proofs . 82

4.4 LVC schemes from Inner Product arguments with homomorphic prop-
erties. 82

4.5 Updatability algorithms for IP arguments with homomorphic open-
ings and commitments. 83

4.6 Inner Product argument with Lagrange Basis. 85

4.7 Inner Product argument with encodings in the monomial basis. . . . 88

4.8 Mantainable LVC schemes with memory/time trade-offs. 101

5.1 Zero-knowledge proof of membership. Shows that (v, r1) is an opening
of cm and that C opens to v at ks. 111

5.2 NIZK argument of knowledge for Runity and deg(z) ≤ 1. 117

5.3 Lookup table that uses a proof for Runity as blackbox. 123

5.4 Argument for proving that some polynomial f(X) has Nth roots of
unity as coefficients in the basis {λj(X)}nj=1. 129

5.5 Comparison of performance of Caulk and other arguments for zero-
knowledge single openings. 137

5.6 Comparison of performance between Caulk and other schemes for
lookup tables. 137

xvi

Chapter 1

Introduction

Cryptography emerged, as its etymology reveals, as the art of secret writing. We
tend to think of it primarily as a technology that enables and protects the privacy of
our communications. For instance, proving systems, that are the focus of this thesis,
allow to a party to prove that some statement is true without leaking unnecessary
information. While privacy is their most demanded feature, the potential of these
cryptographic techniques for scalability, understood as the ability to handle big
amounts of data, spend few resources and get quick responses, is getting increasingly
recognized.

In a proof system, a prover wants to convince a verifier about the truth of some
statement. If the prover is right, they hold a witness, some piece of data that is linked
to the statement and proves it. Using the witness, the prover constructs a proof that
they send to the verifier and that should suffice for the latter to decide on the validity
of the statement. Such a system must ensure two conditions: completeness, meaning
that any honest prover should be able to convince the verifier and soundness, which
captures the fact that if the statement is not true, the verifier should reject it with
some probability. If this probability is one we say the system is a proof, and whenever
is smaller, we have an argument. Zero-knowledge, defined as the requirement that no
information about the witness is leaked to the verifier, can be additionally requested.

The efficiency of arguments is at the core of this thesis, and it will be determined
according to the amount of work each of the parties has to perform, the memory
they use and the size of the messages that are sent. If these quantities lie within
some bounds that will be defined later, we say the argument is succinct.

Due to the ability to prove in a concise manner arbitrarily large statements,
succinct arguments [Kil92, Mic00] have a wide range of applications. In systems
for delegation of computation, for instance, we have a computationally weak verifier
that asks some stronger party to perform an expensive procedure for them. The
strong party becomes the prover and, upon sending the result, has to convince

1

the verifier of its correctness: the need for a succinct proof and a cheap verifier is
fundamental due to the resources of the latter. This scenario of a weak verifier and
stronger prover arises a lot in a digital world where users operate through small
devices, such as laptops, phones and even watches while delegating to more capable
entities (companies, governments, professionals) many of their tasks. In all cases,
the inefficiency of these systems understood as time and resources, translates into a
monetary cost.

In particular, since the advent of cryptocurrencies [Nak08], the importance of
privacy and efficiency of proving arguments has become of massive interest, as trans-
actions in many of these schemes consist of proving the satisfiability of some very
large arithmetic circuit. Making short proofs then becomes essential for scalability of
the blockchains and fee costs, while the need for anonymity brought zero-knowledge
on stage, especially since 2014 when Zcash [BCG+14] suggested the usage of zero-
knowledge proofs for making transactions anonymously.

Zero-Knowledge proof systems were introduced by Goldwasser, Micali and Rack-
off [GMR89], and its non-interactive version (NIZK) by Blum, Feldman and Micali
[BFM88]. These works along with subsequent ones [Dam93, FLS99, KP98] have
proven the existence of NIZK arguments for all NP languages. Albeit being seminal
works on the theory of proving systems, the constructions presented in the afore-
mentioned papers lack concrete efficiency, and their usage would have required a
prohibitive cost in practice.

By relaxing security for the sake of efficiency, cryptographers introduced Zero-
Knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs) with
highly convenient concrete efficiency: proof systems for any NP-complete problem
where the size of the proof and the work required by the verifier are independent
of the size of the statement [Gro10, Lip12, Lip13, PHGR13, BCTV14, Gro16]. In
particular, proof size is only 3 group elements for the best construction [Gro16]. As
a security drawback, these schemes require the presence of a trusted third party
to compute some public parameters, the structured reference string (SRS), that
constitute the key point for succinctness. Structured captures the fact that the
elements on the trapdoor are related to each other, as opposite to the case for a
uniform reference string where they are randomly sampled.

The SRS contains a short description of the relation to be proven so the verifier
does not need to read the statement, which will take them linear time on its size, and
can be constant. It also includes encodings of some secret elements, the trapdoor,
that are used to produce short proofs. Keeping the trapdoor secret is crucial, as any
party in possession of it can produce valid proofs for false statements.

Despite the significant research effort in finding alternatives to bypass the need
for a trusted third party by constructing transparent arguments, i.e. in the uni-
form random string model (URS) [BBB+18, BCC+16, BBHR18, AHIV17, BBHR19,
COS20, XZZ+19, WTs+18], pairing-based SNARKs such as [Gro16] still seem the

2

most practical alternative in many settings due to their very fast verification, which
is essential in many blockchain applications. On the other hand, multiparty so-
lutions for generating the SRS [BCG+15, BGG19, BGM17] are not fully scalable
as they require all parties to be online during the entire execution of an extensive
procedure [BGM17, KMSV21].

In 2018 Groth et al. [GMMM18] introduced the concept of universal and up-
datable structured reference string (SRS). An SRS is updatable if many parties in
a non-interactive and verifiable way can contribute to its generation, namely, can
update it at any time. Such an SRS has the advantage that, if at least one party
behaves honestly and does not reveal its contribution to the simulation trapdoor, the
latter is safe. Universal captures the fact that the SRS can be used for any (univer-
sal) argument with some fixed bound on size. Furthermore, the authors prove that
any SRS that consists solely of monomials, meaning powers of some elements given
in a group where the discrete logarithm problem is difficult to solve, is updatable.
Also, such an SRS is universal, as contains only uniformly sampled elements and no
information about the statement.

Even though the concept of updatability was of immense interest as an alter-
native for expensive MPC procedures, four years later we can say that it is the
universality of the SRS that the cryptographic community cares the most about
nowadays. In fact, using Multi-Party Computation to generate the parameters seems
to be enough at a security level, even though performing such a procedure requires
prohibitive amounts of computational and logistical resources. For this reason, there
is a huge interest in the cryptography community, and especially in those who pursue
practical solutions, in creating protocols that can reuse already existing structured
reference strings.

Nowadays, universal structured reference strings (computed through MPC cer-
emonies) are used in a wide spectrum of arguments and one of the main reasons
for this is the fact that they have been proven to sufficient for many commitment
schemes, such as Pedersen Commitments [Ped92](work also in the URS model) and
the polynomial commitments by Kate, Zaverucha and Goldberg [KZG10]. Com-
mitment schemes and, in particular, vector commitment schemes [CF13, LY10] are
widely used in decentralized settings as they allow to compress big amounts of data
in a succinct manner (where the size of the commitment is constant on the size of
the data set) and later retrieve pieces of it, in an efficient way. We can see vector
commitments as proving systems for a specific relation whose instance includes some
previously committed data, following the commit and prove methodology [CLOS02].
The data stored in the vector can be public, such as a set of values corresponding
to some range, or private, such as a set of secret keys.

Besides being a middle point on trust models, universal and updatable SRS bring
schemes whose efficiency lies between the ones that can be constructed using trusted
parameters and using transparent ones. Throughout this thesis, we push forward
on the design of cryptographic protocols that, while implemented with a universal

3

and updatable SRS, achieve similar efficiency to those that use trusted ones.

In this thesis, we tackle aspects of the theory, efficiency and practicality of suc-
cinct arguments, considering zkSNARKs for general computations and Vector Com-
mitment schemes. Contributions include cryptographic primitives, frameworks for
constructing such systems with highly demanded properties, and protocols whose
efficiency is competitive with the state of the art in all aspects, in most the cases
over-performing them in many different efficiency measures.

The security of all the protocols presented in this thesis holds under non-falsifiable
assumptions [Nao03], meaning that even when given the opportunity to interact with
a successful adversary, at the end of the interaction we cannot efficiently decide if it
has broken the assumption or not. As proven by Gentry and Wichs [GW11], these
kinds of assumptions are necessary for the construction of SNARKs, as they do not
exist under falsifiable ones.

In particular, we use the Algebraic Group Model (AGM) [FKL18]. When working
in the AGM, we restrict to algebraic adversaries that upon producing some proof
element A, also output a list of coefficients z such that A is a linear combination of
the elements in z and those encoded in the SRS. Pairing-based arguments rely on
commitments to elements for succinctness, and the AGM allows us to extract the
algebraic objects behind them and work on the information-theoretical component
of the proof, using well-known algebraic principles.

In terms of practicality, all our constructions are in the universal and updatable
SRS model. Furthermore, they can be instantiated with any already existing SRS
that contains the powers of some secret element . In particular, we state that all
the protocols presented below can reuse trusted setups such as “powers of tau” that
were run for pairing-based SNARK schemes used in real-world applications, such as
the one used by ZCash [ZCary], or Filecoin [Fil20].

The results of this thesis are presented as follows:

• In Chapter 3, we focus on building proving systems for the NP-complete prob-
lem of circuit satisfiability that can compete in performance with the best
constructions that use a relation-dependent SRS. We design a framework for
building zkSNARKs, that is, the prover does not leak information about the
witness it uses to perform the proof. Our framework is modular and starts
from the design of what we call Checkable Subspace Sampling arguments. We
present several constructions of these schemes that lead to many alternatives
for different efficiency measures on zkSNARKs.

• In Chapter 4 we focus on Vector Commitments, a primitive that has become
crucial in the design of succinct proofs. We design a framework to construct
such schemes from already existing primitives and present our own instanti-
ations. Importantly, this chapter focuses on the practicality and properties

4

of such schemes for their application to decentralized networks. This requires
flexibility for the data, as it may change or be used to perform further compu-
tations, and the balance between the prover work and the memory they use,
as they have limited time and storage resources.

• Finally, in Chapter 5 we analyze how we can exploit the conciseness of vector
commitments to store public data while still being able to link it, in zero-
knowledge, with smaller pieces of information. That is, construct arguments
to prove that some set of hidden data has been taken from a public one. We
formalize these arguments and present a construction that performs better
than the state of the art, with applications that include membership proofs,
proofs of ownership and lookup tables, among others.

5

6

Chapter 2

Preliminaries

For m ∈ N, [m] denotes the set of integers {1, . . . ,m}. Vectors and matrices are
denoted in boldface. Given two vectors a,b, their Hadamard product is denoted
as a ◦ b, and their inner product as a · b or a�b. The subspace of polynomials of
degree at most d in F[X] is denoted as F≤d[X]. Given a matrix M, |M| denotes the
number of its non-zero entries.

2.1 Security proofs

Let λ ∈ N denote some general security parameter and 1λ its unary representation.
A function negl : N → R is called negligible if for all c > 0, there exists k0 such
that for all k > k0, negl(k) < 1

kc
, and we say a function f is overwhelming if

f(k) > 1− negl(k) for all k > k0. We will use negligible and overwhelming to refer
to the probability of the security of our schemes to fail.

For a non-empty set S, let x ← S denote sampling an element of S uniformly at
random and assigning it to x.

All the algorithms in this work are probabilistic polynomial-time (PPT). Let
y ← A(x; r) denote running algorithm A on input x and randomness r and assigning
its output to y. Note that deterministic polynomial-time algorithms are PPT ones
with r = 0. Let y ← A(x) denote y ← A(x; r) for a uniformly random r.

We will represent the probability of events with the notation Pr[event | sampling],
which equals the probability of the event in the left, given that the inputs have been
sampled as explained in the right.

We often used code-based games in security definitions [BR06]. In this frame-
work, we have and adversary A that plays the security game sec and breaks the

7

security of some scheme if it has a non-negligible probability of winning. When
the same algorithm appears at different stages of a security game, we assume it is
stateful, that is, keeps information about all the previous steps it was involved in.

Note that if the protocols involve elements sampled uniformly at random from
finite sets, the adversary will have some possibility of winning the security game by
guessing the sampled element. The distance between the probability of winning of
A by guessing and the probability of winning with some strategy is what we call the
advantage of A in game Game, and we denote it AdvGame

A .

A cryptographic scheme is consider computationally secure if AdvsecA ≤ negl(λ)
for all adversaries A that run in polynomial time in the security parameter. If the
security notion holds for unbounded adversaries we say it is statistically secure and
it is perfectly secure if AdvsecA = 0 for any A. In order to achieve these bounds, in our
security definitions we will often derive from a winning adversary A an adversary B
against a computationally hard problem prob and prove that AdvsecA ≤ AdvprobB . That
is, if prob is known to be intractable, our protocol satisfies the security notion sec.

2.2 Polynomials

The following well-known lemma will be crucial for proving the security of interactive
protocols.

Lemma 1 (Schwartz-Zippel, [Sch80, Zip79], univariate case). Let P (X) be a poly-
nomial of degree d with coefficients in F, that is P (X) ∈ Fd[X]. Let S ⊂ F be a
finite subset. Then, Pr[P (x) = 0|x ← S] ≤ d

|S| .

2.2.1 Lagrange Polynomials

Given some finite field F, let H = {h1, . . . , hm} be an arbitrary set of cardinal m,
with some predefined canonical order, and hi the ith element in this order. The ith
Lagrange basis polynomial associated to H is denoted by λi(X). The vector λ(X)
is defined as λ(X)� = (λ1(X), . . . ,λm(X)). The vanishing polynomial of H will be
denoted by zH(X). That is,

zH(X) =
m�

i=1

(X − hi), and for every i ∈ [m], λi(X) =
�

j �=i

(X − hj)

hi − hj
.

We recall that for any set H of arbitrary size m, the sum of its Lagrange inter-
polation polynomials is one, that is,

�m
i=1 λi(X) = 1.

8

When H is a multiplicative subgroup, the following properties are known to hold
for all i ∈ [m]:

zH(X) = Xm − 1, λi(X) =
hi
m

(Xm − 1)

(X − hi)
, λi(0) =

1

m
,

That is, vanishing and Lagrange polynomials corresponding to sets of roots of
unity are sparse. This representation makes their computation particularly efficient:
both zH(X) and λi(X) can be evaluated in O(logm) field operations. For this
reason, we will always consider H as a multiplicative subgroup, unless the opposite
is explicit (only in Section 3.3).

For simplicity, in all the chapters of this thesis we work with a subgroup of roots
of unity H of size m, but for some results we use further multiplicative subgroups,
U and K, whose size and Lagrange and vanishing polynomials will be introduced
when necessary.

2.3 Cryptographic Primitives

In this section we introduce the cryptographic primitives, definition and security
properties, that will be used as building blocks in the constructions of this thesis.
Given that they consist mostly of proving arguments, or include proving phases,
some of them have algorithms with the same name, as they have the same task in
different context, so we will denote P.Alg to the algorithm Alg used in the argument
P. The only case were we do not do this is for NIZK arguments and in most cases
for the KeyGen algorithm, as we want to emphasize that even when we specify a
bound on the key generation algorithm, just for tightness, this algorithm can be the
same for all our schemes.

2.3.1 Non-Interactive Arguments of Knowledge

Let R be a polynomial time decidable relation. Given instance x we call w a witness
for x if (x, w) ∈ R, L(R) = {x| ∃w : (x, w) ∈ R} is the language of all the x that
have a witness w in the relation R, while L(R) is the language of all the pairs (x,R)
such that x ∈ L(R). We will assume R it is implicit as prover and verifier input.

Definition 1. A Non-Interactive Argument of Knowledge is a tuple of PPT algo-
rithms (KeyGen,Prove,Verify) such that:

• (srs, τ) ← KeyGen(pp,R): On input the parameters of the system, a relation
R, KeyGen outputs a structured reference string srs and a trapdoor τ as a
private output;

9

• π ← Prove(srs, (x, w)): On input a pair (x, w) ∈ R, it outputs a proof π of the
fact that x ∈ L(R);

• 1/0 ← Verify(srs, x, π): On input the srs, the instance x and the proof, it
produces a bit expressing acceptance (1), or rejection (0);

and that satisfies completeness, knowledge soundness and zero-knowledge as defined
below.

Completeness: holds if an honest prover will always convince an honest verifier.
Formally, ∀ R, (x, w) ∈ R,

Pr

�
Verify(srs, x, π) = 1

(srs, τ) ← KeyGen(R)
π ← Prove(srs, (x, w))

�
= 1.

Knowledge-Soundness: captures the fact that a cheating prover cannot, except
with negligible probability, create a proof π accepted by the verification algorithm
unless it has a witness w such that (x, w) ∈ R. Formally, for all PPT adversaries
A, there exists a PPT extractor E such that

Pr


(x, w) /∈ R ∧ Verify(srs, x, π) = 1

(srs, τ) ← KeyGen(R)
(x, π) ← A(srs)
w ← E(srs, x, π)


 ≤ negl(λ) .

Zero-Knowledge: A Non-interactive argument of knowledge is additionally zero-
knowledge if there exists an algorithm Simulate that behaves as follows

• πsim ← Simulate(srs, τ, x): The simulator has the srs, the trapdoor τ and the
instance x as inputs and it generates a simulated proof πsim,

and for all relations R, instances x and PPT adversaries A,

Pr


A(srs, π) = 1

(srs, τ) ← KeyGen(R)
x ← A(srs)

π ← Prove(srs, (x, w))


 ≈


A(srs, πsim) = 1

(srs, τ) ← KeyGen(R)
x ← A(srs)

πsim ← Simulate(srs, τ, x)


 .

10

Succinctness: Succinctness holds if the size of the proof π is poly(λ + log(|w|))
and Verify runs in time poly(λ + |x| + log(|w|)). If (KeyGen,Prove,Verify) satis-
fies succinctness, we say it is a Succinct, Non-Interactive Argument of Knowledge
(SNARK). A zero-knowledge SNARK will be denoted as zkSNARK.

2.3.2 Universal and Updatable Parameters

Below, we present the definition of Universal and Updatable SRS schemes introduced
by Groth et al. in [GKM+18]. All its algorithms together replace KeyGen in a NIZK
or SNARK, that is, there is a party that generates the parameters in first place
and then many other parties that can update them later on. Importantly, because
none of these parties is trusted, they all provide a proof of well formation of its
contribution that any entity can check. It will be explained at the end of this
Section that in the rest of this thesis we will omit the algorithms that generate or
verify such proofs.

For universal structured reference strings, we will no longer set R to be a relation
but rather a family of universal relations. Then, given a specific relation R ∈ R, we
consider the language L(R) = {x| ∃w : (x, w) ∈ R} of all the instances that have a
witness in the relation R, and the language L(R) of pairs (x,R) such that x ∈ L(R).
We will assume that both, R and R are implicit as prover and verifier input.

Definition 2. A Universal and Updatable SRS scheme consists a tuple of PPT
algorithms (KeyGen, SRS.Update, SRS.Verify) that work as follows,

• (srsu, τ, πsrsu) ← KeyGen(pp,R): On input the parameters of the system, a
universal relation R, KeyGen outputs a universal structured common reference
string srsu (that includes the parameters of the system), a trapdoor τ , and a
proof of correctness πsrsu;

• (srs�u, τ
�, π�

srsu) ← SRS.Update(srsu, {πsrsu,i}ni=1): On input a common reference
string and a list of update proofs, it outputs a new srsu, a contribution trapdoor
τ � (which is a private output), and the corresponding proof of correctness.

• 1/0 ← SRS.Verify(srsu, {πsrsu,i}ni=1): On input a common reference string and
a list of proofs, produces a bit expressing acceptance (1) or rejection (0);

When using universal and updatable SRSs in proof systems, an extra determin-
istic algorithm, called Derive and denoted as KeyGenD is usually included. This
algorithm takes as input the universal SRS constructed for R and a relation R ∈ R
and outputs an specific srs that both prover and verifier have as input. The aim of
this algorithm is to provide a succinct description of the circuit to the verifier, so it
can run in time less than linear. Importantly, this step is what allows universal and
updatable SNARKs to achieve verifier costs comparable to those that use a trusted

11

setup. Actually, as mentioned in the seminal work [GKM+18], the derive step can
be run as part of the proving and verifying algorithms if needed, but it is useful to
think about it as some pre-processing step of the prover algorithm.

• srsR ← KeyGenD(srsu,R): On input R ∈ R, this algorithm outputs a relation
dependent srs that includes srsu;

Note that universal and updatable srs schemes as defined above can be seen as
a NIZK argument of the well formation of the parameters, that is, a NIZK for the
following relation:

Rsrsu =
�
(srsu, ˆsrsu, τ, {πsrsu,i}ni=1, π̂srsu) :(ˆsrsu, τ, π̂srsu) ← SRS.Update(srsu, {πsrsu,i}ni=1)

�

Universal and updatable SRS schemes must satisfy correctness and trapdoor
extraction as defined below.

Completeness: An updatable SRS scheme satisfies perfect completeness if both
of the following probabilities are 1.

Pr
�
SRS.Verify(srsu, πsrsu) = 1 (srsu, τ, πsrsu) ← KeyGen(1λ)

�

and

Pr

�
SRS.Verify(srsu, {πsrsu,i}ni=1) = 1

(srsu, τ, πsrsu) ← KeyGen(1λ)
(srs�u, τ

�, π�
srsu) ← SRS.Update(srsu, {πsrsu,i}ni=1)

�

The notion of trapdoor extraction can be seen as knowledge soundness of the
adversary’s contribution to the srs. That is, if an adversary has created an srs from
scratch, it must know the trapdoor τ it has used for it. Similarly, if it outputs a
valid update to an existing srs, it must be the case that the update has been done
correctly, and the adversary knows the contribution it has made.

Trapdoor Extraction : An updatable SRS scheme satisfies Trapdoor Extraction
for subvertible SRSs if for all PPT adversaries A there exists an PT extractor E
such that:

Pr




SRS.Verify(srsu, πsrsu) = 1
∧ ∃ τ � s.t. (srsu, τ �, πsrsu) ← KeyGen(1λ)

∧ τ � �= τ

(srsu, πsrsu) ← A(1λ)
τ ← E(srsu, πsrsu)


 ≤ negl(λ)

12

An updatable SRS scheme satisfies Trapdoor Extraction for updatable SRSs if the
following probability is negligible in λ:

Pr




SRS.Verify(ˆsrsu, π̂srsu) = 1
∧ (srs�u, ˆsrsu, τ, {πsrsu,i}ni=1, π

�
srsu) /∈ Rsrsu

(srsu, τ, πsrsu) ← KeyGen(1λ)
(srs�u, π

�
srsu) ← SRS.Update(srsu, {πsrsu,i}ni=1)
(ˆsrsu, π̂srsu) ← A(srs�u, π

�
srsu)

τ ← E(ˆsrsu, π̂srsu)




It is proven in [GKM+18] that a SRS that consists solely of monomials is up-
datable and satisfies trapdoor extraction in both cases. In the rest of this work, we
will use setups that contain only monomials and thus omit the description of the
srs.Update and srs.Verify algorithms, as well as the security proofs.

2.3.3 Polynomial Commitments

Polynomial Commitment schemes have been introduced by Kate, Zaverucha and
Goldberg [KZG10]. In the same work, they present a construction based in bilinear
groups, with constant size proof and verifier work, which is broadly used nowadays
and we will present in Section 2.5.1.

Definition 3 (Polynomial Commitment Scheme). A Polynomial Commitment Scheme
is a tuple of algorithms

�
KeyGen, PC.Commit, PC.Open, PC.Verify

�
such that:

• (srs, τ) ← KeyGen
�
pp, d

�
: On input the system parameters and a degree bound

d, it outputs a structured reference string and trapdoor τ .

• C ← PC.Commit
�
srs, p(X), r

�
: On input the srs and a polynomial p(X), and

randomness r it outputs a commitment C to p(X).

• (s, π) ← PC.Open
�
srs, p(X), r,α

�
: On input the srs, the polynomial, commit-

ment randomness r, a query point α ∈ F, it outputs s ∈ F and an evaluation
proof π that s = p(α) and deg(p) = deg1.

• 1/0 ← PC.Verify
�
srs,C, deg,α, s, π

�
: On input the srs, the commitment, degree

bound, query and evaluation points α, s, and the proof of correct evaluation, it
outputs a bit indicating acceptance or rejection.

A polynomial commitment scheme should satisfy the following properties:

1Note that d denotes the degree bound used by the system, while deg denotes the claim value
for deg(p)

13

Completeness: It captures the fact that an honest prover will always convince an
honest verifier. Formally, for any polynomial p(X) such that deg(p) ≤ d and query
point α ∈ F,

Pr


PC.Verify

�
srs,C, deg,α, s, π

�
= 1

(srs, τ) ← KeyGen(pp, d)
C ← PC.Commit

�
srs, p(X), r

�

s = p(α), deg(p) = deg
(s, π) ← PC.Open

�
srs, p(X), r,α

�


 = 1.

Soundness: Captures the fact that a cheating prover should not be able to convince
the verifier of a false opening. Formally, for all stateful PPT adversaries A:

Pr




�
p(α) �= s ∨ deg(p) > deg

�

∧
PC.Verify

�
srs,C, deg,α, s, π

�
= 1

(srs, τ) ← KeyGen
�
pp, d

�

(p(X),C) ← A(srs)
α ← F

(s, π) ← A(α)


 ≈ 0

Evaluation Binding: Captures the fact that no PPT adversary A should be able
to present two valid openings for different values but same evaluation point. For-
mally:

Pr



PC.Verify

�
srs,C, deg,α, s, π

�
= 1

PC.Verify
�
srs,C, deg,α, s�, π�� = 1
and s �= s�

(srs, τ) ← KeyGen
�
pp, d

�

(C,α, s, s�, π, π�) ← A
�
srs)


 ≈ 0

Additionally, we will ask polynomial commitments to satisfy extractability.

Extractability: Captures the fact that whenever the prover provides a valid open-
ing, it knows a valid pair (p(X), p(α)) ∈ F[X] × F, where deg(p) ≤ deg. Formally,
for all PPT adversaries A there exists an efficient extractor E such that:

Pr




PC.Verify
�
srs,C, deg,α, s, π

�
= 1

∧�
p(α) �= s ∨ deg(p) > deg

�

(srs, τ) ← KeyGen
�
pp, deg

�

C ← A
�
srs
�

p(X) ← E
�
srs,C, deg

�

α ← A
�
srs,C, deg

�

(s, π) ← A
�
srs, p(X), deg,α

�



≈ 0

14

2.3.4 Vector Commitments

In this section we provide the classical definitions of vector commitments (VC),
introduced by Catalano and Fiore [CF13].

Definition 4 (Vector Commitment Scheme). A Vector Commitment Scheme is a
tuple of algorithms

�
KeyGen, VC.Commit, VC.Open, VC.Verify

�
such that:

• (srs, τ) ← KeyGen
�
pp, d

�
: On input the system parameters and a bound d on

the size of the vectors, it outputs a structured reference string srs consisting on
a prover key prk and a verifier key vrk, and trapdoor τ .

• (C, aux) ← VC.Commit
�
srs,v, r

�
: On input the srs, a vector v, and randomness

r it outputs a commitment C and auxiliary information aux.

• π ← VC.Open
�
srs,v, r, i

�
: On input the srs, the vector, its size, the commit-

ment randomness, and a position i it outputs vi ∈ F and proof π that vi is the
ith element of vector v.

• 1/0 ← VC.Verify
�
srs,C, i, vi, π

�
: On input the srs, the commitment, position,

claimed value vi, and the proof, it outputs a bit indicating acceptance or rejec-
tion.

A vector commitment scheme should satisfy the following properties:

Correctness: It captures the fact that an honest prover will always convince an
honest verifier. Namely, for all vectors v ∈ FN and i ∈ [N]

Pr


VC.Verify

�
srs,C, i, vi, π

�
= 1

(srs, τ) ← KeyGen
�
pp, d

�

(C, aux) ← VC.Commit
�
srs,v, r

�

π ← VC.Open
�
srs,v, r, i

�


 = 1.

(Weak) Position Binding: Captures the fact that no PPT adversary A should
be able to present for one commitment two valid openings for the same position.
Formally:

Pr



VC.Verify

�
srs,C, i, y, π

�
= 1,

VC.Verify
�
srs,C, i, y�, π�� = 1

and y �= y�

(srs, τ) ← KeyGen
�
pp, d

�

(v, r, i, y, y�, π, π�) ← A
�
srs)

(C, aux) ← VC.Commit
�
srs,v, r

�


 ≈ 0.

15

(Strong) Position Binding: Captures the fact that no PPT adversary A should
be able to present for one commitment two valid openings for the same position.
Formally:

Pr



VC.Verify

�
srs,C, i, y, π

�
= 1,

VC.Verify
�
srs,C, i, y�, π�� = 1

and y �= y�

(srs, τ) ← KeyGen
�
pp, d

�

(C, i, y, y�, π, π�) ← A
�
srs)


 ≈ 0.

Additionally, we can ask a Vector Commitment scheme to satisfy the following
properties:

Hiding: Captures the fact that the commitment should not leak information about
the vector v. Formally:

Pr


b = b�

(srs, τ) ← KeyGen
�
pp, d

�

(v1,v2) ← A
�
srs)

(Cb, aux) ← VC.Commit(srs,vb; r)
b� ← A


 =

1

2
+ negl(λ) .

Extractability: Captures the fact that whenever the prover provides a valid open-
ing, it knows a valid pair (v, y) ∈ Fd × F, where vi = y. Formally, for all PPT
adversaries A there exists an efficient extractor E such that:

Pr



VC.Verify

�
srs,C, i, y, π

�
= 1

∧ vi �= y

(srs, τ) ← KeyGen
�
pp, d

�

C ← A
�
srs
�

v ← E
�
srs,C, d

�

(i, y, π) ← A
�
srs,v, d, i

�


 ≈ 0.

Remark. Note that for vector commitments (and later for Linear-map Vector Com-
mitments) the srs consists on two different keys, one for the prover and one for the
verifier. We will consider them separately in Chapter 4 to highlight the difference
between the information prover and verifier need access to. We stress that the srs is
still universal and dependent only in the scheme and the size of the admitted vectors.

Subvector Commitments

Subvector commitment schemes have been defined for first time in two independent
works [BBF19, LM19]. Still, in this thesis we define Subvector Openings as a addi-
tional property of already existing Vector Commitments. That is, we add additional
algorithms and security properties to an existing VC.

Definition 5 (Sub-Vector Commitment). A Sub-Vector Commitment scheme is
a VC scheme that opens subsets rather than positions. It consists on algorithms�
KeyGen, SVC.Commit, SVC.Open, SVC.Verify

�
that work as follows:

16

• πI ← SVC.Open(prk, aux, I,vI) : Takes as input prk, aux, a set of index I ⊂ [m]
and values vI = {vi}i∈I and outputs a proof πI that vi is the value in position
i, for all i ∈ I.

• b ← SVC.Verify(vrk,C, I,y, πI) : Takes as input vrk, C, I, a vector y = {yi}i∈I
and πI . It outputs 1 for accept or 0 for reject.

Correctness: An SVC scheme is perfectly correct if, for all λ ∈, any vector length
m = poly(λ), any index set I ⊂ [m], and any v ∈ Mm,

Pr


SVC.Verify(vrk, C, I,vI , πI) = 1

(prk, vrk) ← KeyGen(1λ,M,m)
(C, aux) ← VC.Commit(prk,v)
πI ← SVC.Open(prk, aux, I,vI)


 = 1.

Binding: Binding captures the impossibility of creating inconsistent openings for
subvectors. An SVC scheme satisfies strong position binding if, for all PPT adver-
saries A, for all λ ∈, any vector length m = poly(λ), the following probability is
negligible in λ:

Pr



SVC.Verify(vrk,C, I,y, πI) = 1 ∧
SVC.Verify(vrk,C, J,y�, πJ) = 1

∧ ∃i ∈ I ∩ J s.t. yi �= y�i

(prk, vrk) ← KeyGen(1λ,M,m)�
C, I, J,

y, πI ,y
�, πJ

�
← A(prk, vrk)


 .

Weak Position Binding is considering the definition above to hold only for honestly-
generated commitments C computed via VC.Commit.

2.3.5 Linear-map Vector Commitment

In the following, we define what we call Linear-map Vector Commitments (LVC)
schemes. Notably, this definition has been introduced by Lai and Malavolta in [LM19]
(except that there the name is Linear Map Commitments) to capture further func-
tionalities of vector commitments, whose definition before only account for proofs
of position openings (Vector Commitments) or more generally subvector openings
(Sub-vector commitments). We introduce the definition and security properties of
LVC.

Definition 6. [Linear-Map Vector Commitments (LVC)] A linear-map vector com-
mitment scheme for function families F ⊂ {f : Mm → Mn} is a tuple of PPT
algorithms

�
LVC.KeyGen, LVC.Commit, LVC.Open, LVC,Vf

�
that work as follows:

17

• (prk, vrk) ← LVC.KeyGen(1λ,F): The setup algorithm takes the security param-
eter λ, a family of functions F implicitly defining the message space M, and
the maximum vector length m = poly(λ), and outputs a pair of keys (prk, vrk).

• (C, aux) ← LVC.Commit(prk,v): On input the proving key prk, and a vector
v = (v1, v2 . . . , vm) ∈ Mm, returns a commitment C and auxiliary information
aux. This algorithm is deterministic.

• πf ← LVC.Open(prk, aux, f,y) : Takes as input prk, the auxiliary information
aux, a function f ∈ F , and a claimed result y ∈ Mn. It outputs a proof πf

that f(v) = y.

• b ← LVC.Vf(vrk,C, f,y, πf) : Takes as input the verification key vrk, C, func-
tion f , y ∈ Mn, and proof πf . It accepts or rejects.

An LVC scheme must satisfy the following properties:

Correctness: An LVC scheme is perfectly correct if for all λ ∈, for any family of
functions F ⊂ {f : Mm → Mn} and any v ∈ Mm,

Pr


LVC.Vf(vrk,C, f,y, πf) = 1

(prk, vrk) ← LVC.KeyGen(1λ,F)
(C, aux) ← LVC.Commit(prk,v)
πf ← LVC.Open(prk, aux, f,y)


 = 1.

(Strong) Function Binding: A linear map commitment LVC satisfies strong
function binding if, for any PPT adversary A, for all λ ∈ N, for all integers
K ∈ poly(λ), and for any family of functions F , the following probability is negligible
in λ:

Pr




∀k ∈ [K] :
LVC.Vf(vrk,C, fk,yk, πfk) = 1

∧ � ∃ v ∈ Mm s. t.
∀k ∈ [K] : fk(v) = yk

(prk, vrk) ← LVC.KeyGen(1λ,F)�
C, {fk,yk, πfk}k∈[K]

�
← A(prk, vrk)




The definition above can be relaxed to hold only for honestly-generated commit-
ments C, raising to the weak function binding notion. In the weak definition, the
adversary A returns a vector v while the commitment C is computed via LVC.Commit.
In this work, constructions are proven strong function binding.

18

2.3.6 Homomorphic Properties for LVC

Linear-map vector commitment schemes that satisfy homomorphic commitments
allow to combine commitments of two vectors into a single one of their sum(or
any linear combination). Namely, for all λ, and (vrk, prk) ← LVC.KeyGen(1λ,F),
if (C1, aux1) ← LVC.Commit(prk,v1) and (C2, aux2) ← LVC.Commit(prk,v2), then
C̃ = (αC1 + βC2) is a valid commitment to ṽ = (αv1 + βv2) for any α, β ∈ M.

In this work, we are particularly interested in LVC that also have homomor-
phic proofs for different functions applied to a committed vector and homomorphic
openings for the same function applied to different initial vectors.

Homomorphic Proofs. An LVC scheme has homomorphic proofs if it allows
recombine two proofs π1, π2 corresponding to linear maps f1, f2 into a new proof
π̃ that opens to a linear combination of f1 and f2 applied to the same committed
vector. Namely, for all λ, F ⊂ {f : Mm → Mn} and all vectors v ∈ Mm, and
(vrk, prk) ← LVC.KeyGen(1λ,F), (C, aux) ← LVC.Commit(prk,v), if π1 ← LVC.Open
(prk, aux, f1,y1) and π2 ← LVC.Open(prk, aux, f2,y2), then for all α, β ∈ M:

π̃ = (απ1 + βπ2) verifies LVC.Vf(vrk,C, f̃ = (αf1 + βf2), ỹ = (αy1 + βy2), π̃
�
= 1.

Homomorphic Openings. An LVC scheme has homomorphic openings if we can
combine opening proofs for the same linear-map f applied to two different vectors
v1 and v2 to obtain a new proof of opening π̃ that verifies with respect to the linear
combination C̃ of the two initial commitments C1,C2 and show the result of f applied
to the linear combination of the vectors v1 and v2.

More formally, for all λ, F ⊂ {f : Mm → Mn}, vectors v1,v2 ∈ Mm,
and (vrk, prk) ← LVC.KeyGen(1λ,F), if π1 ← LVC.Open(prk, aux1, f,y1) and π2 ←
LVC.Open(prk, aux2, f,y2), where (C1, aux2) ← LVC.Commit(prk,v1) and (C2, aux2) ←
LVC.Commit(prk,v2), then for all α, β ∈ M:

π̃ = (απ1 + βπ2) verifies LVC.Vf(vrk, C̃ = (αC1 + βC2), f, ỹ = (αy1 + βy2), π̃
�
= 1.

2.3.7 Polynomial Holographic Proofs

Following previous works [GWC19, CHM+20, CFF+21], in chapter 3 we will con-
struct zkSNARKs by building first an information theoretically secure argument
and then compiling it using a polynomial commitment scheme. For the latter, we
will use schemes satisfying the properties presented in Definition 3 and for the for-
mer we use the notion of Polynomial Holographic Interactive Oracle Proofs (PHP),
introduced by Campanelli et al. [CFF+21]. It is a refinement and quite similar to
other notions used in the literature to construct SNARKs in a modular way, such as

19

Algebraic Holographic Proofs (AHP) [CHM+20] or idealized polynomial protocols
[GWC19].

A proof system for a relation R is holographic if the verifier does not read the full
description of the relation, but rather has access to an encoding of the statement
produced by some holographic relation encoder, also called indexer, that outputs
oracle polynomials. In all these models, the prover is restricted to send oracle
polynomials or field elements, except that, for additional flexibility, the PHP model
of [CFF+21] also lets the prover send arbitrary messages. In PHPs, the queries of
the verifier are algebraic checks over the polynomials sent by the verifier, as opposed
to being limited to polynomial evaluations as in AHPs.

The following definitions are taken almost verbatim from [CFF+21].

Definition 7. A family of polynomial time computable relations R is field dependent
if each relation R ∈ R, specifies a unique finite field. More precisely, for any pair
(x,w) ∈ R, x specifies the same finite field FR (simply denoted as F if there is no
ambiguity).

Definition 8. [Polynomial Holographic IOPs (PHP)] A Polynomial Holographic
IOP for a family of field-dependent relations R is a tuple PHP = (rnd, n,m, d,
ne, I,P ,V), where rnd, n,m, d, ne : {0, 1}∗ → N are polynomial-time computable
functions, and I,P ,V are three algorithms that work as follows:

• Offline phase: The encoder or indexer I(R) is executed on a relation de-

scription R, and it returns n(0) polynomials {p0,j}n(0)j=1 ∈ F[X] encoding the
relation R and where F is the field specified by R.

• Online phase: The prover P(R, x,w) and the verifier VI(R)(x) are executed
for rnd(|R|) rounds, the prover has a tuple (R, x,w) ∈ R, and the verifier
has an instance x and oracle access to the polynomials encoding R. In the
i-th round, V sends a message ρi ∈ F to the prover, and P replies with m(i)

messages {πi,j ∈ F}m(i)
j=1 , and n(i) oracle polynomials {pi,j ∈ F[X]}n(i)j=1, such

that deg(pi,j) < d(|R|, i, j).

• Decision phase: After the rnd(|R|)-th round, the verifier outputs two sets of
algebraic checks of the following type:

– Degree checks: to check a bound on the degree of the polynomials sent
by the prover. More in detail, let np =

�rnd(|R|)
k=1 n(k) and let (p1, . . . , pnp)

be the polynomials sent by P. The verifier specifies a vector of integers
d ∈ Nnp, which satisfies the following condition

∀k ∈ [np] : deg(pk) ≤ dk.

– Polynomial checks: to verify that certain polynomial identities hold be-
tween the oracle polynomials and the messages sent by the prover. Let
n∗ =

�rnd(|R|)
k=0 n(k) and m∗ =

�rnd(|R|)
k=0 m(k), and denote by (p1, . . . , pn∗)

20

and (π1, . . . , πn∗) all the oracle polynomials (including the n(0) ones fr-
rom the encoder) and all the messages sent by the prover. The verifier
can specify a list of ne tuples, each of the form (G, v1, . . . , vn∗), where
G ∈ F[X,X1, . . . , Xn∗ , Y1, . . . , Ym∗] and every vk ∈ F[X]. Then a tuple
(G, v1, . . . , vn∗) is satisfied if and only if F (X) ≡ 0 where

F (X) := G
�
X, {pk(vk(X))}k=1,...,n∗ , {πk}k=1,...,m∗

�
.

The verifier accepts if and only if all the checks are satisfied.

Completeness: A PHP is complete if for any triple (R, x,w) ∈ R, the checks
returned by VI(R) after interacting with the honest prover P(R, x,w), are satisfied
with probability 1.

�-Soundness: A PHP is �-sound if for every relation-instance tuple (R, x) /∈ L(R)
and polynomial time prover P∗ we have

Pr
�
�P∗,VI(R)(x)� = 1

�
≤ �.

�-Knowledge Soundness: A PHP is �-knowledge sound if there exists a polyno-
mial time knowledge extractor E such that for any prover P∗, relation R, instance x
and auxiliary input z we have

Pr
�
(R, x,w) ∈ R : w ← EP∗

(R, x, z)
�
≥ Pr

�
�P∗(R, x, z),VI(R)(x)� = 1

�
− �,

where E has oracle access to P∗, it can query the next message function of P∗ (and
also rewind it) and obtain all the messages and polynomials returned by it.

�-Zero-Knowledge: A PHP is �-zero-knowledge if there exists a PPT simulator
S such that for every triple (R, x,w) ∈ R, and every algorithm V∗, the following
random variables are within �-statistical distance:

View (P(R, x,w),V∗) ≈c View
�
SV∗

(R, x)
�
,

where View (P(R, x,w),V∗) consists of V∗’s randomness, P’s messages (which do
not include the oracles) and V∗’s list of checks, while View

�
SV∗

(R, x)
�
consists of V∗’s

randomness followed by S’s output, obtained after having straightline access to V∗, and
V∗’s list of checks.

We assume that in every PHP scheme there is an implicit maximum degree for all the
polynomials used in the scheme. Thus, we include only degree checks that differ from this
maximum. In all our PHPs, the verifier is public coin.

The following definition captures de fact that zero-knowledge should hold even when
the verifier has access to a bounded amount of evaluations of the polynomials that contain

21

information about the witness. Let Q be a list of queries; we say that Q is (b,C)-bounded
for b ∈ Nnp and C a PT algorithm, if for every i ∈ [np], |{(i, z) : (i, z) ∈ Q}| ≤ bi, and for
all (i, z) ∈ Q, C(i, z) = 1.

(b,C)-Zero-Knowledge: A PHP is (b,C)-zero-knowledge if for every triple (R, x,w) ∈
R, and every (b,C)-bounded list Q, the follow random variables are within � statistical
distance:

�
View

�
P(F,R, x,w),V

�
, (pi(z))(i,z)∈Q

�
≈� S (F,R, x,V(F, x),Q) ,

where the pi(X) are the polynomials returned by the prover.

Honest-Verifier Zero-Knowledge: A PHP is honest-verifier zero-knowledge with
query bound b if there exists a PT algorithm C such that PHP is (b,C)-zero-knowledge and
for all i ∈ N, Pr[C(i, z) = 0] is negligible, where z is uniformly sampled over F.

2.4 Cryptographic Assumptions

Random Oracle Model (ROM). When working in the Random Oracle Model
[BR93], we assume the existence of an oracle that generates uniformly sampled
outputs, and we use it as a black-box. In practice, this oracle is instantiated with a
cryptographic hash function and, even though it fails out of the standard model, it
is a well-known and trusted assumption.

In this thesis, we design some proving systems that require interaction between
the prover and the verifier. Still, we always set a public coin verifier, meaning that
the challenges it computes are uniformly sampled elements and independent to each
other, lying then in the ROM. For simplicity, even when building non-interactive
arguments, we will abuse notation and describe them as interactive ones, as we claim
they can also be made non-interactive by applying the Fiat-Shamir transform [FS87]
we define next.

Let P denote the prover and V denote the verifier in an interactive two rounds
proving system, that is

srs ← KeyGen(1λ)

π1 ← P(srs, x,w)

α ← V(srs, x, π1)

π2 ← P(π1,α)

1/0 ← V(srs, π1, π2),

22

and let H : {0, 1}∗ → {0, 1}c be a hash function modeled as a random oracle. If we
define P̄ and V̄ as prover and verifier in the following procedure:

• srs ← KeyGen(1λ)

• π ← P̄(srs, x,w):

– π1 ← P(srs, x,w)

– α = Hπ1

– π2 ← P(π1,α)

– π = (π1, π2)

• b ← V̄(srs, x, π)

– α = H(π1)

– b ← V(srs, x, π,α).

and if (P ,V) is a complete, knowledge-sound and zero-knowledge interactive argu-
ment of knowledge, then (P̄ , V̄) is a complete, knowledge-sound and zero-knowledge
non-interactive argument of knowledge, in the random oracle model.

Pairing-based setting A bilinear group gk is a tuple gk = (q,G1,G2,GT , e,P1,P2)
where G1,G2 and GT are groups of prime order q, the elements P1,P2 are generators
of G1,G2 respectively, e : G1×G2 → GT is no efficiently computable, non-degenerate
bilinear map, and there is an efficiently computable isomorphism between G1 and
G2. Elements in Gγ, are denoted implicitly as [a]γ = aPγ, where γ ∈ {1, 2, T} and
PT = e(P1,P2). With this notation, e([a]1, [b]2) = [ab]T .

Algebraic Group Model (AGM). The security of all protocols in this the-
sis holds in the Algebraic Group Model (AGM) of Fuchsbauer et al. [FKL18], us-
ing the dlog, qDHE, qFrac and qSDH assumptions [GG17, BB04] for asymmetric
groups. The algebraic group model [FKL18] lies between the standard model and the
stronger generic group model(GGM, [Sho97]). In AGM, we consider only so-called
algebraic adversaries. Such adversaries have direct access to group elements and, in
particular, can use their bit representation, like in the standard model. However,
these adversaries are assumed to output new group elements only by applying the
group operation to received group elements (like in the generic group model). This
requirement is formalized as follows:

Definition 9 (Algebraic Adversary). Let G be a cyclic group of order p. We say that
a PPT adversary A is algebraic if there exists an efficient extractor EA that, given

23

the inputs ([τ1], . . . , [τm]) of A, outputs a representation z = (z1, . . . , zm)
� ∈ Zm

p for
every group element [y] in the output of A such that:

AdvalgG,A(λ) =




[y] ← A([τ1], . . . , [τm]), z ← EA([y], [τ1], . . . , [τm]),
and [τ] �=

m�
j=1

zj[xj]


 ≤ negl(λ) .

We will always assume our adversaries are algebraic and use the extractor for
elements in both groups G1 and G2. The security of our schemes is proven in the
algebraic group model under the following assumptions:

Definition 10 (qDlog Asymmetric Assumption). The q(λ)-discrete logarithm as-
sumption holds for gk ← G(1λ) if for all PPT algorithm A

Advq−dlog
gk,A (λ) = Pr [τ ← A(gk, [τ]1,2, . . . , [τ

q]1,2)] = negl(λ).

Definition 11 (qBSDH Assumption). The q-bilinear strong Diffie-Hellman assump-
tion holds for gk ← G(1λ) if for all PPT adversaries A,

Pr

�
(c, 1

(τ−c)
e([1]1, [1]2)) ← A(gk, [1]1,2, [τ]1,2, . . . , [τ

q]1,2)
gk ← G(1λ)
τ ← Fp

�
≤ negl(λ) .

Definition 12 (qDHE Assumption). The q-Diffie-Hellman exponent assumption
holds relative to G(1λ) if for all PPT adversaries A,

Pr

�
τ q+1e([1]1, [1]2) ← A(gk, [1]1,2, [τ]1,2, . . . , [τ

q]1,2)
gk ← G(1λ)
τ ← Fp

�
≤ negl(λ) .

Definition 13 (qSFrac Assumption [GG17]). The qS fractional assumption holds
relative to G(1λ) if for all PPT adversaries A,

Pr

�
r(τ)
s(τ)

e([1]1, [1]2) ← A(gk, [1]1,2, [τ]1,2, . . . , [τ
q]1,2)

∧ deg(r) < deg(s) ≤ q.

gk ← G(1λ)
τ ← Fp

�
≤ negl(λ) .

2.5 Other Preliminaries

2.5.1 The KZG Polynomial Commitment Scheme

All our constructions use the KZG polynomial commitment scheme that we describe
below, or its adaptation for vector commitment that we explain in the next section.
For efficiency of our construction in Chapter 5, we slightly modify the polynomial
commitment in order to add degree checks to the original protocol, without incur-
ring in extra proof elements or pairings. The polynomial commitment introduced
by Kate, Zaverucha and Goldberg in [KZG10] is a tuple of algorithms

�
KeyGen,

PC.Commit, PC.Open, PC.Verify
�
such that:

24

• PC.KeyGen
�
ppPC, d

�
: On input the system parameters and a degree bound d,

it outputs a structured reference string srs =
�
{[τ i]1,2}di=1

�
.

• PC.Commit
�
srs, p(X)

�
: It outputs C = [p(τ)]1.

• PC.Open
�
srs, p(X),α

�
: Prover computes

q(X) =
p(X)− p(α)

X − α
,

sets s = p(α), [Q]1 = [q(τ)τ d−deg+2]1, and outputs (s, πPC = [Q]1).

• PC.Verify
�
srs,C, deg,α, s, πPC

�
: Verifier accepts if and only if

e(C− s, [τ d−deg+2]2) = e([Q]1, [τ − α]2).

Security. It has been proven in [KZG10, CHM+20, GWC19] that the original
KZG protocol, i.e., where [Q]1 = [q(τ)]1 and the pairing equation is e(C− s, [1]2) =
e([Q]1, [τ − α]2), is a polynomial commitment scheme that satisfies completeness,
evaluation blinding and extractability as in Def. 3 in the AGM, under the dlog as-
sumption. What is more, Marlin presents an alternative version of KZG with degree
checks that does not require additional powers in G2. For our construction, we claim
that adding τ d−deg+2 to the pairing and element [Q]1 does not affect completeness or
extractability. We also argue that under the AGM, no PPT adversary A can break
soundness by providing a commitment to a polynomial p(X) such that deg(p) > deg.
Indeed, if that is the case, deg(Q) = d+ 1 for Q(X) the algebraic representation of
[Q]1, which will imply an attack to the qDHE assumption, as the srs only contains
powers [τ i]1 up to d.

2.5.2 KZG as Vector Commitment Scheme

There is a natural isomorphism between vectors of size m and polynomials of degree
m − 1; where we can represent v = (v1, . . . , vm) ∈ Fm as V (X) =

�m
j=1 vjBj(X),

for a basis B = {Bj(X)}mj=1 of the space of polynomials of degree up to m − 1,
and vice versa. This fact implies as well a natural relation between polynomial and
vector commitments (Def. 4), where in particular, the former implies the latter.
What is more, when the basis B chosen to encode the vector consists of Lagrange
polynomials we have vector commitments with easy individual position openings:
evaluating V (X) in the ith interpolation point returns vi.

In this work we will use the protocol by Kate et al. for both cases, polynomial and
vector commitments. For the latter, we will not only consider individual openings
but also subset openings. In particular, let H = {h1, . . . , hm} be a set of roots of

25

unity and {λi(X)}mi=1 its corresponding Lagrange interpolation set, with vanishing
polynomial zH(X). We have that for some polynomial Q(X),

V (X)− s = (X − hi)Q(X) if and only if V (hi) = vi = s.

2.5.3 Subset openings

For a vector v ∈ Fm and a subset I ⊂ [m], the subvector opening scheme of Tomescu
et. al [TAB+20] that works for the VC inspired by KZG presented above, consists
on algorithms (SVC.Open, SVC.Verify) such that:

• SVC.Open(prk, aux, I,vI) : Compute CI(X) =
�

i∈I viηi(X), where {ηi(X)}
are the Lagrange interpolation polynomials of the set {hi}i∈I , and find Q(X)
such that for zI(X) =

�
i∈I(X − hi),

C(X)− CI(X) = zI(X)Q(X).

Output πI = [Q]1.

• SVC.Verify(vrk,C, I,vI , πI) : Compute [zI]2 = [zI(τ)]2, CI(X) =
�

i∈I viηi(X),
and CI = [CI(τ)]1 and output 1 if and only if

e
�
C− CI , [1]2

�
= e
�
[Q]1, [zI]2

�
.

SVC.Open as aggregation of individual proofs We will additionally use a re-
sult by Tomescu et al. [TAB+20] that allows the prover to compute [Q]1 in time
O(m log2(m)) given it already has stored proofs {[Qi]1}i∈I that C(hi) = si. Indeed
the prover sets

[Q]1 =
�

i∈I

�
m�

k=1,k �=i

1

(hi − hk)

�
[Qi]1

Remark. We remark that precomputing all the proofs [Q1]1, . . . , [Qn]1 that C(hi) =
si can be achieved in time O(n log n) using techniques by Feist and Khovratovich [FK].
The overview of this technique by Tomescu et al. ([TAB+20], Section 3.4.4, “Com-
puting All ui’s Fast”) is explained well.

Multiple Openings

A KZG proof of opening can naturally be extended to open one polynomial in many
points. Indeed, let p(X) be a polynomial, α ∈ Fm a vector of opening points and s
such that si = p(αi) for all i = 1, . . . ,m. Define Cα(X) as the unique polynomial of

26

degree m− 1 such that Cα(αi) = si for all i ∈ [m]. We have that p(αi) = si for all
i = 1, . . . ,m if and only if there exists q(X) such that

p(X)− Cα(X) =
m�

i=1

(X − αi)Q(X)

We can thus redefine the KZG prover and verifier the following way:

• PC.Open
�
srs, p(X), deg,α

�
: Prover computes {ηi(X)}mi=1 the interpolation La-

grange polynomials for the set {αi}mi=1, zα(X) =
�m

i=1(X − αi) and define
Cα(X) =

�m
i=1 p(αi)ηi(X). Then, it computes

Q(X) =
p(X)− Cα(X)

zα(X)
,

sets si = p(αi), [Q]1 = [Q(τ)]1, and outputs (s, πPC = [Q]1).

• PC.Verify
�
srs,C, deg,α, s, πPC

�
: The verifier computes {ηi(X)}mi=1, Cα = [Cα(τ)]1,

[zα(τ)]2 and verifies

p(X)− Cα(X) = Q(X)zα(X)

by making the pairing check

e(C− Cα, [1]2) = e([Q]1, [zα(τ)]2),

and outputs 1 if and only if the equation is satisfied and deg(p) ≤ d.

KZG for Bivariate Polynomials

For the protocol in Section 5.4.1 we will use bivariate polynomials, or polynomials
of higher degree. What this mean is that, if we have a bivariate polynomial P (X, Y)
with degree up to d1 − 1 in X and d2 − 1 in Y then we require a universal setup
with d1d2 powers. We work with a version of KZG that uses a univariate setup
because these are already available for multiple different curves (i.e. we do not need
a specialist setup just for our protocol and can work with prior KZG setups).

We observe that, by using the KZG open algorithm, we can commit to P (X, Y)
as [P (τ d2 , τ)]1. We must open P (X, Y) in two steps. First we partially open P (X, Y)
at some point X = α to a commitment [P (α, τ)]1. The partial proof is given by a
commitment [wα(τ

d2 , τ)] to a partial witness

wα(X, Y) =
P (X, Y)− P (α, Y)

X − α

We then fully evaluate P (α, X) at Y = β via a standard KZG proof with a degree
bound of d2 − 1 on [P (α, τ)]1.

27

2.5.4 Pedersen Commitment Schemes

Pedersen commitment schemes are a particular case of vector commitments. We
will consider them for committing to single values in a zero knowledge way. Thus,
the srs will additionally output [g]1 for some secret g and the commitment to some
element s is computed as v[1]1 + r[g]1 = [v + gr], for some randomly sampled h ∈ F
. We suggest a standard Fiat-Shamired Sigma protocol [Mau09] to demonstrate
knowledge of v, r such that cm = [v + gr]1 for some v, r:

Rped = {(cm; (v, r)) : cm = [v + gr]1}

The proof consists of R = [s1+hs2]1, t1 = s1+vc and t2 = s2+rc, where c = H(cm, R)
and s1, s2 are elements chosen by the verifier. At the end, the verifier checks that
R + c · cm = [t1 + gt2]1.

28

Chapter 3

Universal and Updatable SNARKs

This chapter is based on the paper ‘An Algebraic Framework for Universal and Up-
datable SNARKs’ [RZ21], which is a joint work with Carla Ràfols.

3.1 Introduction

(zk)SNARKs as presented in Definition 1 are proving systems for general com-
putations, which we represent as arithmetic circuits. Arithmetic Circuit Satisfi-
ability can be reduced to a set of quadratic and affine constraints over a finite
field. The quadratic ones are universal, in the sense that they are the same for
all circuits of same size, and can be easily proven in the pairing-based setting
with a Hadamard product argument, the basic core of most zkSNARKS construc-
tions starting from [GGPR13]. On the other hand, affine constraints are circuit-
dependent, and it is a challenging task to efficiently prove them with a universal
SRS [MBKM19, CHM+20, GWC19, CFF+21, DRZ20, Set20, Gab19, SZ20].

In Groth et al. [GKM+18] they are proven via a very expensive subspace argu-
ment that requires a SRS quadratic in the circuit size and a preprocessing step that
is cubic. Sonic [MBKM19], the first efficient, universal, and updatable SNARK,
gives two different ways to prove the affine constraints, a fully succinct one (not so
efficient) and another one in the amortized setting (very efficient). Follow-up work
(most notably, Marlin [CHM+20], Plonk [GWC19], Lunar [CFF+21]) has signifi-
cantly improved the efficiency in the fully succinct mode.

There is an important trend in cryptography, that advocates for constructing
protocols in a modular way. One reason for doing so is the fact that, by breaking
complicated protocols into simpler steps, they become easier to analyze. Ishai [Ish20]
mentions comparability as another fundamental motive. Specially in the area of

29

zero-knowledge, given the surge of interest in practical constructions, it is hard not
to lose sight of what each proposal achieves. As Ishai puts it: “one reason such
comparisons are difficult is the multitude of application scenarios, implementation
details, efficiency desiderata, cryptographic assumptions, and trust models”.

Starting from Sonic, all the aforementioned works on universal and updatable zk-
SNARKs follow this trend. More concretely, they first build an information-theoretic
proof system, that is then compiled into a full argument under some computational
assumptions in bilinear groups. The main ingredient of the compiler is a polynomial
commitment [KZG10, BFS20, KPV19]. However, the information theoretic compo-
nent is still very complex and comparison among these works remains difficult, for
precisely the same reasons stated by Ishai. In particular, it is hard to extract the
new ideas in each of them in the complex description of the arguments, that use
sophisticated tricks for improving efficiency, as well as advanced properties of mul-
tiplicative subgroups of a finite field or bivariate Lagrange interpolation. Further,
it is striking that all fully succinct arguments are for restricted types of constraints
(sums of permutations in Sonic, sparse matrices in Marlin, and Lunar1) or pay a
price for additive gates (Plonk). A modular, unified view of these important works
seems essential for a clearer understanding of the techniques. In turn, this should
allow for a better comparison, more flexibility in combining the different methods,
and give insights on current limitations.

3.1.1 Related Work

Bivariate Polynomial Evaluation Arguments. As mentioned before, the complex-
ity of building updatable and universal zkSNARKs protocols is mainly caused by
proving affine constraints. A natural way to encode them is through a bivariate
public polynomial P (X, Y); in order to avoid having a quadratic SRS, this polyno-
mial can only be given to the verifier evaluated or partially evaluated in the field.
The common approach is to let the verifier chose arbitrary field elements x, y and
having the prover evaluate and send σ = P (y, x). The challenge is to prove that the
evaluation has been performed correctly. In Sonic [MBKM19], this last step is called
a signature of correct computation [PST13] and can be performed by the prover or
by the verifier with some help from an untrusted third party. The drawback of the
first construction is that, while still linear, prover’s work is considerably costly; also,
linear constraints are assumed to be sparse and the protocol works exclusively for a
very particular polynomial P (X, Y). The second construction is interesting only in
some restricted settings where the same verifier checks a linear amount of proofs for
one circuit. Marlin [CHM+20] bases its construction on the univariate sum-check
protocol of Aurora [BCR+19] and presents a novel way to navigate from the naive
quadratic representation P (X, Y) to a linear one. This approach results in succinct
prover and verifier work, but restricts their protocol to the case where the num-

1The number of non-zero entries of the matrices that encode linear constraints cannot exceed
the size of some multiplicative group of the field of definition.

30

ber of non-zero entries of matrix W is bounded by the size of some multiplicative
subgroup of the field of definition. Lunar [CFF+21] uses the same representation
as Marlin but improves on it, among other tweaks by introducing a new language
(R1CS-lite) that can also encode arithmetic circuit satisfiability, but has a lighter
representation than other constraint systems. Plonk [GWC19] does not use bivariate
polynomials or require sparse matrices but the SRS size depends on the number of
both multiplicative and additive gates. As we do, Plonk, Marlin and Lunar use the
Lagrange interpolation basis to commit to vectors, while Claymore [SZ20] presents
a modular construction for zkSNARKs based on similar algebraic building blocks
but in the monomial basis: inner product, Hadamard product and matrix-vector
product arguments.

Work |srsu| |srsW| |π| KeyGen Derive Prove Verifier

Sonic
[MBKM19]

G1 4M - 20 4M 36m 273m
7PG2 4M 3 - 4M - -

F - - 16 - O(K logK) O(K logK) O(l + logK)

Marlin
[CHM+20]

G1 3K̂ 12 13 3K̂ 12K 14m+ 8K
2PG2 2 2 - - - -

F - - 8 - O(K logK) O(K logK) O(l + logK)

Plonk
[GWC19]

G1 3N 8 7 3N 8n 11n
2PG2 1 1 - - - -

F - - 7 - O(n log n) O(n log n) O(l + log n)

LunarLite2x2

[CFF+21]

G1 K̂ 16 11 K̂ 16K 8m+ 4K
2PG2 1 1 - 1 - - -

F - - 3 - O(K logK) O(K logK) O(l + logK)

Vampire
[LSZ22]

G1 12M + K̂ − 4 K̂ 16K 20M + 2K̂ 6P

G2 4M + K̂ 22 - 1 120M + 18K̂ - 5G1 + 21G2

F - - 1 - O(K̂ log K̂) O(K logK) O(l + logM)

This
work
Sec. 3.5.3

G1 K̂ 4 10 K̂ 6K 6m+ 4K
2PG2 1 1 - - - -

F - - 3 - O(K logK) O(K logK) O(l + logK)

This
work
Fig. 3.10

G1 N 11 8 N 11n 8n
2PG2 1 1 - - - -

F - - 4 - O(n log n) O(n log n) O(l + log n)

Basilisk

Sec. 3.7.3

G1 M 3V + 1 6 M (3v + 1)m 6m
2PG2 1 1 - - - -

F - - 2 - O(m logm) O(m logm) O(l + logm)

Table 3.1: Comparison with state of the art universal and updatable zkSNARKs. m: number of
multiplicative gates, n: number of total gates, v : bounded fan-out, K: non-zero elements of the
matrix that describe the circuit (|F + G| in our case). N, K̂, V,M : maximum supported values
for n,K,m, v. N∗ = M + A. The numbers for our work take into account the trick to eliminate
non-trivial degree checks in Section 3.7.2.

Information Theoretic Proof Systems. All these previous works follow the
two step process described in the introduction and build their succinct argument
by compiling an information theoretically secure one. Marlin introduces Algebraic
Holographic proofs, that are variation of interactive oracle proofs (IOPs) [BCS16].
Holographic refers to the fact that the verifier never receives the input explicitly

3Among all schemes with different trade-offs presented in Lunar, we highlight this one as it is
the most directly comparable to our scheme.

31

(otherwise, succinctness would be impossible), but rather its encoding as an oracle
computed by an indexer or encoder. The term algebraic refers to the fact that
oracles are low degree polynomials, and malicious provers are also bound to output
low degree polynomials. This notion is similar to the one of Idealised Low Degree
protocols of Plonk. Lunar refines this model by introducing Polynomial Holographic
IOPs (Definition 2.3.7), which generalize these works mostly by allowing for a fine
grained analysis of the zero-knowledge property, including degree checks, and letting
prover and verifier send field elements.

Polynomial Commitments. Polynomial commitments allow to commit to a poly-
nomial p(X) ∈ F[X], and open it at any point x ∈ F. As it is common, we will
use an adaptation of the polynomial commitment by Kate et al. [KZG10], which is
presented in Section 2.5.1. Sonic gave a proof of extractability of the latter in the
Algebraic Group Model [FKL18], and Marlin completed the proof to make the com-
mitments usable as a standalone primitive, and also have an alternative construction
under knowledge assumptions. Both Marlin and Plonk considered versions of poly-
nomial commitments where queries in the same point can be batched together. For
this work, we use the same definitions and construction as these works. We formally
introduced polynomial commitments in Definition 3.

Untrusted Setup. The original constructions of pairing-based zkSNARKs cru-
cially depend for soundness on a trusted setup, although, as was shown in [ABLZ17,
Fuc18], the zero-knowledge property is still easy to achieve when the setup is sub-
verted. Groth et al. introduced the updatable SRS model in [GKM+18] to ad-
dress the issue of trust in SRS generation. There are several alternatives to achieve
transparent setup and constant-size proofs, but all of them have either linear veri-
fier [BCC+16, BBB+18, BCR+19, AHIV17], or work only for very structured types
of computation [BBHR18, WTs+18]. An exception is the work of Setty [Set20].
Concretely, the approach is less efficient in terms of proof size and verification com-
plexity compared to recent constructions of updatable and universal pairing-based
SNARKs.

After [RZ21]. The results in this chapter have been published in 2021. Using
similar techniques as the one in our work, Lipmaa Siim and Zajac introduce Vam-
pire ([LSZ22]), a universal zkSNARK that achieves the smallest proof size. Their
construction implicitly uses our framework, and the efficiency relies mostly on a
sumcheck protocol with a 1 element proof. Still, their derived SRS is more than five
times the one for our work, and need to be derived from a non-reusable (but still
universal) SRS.

3.1.2 Contributions

We propose an algebraic framework that takes a step further in achieving modular
constructions of universal and updatable SNARKs. We identify the technical core

32

of previous work as instances of a Checkable Subspace Sampling (CSS) Argument.
In this information-theoretic proof system, two parties, prover and verifier, on input
a field F and a matrix M ∈ FQ×m, agree on a polynomial D(X) encoding a vector d
in the row space of M. The interesting part is that, even though the coefficients of
the linear combination that define d are sampled with the verifier’s coins, the latter
does not need to perform a linear (in Q, the number of rows) number of operations
to verify that D(X) is correct. Instead, this must be demonstrated by the prover.

With this algebraic formulation, it is immediate to see that a CSS argument
can be used as a building block for an argument of membership in linear spaces.
Basically, given a matrix M, we can prove that some vector y is orthogonal to the
row vectors of M by sampling after y is declared, a sufficiently random vector d
in the row space of M and checking an inner product relation, namely, whether
d ·y = 0. The purpose of a CSS argument is to guarantee that the sampling process
can be checked by the verifier in sublinear time without sacrificing soundness.

Naturally, for building succinct proofs, instead of y,d, the argument uses poly-
nomial encodings Y (X) and D(X) (which are group elements after the compila-
tion step). To compute the inner product of this encoded vectors, we introduce a
new argument in Section 3.3, which is specific to the case where the polynomials
are encoded in the Lagrange polynomial basis but can be easily generalized to the
monomial basis (as we do later in Section 4.3.2). The argument is a straightforward
application of the univariate sumcheck of Aurora [BCR+19]. However, we contribute
a generalized sumcheck (that works not only for multiplicative subgroups of finite
fields), with a completely new proof that relates it with polynomial evaluation at
some fixed point v.

These building blocks can be put together as an argument for the language of
Rank1 constraint systems. For efficiency and generality, we introduce W-R1CS, a
variant that captures all constraint systems used by existing universal and updat-
able snarks. Our final construction can be instantiated with any possible choice of
CSS scheme, so in particular, it can essentially recover the construction of Plonk,
Marlin and Lunar by isolating the CSS argument implicit in these works, or the
amortized construction of Sonic. We hope that this serves to better identify the
challenge behind building updatable and universal SNARKs, and allow for new
steps in improving efficiency, as well as more easily combining the techniques.

In summary, we reduce R1CS constraint systems to three algebraic relations: an
inner product, a Hadamard product, and a CSS argument. We think this algebraic
formulation is very clear, and also makes it easier to relate advances in universal
and updatable SNARKS with other works that have used a similar language, for
example, the arguments for inner product of [BCC+16], of membership in linear
spaces [JR13], or for linear algebra relations [Gro09].

Finally, we give several constructions of CSS arguments. In Section 3.5, we
start from the representation of a matrix W as bivariate polynomial introduced

33

in [CHM+20] to construct an alternative CSS argument for sparse matrices. Our
contribution is to introduce a new linearization step that allows us to build it mod-
ularly from an argument for what we refer to as simple matrices, i.e., those with
at most one non-zero element per column. Compared to [CHM+20, CFF+21], at a
minimal increase in communication cost, our argument significantly reduces the size
of the derived SRS. We generalize these arguments to sums of simple and sparse
matrices, without increasing the communication complexity.

In Section 3.5.7, we show the helped Sonic mode works as a CSS argument in
the amortized setting. In Section 3.5.6, we introduce a CSS argument that works
for arbitrary matrices and, even though it requires quadratic indexer work and
linear verifier memory, can be combined with other schemes to increase efficiency or
expressivity, as we show in Section 3.4.4.

We study the performance trade-offs resulting from the different possible choices
of CSS argument of Section 3.5. In particular. we observe that the argument for
simple matrices and sums of simple matrices is useful on its own, and not only to
achieve modularity. We study the efficiency of our zkSNARK when: a) the CSS
argument is our argument for sparse matrices of Section 3.5.3, b) when the Plonk
constraint system is used and the matrix of constraints is a permutation, which is a
special case of a simple matrix, and c) when the circuit has bounded fan-out, which
results in a matrix of constraints that is a sum of simple matrices, which are detailed
in Table 3.1.

3.2 A Generalized Constraint System

Formally, we will construct an argument for the universal relation RW-R1CS, that we
present and discuss in this chapter. This definition comes as a generalization that
captures several previous constraint systems introduced below.

Definition 14. (R1CS) Let F be a finite field and m, l, s ∈ N. We define the
universal relation R1CS as:

RR1CS =





(R, x,w) :=
�
(F, s,m, l,F,G,O),x,w

�
:

F,G,O ∈ Fm×m,x ∈ Fl−1,w ∈ Fm−l, s = max{|F|, |G|, |O|},
and for z := (1,x,w), (Fz) ◦ (Gz) = z



 .

Campanelli et al. introduced in [CFF+21] an optimized version of Rank 1 Con-
straint Systems that is still NP complete and encodes circuit satisfiability in a natural
way:

Definition 15. (R1CS-lite) Let F be a finite field and n,m, l ∈ N. We define the
universal relation R1CS-lite as:

RR1CS-lite =





(R, x,w) :=
�
(F, s,m, l,F,G),x,w

�
:

F,G ∈ Fm×m,x ∈ Fl−1,w ∈ Fm−l, s = max{|F|, |G|},
and for c := (1,x,w), (Fc) ◦ (Gc) = c



 .

34

Definition 16. (Plonk’s constraint system) Let F be a finite field and m, l ∈ N.
Plonk’s universal relation can be denoted as:

RPlonk =





(R, x,w) :=
�
(F,m, l,P,qL,qR,qO,qM ,qC),x, (a

�,b, c)) :
P ∈ F3m×3m a permutation matrix,

qγ ∈ Fm for γ ∈ {L,R,O,M,C},x ∈ Fl−1,
a� ∈ Fm−l, a = (1,x, a�),

(1) P



a
b
c


 =



a
b
c


 , and

(2) qL ◦ a+ qR ◦ b+ qO ◦ c+ qM ◦ a ◦ b+ qC = 0





.

The first equation is a “copy constraint” approach that takes care of consistency
among wires. The second equation represents the different types of gates. When
writing Circuit Satisfiability as satisfiability of this constraint system, m represents
the number of additive and multiplicative gates. This relation is a rewriting of the
one considered in Plonk. Indeed, the only difference is that we require a to have the
public input in the first positions, instead of forcing this in Eq.(2). Still, this is only
a reformulation and does not modify the constraint system itself.

In this work we go a step further and present a constraint system that generalizes
R1CS and R1CS-lite as introduced above, while contemplating the Plonk constraint
system as well. Consider the following universal relation, that depends on a set M
of admissible matrices:

Definition 17. (weighted-R1CS) Let F be a finite field and m, l, lb ∈ N. We define
the universal relation W-R1CS as:

RW-R1CS =





(R, x,w) :=
�
(F,m, l, lb,W,qM ,qL,qR,qC),x, (a

�,b�)
�
:

W ∈ M ⊂ FQ×3m,
qγ ∈ Fm for γ ∈ {L,R,M,C},x ∈ Fl−1, a� ∈ Fm−l,b� ∈ Fm−lb

and for a := (1,x, a�),b = (1lb ,b
�)

W




a
b

qM ◦ a ◦ b+ qL ◦ a+ qR ◦ b+ qC


 = 0





.

Note that, with this arithmetization, the vector c of outputs is implicitly set to
be a weighted combination of a,b, a ◦ b and the constant 1.

Below, we show how RW-R1CS captures existing universal relations, for different
types of admissible matrices.

R1CS-lite. Note that for the case where l = lb, qM = 1, qL = qR = qC = 0,

and W =

�
I 0 −F
0 I −G

�
for matrices F,G in Fm×m containing the coefficients for

35

the linear constraints of the circuit, the relation described above corresponds to
R1CS-lite.

Plonk. RW-R1CS can encode RPlonk when the set of admissible matrices includes
P − I , where P is a permutation and I the identity matrix, and when we restrict
ourselves to relations R such that qO = −1. Indeed, it suffices to define W = P− I,
and observe that if Eq.(2) in RPlonk is satisfied, this means that

qL ◦ a+ qR ◦ b+ qM ◦ a ◦ b+ qC = c.

The restriction that qO = −1 limits the expressiveness of the constraint system,
but still captures all the constraint types described in Plonk, as we argue next.

First, observe that given some encoding of a relation R as in RPlonk with vectors
q�
L,q

�
R,q

�
O,q

�
M ,q�

C , such that (q�O)i �= 0 for all i, we can rewrite the constraints for
some vectors qL,qR,qO,qM ,qC such that qO = −1 by a normalization process. On
the other hand, (q�O)i = 0 in Plonk only for the case where i corresponds to public
inputs or to a boolean constraint. As explained above, we enforce public input
constraints separately by including them in a; also, boolean constraints can be
easily written enforcing (qO)i = −1: instead of requiring aj = bj, and aj − ajbj = 0
for some bj such that σ(aj) = bj as suggested in Plonk, they can be written as
aj = bj = cj, ajbj − cj = 0.

Bounded fan-out. Circuits with fan-out bounded by some constant V can nat-
urally be encoded as an instance of RW-R1CS for the set M of matrices W =�
I 0 −F
0 I −G

�
with F,G ∈ Fm×m such that there are at most V non-zero elements

per column in each. For circuits with bounded fan-out, we can set l = lb, qM = 1,
qL = qR = qC = 0. Note that any circuit can be transformed to a circuit with
bounded fan-out by artificially augmenting the vector c and adding constraints of
the form ci = cj that ensure consistency. To express satisfiability of this system
as an instance of RW-R1CS, the additional constraints ci = cj can rewritten as an
equation involving left (or right) wires, i.e. ai = cj, that is encoded in the matrix
W, and a gate, i.e. ai = ci (setting (qM)i = (qR)i = (qC)i = 0, (qL)i = 1). If
the fan-out of a certain gate is κ, this requires extending (a,b, c) by approximately
3κ/V dummy variables.

3.3 Generalized Univariate Sumcheck

In this section, we revisit the sumcheck of Aurora [BCR+19]. As presented there,
this argument allows to prove that the sum of the evaluations of a polynomial

36

in some multiplicative subgroup3 H of a finite field F sum to some value σ. We
generalize the argument to arbitrary sets H ⊂ F, solving an open problem posed
there. Additionally, we give a simpler proof of the same result by connecting the
sumcheck to polynomial evaluation and other basic properties of polynomials.

We prove a generalized sumcheck theorem below, and derive the sumcheck of
Aurora as a corollary for the special case where H is a multiplicative subgroup.
The intuition is simple: let P1(X) be a polynomial of arbitrary degree in F[X], and
P2(X) =

�m
i=1 λi(X)P1(hi). Note that P1(X), P2(X) are congruent modulo zH(X),

and the degree of P2(X) is at most m − 1. Then, when P2(X) is evaluated at an
arbitrary point v ∈ F, v /∈ H, P2(v) =

�m
i=1 λi(v)P1(hi). Thus, P2(v) is “almost”

(except for the constants λi(v)) the sum of the evaluations of P1(hi). Multiplying
by a normalizing polynomial, we get rid of the constants and obtain a polynomial
that evaluated at v is the sum of any set of evaluations of interest. The sum will be
zero if this product polynomial has a root at v.

Theorem 1 (Generalized Sumcheck). Let H be an arbitrary subset of some finite
field F and zH(X) the vanishing polynomial of H. For any P (X) ∈ F[X], S ⊂ H,
and any v ∈ F, v /∈ H,

�
s∈S P (s) = σ if and only if there exist polynomials H(X) ∈

F[X], R(X) ∈ F≤m−2[X] such that

P (X)NS,v(X)− σ = (X − v)R(X) + zH(X)H(X),

where NS,v(X) =
�

s∈S λs(v)
−1λs(X) and λs(X) is the Lagrange polynomial associ-

ated to s and the set H.

Proof. Observe that P (X) =
�

h∈H P (h)λh(X) mod zH(X). Therefore,

P (X)NS,v(X)− σ =
��

h∈H
P (h)λh(X)

���

s∈S
λs(v)

−1λs(X)
�
− σ

=
��

s∈S
P (s)λs(v)

−1λs(X)
�
− σ mod zH(X).

Let Q(X) =
��

s∈S P (s)λs(v)
−1λs(X)

�
− σ. Note that Q(v) =

�
s∈S P (s) − σ.

Thus,
�

s∈S P (s) = σ if and only if Q(X) is divisible by X − v. The claim follows
from this observation together with the fact that Q(X) is the unique polynomial of
degree m− 1 that is congruent with P (X)NS,v(X)− σ.

Lemma 2. If S = H is a multiplicative subgroup of F, NH,0(X) = m.

Proof. Recall that, as H is a multiplicative subgroup, λi(0) = 1/m for all i =
1, . . . ,m. Therefore, NH,0(X) =

�m
i=1 λi(0)

−1λi(X) = m
�m

i=1 λi(X) = m.

3In fact, the presentation is more general as they also consider additive cosets, but we stick to
the multiplicative case which is the one that has been used in other constructions of zkSNARKs.

37

As a corollary of Lemma 2 and the Generalized Sumcheck, we recover the
univariate sumcheck: if H is a multiplicative subgroup,

�
h∈H P (h) = σ if and

only if there exist polynomials R(X), H(X) with deg(R(X)) ≤ m − 2 such that
P (X)m− σ = XR(X) + zH(X)H(X).

3.3.1 Application to Linear Algebra Arguments

Several works [BCR+19, CHM+20, CFF+21] have observed that R1CS languages
can be reduced to proving a Hadamard product relation and a linear relation, where
the latter consists on showing that two vectors x,y are such that y = Mx, or
equivalently, that the inner product of (y,x) with all the rows of (I,−M) is zero.
When matrices and vectors are encoded as polynomials for succinctness, constructing
a PHP requires to express these linear algebra operations as polynomial identities.

For the Hadamard product relation, the basic observation is that, for any poly-
nomials A(X), B(X), C(X), the equation

A(X)B(X)− C(X) = H(X)zH(X), (3.1)

holds for some H(X) if and only if it is the case that (A(h1), . . . , A(hm))◦(B(h1), . . . ,
B(hm)) − (C(h1), . . . , C(hm)) = 0. In particular, if A(X) = a�λ(X), B(X) =
b�λ(X) encode vectors a,b, then C(X) mod zH(X) encodes a◦b. This Hadamard
product argument is one of the main ideas behind the zkSNARK of Gentry et
al. [GGPR13] and follow-up work.

For linear relations, the following Theorem explicitly derives a polynomial iden-
tity that encodes the inner product relation from the univariate sumcheck. This con-
nection in a different formulation is implicit in previous works [BCR+19, CHM+20,
CFF+21].

Theorem 2 (Inner Product Polynomial Relation). For some k ∈ N, let y =
(y1, . . . ,yk), d = (d1, . . . ,dk) be two vectors in Fkm, yi,di ∈ Fm where yij, dij
denote the jth element of vector yi and di, respectively. Consider also a multi-
plicative subgroup H of F of order m. Then, y · d = σ if and only if there exist
H(X), R(X) ∈ F[X], R(X) of degree at most m− 2 such that the following relation
holds:

Y(X) ·D(X)− σ

m
= XR(X) + zH(X)H(X), (3.2)

where Y(X) = (Y1(X), . . . , Yk(X)) is a vector of polynomials of arbitrary degree such
that Yi(hj) = yij for all i = 1, . . . , k, j = 1, . . . ,m, and D(X) = (D1(X), . . . , Dk(X))
is such that Di(X) = d�

i λ(X).

Proof. Since Yi(hj) = yij, for all i, j, Yi(X) = y�
i λ(X) mod zH(X). Therefore,

Yi(X)Di(X) = (y�
i λ(X))(d�

i λ(X))), and by the aforementioned properties of the
Lagrange basis, this is also congruent modulo zH(X) to (yi ◦ di)

�λ(X). Therefore,

38

Y(X) ·D(X) =
k�

i=1

Yi(X)Di(X) =
k�

i=1

(yi ◦ di)
�λ(X) mod zH(X)

=

�
k�

i=1

(yi ◦ di)
�
�
λ(X) mod zH(X).

By Theorem 1,
���k

i=1(yi ◦di)
��λ(X)

�
NH,0(X)− σ is divisible by X if and only if

the sum of the coordinates of
�k

i=1(yi ◦ di) is σ. The implication is also true after

dividing by NH,0(X) = m. The jth coordinate of
�k

i=1(yi ◦ di) is
�k

i=1 yijdij, thus

the sum of all coordinates is
�m

j=1

�k
i=1 yijdij = y ·d, which concludes the proof.

In the rest of this work H will always be a multiplicative subgroup, both for
simplicity (as NH,0 = m), and efficiency (due to the properties that Lagrange and
vanishing polynomials associated to multiplicative subgroups have). However, The-
orem 2 can be easily generalized to arbitrary sets H (just multiplying the left side
of Eq. (3.2) by the polynomial NH,0(X) corresponding to set H).

3.4 Algebraic Framework for W-R1CS

3.4.1 Checkable Subspace Sampling: Definition and Impli-
cations

In a Checkable Subspace Sampling (CSS) argument prover and verifier interactively
agree on a polynomial D(X) representing a vector d in the row space of a matrix
M. The fiber of the protocol is that D(X) is calculated as a linear combination of
encodings of the rows of M with some coefficients determined by the verifier, but
the verifier does not need to calculate D(X) itself (this would require the verifier to
do linear work in the number of rows of M). Instead, the prover can calculate this
polynomial and then convince the verifier that it has been correctly computed.

Below we give the syntactical definition of Checkable Subspace Sampling. Essen-
tially, a CSS scheme is similar to a PHP for a relation RM, except that the statement
(cns, D(X)) is decided interactively, and the verifier has only oracle access to the
polynomial D(X). A CSS scheme can be used as a building block in a PHP, and
the result is also a PHP.

Definition 18 (Checkable Subspace Sampling, CSS). A checkable subspace sampling
argument over a field F defines some Q,m ∈ N, a set of admissible matrices M, a
vector of polynomials β(X) ∈ (F[X])m, a coinspace C, a sampling function Smp :

39

C → FQ, and a relation:

RCSS,F =

� �
M, cns, D(X)

�
: M ∈ M ⊂ FQ×m, D(X) ∈ F[X], cns ∈ C,

s = Smp(cns), and D(X) = s�Mβ(X)

�
.

For any M ∈ M, it also defines:

RM =
��

cns, D(X)
�

:
�
M, cns, D(X)

�
∈ RCSS,F

�
.

It consists of three algorithms:

• ICSS is the indexer: in an offline phase, on input (F,M) returns a set WCSS

of n(0) polynomials {p0,j(X)}n(0)j=1 ∈ F[X]. This algorithm is run once for each
M.

• Prover and Verifier proceed as in a PHP, namely, the verifier sends field ele-
ments to the prover and has oracle access to the polynomials outputted by both
the indexer and the prover; this phase is run in two different stages:

– Sampling: PCSS and VCSS engage in an interactive protocol. In some
round, the verifier sends cns ← C, and the prover replies with D(X) =
s�Mβ(X), for s = Smp(cns).

– ProveSampling: PCSS and VCSS engage in another interactive protocol to
prove that (cns, D(X)) ∈ RM.

• When the proving phase is concluded, the verifier outputs a bit indicating ac-
ceptance or rejection.

The vector β(X) = (β1(X), . . . , βm(X)) defines an encoding of vectors as poly-
nomials: vector v is mapped to the polynomial v�β(X) =

�m
i=1 viβi(X). When

using a CSS for constructing an argument of membership in linear spaces as in the
next section, we choose a characterization of inner product that is compatible with
Lagrange polynomials. Thus, in this work, βi(X) is defined as λi(X), the ith La-
grange polynomial associated to some multiplicative subgroup H of F. Still, it also
makes sense to consider CSS arguments for other polynomial encodings, e.g. the
monomial basis or Laurent polynomials. In fact, the CSS argument in the amortized
setting described in Section 3.5.7 is an abstraction of the helped mode of Sonic, that
was presented for the encoding with Laurent polynomials.

We require a CSS argument to satisfy the following security definitions:

Perfect Completeness. If both prover and verifier are honest the output of the
protocol is 1:

Pr
�
�PCSS(F,M, cns),VWCSS

CSS (F)� = 1
�
= 1.

where the probability is taken over the random coins of prover and verifier.

40

Soundness. A checkable subspace sampling argument (ICSS,PCSS,VCSS) is �-sound
if for all M and any polynomial time prover P∗

CSS, the following probability is smaller
than �:

Pr

�
D∗(X) �= s�Mβ(X)

(cns, D∗(X)) ← Sampling�P∗
CSS(F,M, cns),VWCSS(F)�;

s = Smp(cns); �P∗
CSS(F,M, cns),VWCSS

CSS (F)� = 1

�

The soundness of the CSS argument will ensure that the vector is sampled as spec-
ified by the coins of the verifier so the prover cannot influence its distribution. For
a CSS argument to be useful, we additionally need that distribution induced by the
sampling function is sufficiently “good”. This is a geometric property that can be
captured in the Elusive Kernel property defined below.

Definition 19. A CSS argument is �-elusive kernel4 if

max
t∈FQ,t�=0

Pr
�
s · t = 0 s = Smp(cns); cns ← C

�
≤ �.

In practice, for most schemes, s is a vector of monomials or Lagrange basis
polynomials evaluated at some point x = cns, and this property is an immediate
application of Schwartz-Zippel lemma, so we will not explicitly prove it for most of
our CSS arguments. An exception is the argument of Section 3.5.6.

It is useful in some contexts to generalize the definition of CSS arguments to
block matrices, that is, to extend the relation to tuples

�
M, cns,D(X)

�
, where

M = (M1, . . . ,Mk) and D(X) = (D1(X), . . . , Dk(X)) and Di(X) = s�Miβ(X),
and Mi ∈ FQ×m. This generalization is not necessary if correct sampling is proven
for each block individually, but to save on proof size the proofs might be aggregated
in some cases. This generalization is useful to formalize this technique.

3.4.2 Linear Arguments from Checkable Subspace Sampling

In this section we build a PHP for the universal relation of membership in linear
subspaces:

RLA =
�
(F,W,y) : W ∈ FQ×km,y ∈ Fkm s.t. Wy = 0

�
,

using a CSS scheme as building block. That is, given a vector y, the argument allows
to prove membership in the linear space W⊥ = {y ∈ Fkm : Wy = 0}. Although
relation RLA is polynomial-time decidable, it is not trivial to construct a polynomial
holographic proof for it, as the verifier has only an encoding of W and y.

A standard way to prove that some vector y is in W⊥ is to let the verifier sample
a sufficiently random vector d in the row space of matrix W, and prove y · d = 0.

4The name is inspired by the property of t-elusiveness of [MRV16].

41

Naturally, the vector y must be declared before d is chosen. We follow this strategy
to construct a PHP for RLA, except that the vector d is sampled by the prover itself
on input the coins of the verifier through a CSS argument.

As we have seen in Section 3.2, it is natural in our application to proving dif-
ferent variants of R1CS to consider matrices in blocks (We can think of a matrix
consisting of one 3m × 3m block in the case of Plonk). Thus, in this section we
prove membership in W⊥ where the matrix is written in k blocks of columns, that
is, W = (W1, . . . ,Wk). The vectors y,d ∈ Fkm are also written in blocks as
y� = (y�

1 , . . . ,y
�
k) and d� = (d�

1 , . . . ,d
�
k).

Each block of W, as well as the vectors y,d can be naturally encoded, respec-
tively, as a vector of polynomials or a single polynomial multiplying on the right by
λ(X). However, we allow for additional flexibility in the encoding of y: our argument
is parameterized by a set of valid witnesses WY and a function EY : WY → (F[X])k

that determines how y is encoded as a polynomial. Thanks to this generalization we
can use the argument as a black-box in our W-R1CS construction. There, valid wit-
nesses are of the form (a,b,qM◦a◦b+qL◦a+qR◦b+qC) and, for efficiency, its encod-
ing will be (A(X) = a�λ(X), B(X) = b�λ(X), qM(X)A(X)B(X) + qL(X)A(X) +
qR(X)B(X) + qC(X))), for public polynomails qγ(X) = q�

γ λ(X), γ ∈ {M,L,R,C},
which in practice means that the last element does not need to be sent.

The argument goes as follows. The prover sends a vector of polynomials Y(X)
encoding y. The CSS argument is used to delegate to the prover the sampling of
d�
i , i = 1, . . . , k in the row space of Wi. Then, the prover sends D(X) together

with a proof that y · d = 0. For this inner product argument to work, we resort to
Theorem 2 that guarantees that, if EY is an encoding such that if EY (y) = Y(X),
then Yi(hj) = yij, the inner product relation holds if and only if the verification
equation is satisfied for some H(X), R(X).

Because of the soundness property of the CSS argument, the prover cannot
influence the distribution of d, which is sampled according to the verifier’s coins.
Therefore, if Y(X) passes the test of the verifier, y is orthogonal to d. By the
Elusive Kernel property of the CSS argument, d will be sufficiently random. As it
is sampled after y is declared, this will imply that y is in W⊥.

Theorem 3. When instantiated using a CSS scheme with perfect completeness,
and when the encoding EY : WY → F[X]k satisfies that, if EY (y) = Y(X), then
Yi(hj) = yij, the PHP of Fig. 3.1 has perfect completeness.

Proof. By definition, D(X) = (s�W1λ(X), . . . , s�Wkλ(X)), for s = Samp(cns).
Note that this is because the k instances of the CSS scheme are run in parallel and the
same coins are used to sample each of the di. Thus,D(X) is the polynomial encoding
of d = (s�W1, . . . , s

�Wk) = s�W. Therefore, if y is in W⊥, d · y = s�Wy = 0.
By the characterization of inner product, as explained in Section 3.3, this implies
that polynomials H(X), R(X) satisfying the verification equation exist.

42

Offline Phase: ILA(F,W): For i = 1, . . . , k, run the indexer ICSS on input
(F,Wi) to obtain the set WCSSi and output WLA =

�k
i=1 WCSSi.

Online Phase: PLA: On input a witness y ∈ WY ⊂ (Fm)k, output Y(X) =
EY (y).
PLA and VLA run in parallel k instances of the CSS argument, with inputs (F,Wi)
and F, respectively, and where the verifier is given oracle access to WCSSi. The
output is a set {(cns, Di(X))}ki=1, where cns are the same for all k instances. Define
D(X) = (D1(X), . . . , Dk(X)).

PLA: Outputs R(X) ∈ F≤m−2[X], H(X) such that

Y(X) ·D(X) = XR(X) + zH(X)H(X). (3.3)

Decision Phase: Accept if and only if (1) deg(R) ≤ m − 2, (2) V i
CSS accepts

(cns, Di(X)), and (3) the following equation holds:

Y(X) ·D(X) = XR(X) + zH(X)H(X).

Figure 3.1: Argument for proving membership in W⊥, parameterized by the poly-
nomial encoding EY : WY → F[X]k, and the set WY ⊂ Fkm.

Theorem 4. Let CSS be �-sound and ��-Elusive Kernel, and EY : WY → F[X]k an
encoding such that if EY (y) = Y(X), Yi(hj) = yij. Then, for any polynomial time
adversary A against the soundness of PHP of Fig. 3.1:

Adv(A) ≤ �� + k�.

Further, the PHP satisfies 0-knowledge soundness.

Proof. Let Y∗(X) = (Y ∗
1 (X), . . . , Y ∗

k (X)) be the output of a cheating P∗
LA and

y∗ = (y∗
1, . . . ,y

∗
k) the vector such that Y ∗

i (hj) = y∗ij. As a direct consequence of
Theorem 2, Y∗(X) ·D(X) = XR(X) + zH(X)H(X) only if y∗ · d = 0, where d is
the unique vector d such that D(X) = (d�

1 λ(X), . . . ,d�
k λ(X)).

On the other hand, the soundness of the CSS scheme guarantees that, for each
i, the result of sampling Di(X) corresponds to the sample coins sent by the verifier,
except with probability �. Thus, the chances that the prover can influence the
distribution of D(X) so that so that y∗ · d = 0 are at most k�. Excluding this
possibility, a cheating prover can try to craft y∗ in the best possible way to maximize
the chance that y∗ · d = 0. Since d� = s�W, and in a successful attack y∗ /∈ W⊥,
we can see that this possibility is bounded by the probability:

max
y∗ /∈W⊥

Pr


d · y∗ = 0

cns ← C;
s = Smp(cns);
d = s�W


 = max

y∗ /∈W⊥
Pr

�
s�Wy∗ = 0

cns ← C;
s = Smp(cns)

�

43

Since s�Wy∗ = s · (Wy∗), and Wy∗ �= 0, this can be bounded by ��, by the
elusive kernel property of the CSS scheme.

For knowledge soundness, define the extractor E as the algorithm that runs the
prover and, by evaluating Yi(X) in {hj}mj=1 for all i ∈ [k], recovers y. If the verifier
accepts with probability greater than �� + k�, then y is such that Wy = 0 with the
same probability.

3.4.3 W-R1CS from Linear Arguments

Offline Phase: IW-R1CS

�
F,m, l, lb,W,qM ,qL,qR,qC

�
parses W as�

Wa,Wb,Wc

�
and runs the indexer ILA on input (F,Wa,Wb,Wc) to ob-

tain the set WLA = WLAa ∪WLAb ∪WLAc.

For S ∈ {L,R,M,C}, the indexer computes polynomials qS(X) = q�
Sλ(X).

Outputs WW-R1CS = WLA ∪ {qL(X), qR(X), qM(X), qC(X)}

Online Phase:

• PW-R1CS Computes and outputs

A�(X) =

�
m�

j=l+1

ajλj(X)

�
�
tl(X), B�(X) =

��
m�

j=1

bjλj(X)

�
− 1

�
�
tlb(X),

where tl(X) =
�l

j=1(X − hj), tlb(X) =
�lb

j=1(X − hj).

• PW-R1CS and VW-R1CS instantiate PLA(F,W, (a,b,qM ◦ a ◦ b+ qL ◦ a+ qR ◦
b + qC)) and VWLA

LA (F). Let Y(X) = (A(X), B(X), qM(X)A(X)B(X) +
qL(X)A(X) + qR(X)B(X) + qC(X)) be the polynomials PLA outputs in the
first round.

Decision Phase: Defines Cl(X) = λ1(X) +
�l−1

j=1 xjλj+1(X) and accepts if
and only if (1) A(X) = A�(X)tl(X) + Cl(X), (2) B(X) = B�(X)tlb(X) + 1, and
(3) VLA accepts.

Figure 3.2: PHP for the universal relation RW-R1CS.

In Fig. 3.2 we present a PHP for RW-R1CS that uses as building block a linear
argument as in Section 3.4.2. The set of admissible matrices must coincide with
the set of admissible matrices of the linear argument, which in fact depends on
the admissible matrices of the CSS argument. For better flexibility, we present it
for a matrix of three blocks. The PHP for RLA should be instantiated for WY =

44

{(a,b,qM ◦a◦b+qL ◦a+qR ◦b+qC) : a,b ∈ Fm}, E(a,b,qM ◦a◦b+qL ◦a+qR ◦
b+qC) = (a�λ(X),b�λ(X), (q�

Mλ(X))(a�λ(X))(b�λ(X))+(q�
Lλ(X))(a�λ(X))+

(q�
Rλ(X))(b�λ(X)) + (q�

Cλ(X)).

Theorem 5. When instantiated with a complete, sound and knowledge sound-
ness linear argument, the PHP of Fig. 3.2 satisfies completeness, soundness and
knowledge-soundness.

Proof. Completeness follows directly from the definition of A�(X), B�(X), A(X),
B(X) and completeness of the linear argument. Soundness and knowledge soundness
hold if the linear argument is sound as well, because VW-R1CS accepts if VLA accepts,
meaning W(̇a,b,qM ◦ a ◦ b+ qL ◦ a+ qR ◦ b+ qC)

� = 0 and RW-R1CS holds, while
for extraction it suffices to use the extractor of the linear argument.

3.4.4 Adding Zero Knowledge

To achieve zero-knowledge, it is common to several works on pairing-based zk-
SNARKS [CFF+21, CHM+20, GGPR13] to randomize the polynomial commitment
to the witness with a polynomial that is a multiple of the vanishing polynomial.
That is, the commitment to a vector a is A(X) =

�
aiλi(X) + zH(X)h(X), where

zH(X),λi(X) are defined as usual, and the coefficients of h(X) are the randomness.
In [GGPR13], h(X) can be constant, since the commitment A(X) in the final argu-
ment is evaluated at a single point. In other works where the commitment needs to
support queries at several point values, h(X) needs to be of higher degree. In Marlin,
it is suggested to choose the degree according to the number of oracle queries to max-
imimize efficiency, and in Lunar this idea is developed into a fine-grained analysis
and a vector with query bounds is specified for the compiler. Additionally, for this
technique, the prover needs to send a masking polynomial to randomize the poly-
nomial R(X) of the inner product check. The reason is that this polynomial leaks
information about (A(X), B(X), qM(X)A(X)B(X) + qL(X)A(X) + qR(X)B(X) +
qC(X)) ·D(X) mod zH(X).

In this section, we show how to add zero-knowledge to the PHP for W-R1CS of
Section 3.4.3 without sending additional polynomials. The approach is natural and
a similar technique has also been used in [SZ20]. Let (bA, bB, bR, bH) be the tuple of
bounds on the number of polynomial evaluations seen by the verifier after compiling
for the polynomials A(X), B(X), R(X), H(X). To commit to a vector y ∈ Fm, we
sample some randomness r ∈ Fn, where n is a function of (bA, bB, bR, bH) to be
specified (a small constant when compiling). The cardinal of H is denoted by m̃ in
this section. A commitment is defined in the usual way for the vector (y, r), i.e.�m

i=1 yiλi(X) +
�m+n

i=m+1 riλi(X), and, naturally, we require m+ n ≤ m̃. Our idea is
to consider related randomness for A(X), B(X) so that the additional randomness
sums to 0 and does not interfere with the inner product argument. The novel
approach is to enforce this relation of the randomness by adding one additional

45

Offline Phase: For m̃ = m+ n, the matrix of constraints is:

W̃ =

�
Wa 02m×n Wb 02m×n Wc 02m×n

0�
m 1�

n 0�
m 1�

n 0�
m 0�

n

�

and polynomials qS(X), S ∈ {M,L,R,C} are constructed from q̃M = (qM ,1n),
q̃L = (qL,0n), q̃R = (qR,0n), q̃C = (qC ,0n).

Online Phase: PW-R1CS samples ra ← Fn, rb ← Fn conditioned on
�n

i=1 ra,i +

rb,i = 0 and uses ã := (1,x, a�, ra), b̃ := (1lb ,b
�, rb), to construct Ã(X) and B̃(X),

Ã�(X) and B̃�(X) as before.

Figure 3.3: Modification of the PHP for RW-R1CS to achieve zero-knowledge.

constraint to W. The marginal cost of this for the prover is minimal. Starting from
the PHP of Fig. 3.2 we introduce the changes described in Fig. 3.3, note that the
omitted parts in the latter are identical to the ones in the former.

Theorem 6. With the modification described in Fig. 3.3 the PHP of Fig. 3.2 is
perfectly complete, sound, knowledge-sound, perfect zero-knowledge and (bA, bB, bR,
bH)-bounded honest-verifier zero-knowledge if n ≥

�
bA + bB + bR + bH + 1

�
/2, and

n ≥ max(bA, bB).

Proof. The only difference with the previous argument is the fact that the matrix
of constraints has changed, which is now W̃. For completeness, observe that the
additional constraint makes sure that

�n
i=1 ra,i + rb,i = 0, and an honest prover

chooses the randomness such that this holds. On the other hand, the sumcheck
theorem together with this equation guarantee that the randomness does not affect
the divisibility at 0 of (Ã(X), B̃(X), qM(X)Ã(X)B̃(X)+qL(X)Ã(X)+qR(X)B̃(X)+
qC(X))) ·D(X) mod zH(X).

For soundness, note that W̃
�
ã�, b̃�, (q̃M ◦ ã ◦ b̃+ q̃L ◦ ã+ q̃R ◦ b̃+ q̃C)

�� =
0, is equivalent to 1) Waa +Wbb +Wc(qM ◦ a ◦ b + qL ◦ a + qR ◦ b + qC) = 0,
and 2)

�n
i=1 ra,i + rb,i = 0, for a := (1,x, a�), b := (1lb ,b

�). This is because the first
two blocks of constraints have 0s in the columns corresponding to ra, rb, and the
other way around for the last constraint. Therefore, by the soundness of the linear
argument

�n
i=1 ra,i + rb,i = 0, and the randomness does not affect divisibility at 0

of (Ã(X), B̃(X), qM(X)Ã(X)B̃(X) + qL(X)Ã(X) + qR(X)B̃(X) + qC(X)))� ·D(X)
mod zH(X), so the same reasoning used for the argument of Fig. 3.2 applies.

Perfect zero-knowledge of the PHP is immediate, as all the messages in the CSS
procedure contain only public information and the rest of the information exchanged
are oracle polynomials.

We now prove honest-verifier bounded zero-knowledge. The simulator is similar
to [CFF+21](Th. 4.7), but generalized to the distribution of D(X) induced by the
underlying CSS scheme. The simulator gets access to the random tape of the honest

46

verifier and receives x and the coins of the CSS scheme, as well as a list of its
checks. It creates honestly all the polynomials of the CSS argument, since these are
independent of the witness.

For an oracle query at point γ, the simulator samples uniform random values
A�

γ, B
�
γ, Rγ,t in F and declares them, respectively, as A�(γ), B�(γ), R(γ). It then

defines the rest of the values to be consistent with them. More precisely, let
D(X)� = s�Wλ(X) = (Da(X), Db(X), Dab(X)) be the output of the CSS argu-
ment, which the simulator can compute with the CSS coins. Then, the simulator
sets:

Aγ = A�
γtl(γ) +

l�

i=1

xiλi(γ), Bγ = B�
γtl(γ) + 1,

pγ = Da(γ)Aγ +Db(γ)Bγ +Dab(γ)
�
qM(γ)AγBγ + qL(γ)Aγ + qR(γ)Bγ + qC(γ)

�

Htγ = (pγ − γRt,γ)/t(γ),

where Qγ for Q ∈ {A�, B�, R,H} is declared as Q(γ). The simulator keeps a
table of the computed values to answer consistently the oracle queries.

We now argue that the queries have the same distribution as the evaluations
of the prover’s polynomials if all the queries γ are in F \ H. Since the verifier is
honest, and |H| is assumed to be a negligible fraction of the field elements, we can
always assume this is the case. In this case, the polynomial encoding of ra, rb acts
as a masking polynomial for A�(X), B�(X), R(X), H(X) and taking into account
that

�n
i=1 ra,i + rb,i = 0 to have the same distribution it is sufficient that 2n− 1 ≥

bA + bB + bR + bH , and n ≥ max(bA + bB), as stated in the theorem. Therefore,
bounded zero-knowledge is proven.

Combining CSS schemes

Since a CSS scheme outputs a linear combination of the rows of a matrixM, different
instances of a CSS scheme can be easily combined with linear operations. More

precisely, given a matrix M that can be written as

�
M1

M2

�
, we can use a different

CSS arguments for each Mi
5 Since all current constructions of CSS arguments have

limitations in terms of the types of matrices they apply to, this opens the door to
decomposing the matrix of constraints into blocks that admit different efficient CSS
arguments. That is, one reason to divide the matrix M into blocks is to have a
broader class of admissible matrices. Another reason is efficiency, since if a block
that is either 0 or the identity matrix, the verifier can open the polynomial D(X)
itself, saving on the number of polynomials that need to be sent. More specifically,
for our final construction, we will often split a matrix into two blocks of m rows,

5The naive approach would run both CSS arguments in parallel, but savings are possible by
batching the proofs.

47

M =

�
M1

M2

�
, use the same CSS argument for each matrix with the same coins,

and combine them to save on communication. More precisely, if s = Smp(cns), and
D1(X) = s�M1λ(X) and D2(X) = s�M2λ(X) are the polynomials associated to
M1,M2, we will modify the CSS argument so that it sends D1(X) + zD2(X) for
some challenge z chosen by the verifier, instead of D1(X) and D2(X) individually.
Note that D1(X) + zD2(X) = (s�, zs�)Mλ(X), that is, this corresponds to a CSS
argument where the sampling coefficients depend on z also.

We note that this cannot be done generically. The success of this technique
depends on the underlying CSS argument and the type of admissible matrices. In-
tuitively, this modification corresponds to implicitly constructing a CSS argument
for the matrix M1 + zM2, so it is necessary that: a) the polynomials computed by
the indexer of the CSS argument for M1,M2 can be combined, upon receiving the
challenge z, to the CSS indexer polynomials of M1 + zM2, and b) that M1 + zM2

is an admissible matrix for this CSS argument. For instance, if M1,M2 has K non-
zero entries each, and the admissible matrices of a CSS instance must have at most
K non-zero entries, then M1 + zM2 is not generally an admissible matrix. We will
be using this optimization for our final PHP for sparse matrices, and we will see
there that these conditions are met in this case.

3.5 Instantiation of CSS Arguments

Given the results of the previous section, to construct a PHP for our W-R1Cs argu-
ment, it is sufficient to design a CSS scheme for matrices M ∈ Fm×m and then use
it on all the blocks of W. In this section, we give several novel CSS arguments for
different types of square matrices.

On the same line, matrices M ∈ Fm×m can be naturally encoded as a bivariate
polynomial as P (X, Y) = α(Y)�Mβ(X), for some α(Y) ∈ F[Y]m,β(X) ∈ F[X]m.
Let m�

i be the ith row of M, and Pi(X) = m�
i β(X). Then,

P (X, x) = α(x)�Mβ(X) =
m�

i=1

αi(x)Pi(X).

That is, the polynomial P (X, x) is a linear combination of the polynomials associated
to the rows of M via the encoding defined by β(X), with coefficients αi(x). This
suggests to define a CSS scheme where, in the sampling phase, the verifier sends the
challenge x and the prover replies with D(X) = P (X, x), and, in the proving phase,
the prover convinces the verifier that D(X) is correctly sampled from coins x. This
approach appears, implicitly or explicitly, in Sonic and most follow-up work we are
aware of.

In Sonic, α(Y),β(X) are vectors of Laurent polynomials. In Marlin, Lunar and
most of the constructions in this work, α(Y) = λ(Y), and β(X) = λ(X). The

48

choice of β(X) is to make the encoding compatible with the inner product defined
by the sumcheck, and the choice of α(Y) is necessary for the techniques used in the
proving phase of the CSS schemes that will be detailed in this Section.

For the proving phase, the common strategy is to follow the general template
introduced in Sonic: the verifier samples a challenge y ∈ F, checks that D(y) is
equal to a value σ sent by the prover, and that σ = P (y, x) (through what is
called a signature of correct computation, as in [PST13]). This proves that D(X) =
P (X, x). The last one is the challenging step, and is in fact, the main technical
novelty of each of the mentioned previous works. In all of them, this is achieved by
restricting the sets of matrices M to have a special structure: in Sonic they need to
be sums of permutation matrices, and in Marlin, as later also Lunar and Vampire,
arbitrary matrices with at most K non-zero entries, while Plonk only considers sums
of permutation matrices.

This section is organized as follows. We start by giving an overview of our new
techniques below. In Section 3.5.1, we explain a basic CSS scheme, that works only
for simple matrices, i.e., matrices with at most one non-zero element per column,
followed by a scheme for matrices with at most V non-zero elements per column,
for some small bound V , in Section 3.5.2. In Section 3.5.3, we see how to compose
these checks to achieve a CSS argument for arbitrary sparse matrices M with at
most K non-zero elements, where K is the size of a multiplicative subgroup K ⊂ F.
A similar technique than the one for sum of basic matrices is used in Section 3.5.4 to
generalize the latter argument to matrices that can be written as a sum of V matrices
of sparsity K, resulting on a scheme for matrices with sparsity V K that uses the
same multiplicative subgroup and does not increase the communication complexity
with respect to the one for matrices with sparsity K. In Section 3.5.5 we observe
that our results also apply to low tensor rank matrices. Finally, in Section 3.5.6
we provide a construction that, at the best of our knowledge, is the first efficient
CSS that works for arbitrary matrices, and in Section 3.5.7 we show that the helped
version of Sonic can be instantiated as a CSS as well.

Overview of New Techniques

As in previous works([CHM+20, CFF+21]), we consider two disjoint subgroups of
roots of unity, H = {h1, . . . , hm}, K = {k1, . . . kK} with Lagrange and vanishing
polynomials {λj(X)}mj=1, zH(X) and {µ�(X)}K�=1, zK(X), respectively.

Most of the results introduced in this section are CSS schemes for matrices
M = (mi,j) ∈ Fm×m that are sparse, that is, have some bounded amount of non-
zero elements. Assuming these non-zero entries are ordered, a sparse matrix can be
represented, as proposed in Marlin, by three functions v : K → F, r : K → [m],
c : K → [m] such that P (X, Y) =

�K
�=1 v(k�)λr(k�)(Y)λc(k�)(X), where the �th non-

zero entry is v(k�) = mr(k�),c(k�). If the matrix has less than K non-zero entries
v(k�) = 0, for � = |M|+1, . . . , K, and r(k�), c(k�) are defined arbitrarily. We borrow

49

this representation but design our own CSS schemes by following a “linearization
strategy”.

To see that P (y, x) is correctly evaluated, we observe that it can be written as:

P (y, x) =
�
λr(k1)(x), . . . ,λr(kK)(x)

�
·
�
v(k1)λc(k1)(y), . . . , v(kK)λc(kK)(y)

�
.

We define low degree extensions of each of these vectors respectively as:

ex(X) =
K�

�=1

λr(k�)(x)µ�(X), ey(X) =
K�

�=1

v(k�)λc(k�)(y)µ�(X).

If the prover can convince the verifier that ex(X), ey(X) are correctly computed, then
it can show that P (y, x) = σ by using the inner product argument of Section 3.3 to
prove that the sum of ex(X)ey(X) mod zH(X) at K is σ.

Observe that ex(X) = λ(x)�Mxµ(X) and ey(X) = λ(y)�Myµ(X), for some ma-
trices Mx,My with at most one non-zero element per column. To prove they are
correctly computed it suffices to design a CSS argument for these simple matrices.
This can be done in a much simpler way than in Marlin (and as in Lunar, that uses
a similar technique), who prove directly that a low degree extension of ex(X)ey(X)
is correctly computed (intuitively, theirs is a quadratic check that requires the in-
dexer to publish more information, as verifiers can only do linear operations in the
polynomials output by it). Still, our technique is similar to theirs: given an arbi-
trary polynomial ex(X) =

�K
�=1 v(k�)λf(k�)(x)µ�(X), for some function f : K → [m],

we can “complete” λf(k�)(x) with the missing term (x − hf(k�)) to get the vanishing
polynomial zH(x). The key insight is that the low degree extension of these “com-
pleting terms” is x − v1(X), where v1(X) =

�K
�=1 hf(k�)µ�(X) can be computed by

the indexer.

The encoding for sparse matrices requires K to be at least |M|, and generating
a field with this large multiplicative subgroup can be a problem. We consider a
generalization to matrices M of a special form with sparsity KV , for any V ∈ N.
The interesting point is that communication complexity does not grow with V , and
only the number of indexer polynomials grows (as 2V + 2). This generalization is
constructed from the argument for sums of basic matrices presented in Section 3.5.2.

We stress the importance of the linearization step: it not only allows for a
simple explanation of underlying techniques for the proving phase, but also for
generalizations such as the ones in Sections 3.5.2, 3.5.3 and 3.5.5. The argument for
basic matrices is also the key to our most efficient construction.

3.5.1 Basic Matrices

Our basic building block is a CSS argument for what we call Basic Matrices, that
is, matrices M = (mij) ∈ Fm×K with at most one non-zero value in each column,

50

M = {M ∈ Fm×K : ∀ j ∈ [m] ∃! � ∈ [K] s.t. mj� �= 0}.

In particular, if K > m, |M| ≤ K. We define two functions associated to M,
v : K → F, f : K → [m]. Given an element k� ∈ K, v(k�) = mf(k�),� �= 0, i.e., function
v outputs the only non zero value of column � and f the corresponding row; if such
a value does not exist set v(k�) = 0 and f(k�) arbitrarily.

We define the polynomial P (X, Y) such that D(X) = P (X, x) as P (X, Y) =
λ(Y)�Mρ(X). Observe that, by definition of v and f,

P (X, Y) =
K�

�=1

v(k�)λf(k�)(Y)ρ�(X).

Offline Phase: ICSS

�
F,M

�
outputs WCSS = {v1(X), v2(X)}, where

v1(X) =
K�

�=1

hf(k�)ρ�(X), v2(X) = m−1

K�

�=1

v(k�)hf(k�)ρ�(X).

Online Phase: Sampling: VCSS outputs x ← F and PCSS sends D(X) =
P (X, x). ProveSampling: PCSS finds and outputs Hk(X) such that

D(X)
�
x− v1(X)

�
= zH(x)v2(X) +Hk(X)zK(X)

Decision Phase: Accept if and only if (1) degD(X) ≤ K−1, and (2)D(X)
�
x−

v1(X)
�
= zH(x)v2(X) +Hk(X)zK(X).

Figure 3.4: A simple CSS scheme for matrices with at most one non-zero element
per column.

Theorem 7. The argument of Fig. 3.4 satisfies completeness and perfect soundness.

Proof. When evaluated in any k� ∈ K, the right side of the verification equation is
zH(x)v2(k�) = zH(x)v(k�)hf(k�)m

−1. Completeness follows from the fact that the left
side is:

D(k�)(x− v1(k�)) =
�
v(k�)λf(k�)(x)

��
x− hf(k�)

�
= zH(x)v(k�)m

−1hf(k�).

For soundness, note that the degree of D(X) is at most K− 1 and that the left side
of the verification is D(k�)(x−v1(k�)), so D(k�) = zH(x)v(k�)m

−1hf(k�)(x−hf(k�))
−1 =

v(k�)λf(k�), for all k� ∈ K. Thus, D(X) =
�K

�=1 v(k�)λf(k�)ρ�(X).

51

3.5.2 Sums of Basic Matrices

In this section, we use M for a matrix in Fm×K that can be written as
�V

i=1 Mi,
with each Mi having at most one non-zero element in each column.

M = {M ∈ Fm×K : M =
V�

i=1

Mi s.t. ∀ i ∈ [V] Mi is a Basic Matrix}.

We define two functions associated to each Mi, vi : K → F, fi : K → [m] as in
Section 3.5.1. This type of matrices will be used to design a generalization of the
CSS argument for sums of sparse matrices in Section 3.5.3. Also, in Section 3.5 we
use this argument in the context where M is a matrix in FK×m. In that case, the
role of the multiplicative subgroups K,H should be inversed.

Define P (X, Y) = λ(Y)�Mρ(X), and D(X) = P (X, x). Observe that

P (X, Y) =
V�

i=1

K�

�=1

vi(k�)λfi(k�)(Y)ρ�(X).

Let S� = {fi(k�) : i ∈ [V]}, and Sc
� = [K]− S�. The intuition is that, since there

are at most V non zero vi(k�) for each �, we can factor as:

P (k�, x) =
V�

i=1

vi(k�)λfi(k�)(x) =
�

s∈Sc
�

(x− hs)R�(x),

where R�(X) is a polynomial of degree V . So, to “complete” P (k�, x) to be a
multiple of zH(x), we need to multiply it by

�
s∈S�

(x − hs), and the result will be

zH(x)R�(x). The trick is that Î�(Y) =
�

s∈S�
(Y − hs), and R�(X) are polynomials

of degrees V , V − 1, respectively. Thus, if the indexer publishes the coefficients of
these polynomials in the monomial basis, they can be reconstructed by the verifier
with coefficients 1, x, . . . , xV .

Theorem 8. The argument of Fig. 3.5 satisfies completeness and perfect soundness.

Proof. When evaluated in any k� ∈ K, the right side of the verification equation is:

zH(x)R̂x(x) =
zH(x)

m

V�

i=1

vi(k�)hfi(k�)
�

s∈S�−{fi(k�)}
(x− hs)

=
V�

i=1

vi(k�)
hfi(k�)
m

zH(x)

x− hfi(k�)

�

s∈S�

(x− hs) =
�

s∈S�

(x− hs)
V�

i=1

vi(k�)λfi(k�)(x).

52

The left side of the equation is D(k�)Îx(k�) =
��V

i=1 vi(k�)λfi(k�)(x)
���

s∈S�
(x−

hs)
�
, so completeness is immediate.

Offline Phase: ICSS

�
F,M

�
: Define the polynomials R̂�(Y), Î�(Y), and its co-

efficients R̂�j, Î�j:

R̂�(Y) =
1

m

V�

i=1

vi(k�)hfi(k�)
�

s∈S�−{fi(k�)}
(Y − hs) =

V−1�

j=0

R̂�jY
j,

Î�(Y) =
�

s∈S�

(Y − hs) =
V�

j=0

Î�jY
j.

Define

vR̂j (X) =
K�

�=1

R̂�jρ�(X), vÎj (X) =
K�

�=1

Î�jρ�(X).

Output WCSS =
�
{vÎj (X)}Vj=0, {vR̂j (X)}V−1

j=0

�
.

Online Phase: Sampling: VCSS outputs x ← F and PCSS computes D(X) =
P (X, x).

ProveSampling: PCSS finds and outputs Hk(X) such that, if R̂x(X) =�V−1
j=0 xjvR̂j (X), and Îx(X) =

�V
j=0 x

jvÎj (X),

D(X)Îx(X) = zH(x)R̂x(X) +Hk(X)zK(X).

Decision Phase: Accept if and only if (1) deg(D) ≤ K − 1, and (2)
D(X)Îx(X) = zH(x)R̂x(X) +Hk(X)zK(X).

Figure 3.5: A CSS scheme for matrices with at most V non-zero elements per
column.

For soundness, if the verifier accepts D(X), then D(k�)Îx(k�) = zH(x)R̂x(k�) and
Îx(k�) = Î�(x), therefore:

D(k�) = Î�(x)
−1zH(x)R̂�(x) =

� �

s∈Sc
�

(x− hs)
�
R̂x(x) =

V�

i=1

vi(k�)λfi(k�)(x).

We conclude that D(X) = P (X, x) mod zK(X). Since both have degree at most
K − 1, soundness is proven.

53

3.5.3 Sparse Matrices

In this section, we present a CSS argument for matrices M that are sparse but
without any restriction on the non-zero entries per column.

M = {M ∈ Fm×K s.t. |M| ≤ K}.

This approach was introduced in Marlin, and is pursued in Lunar and Vampire.
For functions v, c and r as defined in the overview at the beginning of this section,

P (X, Y) =
K�

�=1

v(k�)λr(k�)(Y)λc(k�)(X).

As explained in the overview, P (y, x) can be written as the inner product of two
vectors that depend only on x and y, and the low degree extensions of these vectors,
ex(X), ey(X), are nothing but the encodings of new matrices Mx and My in Fm×K

that have at most one non-zero element per column, so the basic CSS of Section 3.5.1
can be used to prove correctness.

Theorem 9. The argument of Fig. 3.6 satisfies completeness and (2K + 1)/|F|-
soundness.

Proof. Completeness follows immediately and thus we only prove soundness. Al-
though it does so in a batched form, the prover is showing that the following equa-
tions are satisfied,

ex(X)(x− vr(X)) = zH(x)m
−1vr(X) +Hk,x(X)zK(X)

ey(X)(y − v1,c(X)) = zH(y)v2,c(X) +Hk,y(X)zK(X)

Kex(X)ey(X)− σ = XRk(X) + zK(X)Hk,x,y(X),

Now, since all the left terms of the equations are defined before the verifier sends
δ, by the Schwartz-Zippel lemma, with all but probability 3/|F|, the verifier accepts
if and only such Hk,x(X), Hk,y(X), Hk,x,y(X), Rk(X) exist.

Assuming they do, the rest of the proof is a consequence of (1) soundness of
the protocol in Fig. 3.4, which implies that ex(X), ey(X) correspond to the correct
polynomials modulo zK(X), and (2) Lemma 3 (see below) shows that if the last
equation is satisfied, and ex(X), ey(X) coincide with the honest polynomials modulo
zK(X), then σ = P (y, x). Because the prover sends D(X)sma before receiving y
and D(y) = σ, from the Schwartz-Zippel lemma we have that, except with negligible
probability, P (X, x) = D(X) and the argument is sound.

54

Lemma 3. Given ex(X), ey(X) such that ex(X) =
�K

�=1 λr(k�)(x)ρ�(X) and ey(X) =�K
�=1 v(k�)λc(k�)(y)ρ�(X), P (y, x) =

�K
�=1 v(k�)λc(k�)(y)λr(k�)(x) = σ if and only if

there exist polynomials Rk(X) ∈ F≤m−2[X], Hk,x,y(X) such that:

ex(X)ey(X)− σ/K = XRk(X) +Hk,x,y(X)zK(X).

Offline Phase: ICSS outputs WCSS =
�
vr(X), v1,c(X), v2,c(X)

�
, where:

vr(X) =
K�

�=1

hr(k�)ρ�(X),

v1,c(X) =
K�

�=1

hc(k�)ρ�(X), v2,c(X) = m−1

K�

�=1

v(k�)hc(k�)ρ�(X).

Online Phase: Sampling: VCSS sends x ← F, and P outputs D(X) = P (X, x),

for P (X, Y) =
K�
�=1

v(k�)λr(k�)(Y)λc(k�)(X).

ProveSampling: VCSS sends y ← F and PCSS outputs σ = D(y) and ex(X), ey(X),

where ex(X) =
�K

�=1 λr(k�)(x)ρ�(X), ey(X) =
�K

�=1 v(k�)λc(k�)(y)ρ�(X), VCSS sends
δ ← F and PCSS computes Hk,x(X), Hk,y(X), Rk(X), Hk,x,y(X) such that:

ex(X)(x− vr(X)) = m−1zH(x)vr(X) +Hk,x(X)zK(X)

ey(X)(y − v1,c(X)) = zH(y)v2,c(X) +Hk,y(X)zK(X)

Kex(X)ey(X)− σ = XRk(X) +Hk,x,y(X)zK(X),

It also defines Hk(X) = Hk,x,y(X) + δHk,x(X) + δ2Hk,y(X), and outputs�
Rk(X), Hk(X)

�
.

Decision Phase: Accept if and only if (1) deg(Rk) ≤ K − 2, (2) D(y) = σ,
and (3) for ix(X) = (x− vr(X)), iy(X) = (y − v1,c(X))

(ex(X) + δ2iy(X))(ey(X) + δix(X))− δ3ix(X)iy(X)

− δ2zH(y)v2,c(X)− σ/K − δzH(x)m
−1vr(X) = XRk(X) +Hk(X)zK(X).

Figure 3.6: CSS argument for M, with K such that |M| ≤ |K|.

Proof. Note that ex(X)ey(X) =
K�
�=1

v(k�)λc(k�)(y)λr(k�)(x)ρ�(X) mod zK(X). By the

univariate sumcheck (Lemma 2), ex(X)ey(X)− σ/K is divisible by X if and only if
P (y, x) = σ, which concludes the proof.

55

Sums of Sparse Matrices

The argument for general sparse matrices of last section can be easily generalized
without increasing the communication complexity to any matrix

M = {M ∈ Fm×K : M =
V�

i=1

Mi s.t. ∀ i ∈ [V] |Mi| ≤ K}.

We consider one function r : K → [m], and, for each i, two functions ci : K → [m],
and vi : K → F, such that:

λ(X)�Miλ(Y) = Pi(X, Y) =
K�

�=1

vi(k�)λr(k�)(Y)λci(k�)(X).

Choosing the row and the column function smartly, this can cover many sparse
matrices with KV non-zero entries, considerably increasing the expressiveness of the
CSS argument. For this generalization, we observe that if P (X, Y) =

�V
i=1 Pi(X, Y),

then

P (y, x) =
�
λr(k1)(x), . . . ,λr(kK)(x)

�
·

V�

i=1

�
vi(k1)λci(k1)(y), . . . , vi(kK)λci(kK)(y)

�
.

We can define ex(X) as Section 3.5.3, and ey(X) =
�V

i=1

�K
�=1 vi(k�)λci(k�)(y)ρ�(X).

Thus, ey(X) = λ(Y)�Myρ(X), where My is a matrix with at most V non-zero
entries in each column. The CSS is constructed as in the one for sparse matrices of
Section 3.5.3, except that to prove that ey(X) is correctly sampled, we use the CSS
for sums of basic matrices of Section 3.5.2. Note that this change does not represent
an increase in the communication complexity with respect to Section 3.5.3, only in
the SRS size.

3.5.4 Linear Combination of Sparse Matrices

Below, we present a CSS argument for the case where a matrix in F2m×m is split
into two blocks of m rows. This construction corresponds to R1CS-lite, where the
encoding of Wa and Wb can be opened and checked by the verifier, so we only need
to run a CSS argument for Wc. We define K1, K2 such that |F| ≤ K1, |G| ≤ K2 and
K = K1 +K2. Technically, we construct a CSS argument for the matrix Wc where
the coefficients depend on x, δ. As mentioned before, this corresponds to implicitly
applying the results in Section 3.5.3 to a matrix Ŵc = W1

c + δW2
c that depends

on the verifier’s challenge δ. Formally, the set of admissible matrices for the CSS
argument of this section is,

56

M = {M ∈ Fm×m : M = M1 + δM2, |M1| ≤ K1 ∧ |M2| ≤ K2 for given K1, K2}.

Offline Phase: ICSS outputs WCSS =
�
vr(X), v1,c(X), v12,c(X), v22,c(X)

�
, where:

vr(X) =
K�

�

hr(k�)ρ�(X) v1,c(X) =
K�

�=1

hc(k�)ρ�(X).

v12,c(X) = m−1

K1�

�=1

v(k�)hc(k�)ρ�(X), v22,c(X) = m−1

K�

�=K1+1

v(k�)hc(k�)ρ�(X).

Online Phase: Sampling: VCSS sends x, δ1 ← F, and P out-

puts D(X) = P (X, x), for P (X, Y) =
K1�
�=1

v(k�)λr(k�)(Y)λc(k�)(X) +

δ1
K�

�=K1+1

v(k�)λr(k�)(Y)λc(k�)(X).

ProveSampling: VCSS sends y ← F and PCSS outputs σ = D(y) and ex(X), ey(X),

where ex(X) =
�K

�=1 λr(k�)(x)ρ�(X), ey(X) =
�K1

�=1 v(k�)λc(k�)(y)ρ�(X) +

δ1
�K

�=K1+1 v(k�)λc(k�)(y)ρ�(X),

VCSS sends δ2 ← F and PCSS computes Hk,x(X), Hk,y(X), Rk(X), Hk,x,y(X) such
that:

ex(X)(x− vr(X)) = m−1zH(x)vr(X) +Hk,x(X)zK(X)

ey(X)(y − v1,c(X)) = zH(y)(v
1
2,c(X) + δ1v

1
2,c(X)) +Hk,y(X)zK(X)

Kex(X)ey(X)− σ = XRk(X) +Hk,x,y(X)zK(X),

It also defines Hk(X) = Hk,x,y(X) + δ2Hk,x(X) + δ22Hk,y(X), and outputs�
Rk(X), Hk(X)

�
.

Decision Phase: Accept if and only if (1) deg(Rk) ≤ K − 2, (2) D(y) = σ,
and (3) for ix(X) = (x− vr(X)), iy(X) = (y − v1,c(X))

(ex(X) + δ22iy(X))(ey(X) + δ2ix(X))− δ32ix(X)iy(X)

−δ22zH(y)(v
1
2,c(X)+δ1v

2
2,c(X))−σ/K−δ2zH(x)m

−1vr(X) = XRk(X)+Hk(X)zK(X).

Figure 3.7: CSS Argument for matrices with at most K non-zero entries.

Let v : K → F be the function that maps an element k� ∈ K to the value of the
�th non-zero element of matrix F, if � ≤ K1, and to the value of the (� − K1)th
element of G if � > K1. Define also c, r : K → [m] as the functions that output its

57

row and column position in the corresponding matrix, we define

P1(X, Y) =

K1�

�=1

v(k�)λr(k�)(Y)λc(k�)(X)

the sparse encoding of F and

P2(X, Y) =

K2�

�=K1+1

v(k�)λr(k�)(Y)λc(k�)(X)

the sparse encoding of G. Our argument implicitly constructs the sparse encoding
of F+ δG as P (X, Y) = P1(X, Y) + zP2(X, Y).

As explained in Section 3.5, P (y, x) can be written as the inner product of two
vectors that depend only on x and y, and the low degree extensions of these vectors,
ex(X), ey(X), are nothing but the encodings of new matrices Mx and My in Fm×K

that have at most one non-zero element per column, so the basic CSS argument of
Section 3.5.1 can be used to prove correctness. We present this scheme in Fig. 3.7.

3.5.5 Extension to Low Tensor Rank Matrices

Similar techniques to the ones in Section 3.5 can be used to construct a CSS scheme
for matrices that are not sparse but for which a representation of low tensor rank is
known. A matrix M ∈ Fm×m has tensor rank r if there exist vectors αi,βi ∈ Fm,
i ∈ [r] such that M =

�r
i=1 αiβ

�
i . The main observation is that, in this case,

P (y, x) = λ(x)�Mλ(y) =
�

i(λ(x)
�αi) · (β�

i λ(y)). For each i, we can compute low
degree extensions of (λ(x)�αi) and (λ(y)β�

i) as before (but taking K = H), and
prove correctness with the basic CSS scheme of Section 3.5.1. Then, we can use
the sumcheck theorem to see that σx,i = λ(x)�αi, and σy,i = β�

i λ(y), and check
P (y, x) =

�r
i=1 σx,iσy,i. Naturally, the communication complexity depends on the

tensor rank.

There is no reason to expect that in practice the tensor rank will be low and,
further, in general it is hard to compute. But we think it is of theoretical value to
note that sparsity is not always the key for building efficient CSS schemes.

3.5.6 Extended Vandermonde Sampling

The constructions discussed in the previous section impose (once the finite field is
fixed) some conditions of the type of admissible matrices considered by the CSS
scheme. For many practical use cases, this does not seem to be a limitation. How-
ever, regardless of the types of constraints that appear in applications so far, we

58

Offline Phase: ICSS(F,M, J, �) : For all i ∈ [Q], defines the polynomials

Pi(X) =
m�
j=1

mijλj(X). For i ∈ [�], it defines PQ+i(X) =
Q�

j=1

ij−1Pj(X). It outputs

WCSS = {P1(X), . . . , PQ+�(X)}.
Online Phase: VCSS samples x ← F and a set of J indices J ⊂ [Q+ �]. PCSS

computes and outputs D(X) =
�
ij∈J

xj−1Pij(X).

Figure 3.8: CSS argument with verifier sampling

think it is interesting to explore ways of constructing CSS arguments for more gen-
eral matrices both for future applications and for theoretical understanding.

The most trivial CSS scheme for a matrix M ∈ FQ×m works as follows: indexer
sends Q oracle polynomials, one for each row, as Pi(X) =

�m
j=1 mijλj(X). The

verifier samples x ← F, and both prover and verifier compute the same polynomial
D(X) =

�Q
i=1 x

i−1Pi(X), the verifier only accepts if the prover sends the sameD(X)
it computed itself. This “Vandermonde Sampling” of polynomials associated with
the row space of M requires WCSS size and prover work to be linear in Q. When
using this argument as part of a zkSNARK, the verifier will be linear in the circuit
size, which is completely impractical in most scenarios.

In Fig. 3.8, we introduce a simple extension of the “Vandermonde sampling”
technique, but trading memory for verifier work. This is impractical if M is the
matrix that encodes the circuit’s affine constraints, as Q ≈ m. However, since this
CSS scheme works for any arbitrary M, it is interesting to combine it as explained
in Section 3.4.4 with other approaches: for example, this CSS argument can be used
to encode a few very dense constraints, and the approach in Section 3.5.3 can be
used for the rest.

The argument depends on two parameters J, �: J = |J | is the number of ex-
ponentiations that the verifier does, and � defines the size of the SRS. As we will

prove, the argument is Elusive Kernel with probability � =

�
Q

Q+ �

�J

. Fixing the

soundness error to some λ, one can derive a trade-off between the size of J, �. Taking
� as some constant multiple of Q, for having low verifier work, indexer work would
be O(Qm + Q2) and verifier memory O(Q). Again, this only makes sense when Q
represents some small set of constraints.

The prover does not need to send the polynomial D(X) as it is computed by the
verifier, and in the decision phase the verifier will always accept, so we omit it.

Theorem 10. The argument of Fig. 3.8 is perfectly complete, perfectly sound and

�-Elusive Kernel, for � =
J

|F| +
�

Q

Q+ �

�J

.

59

Proof. The verifier samples D(X) on its own and thus completeness and soundness
follow immediately. On the other hand, the probability that y∗ is not orthogonal
to M but it is orthogonal to

�
ij∈J xj−1Pij(X) can be upper bounded by standard

techniques by J
|F| +

�
Q

Q+�

�J
. Indeed, there are two options, a) either it is orthogonal

to all the vectors encoded in {Pij(X)}ij∈J , or b) it is not. The probability of b)
is at most J

|F| by Schwartz-Zippel. For a), note that if y∗ is not orthogonal to M,
it can satisfy at most Q − 1 constraints out of Q + �. Since the set J is chosen
independently of y∗, the probability that the set J coincides with constraints mij

such that y ·mij = 0 is at most:
�
Q−1
J

�
�
Q+�
J

� ≤
� Q

Q+ �

�J
.

3.5.7 Amortized CSS argument

In this section we present a CSS argument that works only in the amortized setting
as considered in Sonic [MBKM19]. The construction is basically the protocol in
the named work, but for a bivariate polynomial in the Lagrange basis rather than
Laurent polynomials.

In the amortized setting, the same verifier aims to check the output of different
provers PCSS in Sampling. The cost of the verification is linear in m and thus the
scheme is only recommended when the number of proofs is linear in m as well. The
construction is not holographic due to the fact that the verifier needs to read the
matrix M that describes the relation and thus the indexer is trivial. Note that in
this case, we consider a single block M ∈ Fm×m.

Online Phase: VCSS samples xs ← F. PCSS defines P (X, Y) =
m�
i=1

λi(Y)Pi(X),

for Pi(X) =
m�
j=1

mijλj(X). It outputs Ds(X) = P (X, xs).

Online Helped Phase: VCSS chooses u1 ← F. PCSS outputs D̃(X) =
P (u1, X).

Decision Phase: Chooses u2 ← F, and calculate P (u1, u2). Accept if and only
if D̃(u2) = P (u1, u2) and, for every {xs}ts=1, D̃(xs) = Ds(u1).

Figure 3.9: Amortized CSS scheme from [MBKM19].

Still, in the ProveSampling algorithm, the verifier has oracle access to a set D =
{D1(X), . . . , Dt(X)} of polynomials where each Ds(X) is the output of a different

60

execution of Sampling with verifier’s challenge xs. Following the original definition,
the verifier also has oracle access to the polynomials outputted by PCSS (instantiated
by what in Sonic is called a helper) in ProveSampling.

3.6 CSS for Specific Relations

In this section we present several instantiations of CSS arguments for different sets of
admissible matricesW ∈ FQ×3m that represent the relations described in Section 3.2,
as opposite to the previous section where we considered its m ×m blocks, that is,
square matrices M ∈ Fm×m. As before, by using the CSS constructions of this
section as a starting point, we can construct linear arguments that can be used as
a building block in the PHP of Fig. 3.2 for the corresponding families of weighted
R1CS relations. The final goal is to study the efficiency trade-offs that result from
the different approaches. We start by describing the general approach and some
techniques that allow for better efficiency. We then describe the particular cases
separately, presenting a full description of each scheme.

A fundamental observation derived from the description of the relation W-R1CS
in Section 3.2 is that the matrix W that describes it can be seen as a matrix
with three blocks

�
Wa,Wb,Wc

�
, and sampling in each of these blocks must be

done separately, as the prover needs (Da(X), Db(X), Dc(X)) to do the inner prod-
uct with (A(X), B(X), C(X)), where C(X) = qM(X)A(X)B(X) + qL(X)A(X) +
qR(X)B(X) + qC(X). Naively, the polynomials Da(X), Db(X), and Dc(X) are ob-
tained by running one CSS scheme for each matrix Wa,Wb, and Wc, but more
careful approaches can save elements in communication complexity.

Before we flesh out the different options of CSS arguments for W we note some
general principles to improve efficiency and possible trade-offs:

a) Each of the column blocks Wa,Wb,Wc is a matrix of Q rows, where Q = 2m
or Q = 3m. One possibility is to use one CSS argument directly for each
one of these matrices of Q rows (assuming they belong to the set of admisible
matrices). Another possibility is to cut each Wa,Wb,Wc into blocks of m

rows. For instance, when Wc =

�
F
G

�
, we can actually use a CSS argument

for the matrix F + δG ∈ Fm×m, where δ is an element chosen by the verifier.
Technically, this is in fact a CSS argument for the matrix Wc where the
sampling coefficients depends also on δ.

b) When a block of size m×m is trivial, that is, either 0 or I, the corresponding
D(X) is either zero or can be opened by the verifier. Indeed, when the block is
0 so is the resulting polynomial, and when it is I ∈ Fm×m, we define P (X, Y) =
λ(Y)�Iλ(X)� = λ(Y)�λ(X), and the value P (y, x) =

�
zH(x)y−xzH(y)

�
/(x−

y) can be calculated by the verifier with O(logm) field operations (a proof of

61

this can be found, for example, in Lemma 3 of Lunar [CFF+21]). Thus, when
Wa,Wb consist of trivial blocks of size m×m, as in R1CS-lite, it makes sense
to use the approach described in a) and cut these matrices in blocks of m rows.
The verifier can then open Da(X), Db(X) itself (as they are linear combination
of the polynomials corresponding to trivial blocks), so there is no need to use
a CSS argument to prove correct sampling.

c) The proofs thatDa(X), Db(X), Dc(X) are correctly sampled (in case neither of
the matrices has a simple form and none of these polynomials can be sampled
by the verifier) can be aggregated.

In Section 3.6.1 we introduce a CSS scheme for the case where W is a matrix
of permutations, in Section 3.6.2 an argument for matrices representing circuits
with bounded fan-out, and in Section 3.6.3 our most efficient CSS construction,
corresponding to a mix of the last two.

3.6.1 Permutation Matrix

As explained in Section 3.2, in order to instantiate RW-R1CS following Plonk, we
consider matrices of the form W = P − I, where P is a matrix of permutations in
F3m×3m. For simplifying notation, we define the mapping ι : {1, 2, 3} → {a, b, c} as
ι(1) = a, ι(2) = b and ι(3) = c.

There are several possible ways of proving correct sampling in the rows of P− I.
For instance, we could consider P as a matrix of three column blocks Pa,Pb and
Pc, and define the polynomial encoding of each block as ρ(Y)�Pγλ(X), where
ρ(X)� = (ρ1(X), . . . , ρ3m(X)) are Lagrange interpolation polynomials associated
a multiplicative subgroup of size at least 3m. However, the simplest and most
efficient one, splits this matrix into 9 blocks m×m. Since all the blocks of m rows
of I ∈ F3m×3m are either 0 or I, the verifier can open the polynomial associated to
I ∈ F3m×3m on its own, and a CSS argument is necessary only to sample in the rows
of P.

For this approach, parse P as (Pa,Pb,Pc) and, for i = 1, 2, 3, each Pι(i) as
three matrices Fm×m corresponding to blocks of m rows and denoted as P1

ι(i),P
2
ι(i),

and P3
ι(i). For i = 1, 2, 3, define the function ri : H → [3m] that, given an el-

ement h� ∈ H outputs the row corresponding to the only non-zero element in
column � of matrix Pι(i). For k = 1, 2, 3, the polynomial encoding of Pk

ι(i) is

P k
ι(i)(X, Y) = λ(Y)�Pk

ι(i)λ(X) =
�

�:(k−1)m+1≤ri(h�)≤km λri(h�)−(k−1)m(Y)λ�(X). The

polynomial Dι(i)(X) is Pι(i)(X, x) = P 1
ι(i)(X, x) + zP 2

ι(i)(X, x) + z2P 3
ι(i)(X, x). The

two key elements for efficiency are: 1) the observation that each column block Pι(i)

is a simple matrix, since it has at most one non-zero element per columnn, and 2)
the fact that the proofs for each of these blocks can be batched together.

62

Offline Phase: ICSS

�
F,M

�
: For i = 1, 2, 3, k = 1, 2, 3 define V i,k = {� ∈ [m] :

(k − 1)m+ 1 ≤ ri(h�) ≤ km}, and

vi,k(X) =
�

�∈Vi,k

hri(h�)−(i−1)mλ�(X).

Output WCSS =
�
{vi,k(X)}3i,k=1

�
.

Online Phase: Sampling: VCSS outputs x ← F and PCSS computes and
outputs Dι(i)(X) = Pι(i)(X, x) for i = 1, 2, 3.

ProveSampling: VCSS outputs δ. For i = 1, 2, 3, vi(X) =
�3

k=1 v
i,k(X) and

viz(X) =
�3

k=1 z
k−1vi,k(X), the prover PCSS finds and outputs H(X) such that

Da(X)(x− v1(X)) + δDb(X)(x− v2(X)) + δ2Dc(X)(x− v3(X)) =

zH(x)(v
1
z(X) + δv2z(X) + δ2v3z(X)) +H(X)zH(X).

Decision Phase: Accept if and only if (1) deg(Dι(i)) ≤ m − 1, for i = 1, 2, 3
and (2)

Da(X)(x− v1(X)) + δDb(X)(x− v2(X)) + δ2Dc(X)(x− v3(X))

= zH(x)(v
1
z(X) + δv2z(X) + δ2v3z(X)) +H(X)zH(X)

Figure 3.10: CSS Argument for P ∈ F3m×3m.

We propose our construction in Fig. 3.10. The approach is less efficient in terms of
proof size than PLONK, but we think the additional flexibility of the CSS argument
is a plus. We argue that combining this approach with the bounded fan-out approach
presented next, the SRS size does not need to depend on the total number of gates
(additive plus multiplicative), as it will be discussed.

3.6.2 Bounded Fan-out

Circuits with fan-out bounded by some constant V can naturally be encoded as an

instance of RW-R1CS for the set M of matrices W =

�
I 0 −F
0 I −G

�
with F,G ∈

Fm×m such that there are at most V non-zero elements per column in each. As we
shall see in Fig. 3.11, there exists a very efficient proof system for this relation, since
the structure of the matrices allows to use basic CSS arguments that cannot be used
in the general case.

For circuits with bounded fan-out, we can set l = lb, qM = 1, qL = qR = qC = 0.
This choice also gives very short specific SRS, since these vectors do not need to be
computed by the indexer. We present the rolled out zkSNARK for such matrices in
Section 3.7.3.

63

However, we note that a more flexible choice of these values can be helpful to
encode general circuits. Indeed, any circuit can be transformed to a circuit with
bounded fan-out by artificially augmenting the vector c and adding constraints of
the form ci = cj that ensure consistency. To express satisfiability of this system
as an instance of RW-R1CS, the additional constraints ci = cj can rewritten as an
equation involving left (or right) wires, i.e. ai = cj, that is encoded in the matrix
W, and a gate, i.e. ai = ci (setting (qM)i = (qR)i = (qC)i = 0, (qL)i = 1). If
the fan-out of a certain gate is κ, this requires extending (a, b, c) by approximately
3κ/V dummy variables, and include qM and qL in the SRS (the rest are trivial).
The construction of Section 3.7.3 can be easily modified for that case and we omit
further details.

Finally, we consider the case of circuits with bounded fan-out, that is, the case

where the circuit can be represented with a matrix W =

�
I 0 −F
0 I −G

�
that is a sum

of at most V simple matrices, i.e. it has at most V non-zero elements per column.

As before, and since the other blocks ofm rows are the identity matrix or the zero

matrix, it suffices to use a CSS argument to sample in the image of Wc = −
�
F
G

�
.

For that, we first write the matrix Wc =
�V

i=1

�
Fi

Gi

�
, where each

�
Fi

Gi

�
is a simple

matrix. Once more, we will implicitly construct the scheme for Ŵ = F+ δG, that
can be written as

�V
i=1 Fi + δGi, with each Fi + δGi having at most one non-

zero element in each column. We define two functions associated to each Wc,i =�
Fi

Gi

�
. The function ri : H → [2m] that, given an element h� ∈ H outputs the

row corresponding to the only non-zero element in column � of matrix Wc,i and the
function vi : H → F that outputs the value of this non-zero entry. The details of
the scheme are given in Fig. 3.11 and for simplicity in the notation, we define the
sets V1

� = {i ∈ [V] : 1 ≤ ri(h�) ≤ m}, V2
� = {i ∈ [V] : m + 1 ≤ ri(h�) ≤ 2m},

S� = {{ri(h�) : i ∈ V1
� } ∪ {ri(h�)−m : i ∈ V2

� }} and V̂1
i = {� ∈ [m] : 1 ≤ ri(h�) ≤

m}, V̂2
i = {� ∈ [m] : m+ 1 ≤ ri(h�) ≤ 2m}.

3.6.3 Mixing the Bounded Fan-out and the Permutation
Approach.

Bayer and Groth [BG12] introduce techniques to prove that a vector is a permutation
of another one. This approach is useful for many applications, but for the ones
discussed in this section it has the drawback that it is not easy to extend it to sums of
permutations without increasing the communication complexity. This is exactly the
issue in the fully succinct mode of Sonic, where complexity grows with the number
of permutation matrices into which the constraint matrix can be decomposed.

64

Offline Phase: ICSS

�
F,M

�
: Define the polynomials R̂1

� (Y), R̂2
� (Y), Î�(Y), and

its coefficients R̂1
�j, R̂

2
�j, Î�j:

R̂1
� (Y) =

1

m

�

i∈V1
�

vi(h�)hri(h�)
�

s∈S�−{ri(h�)}
(Y − hs) =

V−1�

j=0

R̂1
�jY

j,

R̂2
� (Y) =

1

m

�

i∈V2
�

vi(h�)hri(h�)−m

�

s∈S�−{ri(h�)−m}
(Y − hs) =

V−1�

j=0

R̂2
�jY

j,

Î�(Y) =
�

s∈S�

(Y − hs) =
V�

j=0

Î�jY
j.

Define

vR̂,1
j (X) =

m�

�=1

R̂1
�jλ�(X), vR̂,2

j (X) =
m�

�=1

R̂2
�jλ�(X).

vÎj (X) =
m�

�=1

Î�jλ�(X).

Output WCSS =
�
{vÎj (X)}Vj=0, {vR̂,1

j (X), vR̂,2
j (X)}V−1

j=0

�
.

Online Phase: Sampling: VCSS outputs x, δ ← F and PCSS com-

putes D(X) = P (X, x), for P (X, Y) =
V�
i=1

�
�
�∈V̂1

i

vi(h�)λri(h�)(Y)λ�(X)

�
+

δ

�
�
�∈V̂2

i

vi(h�)λri(h�)−m(Y)λ�(X)

�
.

ProveSampling: PCSS finds and outputs H(X) such that, if R̂x(X) =�V−1
j=0 xj

�
vR̂,1
j (X) + δvR̂,2

j (X)
�
, and Îx(X) =

�V
j=0 x

jvÎj (X),

D(X)Îx(X) = zH(x)R̂x(X) +H(X)zH(X).

Decision Phase: Accept if and only if (1) deg(D) ≤ m − 1, and (2)
D(X)Îx(X) = zH(x)R̂x(X) +H(X)zH(X).

Figure 3.11: CSS Argument for a matrix Wc with two blocks F,G where F,G have
at most V non-zero elements per column.

To counter this issue, Plonk proposes to define the permutation P ∈ F3m×3m.
As mentioned before, the idea is to create a vector of copy constraints. With this
approach, the fan-out can be unlimited. Values that are repeated are encoded as a
cycle of the permutation and the price to pay is that additive gates are no longer
for free.

65

It is worth investigating if these ideas can be mixed. Namely, since in our case
we can increase the fan-out to V without paying in terms of proof size, one could
follow the copy constraint approach only for the wires exceeding the fan-out bound.
The result would be that additive gates involving only output wires that are input
of less than V multiplication gates would be for free.

3.7 zkSNARKs from CSS arguments

In this Section, we focus on the most practical side of the contributions presented
so far. In Section 3.7.1 we will discuss on the result of applying the compiler
in [CFF+21] to the PHPs for W-R1CS that come out when instantiating the pro-
tocol in Fig. 3.2 with the CSS schemes of Section 3.6. Then, in Section 3.7.2 we
show a practical result that saves several proof elements as well as extra pairings in
our constructions. Finally, we rolled-out Basilisk, our most efficient zkSNARK in
Section 3.7.3.

3.7.1 Compiler

The universal SRS of the zkSNARK will be srsu =
�
{[τ i]1}di=1, [τ]2

�
, where d is the

maximum degree among all polynomials inWCSS or sent by the prover. srsW consists
of the evaluation in τ of the polynomials that ILA outputs, thus, |srsW| = |WCSS|+4,
due to polynomials qL(X), qr(X), qM(X) and qc(X). Still, in all schemes but the one
of Fig. 3.10 these polynomials are zero and then the size of srsW is the size of WCSS.

Prover and Verifier instantiate PW-R1CS and VW-R1CS for the PHP of Fig. 3.2 that
achieves zero-knowledge through the changes presented in Fig. 3.3, as presented
below.

All oracle polynomials sent by PW-R1CS are translated into polynomials evaluated
(in the source group) at τ . For degree checks with deg(p) < dg, dg < d, the prover
sends a single extra polynomial and field element(see Definition 3), while checks for
dg = d are for free.

For each polynomial equation, prover sends extra field elements corresponding
to evaluations (or openings) of some of the polynomials involved on it (maximum
one per quadratic term, due to the procedure stated in [GWC19] attributed to
M. Maller). There are several ways to do this compilation check, but to optimize
efficiency the choices are quite standard (for instance, only A�(X) or B�(X), should
be opened).

All the openings at one point, as well as the degrees of the opened polynomials,
can be proven with one group element and verified with two pairings, which sets

66

proof size (in terms of group elements) as the amount of oracles sent by PW-R1CS

plus one element for degree check of Rt(X) in the linear argument and one for
each polynomial equation. The number of field elements sent by the prover changes
depending on the amount of terms included in the final polynomial equation as
explained above, but always include one element for each polynomial commitment
opening.

Prover’s work includes running PW-R1CS as well as the computation of the poly-
nomial commitment opening procedures. Verifier work is also VW-R1CS plus the
(batched) verification procedure of the polynomial commitments. The vector of
queries is (bA, bB, bRt , bHt) = (1, 0, 1, 0).

On the other hand, we write the matrix W that expresses the constraints as:

W =




Im 0m×n 0m×m 0m×n −F 0m×n

0m×m 0m×n Im 0m×n −G 0m×n

0�
m 1�

n 0�
m 1�

n 0�
m×m 0�

m×n


 =



I� 0 F�

0 I� G�

w w 0


 ,

where I�,F�,G� are of size m× (m+ n), w is a row vector of length m+ n.

Our PHP is built generically for any CSS argument, but concrete efficiency
depends on the specifics of it and also how the blocks of rows of W are combined.
The last constraint will always be treated separately (to exploit the symmetry of
the other blocks), and because of its simple form, the verifier can compute the
corresponding D(X) = (

�m+n
i=m+1 λi(x),

�m+n
i=m+1 λi(x), 0) itself, and combine it with

the rest (see Section 3.4.4).

For the sparse matrix construction of Fig. 3.6, we assume that K ≥ 2m, which
sets d = K−1. This eliminates the degree checks for ex(X), ey(X), Rk(X). Assuming
K ≥ |F| + |G|, the indexer is run for a matrix F + ZG, where Z is a variable and
thus outputs one polynomial vr(X), one polynomial v1,c(X) but two polynomials
vF2,c(X), vG2,c(X) that will let the verifier construct v2,c(X) = vF2,c(X) + δvG2,c(X) after
choosing δ, as shown in Fig.3.7. This set the size of the universal srs to K − 1 and
the size of srsW to 4. Prover sends 11 polynomials, 8 of degree up to m− 1 and the
rest (ex(X), ey(X), Rk(X), Hk(X)) of degree K − 1. Verifier performs two pairings
and the field operations to compute Da(y), Db(y), zl(y), zK(y), and zH(y).

The zkSNARK that uses the CSS argument of Fig. 3.10 has a universal SRS
of size n + 5, for n the total number of gates of the circuit, i.e., multiplicative and
additive gates as well, while the relation dependent has 11 group elements. The proof
has 9 group elements (this time the prover has to send Da(X) and Db(X)) and 5
field elements (as it also sends its evaluations on challenge y). Prover work depends
only on these polynomials and consists of 9m group operations. Similar to other
constructions, verifier work includes 2 pairings and O(l + logm) field operations.

Finally, the zkSNARK that builds on the CSS scheme of Fig. 3.11 (Basilisk)
is given in Fig. 3.12, 3.13: the universal SRS has size m + 6, for m the number

67

of multiplicative gates of the circuit, and the one describing the relation includes
3V + 1 group elements. The proof includes 7 group and 3 field elements. Prover
work is dominated by the generation of these polynomials, and consists of 7m group
operations. Verifier performs O(l+logm) operations to compute

�l
i=1 xiλi(y) from

the public input x and challenge y and to evaluate zH(x), zH(y), zl(y), Da, Db from
its challenges x and y. It also does two pairings to check the final equation. As
explained in Section 3.4.3, to generalize the construction to arbitrary circuits we
can add dummy variables (the exact number depends on the number of gates that
exceed the fan-out bound). The SRS will grow accordingly, and the derived SRS
needs to include two additional polynomials.

If the extended Vandermonde technique of (Fig. 3.8) is used for some set of Q
rows, we set d = 2m− 1. srsW outputs Q + � vectors of three polynomials. Prover
only sends commitments to A�(X) and B�(X) and the polynomials R(X), H(X) of
the linear argument (Fig.3.1). Verifier checks degree of R(X) and one polynomial
equation of three terms, two of which include polynomials it can evaluate itself (X
and zH(X)).

3.7.2 Eliminating Non-Trivial Degree Checks

As explained in Apendix 3.7, checking that a polynomial is of degree at most m− 1
is for free, as the srs includes only powers of τ up to this bound. On the other hand,
checks for smaller degrees require the prover to send two extra elements, one in the
field and one in the group. In all our constructions such degree check is required for
the linear argument, since Theorem 2 states that the degree of polynomial R(X)
has to be at most m − 2. Also, in the CSS of Fig. 3.6, it must be the case that
deg(Ru) ≤ m− 2.

Below, we present a simple corollary of Theorem 2 to augment the degree of
R(X) by 1. This trick allows to save the aforementioned elements in the proof.

Corollary 1. Let k,m,y,d,F,H be as in Theorem 2 and let u ∈ F∗, u /∈ H. Then,
y · d = σ if and only if there exist H(X), R(X) ∈ F[X], R(X) of degree at most
m− 1, such that the following relation holds:

Y(X) ·D(X)(X − u)− σ

m
(X − u) = XR(X) + zH(X)H(X)(X − u), (3.4)

where Y(X) = (Y1(X), . . . , Yk(X)) is a vector of polynomials of arbitrary degree such
that Yi(hj) = yij for all i = 1, . . . , k, j = 1, . . . ,m, and D(X) = (D1(X), . . . , Dk(X))
is such that Di(X) = d�

i λ(X).

Proof. By Theorem 2, y · d = σ if and only if there exists some R�(X) of degree at

most m− 2 such that Y(X) ·D(X)− σ

m
= XR�(X) + zH(X)H(X).

68

If y · d = σ then such R�(X) exists and the polynomial R(X) = (X − u)R�(X)
is of degree at most m− 1 and satisfies Eq. (3.4).

We now prove the reciprocal. Suppose there exists R(X) of degree at most
m − 1 such that Eq. (3.4) holds. Since all the sum terms in the equation, except
XR(X), are divisible by X − u, and u �= 0, then (X − u) divides R(X). Define
R�(X) = R(X)/(X−u). Dividing Eq. (3.4) by X−u, it follows that R�(X) satisfies
Eq. (3.2) and is of degree at mostm−2, so by Theorem 2 it follows that y·d = σ.

3.7.3 Rolled-out zkSNARK for Circuits with Bounded Fan-
Out

Below we present the most efficient zkSNARK we can achieve from the presented
CSS schemes. It works for relations R ∈ RW-R1CS that represent a circuit with
bounded fan-out6. We have W = (Wa,Wb,Wc), where Wc has at most V non-
zero elements per column. We present the scheme for the case where l = lb, qM = 1,
qL = qR = qC = 0 but it is straightforward to modify the argument for other values.
In blue we highlight the modifications to the PHP of Fig. 3.2 in order to make it
zero knowledge. The functions {vi, ri}Vi=1, P (X, Y), and the sets {S�, V1

� ,V2
� }m�=1 are

defined as above. If ι(1) = a, ι(2) = b, ι(3) = c, and for i = 1, 2, k = 1, 2, let
(P �)kι(i)(X, Y) = λ(Y)�(W1

ι(i) + δ1W
2
ι(i))λ(X), and (D�)kι(i)(X) = (P �)kι(i)(X, x).

KeyGen(R) : Sample τ ← F and output τ, srsu =
�
{[τ i]1}m−1

i=0 , {[τ i]1}m+5
i=m , [τ]2

�
.

Choose an arbitrary u ∈ F∗, u /∈ H.
KeyGenD(srsu,W

�,w�): Parse W� =
�
W�

a,W
�
b,W

�
c

�
and W�

c as W�
c =�

F 0m×6

G 0m×6

�
, F,G ∈ Fm×m. For i ∈ [V], k = 1, 2 define R̂k

� (Y), and its coeffi-

cients R̂k
�j as:

R̂k
� (Y) =

1

m

�

i∈Vk
�

vi(h�)hri(h�)−(k−1)m

�

s∈S�−{ri(h�)−(k−1)m}
(Y − hs) =

V−1�

j=0

R̂k
�jY

j,

Also, let Î�(Y) and Î�j be such that Î�(Y) =
�

s∈S�
(Y − hs) =

�V
j=0 Î�jY

j.

Finally, for j = 0, . . . , V − 1 define vR̂,1
j (X) =

�m
�=1 R̂

1
�jλ�(X), vR̂,2

j (X) =�m
�=1 R̂

2
�jλ�(X), and, for j = 0, . . . , V vÎj (X) =

�m
�=1 Î�jλ�(X). Compute [vÎj]1 =

[vÎj (τ)]1, [v
R̂,1
j]1 = [vR̂,1

j (τ)]1, [v
R̂,2
j]1 = [vR̂,2

j (τ)]1.

Output srsW =
�
srsu,

�
[vÎj]1

�V
j=0

,
�
[vR̂,1

j]1, [v
R̂,2
j]1

�V−1

j=0

�
.

Figure 3.12: Basilisk’s KeyGen and KeyGenD algorithms.

6Circuits can be transformed into this form by adding additional dummy constraints.

69

Prove(W, srsW, (x, (a�,b�))) : Sample ra ← F4, rb ← F2 and define a =
(x, a�, ra,1), b = (1,b�,1, rb). Then compute A(X) =

�m+6
j=1 ajλj(X), B(X) =�m+6

j=1 bjλj(X), B�(X) =
�
B(X)− 1

�
/
�
tl(X)

�4
i=1(X − hm+i)

�
, and

A�(X) :=

��
m+6�

j=l+1

ajλj(X)

�
− tl(X)

�
/ (tl(X)(X − hm+5)(X − hm+6)) .

Output π1 =
�
[A�]1 = [A�(τ)]1, [B�]1 = [B�(τ)]1

�
.

Verify(srsW,x, π1) : Send x, δ1, δ2 ← F.
Prove(W, srsW, (x, (a�,b�)), x, δ1, δ2) : For each i = 1, 2, 3, define D�

ι(i)(X) =

(D�)1ι(i)(X) + δ1(D
�)2ι(i)(X). Let Da(X) = D�

a(X)+δ21
�m+6

j=m+1 λj(X), Db(X) =

D�
b(X)+δ21

�m+6
j=m+1 λj(X) and Dc(X) = D�

c(X).

Find R(X), H1(X), H2(X) such that:

A(X)Da(X)(X − u) + B(X)Db(X)(X − u)−Dc(X)A(X)B(X)(X − u)

= XR(X) + zH(X)H1(X)(X − u)

and, if R̂x(X) =
�V−1

j=0 xj
�
vR̂,1
j (X) + δ1v

R̂,2
j (X)

�
and Îx(X) =

�V
j=0 x

jvÎj (X),

Dc(X)Îx(X) = zH(x)R̂x(X) +H2(X)zH(X).

Output π2 =
�
[Dc]1 = [Dc(τ)]1, [H]1 = [H1(τ)]1 + δ2[H2(τ)]1, [R]1 = [R(τ)]1.

Verify(srsW,x, π1, π2) : Send y, γ ← F.
Prove(W, srsW, (x, (a�,b�)), x, δ1, δ2, y, γ) : Define σ = Dc(y) and, for

E(X) = A(y)Da(y)(y − u) + B(X)Db(y)(y − u) + σ
�
− A(y)B(X)(y − u) + δ2Îx(X)

�

−yR(X)− δ2zH(x)R̂x(X)− zH(y)H(X)(y − u),

vector of polynomials p(X) = (A(X), Dc(X), E(X)), and degree bounds set by
d = (m− 1,m− 1,m− 1), calculate ([w]1, (a, σ, 0)) ← PC.Open (srsu,p(X),d, y, γ)
and output π3 = ([w]1, (a, σ)).

Verify(srsW,x, π1, π2, π3): Define s = a + γσ and compute constants Da = Db =�
zH(x)y − xzH(y)

�
/(x− y)−�m+6

j=m+1 λj(x)λj(y). Also, set

[A]1 =
�
[A�]1(y − hm+5)(y − hm+6) + 1

�
tl(y) +

l�

i=1

xiλi(y), [Îx]1 =
V�

j=0

xj[vÎj]1,

[B]1 =
�
[B�]1tl(y)

4�

i=1

(y − hm+i) + 1
�
, [R̂x]1 =

V−1�

j=0

xj
�
[vR̂,1

j]1 + δ1[v
R̂,2
j]1

�
and

[p]1 = [A]1 + γ[Dc]1 + γ2
�
aDa + δ1Db[B]1 + σ

�
− a[B]1(y − u) + δ2[Îx]1

�

−y[R]1 − δ2zH(x)[R̂x]1 − zH(y)[H]1(y − u)
�

Output 1 if and only if

e
�
[p]1 − [s]1, [1]2

�
= e
�
[w]1, [τ − y]2

�
.

Figure 3.13: Basilisk’s Prove and Verify algorithms.

70

Chapter 4

Linear-map Vector Commitments

This chapter is based on the paper ‘Linear-map Vector Commitments and their Prac-
tical Applications’ [CNR+22], which is a joint work with Matteo Campanelli, Anca
Nitulescu, Carla Ràfols, and Alexandros Zacharakis.

4.1 Introduction

Vector commitment schemes (VC) were first introduced by Libert and Young [LY10]
and Catalano and Fiore [CF13] as commitment schemes with capability to shrink
ordered sequences of data, stored in a vector v, and later open specific positions, as
an efficiency improvement over commitment schemes to single elements.

A vector commitment scheme is asked to satisfy position binding, meaning that
no prover should be able to produce valid proofs for opening at a position i to two
different values vi �= v�i. Additionally, we can require such commitments to be hiding
so no entity can distinguish between commitments to different vectors.

One key property mentioned in [CF13] is conciseness, both the proof of opening
and commitment should be independent ofm, the size of the committed vector. Also,
when working with individual proofs of openings, updatability plays a central role:
the commitment and the potentially pre-computed and stored proofs of openings
should be fast to update when vector v is changed. In fact, if one piece of data
stored in v changes, the scheme should allow to update the commitment C and all
proofs πi in less time than the required to freshly re-compute them.

In the last years, vector commitments have been discovered to be useful in a
plethora of applications, and their study has lead to new capabilities and more
general notions.

71

In 2016, Libert, Ramanna and Yung defined in [LRY16] the concept of Functional
Vector Commitments, where the prover has the ability to compute commitments to
vectors and later perform openings of linear functions (inner-products) f : Fm → F
of these vectors, for some field F. Lai and Malavolta [LM19] and also Boneh, Bünz,
and Fisch [BBF19] have defined the property of subvector openings as the additional
possibility for vector commitments to open to arbitrary subsets of positions I rather
than individual ones. In this case, the opening should be of size independent, not
only of m, but of |I|.

Both vector commitments with subvector openings and functional commitments
for inner-products can be captured as vector commitments with openings for a more
general class of function families, linear-maps. This fact has been exposed by Lai
and Malavolta ([LM19]) and captured in the definiton of Linear Map Commitments
(LMC). In such a scheme, the prover is able to open the commitment to some vector
v to the output of multiple linear functions or, equivalently, to the output of one
linear-map f : Fm → Fn, by producing a single short proof. In this work, we borrow
Lai and Malavolta [LM19] LMC notion for full-featured vector commitment generic
definition and refer to it as Linear Map Vector Commitment (LVC)1.

4.1.1 Motivation

Vector commitments are very useful to scale highly decentralized networks of large
size and whose content is dynamic [CPZ18, BBF19, CFG+20, GRWZ20](such dy-
namic content can be the state of a blockchain, amount stored on a wallet, the value
of a file in a decentralized storage network, etc.). Beyond the basic requirement that
openings should be efficient, in this work we also discuss some of the most promi-
nent applications of LVC to motivate and justify the importance of some additional
properties in practice.

In Verifiable Databases, a client outsources the storage of a database to a server
while keeping the ability to access and change some of its records, i.e. query functions
of the data, update some of it, and ensure the server does not tamper with the
data. For a VC scheme to be the ideal solution, we require it to support efficient
updates and verify linear-map queries. A popular instantiation that achieves efficient
updatability are Merkle trees [Mer88], but these are not expressive enough to allow
for functional openings.

Stateless Cryptocurrencies are payment systems based on a distributed ledger
where neither validators of transactions nor system users need to store the full ledger
state. A vector commitment scheme for such applications must have small commit-
ment size, short proofs, efficient computation for openings, and it should allow for
aggregation to minimize communication in the transactions and maintainability for

1We use LVC rather than initially proposed LMC in order to emphasize the Vector Commitment
aspect of our notion.

72

the proofs, as proofs are pre-computed and stored, and the prover should be able to
update them in sublinear time.

Proof of Space(PoS), introduced in [DFKP15] and further studied in [RD16,
AAC+17, Fis19], is a protocol that allows miners (storage providers) to convince
the network that they are dedicating physical storage over time in an efficient way.
In a nutshell, a miner commits to a file (data) that uses a specified amount of disk
space and then proves that it continues to store the data by answering to recurring
audits that consist of random spot-checks.

A PoS construction based on vector commitments, as described in [Fis18], re-
quires short opening proofs for subvectors to be stored in a blockchain, cross-
commitments aggregation techniques and the possibility to implement space-time
tradeoffs to reduce the proving time for the miner (ideally sublinear in the size of
the vector).

In some applications, e.g. when performing HTTP queries, clients use the so-
called prefetching and receive from a server not only the values of interest but other
related values that could potentially be queried in the near future such as values
in a neighboring range of the queried values. Vector commitments with efficient
proofs for special subset openings allow to add verifiability to such queries in a way
that does not affect the speed of the server since the proving procedure for a bigger
subset is close or the same as for individual positions.

4.1.2 Related Work

In the seminal work by Catalano and Fiore, [CF13] two constructions were pro-
posed under standard, constant-size, assumptions: CDH in bilinear groups and
RSA respectively. Many following works built on these constructions to obtain bet-
ter efficiency and more properties such as subvector openings, functional openings,
aggregation, and updates. A number of works [CFG+20, BBF19] use the proper-
ties of hidden order groups to achieve constructions with attractive features such as
constant size parameters or incremental aggregation but are concretely less efficient
than pairing-based constructions.

Merkle tree-based constructions are widely used in practice nowadays. They
only need a transparent setup, offer natural time-memory trade-offs due to their tree
structure and are efficiently updatable. Nevertheless, they have linear-size proof, are
not expressive in terms of openings, as they are not homomorphic and thus, difficult
to aggregate.

The VC schemes based on bilinear groups made their way into offering an alter-
native to Merkle trees. If both, prover and verifier, have access to some linear-size
srs (which for the many constructions happen to be updatable as in Definition 2),

73

they can achieve constant size proof and verifier work, while offering homomorphic
properties. Their main drawback, apart from the size of the public parameters, is
the lack of time-memory trade-offs as the prover is usually linear in the size of v,
and the inefficient proofs update, as they require usually linear time in v to update
all proofs.

In [LRY16], Libert et al. construct vector commitments with openings to linear-
forms of the vector based on the Diffie-Hellman exponent assumption over pairing
groups. Later, Lai and Malavolta [LM19] introduce subvector openings and show
applications to building succinct-arguments of knowledge (similar applications were
shown by [BBF19]) in the bilinear group setting.

A weak variant of updatability requires the algorithms that update the com-
mitment and the opening to take as input an opening for the position in which
the vector update occurs called hints. Recent RSA-based constructions are hint-
updatable [BBF19, CFG+20]. Compared to hint updates, key-updates only need
fixed update keys corresponding to the updated positions. Schemes based on bilin-
ear groups require such fixed keys, and no extra information about the change made
in the vector in order to update.

Campanelli et al. [CFG+20] showed two constructions of incrementally aggregat-
able SVCs, that allow to aggregate and dis-aggregate proofs that have already been
aggregated, have constant-size parameters and work over groups of unknown order.
Unfortunately, the practical efficiency of these constructions is still not sufficient for
their deployment in real-world systems.

Gorbunov et al. [GRWZ20] show how to extend the VC scheme of [LY10] to allow
for same- and cross-commitment aggregation. Like our constructions, the security
of theirs holds under the Algebraic Group Model (AGM) [FKL18] in bilinear groups
and a random oracle. However, this approach allows only for one-hop aggregation,
meaning that already aggregated proofs cannot be reused in further aggregations by
external nodes, and does not consider updatability.

Tomescu et al. [TAB+20] introduced a pairing-based construction of SVC with
updatability of proofs and aggregation. Still, the former requires constant work
for each proof, leading to a linear procedure in order to update all proofs, while the
second is one-hop, meaning that proofs can be aggregated only once. They show how
all individual proofs can be pre-computed in O(m logm) time and stored to later
perform what in this work we call native aggregation, meaning that the aggregation
of individual proofs for positions i ∈ I equals a fresh proof of subvector opening for
I (in particular, does not require the execution of a random oracle).

Importantly, in this work we extend both the construction in [GRWZ20] and [TAB+20],
showing that they can be adapted to satisfy further properties.

Apart from Merkle tree based Vector Commitments which are known to be main-

74

tainable, Srinivasan et. al. [SCP+22] show that the multilinear PST polynomial com-
mitment [PST13] can be turned to a maintainable VC construction. Pre-computing
all (single-position) opening proofs is done in quasilinear time (contrary to the trivial
quadratic time) and updating all proofs after a (single position) vector update needs
only logarithmic time. Contrary to Merkle tree based approaches, the scheme has
homomorphic properties. Furthermore, due to its algebraic structure, it supports
one-hop aggregation through generic means, namely, Inner Pairing Product Argu-
ments [BMM+21], albeit with a concretely expensive proving computation. Tomescu
et al. [TCZ+20] add the same attribute to KZG polynomial commitment schemes,
allowing for a maintainable construction that, similar to ours, works under a tree
structure. The main differences are that their tree stores proofs of positions rather
than the vectors, and thus cannot be instantiated to open linear maps and proof size
and verifier work are both logarithmic on the size of the vector, and that they work
with polynomials of the same size at all levels of the tree, leading to O(m logm)
prover work.

4.1.3 Contributions

Theoretical Advances. On the theoretical frontier, we unify previous definitions
and augment them with additional properties. The basic notion we use is Linear
Map Vector Commitments (LVC) and is borrowed by the work of Lai and Mala-
volta [LM19]. We then define additional properties on top of this definition and
explore their relations. Specifically, we augment this notion with updatability and
aggregation properties, including a novel notion -unbounded aggregation- capturing
the ability to aggregate already aggregated proofs but relaxing incremental aggre-
gation [CFG+20] in the sense that the verifier is allowed to do work linear in the
number of aggregation hops (i.e. aggregation is “history” dependent), also, disaggre-
gation is not possible. We show that having additional homomorphic properties is
highly desirable, by arguing that any LVC that satisfies them: (1) can be augmented
with unbounded same- and cross-commitment aggregation as well as updatability;
(2) can support general linear map openings (i.e. for any f : Fm → Fn) as long as
it supports inner product openings (i.e. for f � : Fm → F). This allows us to focus
on efficient constructions for inner products with homomorphic properties.

VC Constructions. First, we present two pairing-based LVC constructions for
inner products based on the properties of monomial and Lagrange polynomial basis
and prove that they satisfy all the relevant homomorphic properties to obtain un-
bounded aggregation and support general linear maps. The latter is based in the
inner product construction of Section 3.3. In terms of expressivity, these construc-
tions generalize previous work [SCP+22, TAB+20] by supporting linear functions
instead of position or subvector openings. Vector commitments for this class of
functions are core components of important primitives such as arguments of knowl-
edge for Inner Product (IP) relations or aggregation arguments [DRZ20].

75

VC Scheme Aggregation Updates Setup Assumption Functional

PoS aggSVC [CFG+20] Incremental Same-Com hint Trusted RSA SVC

Pointproofs [GRWZ20] One-hop Cross-Com - Updatable AGM SVC

Stateless aggSVC [TAB+20] One-hop Same-Com key Reusable Computational SVC

Our Lagrange LVC Unbounded Cross-Com key Reusable AGM LVC

Our Monomial LVC Unbounded Cross-Com keyless Reusable AGM LVC

Table 4.1: Comparison of our schemes with other recent VC. Updatable setup refers to an srs
that consist on monomials but cannot re-use existing ones, as in [GRWZ20] where it needs to be
missing an specific power. We later prove that some of the works in this table can be adapted to
satisfy further properties.

As in some applications like Proof of Space the subset of opened positions is not
very meaningful and its distribution is expected to be known in advance, we study
how to improve verification efficiency for certain special subsets I openings in our
inner-product constructions. For some structured sets I, we achieve a verifier that
performs half of the work it does for arbitrary sets J of the same size in the Lagrange
construction, and only a constant number of group operations in the one that uses
the monomial basis. For the latter construction, we have efficient range openings
and thus can be used in prefetching2 whenever we need to query a resource whose
digest consists of a vector commitment.

Lastly, we prove the inner product in Section 3.3 can be applied to such subsets
and use both results to obtain a novel maintainable construction. Our construc-
tion allows a stronger, more flexible form of maintainability: it supports arbitrary
memory/time trade-offs for openings, meaning that the prover can decide how much
memory it wants to use to reduce the opening time. The setup is independent of the
trade-off, in particular, it consist solely of monomials, and the relation memory/time
can be decided by the prover on the fly.

We compare our LVC constructions with the most efficient ones in Table 4.1

4.2 Generic Constructions from Homomorphic

Proofs

In this Section we present a framework to construct pairing-based Linear-map Vec-
tor Commitments that satisfy unbounded same- and cross-commitment aggregation,
as well as updatability. In particular, we prove that any LVC scheme that has homo-
morphic proofs, openings and commitments can be endowed with algorithms such
that they satisfy the mentioned properties. We present these algorithms for generic
constructions and prove that, from any Inner Product argument with homomorphic
properties, we can get Liner-map Vector Commitment schemes for arbitrary linear
functions f : Fm → Fn with unbounded aggregation and updatability.

2https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ

76

4.2.1 New Notion: Unbounded Aggregation

The intuition for our unbounded aggregation definition is that, given n proofs, com-
mitments or openings, we can aggregate them by performing a linear combination
with random coefficients. Importantly, these coefficients have to be chosen after the
claims are fixed and for that we rely on the RO model.

This approach has been used in previous works, that have defined other types
of aggregation. In one-hop aggregation (or batching) [BBF19] aggregated proofs
cannot be aggregated further. Incremental aggregation [CFG+20] does not have
this limitation. The difference between the latter and our notion is that incremental
aggregation does not require to keep track of the order in which the aggregation
has been applied (for verification or further aggregation). On the other hand, we do
require to track order, but we argue that this is not an overhead in many settings.
In particular, even incremental aggregators and verifiers need to know the claims
related to the proofs being aggregated, albeit in no order. Adding a structure to
the claims roughly adds a number of bits linear in the length of the opening for
additional separators.

In our work, aggregating already aggregated proofs consist on just sampling new
coefficients and using them for fresh linear combinations. Importantly, the verifier
needs to have access to the aggregation history: it has to recompute the coefficient
corresponding to each proof π, which is the product of all the coefficients used in
the aggregations it was involved in. Note that this also means that the verifier has
a small overhead: making a linear (in the number of aggregation “hops”) number
of hash computations to recompute the challenges. For the rest of this chapter, we
will denote the proofs as π instead of π, the notation in Definitions 4,6. The reason
is that we want to emphasize the fact that proofs of openings are vectors, and so we
can operate linearly on them.

Example for same-commitment aggregation: Consider vector v committed
in C, functions f1, f2 and f3; let π1,π2 and π3 be proofs that f1(v) = y1, f2(v) = y2

and f3(v) = y3. An aggregated proof for f2(v) = y2, f3(v) = y3, would be π∗
1 =

π2 + γ1π3, for γ1 = H(C, {(f2,y2), (f3,y3)}). In a second step, we can aggregate a
proof that f1(v) = y1, by performing π∗

2 = π1 + γ2π
∗
1, for γ2 = H(C, (f1,y1), γ1).

At the verification step, the verifier would reconstruct the coefficients of each initial
proof in π∗

2. For instance, δ1 = 1, δ2 = γ2, δ3 = γ1γ2. Then, the verifier can run the
LVC.Verify algorithm to check whether π∗

2 = π1+γ2π
∗
1 = π1+γ2π2+γ1γ2π3 is a valid

proof that function f = f1 + γ2f2 + γ1γ2f3 evaluated at the vector committed in C
opens to y = y1+γ2y2+γ1γ2y3. For this last step to work we need the homomorphic
proof property and the verifier to have access to the aggregation “history”.

To describe our history of claims we move to trees of statements {fi,yi}ni=1. In
these trees, leaves are pairs of function–output (f,y). As in the usual case internal
nodes are defined as an ordered list of subtrees. An empty history/tree is referred

77

to as null. We denote trees using the syntax Tf,y and the operation that “merges”
two subtrees in order adding a new root as “∴”. The following definition formalizes
the above and will be useful in our construction. We remark that we include the
commitment in each of the leaves of the trees Tf,y. This does not increase the
input size for cross-commitment aggregation where this information is necessary
(for same-commitment aggregation the commitment is not necessary). This also
allows to model more closely the “claims” for the cross-commitment case where
each proof is for a statement (C, f,y).

Definition 20. Given a tree T we associate to each of its internal nodes a hash
label h defined so that h(L ∴ R) := H(C, L,R). We then associate to each of the
leaves in the tree a label

δ(leaf) :=
�

i=1,...,t

h(xi)
r(xi,leaf)

where the xi-s are the internal nodes along the path from leaf to the root (root
included and starting from the bottom), the predicate r(x, leaf) is 1 if leaf is a right
child of x and 0 otherwise.

When we consider unbounded-aggregatable LVC, we assume KeyGen outputs
additional parameters for aggregations in pp. The aggregation algorithm will follow
this syntax3:

LVC.Agg(pp, Tf,y,π, Tf �,y� ,π�) → π∗

We subsequently modify the syntax for the verification algorithm in an (un-
bounded) aggregatable LVC as follows:

LVC.Verify(vrk,C, Tf,y ∴ T �
f,y,π

∗) → b ∈ {0, 1}

with Tf,y replacing f,y.

We require the following correctness property and that function binding still
holds.

Definition 21 (Unbounded Aggregation Correctness). For any Tf,y, Tf �,y� and any
π, π�:

Pr




(LVC.Verify(vrk,C, Tf,y,π) = 1 ∧
LVC.Verify(vrk,C, T �

f,y,π
�) = 1

�
⇒

LVC.Verify(vrk,C, Tf,y ∴ T �
f,y,π

∗)=1

(prk, vrk, pp) ← LVC.KeyGen(1λ,F)
(C, aux) ← LVC.Commit(prk,v)

π∗ ← LVC.Agg(pp, Tf,y,π, Tf �,y� ,π�)


 = 1

Definition 22 (Unbounded Aggregation Function Binding). For any Tf,y, Tf �,y� the
following probability is negligible in λ:

Pr

�
LVC.Verify(vrk,C, Tf,y ∴ T �

f,y,π
∗)=1

∧ �a s.t. f(a) = y ∧ f �(a) = y�
(prk, vrk, pp) ← LVC.KeyGen(1λ,F)
(C,π∗, Tf,y, T

�
f,y) ← A(pp, prk, vrk)

�

3The algorithms can be generalized for more proofs. Proof size remains the same, also for
cross-commitment aggregation.

78

Cross-Commitment Aggregation

Unbounded aggregation can be performed across different commitments as well.
This property is called Cross-commitment Aggregation and makes sense when we
have a set of commitments C�

1, . . . ,C
�
t that we want to open at one or more maps f , as

it allows to compute a succinct proof of opening for linear-maps from different vectors
committed separately. Below we show our syntax which directly expands on our
same-commitment aggregation described above. Function binding and correctness
are also straightforward to expand. We let Tf,y include our commitments in the
leaves (see also next section).

Cross-commitment aggregation:

LVC.CrossAgg(pp, Tf,y,π, Tf �,y� ,π�) → π∗

Cross-commitment verification:

LVC.CrossVfy(vrk,
�
C�
j

�
j
, Tf,y,π

∗) → 0/1

4.2.2 Unbounded Aggregation for LVC

We now describe unbounded aggregation algorithms for any LVC scheme that sat-
isfies the homomorphic properties of Section 2.3.6.

LVC.KeyGen(1λ,F):
Run (prk, vrk) ← LVC.KeyGen(1λ,F).
Generate the description of a hash function H(·) and set it in pp.
Output (prk, vrk, pp).

LVC.Agg(pp, Tf,y,π, Tf �,y� ,π�) :
Compute γ = H(C, Tf,y, Tf �,y�)
Output π∗ = π + γπ�

LVC.Verify(vrk,C, Tf,y ∴ Tf �,y� ,π∗) :
Return b ← LVC.Verify

�
vrk,C, f ∗, y∗,π∗� where:

• let leaf1, . . . , leaf� be all the leaves in Tf,y ∴ Tf �,y� .

• recall each leafi is of the form (C, fi,yi)

• For each i let δi := δ(leafi) be the value defined as in Definition 20,

f ∗ :=
�

i

δifi y∗ :=
�

i

δiyi.

Figure 4.1: Unbounded aggregation for LVC schemes with homomorphic proofs.

79

Theorem 11. Any function binding LVC scheme with homomorphic proofs endowed
with

�
LVC.Agg, LVC.Verify

�
as described in Figure 4.1 satisfies Unbounded Aggrega-

tion Correctness (as in Def. 21) and Function Binding (Def. 22) in the ROM.

Proof. Correctness follows by inspection, using the fact that the LVC satisfies ho-
momorphic proof, so we omit it.

For function binding, let A be an adversary against it, and
�
C,π∗, Tf,y, Tf �,y�

�
be

an output of them such that LVC.Verify(vrk,C, Tf,y ∴ Tf �,y� ,π∗)=1. By construction
this implies LVC.Verify

�
vrk,C,

�
i δifi,

�
i δiyi,π

∗� = 1. Because LVC is function
binding, except with negligible probability, there exists a vector a such that f(a) =
y, for y =

�
i δiyi and f(X) =

�
i δifi(X), i.e., there exists a such that:

t�

i=1

δifi(a) =
t�

i=1

δiyi.

Since H is a random oracle, the coefficients δi do not depend on yi, fi, and by
the Schwartz-Zippel lemma, except with probability m/F, where m is the degree of
f , fi(a) = yi for all i, which concludes the proof.

Cross-Commitment Aggregation.

LVC.CrossAgg(pp, Tf,y,π, Tf �,y� ,π�) :
Compute γ = H(Tf,y, Tf �,y�)
Output π∗ = π + γπ�

LVC.CrossVfy(vrk,
�
C,C�, Tf,y ∴ Tf �,y� ,π∗) :

• let leaf1, . . . , leaf� be all the leaves in Tf,y ∴ Tf �,y� . We add to each leaf
leafi and additional subindex j that refers to which commitment the
proof in leafij corresponds to. Note that we still consider � leaves.

• each leafij is of the form (Cj, fi,yi)

• For each i let δij := δ(leafij) be the value defined as in Definition 20.

• Compute

f ∗
j :=

�

i

δijfi y∗j :=
�

i

δijyi

• Return 1 iff bj = 1 for all bj ← LVC.Verify
�
vrk,Cj, f

∗
j , y

∗
j ,π

∗�.

Figure 4.2: Cross-commitment aggregation for LVC schemes with homomorphic
commitments and proofs.

80

For the case of cross-commitment aggregation, we proceed similarly but we also
need to homomorphically operate on the commitments (recall that hashing on trees
implicitly hashes the commitments too since we include them there), as described
in Figure 4.2.

Efficiency. For our constructions, the verification equations for computing bi =
IP.Verify

�
vrk,C∗, f ∗, y∗,π∗� are two pairing equations where the elements in the right

side can be aggregated, and thus the verifier performs only �+ 1 pairings.

Security. The security of this augmented construction follows analogously to that
for same-commitment aggregation, with the additional requirement for the LVC
scheme to have homomorphic commitments and openings.

4.2.3 Updability for LVC

We consider updatability as an extra property of an LVC scheme. The KeyGen
algorithm additionally computes the update key upk, while two extra algorithms are
defined as follows:

LVC.UpdCom(upk,C, t, δ) → C�: takes as input C, a position t ∈ [m], update key upk,
and a constant δ ∈ M. It outputs C� as a commitment for v� = v + δet

4.

LVC.UpdOpen(upk, t, δ, f,y,π) → π� : Takes as input upk, t, δ, a function f , a valid
opening pair (y,π) for f and outputs a proof π� for the new opening y� =
f(v + δet).

Update correctness. Let
�
prk, vrk, upk

�
← LVC.KeyGen(1λ,F), and let (C, j, f,y,π)

be a tuple such that LVC.Verify(vrk,C, f,y,π) = 1. Then LVC satisfies update cor-
rectness if for any δ ∈ M,

Pr

�
LVC.Verify(vrk,C�, f,y�,π�)=1

∧ y� = y + δf(et)

C� ← LVC.UpdCom(upkj ,C, t, δ)
π� ← LVC.UpdOpen(upkj , t, δ, f,y,π)

�
= 1.

4.2.4 From Inner-Products to Arbitrary Linear-Maps

In this section we show we can obtain LVC schemes for any family of functions
F ⊂ {f : Fm → Fn} starting from simpler constructions that have homomorphic
proofs and openings. Our starting point are LVC schemes for FIPm = {f : Fm → F},
or inner-product VC schemes, that we will denote as IP = (IP.KeyGen, IP.Commit,
IP.Open, IP.Verify). All this algorithms work as the ones for LVC, except that instead
of f ∈ FIPm , they use the vector f ∈ Fm so that f(v) = f · v.

4This notion can be generalized to more than one position.

81

We can write any linear-map f : Fm → Fn as f = (f1, f2, . . . fn), where each
fi is an inner product function. If the IP scheme has homomorphic proofs, and we
set πi to be the proof that fi(v) = fi · v = yi, an aggregation of {πi}ni=1 is a proof
of the statement f(v) = y. Later, in the following section, we show two possible
constructions of IP vector commitments schemes that can be used to instantiate
the framework in this section. A one-hop aggregation algorithm for IP5 works as
described in Figure 4.3, and we present in Figure 4.4 an alternative way of computing
concise proofs of LVC for more general functions f : Fm → Fn, using IP.Agg.

IP.Agg(pp, {fi, yi}ni=1,π = (πi)
n
i=1) :

Parse pp = H, where H is a hash function, compute γ = H(C, {fi, yi}ni=1)
Output π� =

�n
i=1 γ

i−1πi.

IP.VfAgg(vrk,C, {fi, yi}ni=1,π
�) → b :

Compute γ = H(C, {fi, yi}ni=1), f � =
�n

i=1 γ
i−1fi, y� =

�n
i=1 γ

i−1yi
Output b ← IP.Verify(vrk,C, f �, y�,π�).

Figure 4.3: Aggregation for Inner Product arguments with homomorphic proofs

LVC.KeyGen(1λ,FIP,m):
Run (prk, vrk) ← IP.KeyGen(1λ,FIP,m)
Generate aggregation parameters pp = H (a hash function).
Output (prk, vrk, pp).

LVC.Commit(prk,v) :
Run (C, aux) ← IP.Commit(prk,v)
Output (C, aux).

LVC.Open(prk, pp, aux, f,y) :
Parse f = (f1, f2, . . . fn) and y = (y1, . . . yn). Consider fi as the vector
representing inner-product function fi.
Run πi ← IP.Open(prk, aux, fi, yi) for i ∈ [n]
Output π ← IP.Agg(pp, {πi}ni=1).

LVC.VfAgg(vrk, pp,C, f,y,π) :
Parse f = (f1, f2, . . . , fn) and y = (y1, . . . yn). Consider fi as the vector
representing inner-product function fi.
Output b ← IP.VfAgg(vrk,C, {fi, yi}ni=1,π).

Figure 4.4: LVC schemes from Inner Product arguments with homomorphic prop-
erties.

5Naturally, this can be seen as a particular case of unbounded aggregation.

82

Updates for IP.

We present a generic construction of the updatability algorithms for inner-product
schemes in Figure 4.5. We state that even though algorithms can be generalized
to LVC for arbitrary functions, storing and updating is a property desired (to the
best of our knowledge) only for individual openings, which can be represented as
inner product arguments an thus this is the only scenario where we focus on adding
updatability.

It is easy to see that commitments can be updated when one value of the vector
changes by simply applying the linear-homomorphic property of the underlying IP
scheme. Given C such that (C, aux) ← LVC.Commit(prk,v), when position t of the
vector changes, i.e. v� = v + δet we can compute a commitment to the new vector
v� as C� = (C+ δĈ) where (Ĉ, ˆaux) ← LVC.Commit(prk, et) is given as an update key.

IP.KeyGen(1λ,FIP,m) :
Run (prk, vrk) ← IP.KeyGen(1λ,FIP,m)
Additionally generate public update keys upk:

• Set πuij
← IP.Open(prk, auxj, ei, uij = ei · ej), ∀i, j ∈ [m]

• Define upkj = {πuij
}mi=1 for all j ∈ [m]

Output (prk, vrk, {upkj}mj=1).

IP.UpdCom(prk,C, t, δ) :
Set Ĉ ← IP.Commit(prk, et).
Output C� = C+ δĈ.

IP.UpdOpen(upkt, t, δ,C, f , y,π) :
Parse upkt = {πuit

}mi=1.
Compute π̂ =

�m
i=1 fiπuit

.
Set π� = π + δπ̂ as proof for y� = y + f · δet.
Output π�.

Figure 4.5: Updatability algorithms for IP arguments with homomorphic openings
and commitments.

Moreover, it is possible to update existing proofs using the homomorphic open-
ings property of the IP scheme: when position t of the vector changes as above,
to update a prior proof we simply add to π a proof π̂ corresponding to the open-
ing of f(δet). The resulting π� = π + π̂ corresponds to the opening of the sum
f(v�) = f(v) + δf(et) with respect to the updated commitment C� = C+ δĈ.

We extend IP arguments to satisfy updatability by asking the IP.KeyGen al-

83

gorithm to additionally generate updatable keys and introduce IP.UpdCom and
IP.UpdOpen that work as in Fig. 4.5.

Theorem 12. If IP satisfies function binding and has homomorphic commitments
and openings, the extension above satisfies update correctness.

Proof. The proof follows directly by the definitions of the homomorphic properties
and IP.UpdCom, IP.UpdOpen.

4.3 Constructions for Inner-Pairing VC

In this section, we present two constructions of LVC for inner products, that is, for
functions f ⊂ FIP,m = {f : Fm → F}. Naturally, the first construction we consider
is the one presented in Section 3.3 of this thesis. We re-introduce the sumcheck
argument as a LVC commitment scheme for inner product functions, which implies
some extra singularities, as well as different security definitions. Then, we present
its analogous for encodings in the monomial basis. We prove they are indeed linear
vector commitment arguments with homomorphic proofs and openings. Therefore,
they can be used as a starting point to obtain further aggregation properties as
shown in Section 4.2.1 and, in particular, lead to two different more generic linear-
map vector commitment schemes.

4.3.1 Lagrange Basis

Using the Lagrange basis {λj(X)}mj=1 over a multiplicative group H = {h1, . . . , hm}
of size m in Fp we encode a vector a ∈ Fm

p as a polynomial a(X) =
�m

j=1 aiλj(X).
The construction uses few properties of Lagrange basis over multiplicative groups
that we would like to remind before formally presenting our scheme. When H is a
multiplicative subgroup, λj(0) = m−1 for all j ∈ [m]. Moreover, for the Lagrange
basis and the vanishing polynomial zH(X) =

�m
j=1(X − hj) we have that

λj(X)λi(X) ≡ 0 mod zH(X), λj(X)2 ≡ λj(X) mod zH(X).

The construction in Figure 4.6 exploits these properties in the proof of openings
for inner-products:

84

IP.KeyGen(1λ,FIPm): Sample τ ← Fp and output prk =
�
{[τ j]1,2, [λj(τ)]1}mj=1

�
and

vrk =
�
[1]1,2, {[τ j]2, [λj(τ)]2}mj=1

�
.

IP.Commit(prk, a): Compute Ca =
�m

j=1 aj[λj(τ)]1 and output (Ca, a).

IP.Open(prk, aux,b, y) :
Find R(X), Q(X) such that deg(R) < m− 1 and

�
m�

j=1

ajλj(X)

��
m�

j=1

bjλj(X)

�
−m−1y = XR(X) + zH(X)Q(X)

Define R̂(X) = X2R(X) and output π = ([R(τ)]1, [Q(τ)]1, [R̂(τ)]1).

IP.Vf(vrk,Ca,b, y, π) : Calculate Cb =
�m

j=1 bj[λj(τ)]2

Parse π = ([R]1, [Q]1, [R̂]1) and output 1 if and only if

e
�
Ca,Cb

�
− e
�
m−1y[1]1, [1]2

�
= e
�
[R]1, [τ]2

�
+ e
�
[Q]1, [zH(τ)]2

�
, and

e
�
[R]1, [τ

2]2
�
= e
�
[R̂]1, [1]2

�
.

Figure 4.6: Inner Product argument with Lagrange Basis.

Security

We omit the proof of completeness as it can be found in Section 3.3. Still, since there
it is presented as an argument for inner-product relations as opposite to LVC scheme
as considered in this chapter, we prove Strong Function Binding and homomorphic
proofs and openings below.

Theorem 13. The protocol in Figure 4.6 is a strong function binding LVC scheme
under the algebraic group model if the qDHE and dLog assumptions hold.

Proof. We will proceed through a series of games, and we set Game0 to be the
strong binding game of Definition 6. Let A be an adversary against of the scheme in
Figure 4.6, whose advantage is Advs.bindingA . We define Game1 and specify a reduction
B1 such that

Advs.bindingA ≤ AdvqDHE
B1

+ AdvdlogB2
.

Let Game1 be the game that goes exactly as Game0 except that, upon receiving
[R]1, [R̂]1 from A, it checks whether deg(R) ≤ m − 2, where R(X) is the algebraic
representation of [R]1 and aborts if it is not. If A wins Game0 but not Game1, then
we construct B1 that extracts R(X) =

�m
s=0 rsX

s as the algebraic representation

85

of [R]1 where r̂s �= 0 for s = m − 1 or s = m. Then, B1 sets R̂�(X) = X2R(X) =�m
s=0 r̂sX

2+s. Note that, from the second verification equation [R̂�(τ)]1 = [R̂]1.

Now, B1 outputs
�
[R̂]1 − [R�(τ)]1

�
1
rs

= [τ 2+s]1, wining qDHE as 2 + s > m, the
highest available power of τ in G1. Thus,

Advs.bindingA = AdvGame1
A (λ) + AdvqDHE

B1
(λ).

Now, we prove that the advantage of A in Game1 is negligible. Indeed, let
Ca(X) =

�m
j=1 ajλj(X)+Xmâ, R(X) and Q(X) be the algebraic representations of

Ca, [R]1 and [Q]1, and recall deg(R) ≤ m− 2 while deg(Ca), deg(Q) ≤ m.

We set P (X) = Ca(X)Cb(X) −m−1y − XR(X) − Q(X)zH(X), the first verifi-
cation equation says that P (τ) = 0, which means either that (i) P (X) is the zero
polynomial, or (ii) τ is a root of it. Assume for now that P (X) ≡ 0, then

�
m�

j=1

ajλj(X) +Xmâ

��
m�

j=1

bjλj(X)

�
= m−1y +XR(X) + zH(X)Q(X)

Because deg(R) ≤ m− 2, we know zH(X) does not divide XR(X) and since for
all i �= j λi(X)λj(X) ≡ 0 mod zH(X) and λ2

i (X) ≡ λi(X) mod zH(X), we have

that
��m

j=1 ajλj(X)
���m

j=1 bjλj(X)
�
=
�m

j=1 ajbjλj(X) mod zH(X). Then,

m�

j=1

ajbjλj(X) +Xmâ
m�

j=1

bjλj(X) = m−1y +XR(X)

and thus m−1y =
�m

j=1 ajbjλj(0). As H is a multiplicative subgroup, λj(0) = m−1

for all j ∈ [m] and thus
�m

j=1 ajbj = y. Namely, there exists a = (aj)
m
j=1 such that

a · b = y, and A looses Game1.

Then, it must be the case that P (X) �= 0 and P (τ) = 0. We construct an
adversary B2 against the dlog assumption. On input [τ]1, B2 calculates all the roots
of P (X) and checks, in polynomial time, which is the one that encoded in G1 equals
[τ]1. Thus,

Advs.bindingA ≤ AdvqDHE
B1

+ AdvdlogB2
.

Theorem 14. The construction above has Homomorphic Proofs and Openings.

Proof.
Homomorphic Proofs. Let yb = a · b, yc = a · c, πb ← IP.Prove(srs, a,b, yb)
and πc ← IP.Prove(srs, a, c, yc), where πb = ([Rb(τ)]1, [Qb(τ)]1, [R̂b(τ)]1), πc =
([Rc(τ)]1, [Qc(τ)]1, [R̂c(τ)]1) are such that

86

�
m�

j=1

ajλj(X)

��
m�

j=1

bjλj(X)

�
−m−1yb = XRb(X) + zH(X)Qb(X),

�
m�

j=1

ajλj(X)

��
m�

j=1

cjλj(X)

�
−m−1yc = XRc(X) + zH(X)Qc(X),

and R̂b(X) = X2Rb(X), R̂c(X) = X2Rc(X).

In order to compute a proof that a · (αb+ βc) = αyb + βyc, the prover proceeds as
follows:
�

m�
j=1

ajλj(X)

��
α

m�
j=1

bjλj(X) + β
m�
j=1

cjλj(X)

�

= α

�
m�
j=1

ajλj(X)

��
m�
j=1

bjλj(X)

�
+ β

�
m�
j=1

ajλj(X)

��
m�
j=1

cjλj(X)

�

= α (m−1yb +XRb(X) + zH(X)Qb(X)) + β (m−1yc +XRc(X) + zH(X)Qc(X))
= m−1(αyb + βyc) +X(αRb(X) + βRc(X)) + zH(X)(αQb(X) + βQc(X)),

and therefore for y = αyb + βyc it outputs π = ([R(τ)]1, [Q(τ)]1, [R̂(τ)]1) where
R(X) = αRb(X) + βRc(X), Q(X) = αQb(X) + βQc(X) and R̂(X) = X2R(X) =
αX2Rb(X) + βX2Rc(X) = αR̂b(X) + βR̂c(X), i.e., π = απb + βπc.

Homomorphic Openings. The proof for homomorphic openings work analogous
as the previous case. Indeed, for ya = a ·c, yb = b ·c and πa ← IP.Prove(srs, a,b, ya),
πc ← IP.Prove(srs, c,b, yc), it is enough to see that:

�
α

m�
j=1

ajλj(X) + β
m�
j=1

cjλj(X)

��
m�
j=1

bjλj(X)

�

= α

�
m�
j=1

ajλj(X)

��
m�
j=1

bjλj(X)

�
+ β

�
m�
j=1

cjλj(X)

��
m�
j=1

bjλj(X)

�

= α (m−1ya +XRa(X) + zH(X)Qa(X))
+β (m−1yc +XRc(X) + zH(X)Qc(X))
= m−1(αya + βyc) +X(αRa(X) + βRc(X)) + zH(X)(αQa(X) + βQc(X)),

and the rest of the proof is the same as the one for homomorphic proofs.

Updatability with Hints

In this construction, a proof that ej ·ej = 1 is [Rj(τ)]1, for Rj(X) = (λj(X)−1)/X.
On the other hand, the proof that ej · ei = 0 for i �= j is [Q(τ)]1, for Q(X) =

87

((λj(X)λi(X))/zH(X). Including the evaluation of all these polynomials in upk
would require a srs of quadratic size. Still, as noted in [TAB+20],

λj(X)λi(X)

zH(X)
=

zH(X)

(X − hj)(X − hi)
,

and can be computed as

1

hj − hi

�
zH(X)

X − hj
+

zH(X)

X − hi

�
.

Therefore, it is enough to include in upk the evaluations of (λj(X) − 1)/X for the
proofs of same position and then the evaluations of {zH(X)/(X − hj)}mj=1, so the
verifier can reconstruct the one of λj(X)λi(X)/zH(X) from there, requiring access
to 2m elements instead of m2.

4.3.2 Monomial Basis

For this scheme, presented in Figure 4.7 we consider vectors a ∈ Fm
p encoded as a

polynomial in the monomial basis, that is as a(X) =
�m

j=1 ajX
j−1.

KeyGen(1λ,FIPm): Sample τ ← Fp and output prk =
�
{[τ j]1,2}mi=0

�
, vrk =�

[τm−1]1, {[τ j]2}mi=0

�
.

IP.Commit(prk, a): Compute Ca =
�m

j=1 aj[τ
j−1]1 and output (Ca, a).

IP.Open(prk, aux,b, y) :
Find R(X), Q(X) such that deg(R) < m− 1 and

�
m�

j=1

ajX
j−1

��
m�

j=1

bjX
m−j

�
− yXm−1 = R(X) +XmQ(X).

Define R̂(X) = X2R(X)
Output π = ([R(τ)]1, [Q(τ)]1, [R̂(τ)]1).

IP.Vf(vrk,Ca,b, y, π) : Compute Cb =
�m

j=1 bj[τ
m−j]1, parse π = ([R]1, [Q]1, [R̂]1)

and output 1 if and only if

e
�
Ca,Cb

�
− e
�
y[τm−1]1, [1]2

�
= e
�
[R]1, [1]2

�
+ e
�
[Q]1, [τ

m]2
�
and

e([R]1, [τ
2]2) = e([R̂]1, [1]2).

Figure 4.7: Inner Product argument with encodings in the monomial basis.

88

Security

Theorem 15. The construction above satisfies Completeness, Homomorphic Proofs
and Homomorphic Openings.

Proof. Completeness Let a,b ∈ Fm and y = a · b

�
m�
j=1

ajX
j−1

��
m�
j=1

bjX
m−j

�
=

m�
j=1

m�
i=1

ajbjX
j−1+m−i

=
m�
j=1

ajbjX
−1+m +

m�
j=1

�
i�=j

ajbiX
j−1+m−i

= (a · b)Xm−1 +
m�
j=1

�
i<j

ajbiX
j−1+m−i +

m�
j=1

�
i>j

aibjX
j−1+m−i

= yXm−1 +
m�
j=1

�
i<j

ajbiX
j−1+m−i +Xm

m�
j=1

�
i>j

ajbiX
j−1−i.

An honest prover computes R(X) =
�m

j=1

�
i<j

ajbiX
j−1+m−i and also Q(X) =

�m
j=1

�
i>j

ajbiX
j−1−i, R̂(X) = X2R(X), and sets π = ([R(τ)]1, [Q(τ)]1, [R̂(τ)]1).

For Ca(X) =
�m

j=1 ajX
j−1 and Cb(X) =

�m
j=1 bjX

m−j , we have Ca(X)Cb(X) −
yXm−1 = R(X)+XmQ(X) and by definition R̂(X) = X2R(X). Then, for the same
polynomials evaluated in the groups the pairing equations

e
�
Ca,Cb

�
− e
�
y[τm−1]1, [1]2

�
= e
�
[R]1, [1]2

�
+ e
�
[Q]1, [τ

m]2
�
and

e([R]1, [τ
2]1) = e([R̂]1, [1]2) also holds.

Homomorphic proofs. Let yb = a ·b, yc = a · c, πb ← IP.Prove(srs, a,b, yb), and
πc ← IP.Prove(srs, a, c, yc), where πb = ([Rb(τ)]1, [Qb(τ)]1, [R̂b(τ)]1), πc = ([Rc(τ)]1,
[Qc(τ)]1, [R̂c(τ)]1) are such that

�
m�

j=1

ajX
j−1

��
m�

j=1

bjX
m−j

�
− ybX

m−1 = Rb(X) +XmQb(X),

�
m�

j=1

ajX
j−1

��
m�

j=1

cjX
m−j

�
− ycX

m−1 = Rc(X) +XmQc(X),

and R̂b(X) = X2Rb(X), R̂c(X) = X2Rc(X).

Now, note that in order to compute a proof that a · (αb+ βc) = αyb + βyc, the
prover proceeds as follows:

89

�
m�

j=1

ajX
j−1

��
α

m�

j=1

bjX
m−j + β

m�

j=1

cjX
m−j

�

= α

�
m�

j=1

ajX
j−1

��
m�

j=1

bjX
m−j

�
+ β

�
m�

j=1

ajX
j−1

��
m�

j=1

cjX
m−j

�

= α
�
Xm−1yb +Rb(X) +XmQb(X)

�
+ β
�
Xm−1yc +Rc(X) +XmQc(X)

�

= Xm−1(αyb + βyc) + (αRb(X) + βRc(X)) +Xm(αQb(X) + βQc(X)),

and therefore for y = αyb + βyc it outputs π = ([R(τ)]1, [Q(τ)]1, [R̂(τ)]1) where
R(X) = αRb(X) + βRc(X), Q(X) = αQb(X) + βQc(X), and R̂(X) = X2R(X) =
αX2Rb(X) + βX2Rc(X) = αR̂b(X) + βR̂c(X) i.e., π = απb + βπc.

Homomorphic openings. The proof for homomorphic openings work analogous
as the previous case. Indeed, for ya = a ·c, yb = b ·c and πa ← IP.Prove(srs, a,b, ya),
πc ← IP.Prove(srs, c,b, yc), it is enough to see

�
α

m�

j=1

ajX
j−1 + β

m�

j=1

bjX
j−1

��
m�

j=1

cjX
m−j

�

= α

�
m�

j=1

ajX
j−1

��
m�

j=1

cjX
m−j

�
+ β

�
m�

j=1

bjX
j−1

��
m�

j=1

cjX
m−j

�

= α
�
Xm−1ya +Ra(X) +XmQa(X)

�
+ β
�
Xm−1yb +Rb(X) +XmQb(X)

�

= Xm−1(αya + βyb) + (αRa(X) + βRb(X)) +Xm(αQa(X) + βQb(X)),

and the rest of the proof works as the one for homomorphic proofs.

Theorem 16. The construction in Figure 4.7 is a strong function binding LVC
scheme under the algebraic group model if the qDHE assumption holds.

Proof. We will proceed through a series of games, and we set Game0 to be the
strong binding game of Definition 6. Let A be an adversary against of the scheme in
Figure 4.6, whose advantage is Advs.bindingA . Note that the second verification equation
in our scheme is the same as in Figure 4.6, so we define Game1 and the reduction B1

as in the proof of Theorem 13, and have

Advs.bindingA ≤ AdvqDHE
B1

+ AdvGame1
A .

Now, we prove that the advantage of A in Game1 is negligible. Similarly to
the proof for the case of the Lagrange basis, we define Ca(X) =

�m+1
j=1 ajX

j−1 the

algebraic representation of Ca and set P (X) = Ca(X)Cb(X) − yXm−1 − R(X) −

90

Q(X)zH(X) and the first verification equation says that, either τ is a root of P (X),
or P (X) ≡ 0. If the latter is the case, we have

�
m+1�

j=1

ajX
j−1

��
m�

j=1

bjX
m−j

�
− yXm−1 = R(X) +XmQ(X).

The left side equals
�m

j=1

�m
j=1 ajbjX

i−1+m−j − yXm−1 + am+1X
m

m�
j=1

bjX
m−j .

Because deg(R) < m − 1 and deg(XmQ(X)) > m − 1, we have that the right side
of the equation has coefficient zero for Xm−1 and so does the left side then. Thus,�m

j=1 ajbjX
m−1 − yXm−1 = 0, which happens if and only if

�m
j=1 ajbj − y = 0.

Namely, there exists a = (aj)
m
j=1 such that a · b = y, and A looses Game1.

Then, it must be the case that P (X) �= 0 and P (τ) = 0. As in the proof of the
previous theorem, we construct an adversary B2 against the dlog assumption. On
input [τ]1, B2 calculates all the roots of P (X) and checks, in polynomial time, which
is the one that encoded in G1 equals [τ]1. Thus,

Advs.bindingA ≤ AdvqDHE
B1

+ AdvdlogB .

Updates Without Hints.

In the case of this construction, we remark that we do not need any additional
update keys added to the setup. Indeed, the update key is made by proofs of inner
products between cannonic vectors ej · ej = 1 or ej · ei = 0. In our construction for
encodings in the monomial basis, a proof that ej ·ej = 1 consists on commitments to
R(X) = Q(X) = 0. On the other hand, to prove that ej · ei = 0 for i �= j the proof
is (the evaluation in the group of) either R(X) = Xm+j−i if i > j, or Q(X) = Xj−i

if j > i. As such powers of τ are already included in prk, upk = ∅.

4.4 Subvector Openings

In this section, we present algorithms for Subvector Openings(SVC), starting from
the constructions in Section 4.3. As mentioned in Definition 5, we will consider SVC
as an case of LVC schemes.

Note that the class of functions that open a set of positions I = {i1, . . . , in} of a
committed vector v ∈ Fm is given by the linear-map fI with

fI : Fm → Fn, fI(v) = (ei1 · v, . . . ein · v)

91

where for each k ∈ [n], eik is the ikth vector of the canonical basis Fm.

Thus, for a vector v ∈ Fm, we can naturally construct proofs of openings of
subvectors vI = (vi)i∈I by aggregating different inner product proofs for vectors eik
for ik ∈ I using the protocol in Figure 4.4. We refer to these aggregated proofs
as non-native subvector openings, given that they require a random oracle and in
particular, are no longer algebraic and homomorphic. As opposed to them, we
call native subvector opening to those whose aggregated proofs are algebraic and
homomorphic and do not use the random oracle.

In what follows, we improve on subvector openings in some special scenarios,
achieving native aggregation for new schemes and reducing the verifier complexity
in existing ones.

4.4.1 Native SV Openings for the Monomial Basis

For the construction of Section 4.3.2, we introduce native subvector openings for
subsets with consecutive position I = {i, i+1, . . . , i+k}. That is, for ṽ = (vi)i∈I such
that there exist u1,u2 with v = (u1, ṽ,u2). To prove an opening of ṽ, we only need
commitments to R(X) =

�i−1
j=1 vjX

m−i+j−1 and Q(X) =
�m

j=i+k+1 vm−i+j+1X
j−1,

which are shifted-encodings of u1, u2. The verifier checks that deg(R) < m − 2,
computes C̃(X) =

�i+k
j=i ṽjX

j−i and C̃ = [C̃(τ)]1 and checks whether

e(C− C̃, [τm−i]1) = e([R]1, [1]2) + e([Q]1, [τ
m+k]2).

Note that, given individual proofs of openings as in Section 4.3.2, that is, [Rs(τ)]1,
[Qs(τ)]1 such that C(X)Xm−j−vjX

m−1 = Rj(X)+XmQj(X) and deg(Rj) < m−1,
for the commitments defined above we have [R]1 = [Ri(τ)]1 and [Q]1 = [Qi+k(τ)]1,
that is, considering a prover that has pre-computed the proofs for individual open-
ings, opening consecutive positions has no cost.

4.4.2 Non-native SV Openings for the Monomial Basis

For the LVC scheme of Section 4.3.2, the techniques of Section 4.2.1 allow us to
redefine the Open and Verify algorithms to work for an arbitrary subset of positions
I ⊂ [m]. More specifically, the prover will simply run IP.Open(prk, aux, eik ,v) for
k = 1, . . . , n to obtain (vik ,πik), where πik is a proof of correct computation of
vik . Then, they use the random oracle to sample a randomness γ ∈ F and output
πI =

�n
k=1 γ

k−1πik .

The verifier will receive πI = ([R]1, [Q]1, [R̂]1), compute y =
�n

k=1 γ
k−1vik , and

92

check as before e([R]1, [τ
2]2) = e([R̂]1, [1]2) and

e

�
C,

n�

k=1

γk−1[τm−ik]2

�
− e
�
y[τm−1]1, [1]2

�
= e ([R]1, [1]2) + e ([Q]1, [τ

m]2) .

Note that verifier’s work is dominated by the computation of
�n

k=1 γ
k−1[τm−ik]2,

so we analyze for which sets I ⊂ [m] this computation can be cheaper than |I|
G2-exponentiations. Without loss of generality, we can re-assign γk−1 → γm−ik , and
thus our verifier now needs to compute

�n
k=1[(γτ)

m−ik]2 =
�

i∈I [(γτ)
m−i]2.

Now, note that if we consider a set of indexes Ik,s,n ⊂ [m] that is an arithmetic
progression, i.e. it is such that for a given ratio s, a starting power k and a number
n of desired elements, Ik,s,n = {k, s+ k, . . . , (n− 1)s+ k}, then

�

i∈Ik,s,n
(γX)m−i = (γX)k

1− (γX)n

1− (γX)s
.

This reduces the work of the verifier to compute
�

i∈Ik,s,n(γX)m−i to constant.

Note that the verifier cannot compute (1 − (γX)s)−1, so we multiply all the terms
of the equation by 1 − (γX)s. I.e, the verifier computes y =

�
i∈Ik,s,n γ

m−iyi and
checks whether

e
�
C, γk[τ k]2 − γk+n[τ k+n]2

�
− e
�
[τm−1]1y − [τn+s−1]1γ

sy, [1]2
�

= e
�
[R]1, 1− γs[τ s]2

�
) + e

�
[Q]1, [τ

n]2 − γs[τn+s]2
�
.

4.4.3 Lagrange Basis

Native.

In the Lagrange Basis, one can use the native subset openings of [TAB+20]. There,
the verifier needs to compute the vanishing polynomial zI(X) =

�
i∈I(X − hi), as

described in Section 2.5.3. To reduce verifer’s work we focus on those subsets I ⊂ [m]
such that zI(X) can be calculated in less than |I| computations. One answer to this
question comes from cosets. That is, given H = {h1, . . . , hm} = {1,ω,ω2, . . . ,ωm−1}
group of roots of unity where m is a power of 2, let H0,r be the subgroup of order r
of H, where r goes from 2 to m/2. Then, for each 0 ≤ s < r we can construct the
coset Hs,r = ωsH0,r, whose vanishing polynomial is zs,r(X) = Xr − (ωs)r (we prove
this statement latter in Lemma 4). Verifier accepts if and only if

e
�
C− C̃, [1]2

�
= e
�
[Q]1, [τ

r]2 − ωsr
�
.

93

Non-native.

Given that the native subvector opening procedure above works for arbitrary subsets
of indexes I ⊂ [m], we don’t consider aggregation of individual positions. The latter
makes sense only when applying a linear function to the new subset. That is, when
the verifier is given Cf,I , claimed to be a commitment to f · cI , for some function
represented as vector f and cI = (ci)i∈I .

4.5 Maintainable Vector Commitment Schemes

One of the key points of vector commitment schemes that allow aggregation of proofs
is the ability to pre-compute and store individual openings and later use them to
create subvector openings without incurring linear amount of computations each
time. This is the case for the construction in [TAB+20], presented in Section 2.5.3,
and also for the maintainable scheme of [TCZ+20].

In constructions such as the ones presented in Section 4.3, the proof of opening of
one position is affected by all other elements in the vector. That is, the polynomials
committed to create the proof have coefficients that involve all the values of the
committed vector v ∈ Fm. As a consequence, prover work is linear in the size of v
(as it has to evaluate polynomials of degree m) and after updating one position of
v, all all m proofs of opening are affected and need to be changed.

In this section, we present a protocol that offers a trade-off for different efficiency
measures, using as building block the construction of Section 4.3.1. The prover
can pre-compute and store some information and then save time in updating and
computing individual proofs.

The intuition is the following: we divide the vector v in 2ν small chunks {vi} ∈
F2κ . We then arrange these chunks in a tree as follows: each leaf of the tree contains
the commitment to one chunk and each node is a succinct representation of its
children. The root of the tree is the(full) committed vector. An opening proof
involves only the elements in the path of the root to the leaf containing the position
to be opened. That is, if we want to open value a in position j of v ∈ Fm, we prove
that (1) Ci is the leaf that contains the commitment to the vi chunk containing j
and (2) Ci opens to a in the position corresponding to j. The former part can be
pre-computed and efficiently maintained, occupying storage linear in 2ν , while the
latter involves operations that are linear in 2κ.

For vectors of size m, we offer the following trade-off: for any ν,κ, such that
m = 2ν+κ+1, one can derive openings of size ν + 4 group elements. The prover can
pre-compute and store 2ν−1 proofs, and then compute proofs of functional openings
by performing O(κ2κ) group operations. We show also how to compute all proofs

94

with O(νm) group operations (plus O(m(ν + κ)) field operations). The proofs are
maintainable, as an update in a position requires recomputing only O(ν) proofs.

The construction presented below is a consequence of the results in Section 4.4
and a construction presented in the paper that this chapter is based on [CNR+22].

As a first step, we prove that the inner product construction of Section 3.3
satisfies the same properties when using as interpolation set a coset of H as it does
when H is a group of roots of unity.

4.5.1 Cosets of Roots of Unity

In this section, we prove some facts about the Lagrange and vanishing polynomials
corresponding to cosets of subgroups of roots of unity, that will be used in our
scheme.

We argue that the IP vector commitments construction in Section 4.3.1 can be
implemented when we set H to be a set of roots of unity of size m where m is a
power of two, and use as interpolation set a coset of size r(that is a smaller power
of 2) instead of H. We denote these cosets as Hs,r = {hs,r1 , . . . , hs,rr }, where each
hs,ri = ωs+(i−1)m

r , i = 1, . . . , r. We denote {λs,r
i (X)}ri=1 and zs,r(X) its Lagrange and

vanishing polynomials.

Theorem 17. Let a,b ∈ Fr, and Hs,r a coset of size r of the group of roots of unity
H0,r, with Lagrange interpolation polynomials {λs,r

i (X)}ri=1 and vanishing polynomial
zs,r(X). Set A(X) =

�r
i=1 aiλ

s,r
i (X) and B(X) =

�r
i=1 biλ

s,r
i (X). Then, a · b = y

if and only if there exist polynomials Q(X), R(X) with deg(R) < r − 2 such that

A(X)B(X)− r−1y = XR(X) + zr,s(X)Q(X).

Proof. First, note that

A(X)B(X) =

�
r�

i=1

aiλ
s,r
i (X)

��
r�

i=1

biλ
s,r
i (X)

�
=

r�

i=1

aibiλ
s,r
i (X) mod zr,s(X)

Then, there exists Q�(X) s.t. A(X)B(X) =
�r

i=1 aibiλ
s,r
i (X) + zr,s(X)Q�(X).

For the first implication, note that if a · b = y, because λr,s
i (0) = r−1 for all

i = 1, . . . , r (See Lemma 4 below),
�r

i=1 aibiλ
s,r
i (0) = r−1

�r
i=1 aibi = r−1y, which

implies that
�r

i=1 aibiλ
s,r
i (X)− r−1y vanishes at X = 0 and thus there exists R(X)

such that
�r

i=1 aibiλ
s,r
i (X) = XR(X).

95

On the other hand, if we have that A(X)B(X) =
�r

i=1 aibiλ
s,r
i (X)+zr,s(X)Q�(X)

and A(X)B(X) − r−1y = XR(X) + zr,s(X)Q(X), because deg(XR(X)) < m,
Q(X) = Q�(X) and

�r
i=1 aibiλ

s,r
i (X) = XR(X). Set X = 0 in the equation and we

have r−1
�r

i=1 aibi = r−1m, i.e, a · b = y.

Lemma 4. Consider H a group of roots of unity of size m, where m is a power of
2 and a coset Hs,r of size r. Then, λs,r

i (0) = −r, where λs,r
i (X) is the ith Lagrange

interpolation polynomial associated to Hs,r.

Proof. First, we note that Xr − ωsr is the vanishing polynomial of Hs,r. Indeed, it
has degree r and for every hs,ri we have

(hs,ri)r − ωsr = (ωs+(i−1)m
r)r − ωsr = ωsr − ωsr = 0.

Thus,

Xr − ωsr =
r�

i=1

(X − hs,ri) and
Xr − ωsr

X − hs,ri

=
r�

j �=i

(X − hs,rj).

Now, we claim that if we denote λs,r
i (X) as the ith Lagrange interpolation poly-

nomial of Hs,r, then

λs,r
i (X) =

h0,ri

rωs(r−1)

Xr − ωsr

X − hs,ri

.

To prove our claim, first note

λs,r
i (X) =

h0,ri

rωs(r−1)

Xr − ωsr

X − hs,ri

=
h0,ri

rωs(r−1)

r�

j �=i

(X − hs,rj).

It is clear from the above that λs,r
i (hs,rj) = 0 for all j �= i, now

λs,r
i (hs,ri) =

h0,ri

rωs(r−1)

r�

j �=i

(hs,ri − hs,rj) =
h0,ri

rωs(r−1)
ωs(r−1)

r�

j �=i

(h0,ri − h0,rj)

=
h0,ri

r

r�

j �=i

(h0,ri − h0,rj)

96

Since H0,r is a group of roots of unity of size r, we know that
h0,ri

r

�r
j �=i(h

0,r
i −h0,rj)

is its ith Lagrange polynomial evaluated at h0,ri , which is its ith interpolation point.
Thus the equation above equals 1.

Then, λs,r
i (X) is a polynomial of degree r − 1 such that vanishes at all elements

in Hs,r except for h
s,r
i where takes value 1 and so we conclude it is the ith Lagrange

polynomial of Hs,r.

Finally, recall that as H0,r is a set of roots of unity of size r, all its Lagrange
polynomials take value −r when evaluated in 0. Then,

λs,r
i (0) =

h0,ri

rωs(r−1)

r�

j �=i

(0− hs,rj) =
h0,ri

rωs(r−1)
ωs(r−1)

r�

j �=i

(0− h0,rj) =
h0,ri

r

r�

j �=i

(0− h0,rj)

equals the ith Lagrange polynomial of H0,r evaluated in zero, that is, r−1.

The following lemma relates the vanishing polynomial and elements of two dif-
ferent cosets of size r = m

2k
whose elements belong to the same coset of size m

2k−1 .
Recall that this is the case for cosets Hs, m

2k
, Hs�, m

2k
if and only if s ≡ s� mod 2k−1.

The lemma will be used in the next section to prove what constitutes, along with
the result on arguments for inner products using cosets, the core of our maintainable
construction.

Lemma 5. Let Hs, m
2k
, Hs�, m

2k
be two cosets of H of size m

2k
such that s < s� and

s ≡ s� mod 2k−1. Let zs, m
2k
(X) and zs�, m

2k
(X) be its vanishing polynomials. Then,

for every h ∈ Hs, m
2k

and h� ∈ Hs�, m
2k
,

zs, m
2k
(h�) = −2ωs m

2k , zs�, m
2k
(h) = 2ωs m

2k .

Proof. First, note that s� = s + 2k−1, h = ωs+(i−1)2k for some i = 1, . . . , m
2k
. Conse-

quently, h� = ωs+2k−1+(i−1)2k . Also, remark that ω
m
2 = −1, zs, m

2k
(X) = X

m

2k − ωs m

2k

and zs�, m
2k
(X) = X

m

2k − ωs� m

2k = X
m

2k − ω(s+2k−1) m

2k . Then,

zs, m
2k
(h�) = (ωs+2k−1+(i−1)2k)

m

2k − ω(s+(i−1)2k) m

2k = (ωs+2k−1

)
m

2k − ωs m

2k

= ωs m

2k
�
(ω2k−1

)
m

2k − 1
�
= ωs m

2k
�
ω

m
2 − 1

�
= ωs m

2k
�
− 1− 1

�

= −2ωs m

2k .

Analogously,

zs�, m
2k
(h) = h

m

2k − ω(s+2k−1) m

2k = (ωs+(i−1)2k)
m

2k − ω(s+2k−1) m

2k

= (ωs)
m

2k − ω(s+2k−1) m

2k zs�, m
2k
(h) = ωs m

2k
�
1− ω

m
2

�
= ωs m

2k
�
1− (−1)

�

= 2ωs m

2k .

97

4.5.2 The Scheme

Tree Structure. The idea is that the prover can pre-compute the tree before inter-
acting with any verifier, according to the trade-off between storage and opening time
they want to achieve. The root of the tree has a commitment C =

�m
j=1 vj[λj(τ)]1

to the vector v the prover aims to claim openings to.

For the next level of the tree, the prover will divide vector v on two vectors
of size m/2: v0,1 and v1,1. To commit to them, it will use Lagrange polynomials

{λb,1
j (X)}m/2

j=1 for b = 1, 0, that correspond to the cosets H0,m
2
,H1,m

2
. H0,m

2
is com-

puted as the subgroup of roots of unity of size m/2, while H1,m
2
= ωH0,m

2
. Notably,

vectors v0,1 and v1,1 will not contain consecutive positions of v, but those corre-
sponding with the index of the elements in H0,1 and H1,1, respectively. That is, v

0,1

will contain the even and v1,1 the odd positions of v.

In the next level, v0,1 and v1,1 are divided as v0,2 and v1,2, and v2,2,v3,2, respec-
tively, of sizem/4 each. Once more, note that the positions in each vs,2 do not follow
the order of v, but they will only contain the elements hs+k4 for all k = 0, . . . , m−4

4
.

To encode them, we use the Lagrange interpolation polynomial corresponding to
cosets H0,m

4
, H1,m

4
, H2,m

4
and H3,m

4
, where H0,m

4
is the subgroup of roots of unity of

size m/4, H1,m
4
= ωH0,m

4
, H2,m

4
= ω2H0,m

4
and H3,m

4
= ω3H0,m

4
. At the end of the

tree, in level ν, we have 2ν vectors of size 2κ, where ν and κ are chosen by the prover
following the trade-off mentioned before.

Notation and some facts about roots of unity. As stated before, throughout
this section, m = 2ν+κ+1 and H ⊂ F is a set of roots of unity of size m.

For cosets and Lagrange polynomials, we will use a more intuitive notation for
working with a tree structure. In Sections 4.4.3,4.5.1, we denoted as Hs,r the coset
ωsH0,r that consist of all the elements of the subgroup of roots of unity of size r mul-
tiplied by ωs. In this section, r will vary between all powers of 2 in {2ν+κ+1, . . . , 2ν},
taking value m

2�
in level � of the tree. For that reason, we will denote the coset of

size m
2�

corresponding to s as Hs,�, instead of Hs,r for r =
m
2�
. What is more, for each

i = 1, . . . , 2κ, we denote as (s�, �) the pair such that vs�,� is in the path from the root
to vi; when i is not clear from the context, we will write (s�i , �). Then, for each vi,
there are pairs {(s�, �)}κ�=1 such that the vectors vs�,� are the ones in the path from
v to vi, and are encoded as [λs�,�]1 · v, where [λs�,�]1 = ([λs�,�

1 (τ)]1, . . . , [λ
s�,�
2m−�(τ)]1)

is the vector of the Lagrange interpolation polynomials corresponding to Hs�,�, eval-
uated at the trapdoor in G1.

98

High Level Description. The construction leverages the fact that vanishing and
Lagrange polynomials corresponding to cosets of roots of unity are sparse, as has
been shown in the proof of Lemma 4, so we minimize precomputation and verifier
work. If nodes at level � are split in two, at each level we are separating cosets of
subgroups of roots of unity into cosets of half the size. Another key point is the
fact that the sumcheck in Section 3.3 and so our functional vector commitment in
Section 4.3.1 work with vectors encoded using Lagrange polynomials of cosets, as it
has been proven in Theorem 17.

Finally, we relate the parent and the children nodes at each level, in a simple
equation through this Lemma:

Lemma 6. Consider two cosets Hs�,� and Hs��,�
such that s� ≡ s�� mod 2m−�−1.

Without loss of generality, we assume s� < s��, so s� = s� + 2m−�−1 for some i = 1.
Let Cs�,�(X) be an encoding of vector vs�,�, that is, the vector of size m

2�
whose

elements are those in v at the positions k such that hk ∈ Hs�,�.

For all levels � = 0, . . . , ν it is true that

Cs�−1,�−1(X) = zs��,�(X)
Cs�,�(X)− Cs��,�(X)

2ωs�
+ Cs��,�(X)

Cs�−1,�−1(X) = zs�,�(X)
Cs�,�(X)− Cs��,�(X)

−2ωs�
+ Cs�,�(X)

Proof. We start with the equality Cs�,�(X) = zs��,�(X)C
s�,�(X)−Cs��,�(X)

2ωsr +Cs��,�(X) and
evaluate it in h ∈ Hs�,� and h� ∈ Hs��,�

, using the result in Lemma 5.

Cs�−1,�−1(h) = zs��,�(h)
Cs�,�(h)− Cs��,�(h)

2ωsr
+ Cs��,�(h), that is, vs�,�

h = 2ωs�v
s�,�
h

2ωs�
= vs�,�

h .

Also, Cs�−1,�−1(h�) = zs��,�(h
�)
Cs�,�(h�)− Cs��,�(h�)

2ωs�
+ Cs��,�(h�) and thus, vs�,�

h� = vs�,�
h�

Then, the left and right side of the equation are polynomials of degree m
2�
− 1 that

agree at m
2�
− 1 points, so we conclude they are equal.

For the other case, note that

Cs�−1,�−1(h) = zs�,�(h)
Cs�,�(h)− Cs��,�(h)

−2ωsr
+ Cs�,�(h) and vs�,�

h = vs�,�
h . Also,

Cs�−1,�−1(h�) = zs�,�(h
�)
Cs�,�(h�)− Cs��,�(h�)

−2ωs�
+ Cs�,�(h�), so vs�,�

h� = −2ωs� vs�,�
h�

−2ωs�
,

and the conclusion is the same.

99

To open C to a certain leaf commitment Ci, the idea is to implicitly show from
root to leaf that Cs�−1,�−1 −Cs�,� agree in Hs�,�. This is proven by showing that their
difference is divisible by zs�,�(X).

We describe the protocol for any function f represented as a vector f that, when
applied to v involves only the elements contained in one chunk vi. Importantly, this
relation can be generalized for any linear function through the aggregation scheme
presented in Section 4.2.2, but the most important use case is for opening individual
positions, that is, when f is a canonical vector.

Now, in order to open C to an expression f · Ci = y, the prover will (1) provide
the quotient polynomials that prove the relation above, that is, that Ci is the chunk
containing a commitment to the vector vi affected by f , and (2) prove that the inner
product between f and vi is indeed y.

Scheme Description. Formally, we present an LVC commitment scheme that
works for the function family:

Extν-Fp,2κ = {f : Fm → F,m = 2κ+ν+1 | ∃f ∈ F2κ , i ∈ 2ν s.t.

∀v1, . . . ,v2ν ∈ F2κ : f(v1, . . . ,v2ν) = vi · f}
.

Algorithms LVC.KeyGen and LVC.Commit are the same as the Lagrange basis
construction of Section 4.3 and are omitted. The commitment to v is C = [λ�]1v
together with the auxiliary input information aux. Note that step 4. of the open
algorithm is IP.Open from Section 4.3.1.

Maintainability. The cost of computing all proofs is O(νm). For each piece vi

with O(κ2κ) operations one can compute the coefficients in the monomial basis.
Following expression (2), the parent node can be computed in cost dominated by
2κ = m

2ν+1 exponentiations from the expression of children nodes, and since there are
2ν parent nodes de cost is dominated by m

2
exponentiations. Going one level up, the

vector size doubles but the number of nodes is halved. We conclude that to compute
all proofs one needs O(κ2κ + νm

2
). The number of proofs to store (including leaf

commitments) is 2ν+1 − 1.

Theorem 18. When instantiated with a function binding argument for inner product
relations IP, the scheme in Figure 4.8 is a function binding LVC argument under
the AGM if the dlog assumption hold.

Proof. Let A be an adversary against the function binding game as in Definition 6.
We will see, through game reductions, that the advantage of A in strong function
binding is negligible even for k = 2, that is, for two non-compatible functions f1, f2.

100

A plays Game0, the strong function binding game, and outputs (C, {fb, yb,πb}b=1,2),

where π1 = ({[Hs�,�]1}κ�=1,Ci[R]1, [R̂]1, [H
ν]1), π2 = ({[Hs�,�

�
]1}κ�=1,C

�
i, [R

�]1, [R̂�]1,
[Hν�]1), such that LVC.Verify(vk,C, f1, y1,π1) = 1, LVC.Verify(vk,C, f2, y2,π2) = 1,
but there exists no v ∈ Fm such that f1(v) = y1.

Let Game1 be exactly as Game0 but upon receiving π1,π2, checks if Ci and
C�
iare equal and aborts otherwise. We prove that the latter happens with negligible

probability. To start, recall A is algebraic and thus we can extract Ci(X), C �
i(X),

the algebraic representations of Ci,C
�
i and Hν(X), Hν�(X), {Hs�,�(X), Hs�,�

�
(X)}ν−1

�=0

the ones for [Hν]1, [H
ν�]1, {[Hs�,�]1, [H

s�,�
�
]1}ν−1

�=0 , respectively. Now, consider the
polynomial

LVC.Open(pk,b, aux, f,y) :
Let f(v1, . . . ,v2ν) = vi · f for f ∈ F2κ . For all � ∈ {0, ...,κ}, set
(s�, �) := (s�i , �), where s� is s.t. Cs�,� is the element in the path from the
root to vi at level �.
For every pair (s�, �), find the pair (s��, �) such that Hs�,� ∪Hs��,�

= Hs�−1,�−1.

If s� < s��, set r� = 1, otherwise, set r� = 0. Set K� = (−1)r�(2ωs��)−1

Compute all Cs�,� =
��

j=1 v
s�,�
j [λs�,�

j (τ)]1 and [Hs�,�]1 = K�(Cs�,� − Cs��,�
).

Find R(X), Hν(X) such that

�
2κ�

j=1

vi,jλ
i,κ
j (X)

��
2κ�

j=1

fjλ
i,κ
j (X)

�
− y

m
= XR(X) +Hν(X)zi,κ(X).

The polynomial R(X) should be of degree at most 2κ − 26.
Define R̂(X) = Xm−1−2κR(X).
Output π = ({[Hs�,�]1}ν−1

�=0 ,Ci = Csν ,ν , [R(τ)]1, [R̂(τ)]1, [H
ν(τ)]1).

LVC.Verify(vk,C, f,y,π):
Compute Cf =

�2κ

j=1 fj[λ
i,κ
j (τ)]2.

Check that

e(C− Ci, 1) = e([Hν]1, [zi,κ(τ)]2) +
ν−1�

�=0

e([Hs�,�]1, [zs�,�(τ)]2) (4.1)

e
�
Ci,Cf

�
− e
�
m−1y[1]1, [1]2

�
= e
�
[R]1, [1]2

�
+ e
�
[Hν]1, [zi,κ(τ)]2

�
(4.2)

e
�
[R]1, [τ

m−1−2κ]2
�
= e
�
[R̂]1, [1]2

�
(4.3)

Figure 4.8: Mantainable LVC schemes with memory/time trade-offs.

6We assume as in Section 4.3 that at most m− 1 powers of τ are in the SRS in group G1.

101

p(X) = Ci(X)− C �
i(X)− (Hν(X)−Hν�(X))zi,κ(X)

+
ν−1�

�=0

(Hs�,�(X)−Hs�,�
�
(X))zs�,�(X).

A wins Game1 if (i) p(τ) = 0, which implies there is an adversary Bdlog that
using A as subroutine breaks dlog by setting [τ]1 as input and calculating the roots
of p(X) in polynomial time, or (ii) p(X) ≡ 0 which, in particular, implies that
p(hi,kj) = 0 for all j = 1, . . . , 2κ, and so 0 = ci,j − c�i,j, since zi,k(X)|zs�,�(X) for all
the pairs (s�, �). Then, the advantage of A in the strong function binding game is
bounded by

Advs.bindingA ≤ AdvdlogB1
+ AdvGame1

A .

Let Game2 be exactly as Game1 except that it checks whether there exists a
vector vi such that f1(vi) = y1 and f2(vi) = y2 and aborts otherwise. If the latter
is the case, we can construct an adversary B2 against function binding of the IP
scheme that takes A outputs, set f̃ as the linear function represented by vector f̃1 =
(f1j)j∈i,k, and f̃2 as the one represented by f̃2 = (f2j)j∈i,k, π̃1 = ([R]1, [H

ν]1, [R̂]1),

π̃2 = ([R�]1, [Hν�]1, [R̂
�]1), outputs (f̃1, y1, π̃1), (f̃2, y2, π̃2) and wins with the same

probability of A. Then,

Advs.bindingA ≤ AdvdlogB1
+ Advs.b.IPB2

.

102

Chapter 5

Position-Hiding Linkability

This chapter is based on the paper ‘Caulk: Lookup Arguments in Sublinear Time’
[ZBK+22], which is a joint work with Vitalik Buterin, Dmitry Khovratovich, Mary
Maller, Anca Nitulescu, and Mark Simkin.

5.1 Introduction

Vector commitment schemes offer an spectrum of advantages on storing, ordering
and managing data, as it has been emphasized in the previous Chapter. In particu-
lar, we can commit to a potentially very big set of data and later prove that a specific
element or set of elements has been committed into it. The rise of privacy-preserving
applications makes it vital to make these type of protocols zero-knowledge i.e. hid-
ing the element(s) that is asserted to be in the commitment while still establishing
a certain relationship, or link, to the original set.

Making this link in zero-knowledge, that is, proving that some element commit-
ted in zero-knowledge belongs to a public set, previously committed in a succinct
way, can be crucial in many real-world applications. The simplest example is the
proof of authorization where a party proves the knowledge of a secret key beyond
one of the public keys in the set: it first isolates the public key from the set in zero-
knowledge in order not to reveal its identity. A more elaborate example is a proof of
coin ownership in private cryptocurrencies: with coins stored as hashes of a secret
k and value v in a list or a tree, any user can prove that they are allowed to spend v
by showing its k in zero knowledge. A third example is a lookup argument in verifi-
able computation: prove that intermediate values a1, a2, . . . , ak are all contained in
a certain table (e.g., a table of all 16-bit numbers for the purpose of overflow checks
in financial or mathematical computations). Applications also include membership
proofs, ring signatures, anonymous credentials and other schemes.

103

So far all these examples have been handled by working but not so efficient
mechanisms, which limit scalability and adoption. The first version of the Zcash
cryptocurrency [ZCary] used a SHA-2-based Merkle tree to store the coins and the
Groth16 [Gro16] SNARK to prove the coin ownership. Relatively heavy machinery
of Groth16 and the unfit of SHA-2 to prime-field circuits made the resulting prover
time of 40 seconds barely usable. Even the most recent developments of algebraic
hashes [AGR+16, GKR+21] reduce prover time by one order of magnitude only.
Another application of concern, lookup tables, so far has required the generic con-
struction of Plookup [GW20] that makes the prover linear in the size of the table
itself, no matter how many values are meant to be isolated.

5.1.1 Contributions

In this Chapter we first formalize the property mentioned above as position-hiding
linkability for vector commitments. Concisely, two vector commitment schemes VC1

and VC2 are position-hiding linkable if a prover can convince a verifier that one
element or set of elements committed as cm using VC2 are also elements in some
vector v publicly committed as C using VC1. As it is always the case for proving
systems, we require this scheme to satisfy completeness and soundness, defined as
linkability, and we also require position-hiding which implies zero-knowledge for the
positions and values being opened.

We present a novel position-hiding linkability construction, named Caulk, which
performs with unprecedented efficiency. We set VC1 to be the commitment scheme
described in Section 2.5.2 and 4.3.1, which encodes a vector v of size N as C(X) =�N

s=1 vsρs(X), where {ρs(X)}Ns=1 are the Lagrange interpolation polynomials cor-
responding to a subgroup of roots of unity K = {k1, . . . , kN} of size N , and later
commits to it as a G1-element C =

�N
s=1 vs[ρs(τ)]1 where τ is secret.

For the case where cm is a commitment to a single element, we set VC2 to be
a Perdersen Commitment scheme, as described in Section 2.5.4, and for the case
m > 1, VC2 = VC1. Both our constructions are based in KZG proofs of openings for
vector commitments, whose details are given in Section 2.5.2. We first note that an
individual proof of opening of value v at position s is an element [Qs] such that

e(C− [v]1, [1]2) = e([Qs]1, [τ − ks]2),

and a proof of opening of a subset of positions I ⊂ [N] is an element [QI]1 such
that if {ηs(X)}s∈I are the Lagrange interpolation polynomials of KI = {ks}s∈I ,
CI(X) =

�
s∈I vsηs(X) and zI(X) =

�
s∈I(X − ks),

e(C− [CI(τ)]1, [1]2) = e([QI]1, [zI(τ)]2).

Our prover time is unaffected by the computation of the non-hiding KZG proofs

104

[Qs]1 and [QI]1, as the former can be pre-computed along with all individual posi-
tions using N logN group operations and the latter obtained from the pre-computed
proofs for all s ∈ I, in time dependent on I as opposite to N , as shown in [TAB+20,
FK] and discussed in Section 2.5.3. As a result, note that our prover does require
linear storage.

The challenge is then to hide the polynomials committed in [v]1 or [CI(τ)]1
and [τ − ks]1 or [zI(τ)]1. For the polynomials containing the opening values we
use standard zero-knowledge techniques, while the vanishing polynomials require
a more careful approach. The prover will add blinders to the polynomials before
committing, and then needs to convince the verifier that the polynomials committed
in the group elements are indeed vanishing polynomials of some subset of K. This
last step is the most challenging part and main contribution of this Chapter.

Case m = 1. We use standard arguments of knowledge for Pedersen commitments
so the prover demonstrates knowledge of v and r such that cm = [v + gr]1 for
unknown g given to them as [g]1 in the setup. The challenge is then to prove well
formation of [a(τ − ks)]2, a blind commitment to X− ks, which implies proving that
it is a polynomial of degree 1 and that ks is an Nth root of unity i.e. that kNs = 1.

In order to avoid working with unnecessarily big polynomials, we introduce a
new subgroup of roots of unity Un = {u1, . . . , un} with n = log(N) + 6. We create
a polynomial f(X) of degree n that using its first 5 coefficients, extracts not ks but
its inverse (recall that if k−1

s is a Nth root of unity, ks is one as well), the next
log(N) coefficients to obtain the powers of 2 of k−1

s , and the last one to prove that
kNs = (k−1

s)N = 1.

Indeed, the prover shows that if z(X) has degree 1, meaning that there exist
a, b such that z(X) = aX + b = a(X + b

a
), then f(u5) =

a
b
. The other coefficients

of f(X) are constructed so f(u5+i) =
�
a
b

�2i
, and the last one used to show that�

a
b

�N
=
�
b
a

�N
= 1. By iteratively demonstrating that f(u5+i+1) = f(u5+i)f(u5+i) we

can compute the powers of a
b
up to 2logN = N while performing only O(log(N))

computations.

Case m > 1. In this case, we construct a scheme for proving position hiding
linkability between two KZG vector commitment schemes. cm is a commitment to
a = (a1, . . . , aj), where aj is an element in v for all j = 1, . . . ,m. We commit
to a as a polynomial φ(X) =

�m
j=1 ajλj(X) where {λj(X)}mj=1 are Lagrange in-

terpolation polynomials over a subgroup of roots of unity H = {h1, . . . , hm}. Let
I = {s1, . . . , sm} ⊂ [N], where each s ∈ I is included only once; that is, the set
of all index s such that vs is an element of a, without repetitions. Prover com-
mits to CI(X) =

�
s∈I vsηs(X), where {ηs(X)}s∈I are the Lagrange interpolation

polynomials of KI = {ks}s∈I , as explained in Section 2.5.3.

105

Using a KZG proof of openings with blinded commitments to CI(X) and zI(X),
the prover sends [QI(τ)]1 where QI(X) is a blinded version of Q�

I(X) such that

C(X)− CI(X) = zI(X)Q�
I(X).

Then, it remains to prove that (i) zI(X) has the right form, (ii) [CI(τ)]1 is a
commitment to the same values as cm =

�m
j ajλj(X), without repetitions and in

a different basis: {ηs(X)} vs {λj(X)}. For the first statement we introduce an
auxiliary polynomial f(X) =

�m
j=1 ksjλj(X) that includes all the ks with s ∈ I but

with the corresponding repetitions, meaning that if aj1 = aj2 = cŝ, ks1 = ks2 = kŝ.
We prove that f(X)’s coefficients are Nth roots of unity by providing a proof that
fj(X) = fj−1(X)fj−1(X) for j = 1, . . . ,m, when evaluated at elements in H, and
showing that f0(X) = f(X) and fn(X) = 1. Then it remains to prove that zI(X)
vanishes at all the coefficients of f(X) i.e. zI(f(X)) vanishes in all elements of H.
This is done by providing Q2(X) such that zI(f(X)) = zH(X)Q2(X). Note that the
argument holds also when f(X) has repeated coefficients.

The second statement is proven by asserting the polynomial equation

CI(f(X))− φ(X) = zH(X)Q3(X)

holds for some Q3(X), thus linking an input φ(X) in the known basis {λj(X)}mj=1

to CI(X) in the unknown basis {ηs(X)}s∈I . In our protocol, the procedure above is
performed by also including blinders to hide the positions and the values taken to
construct zI(X),vI = (vs)s∈I and a.

In brief, we construct a proof of membership where prover performs O(logN)
operations for N -sized commitments. Our construction naturally extends to proof
of subset memberships, thus leading the way to more efficient lookup arguments.
We have removed the bottleneck of big tables by achieving the yet impossible
O(m logN + m2) cost for m-subvector lookups. The verifier is succinct as it re-
quires only O(log(logN)) scalar operations as well as constant number of pairings
to verify a constant-size proof. We envision the widespread deployment of our con-
struction both in generic lookup-equipped proof systems [GW20, PFM+22] and spe-
cific applications with membership proofs. Mary Maller and Dmitry Khovratovich
have implementated Caulk1 in Rust, and we use that implementation for concrete
comparison with other solutions as well.

5.1.2 Related Work

Merkle-SNARK. Zcash protocol [ZCary] proposed a SNARK over a circuit describ-
ing a Merkle tree opening for the anonymous proof of coin ownership, which remains

1https://github.com/caulk-crypto/caulk

106

Scheme Setup |srs| Proof size Prover work Verifier work

Merkle trees + zkSNARKs Reusable m log(N) 13G1, 8F Õ(m log(N)) 2P
RSA accumulators Trusted O(1) 2 G O(log(m)) m exp

Caulk single opening (Sec. 5.3) Reusable O(N) 6G1, 2G2, 4F Õ(log(N)) 4P

Caulk lookup (Sec. 5.4) Reusable O(N) 14G1, 1G2, 4F Õ(m2 +m log(N)) 4P

Table 5.1: Cost comparison of our scheme with alternative proofs for membership
and lookups. N is the size of the table and m the size of the set to be opened. We
consider that Merkle trees + zk-SNARKs are implemented using Marlin [CHM+20]
and note that these numbers are different with other SNARKs. Note that the
asymptotic prover work for the Merkle trees + zkSNARKs hides the large constants
involved in arithmetising hash functions. The RSA accumulator asymptotics hides
large constants: for example G denotes a hidden order group that has larger size
than G1, G2.

a very popular approach for various set membership proof protocols [Tor21, ZkS21].
The prover costs are logarithmic in the number of tree leafs, but the concrete ef-
ficiency varies depending on the hash function that comprises the tree [AGR+16,
GKR+21]. Regular hash functions such as SHA-2 are known to be very slow, whereas
algebraic alternatives such as Poseidon are rather novel and some applications are
reluctant to use them.

Pairing Based. Camenisch et al.[CCs08] describe a vector commitment that
only requires constant prover and verifier costs for individual openings. However
the commitments themselves are computed by a trusted third party and have linear
size because the prover requires access to [(τ − ci)

−1] for all elements ci in the vector
and τ secret.

Discrete-Log Based. In the discrete-logarithm setting a series of works have
looked into achieving logarithmic sized zero-knowledge membership proof [BG12,
GK15, BCC+15, BG18]. These have the advantage that there is no trusted setup or
pairings, but the prover and verifier costs are asymptotically dominated by a linear
number of field operations. For modest sized vectors this can be practical because
the number of more computationally intensive group operations is logarithmic.

RSA Accumulators. Camenisch and Lysyanskaya [CL02] design a proof of
knowledge protocol for linking a commitment over a prime ordered group to an
RSA accumulator. There are no a-priori bounds on the size of the vector and nicely,
RSA based schemes have constant size public parameters. This approach is used by
Zerocoin [MGGR13] which is a privacy preserving payments system (the predecessor
to Zerocash [BCG+14]). Benarroch et al. [BCF+21] improve on this result by allow-
ing the use of prime ordered groups of standard size, e.g., 256 bits, whereas [CL02]
needs a much larger group. As opposite to Merkle tree constructions, [BCF+21] has
prover time constant on the size of the table, and gets up to almost four times faster
for elements of arbitrary size and between 4.5 and 23.5 for elements that are large
prime numbers; as drawback, proof size goes from 4 to 5 KB. Later, Campanelli et

107

al. [CFH+21] present also an scheme for position-hiding linkability of RSA accumula-
tors for large prime numbers and Pedersen commitments. Their proving times does
not depend on the size of the accumulator and outperforms Merkle tree approaches
by orders of magnitude; however they require either a trusted RSA modulus or class
groups.

Pairing-Based Vector Commitments. Benarroch et al. introduced in [BCF+21]
what we define as position-hiding linkability for a commitment C corresponding
to the PST vector commitment scheme [BMM+21] and a commitment cm to one
element using Pedersen’s scheme. Similar to ours, their construction consists on
opening a public polynomial encoding a vector at some hiding position s(instead of
at element ks) and prove that the output is the element committed in cm, along
with well formation of the input (by showing that s < N). Still, their construction
has a proof of size logarithmic in N and asks the verifier to perform O(logN) group
operations and log(N) pairings.

5.2 Position-Hiding Linkable VC schemes

We introduce the concept of position-hiding linkable vector commitment schemes.
Informally, two vector commitment schemes VC1 and VC2 are position-hiding link-
able if a prover is able to convince a verifier that for given commitments C corre-
sponding to VC1 and cm corresponding to VC2, it is true that all the elements in the
vector committed in cm are also elements of the vector committed in C.

Basicallly, position-hiding linkability allows the prover to extract or isolate in
zero-knowledge elements from some public set or table, and later prove further
attributes on them. This new primitive should satisfy three security notions: com-
pleteness, as usual; linkability, that captures the fact that if the proof verifies then
there is no element committed in cm that is not also committed in C; and position-
hiding, which holds only if no information about the set of elements in C that have
been used to construct cm is leaked.

Definition 23 (Position-Hiding Linkability for Vector Commitments). Two vector
commitment schemes VC1 and VC2 are position-hiding linkable if there exist algo-
rithms

�
KeyGen,Provelink,Verifylink, Simulatelink

�
that behave as follows,

• (srs, τ) ← KeyGen(1λ, d1, d2) : takes as input the security parameter, bounds
on the length of vectors in VC1 and VC2, and outputs common parameters srs
that include srs1 = srsVC1 and srs2 = srsVC2 as well as a trapdoor τ , including
the corresponding trapdoors τ1 and τ2.

• π ← Provelink(srs, r, r
�,v, a) : on input the srs, commitment randomness r to

vector v ∈ FN for some N ≤ d1 and commitment randomness r� to a ∈ Fm

108

for m ≤ d2, outputs a proof π that there exists some I ⊂ [N] such that for all
j = 1, . . . ,m, aj = vi for some i ∈ I.

• b ← Verifylink(srs,C, cm, π) : On input the srs, commitments C and cm, and
proof π, accepts or rejects.

• πsim ← Simulatelink(τ,C, cm) : On input the trapdoor τ and commitments C and
cm, outputs a simulated proof πsim,

and satisfy the following properties:

Completeness: For all N,m with N ≤ d1 and m ≤ d2, all v ∈ FN , and all
a ∈ Fm it holds that:

Pr


Verifylink(srs,C, cm, π) = 1

(srs, τ) ← KeyGen(1λ, d1, d2);
C ← VC1.Commit(srs1,v, r);
cm ← VC2.Commit(srs2, a, r

�);
π ← Provelink(srs, r, r

�,v, a)


 = 1.

Linkability For all N,m with N ≤ d1 and m ≤ d2, and all PPT adversaries A,
there exists an extractor E such that:

Pr




Verifylink(srs,C, cm, π) = 1 ∧
|v| = N ∧�

∃ j ∈ [m] s.t. aj �= ci ∀i ∈ [N] ∨
VC2.Commit(srs2, a, r

�) �= cm
�

(srs, τ) ← KeyGen(1λ, d1, d2);
v ← A(srs);

C ← VC1.Commit(srs1,v);
(π, cm) ← A(srs,C);
(a, r�) ← E(cm, π)



= negl(λ) .

Position-Hiding For all N,m with N ≤ d1 and m ≤ d2, all v and a, all PPT
adversaries A, there exists a PPT algorithm Simulatelink such that:


A(srs,C, cm, π) = 1

(srs, τ) ← KeyGen(1λ, d1, d2)
C ← VC1.Commit(srs1,v, r)
cm ← VC2.Commit(srs2, a, r

�)
π ← Provelink(srs, r, r

�,v, a)


 ≈c


A(srs,C, cm, πsim) = 1

(srs, τ) ← KeyGen(1λ, N,m)
C ← VC1.Commit(srs1,v, r)
cm ← VC2.Commit(srs2, a, r

�)
πsim ← Simulatelink(τ,C, cm)




Below, we introduce position-hiding linkability for KZG commitments of arbi-
trary size and Pedersen commitments for single elements (Section 5.3), as well as
for two KZG commitments (Section 5.4).

109

5.3 Linking Vectors with Elements

In this section we present a method to link a commitment C to a vector v ∈ FN

computed as C = [C(τ)]1 with C(X) =
�N

s=1 vsρs(X), to a Pedersen commitment
cm for a value v. By this we mean a method for a prover to convince a verifier that
there exists an s such that C opens to v at ks and cm = [v + gr1]1, where r1 is a
blinding value.

We will consider two groups of roots of unity:

• K = {k1, . . . , kN} of size N where ks = ωs−1 for ωN = 1, Lagrange interpola-
tion polynomials {ρs(X)}Ns=1 where ρs(ks) = 1 and ρs(kj) = 0 if j �= s, and
vanishing polynomial zK(X).

• Un = {u1, . . . , un} of size n = log(N) + 6 with us = νs−1, νn = 1, Lagrange
interpolation polynomials {µi(X)}ni=1 and vanishing polynomial zU(X).

Our construction can be divided into three components. The main one is a
modified protocol for computing blinded versions of KZG openings for statements
C(ks) = v, that does not reveal the coordinate s or the evaluation v, which we
describe below. The high-level idea here is to re-randomize a regular KZG opening
with an additional blinding factor. It uses as subroutines the other two components.
In one side, a proof of knowledge for the element v committed in cm, that is a proof
for relation Rped as defined in Section 2.5.4. Finally, it also needs an scheme to
prove that the re-randomized vanishing polynomial used for the KZG opening is
well-formed, i.e., a NIZK argument (as in Def. 1) for the relation

Runity =
�
(srs, [z]2; (a, s)) : [z]2 = [a(τ − ks)]2 ∧ (ks)

N = 1
�
.

5.3.1 Our Blinded Evaluation Construction

Our prover takes (r� = ⊥,v) and (r1, v) as input, where the first tuple represents the
vector inside the (deterministic) KZG commitment using the Lagrange basis, and
the second tuple represents the randomness and value for the Pedersen commitment.
Let C(X) =

�N
s=1 vsρs(X) be the polynomial encoding vector v. In a regular KZG

opening for position s, the prover would compute Q(X) = C(X)−v
X−ks

and reveal [Q]1 =
[Q(τ)]1. Instead, our prover computes a special kind of obfuscated commitment to
ks by selecting a random a and committing to z(X) = aX − b = a(X − ks) where
ks = b

a
, i.e. the commitment is [z]2 = [z(τ)]2. The blinding factor is necessary,

because the set {ks}Ns=1 is polynomial sized, so revealing [τ − ks]1 would allow the
verifier to do a brute force search to find the index. The prover then computes
[T]1 = [T (τ)]1 and [S]2 = [S(τ)]2, where

T (X) =
Q(X)

a
+ gr2 and S(X) = −r1 − r2z(X),

110

and r2 is a uniformly random value chosen by the prover. T (X) is the KZG quotient
polynomial Q(X) divided by a (the blinding factor above) to compensate for z(X)
having that blinding factor. The additional term [gr2]1 mixed in to fully blind the

evaluation [Q(τ)
a

]1 and preserve zero-knowledge. [S]2 is a term that compensates for
the g terms in both [T]1 and cm. In the pairing equation that checks these points,
[S]2 will be paired with g to ensure that it can only cancel out terms containing g
and cannot make incorrect quotient polynomials appear correct.

The prover also provides two proofs of knowledge πped and πunity as described in
2.5.4 and 5.3.2 respectively. The proof πped is for v, r1 such that cm = [v + gr1]1.
The proof πunity is for a, b such that [z]2 = [aτ −b]2 and aN = bN . The verifier checks
the pairing equation

e(C− cm, [1]2) = e([T]1, [z]2) + e([g]1, [S]2).

Common inputs: C, cm

Prover: Sample blinders a, r2
$←− F

Re-compute C(X) =
�N

s=1 vsρs(X), encoding of v and cm = v[1]1 + r1[g]1

Define

z(X) = a(X − ks), T (X) =
C(X)− v

z(X)
+ r2g, S(X) = −r1 − r2z(X)

πped ← Prove(Rped, cm, (v, r1))

πunity ← Prove(Runity, (srs, [z]2), (a, aks))

Set [z]2 = [z(τ)]2, [T]1 = [T (τ)]1, [S]2 = [S(τ)]2.

Output π = ([z]2, [T]1, [S]2, πped, πunity)

Verifier: Accept if and only if the following conditions hold

e(C− cm, [1]2) = e([T]1, [z]2) + e([g]1, [S]2)

1 ← Verifyped(srs, cm, πped)

1 ← Verifyunity(srs, [z]2, πunity)

Figure 5.1: Zero-knowledge proof of membership. Shows that (v, r1) is an opening
of cm and that C opens to v at ks.

This equation checks that, for the polynomials C(X), T (X), z(X), S(X) encoded
in C, [T]1, [z]2, and [S]2 respectively, it holds that

111

C(X)− v − gr1 = T (X)z(X) + gS(X).

Because T (X) = Q(X)
a

+ r2g, z(X) = a(X − ks), and S(X) = −r1 − r2z(X), this
is

C(X)− v − gr1 =

�
Q(X)

a
+ r2g

�
z(X)− gr1 − gr2z(X) ⇐⇒

C(X)− v =

�
Q(X)

a

�
z(X).

The full description of our protocol is given in Figure 5.1.

Theorem 19. Let Rped and Runity be relations for which zero-knowledge arguments
of knowledge systems are given. The construction in Figure 5.1 implies position-
hiding linkability for the commitment schemes corresponding to C and cm in the
algebraic group model under the q-SDH and dlog assumptions.

Proof. We will proceed through a series of games to show that the protocol defined
in Fig. 5.1 satisfies the linkability property. Let A be an arbitrary algebraic PPT
adversary in the linkability game and let AdvlinkabilityA (λ) be their advantage. Let
Game0 be defined as in Definition 23, which is where we want to bound the adversarys
success probability. We define Game1,Game2 and denote AdvGamei

A as the advantage
of the adversary A in game i. We also specify reductions B1,B2,B3,B4 such that

AdvlinkabilityA = AdvGame0
A ≤ AdvGame1

A (λ) + AdvunityB1
(λ)

≤ AdvGame2
A (λ) + AdvpedB2

(λ) + AdvunityB1
(λ)

≤ AdvunityB1
(λ) + AdvpedB2

(λ) + AdvdlogB3
(λ) + AdvqSDH

B4
(λ)

In Game0 the adversary will return cm along with a proof ([z]2 = [z(τ)]2, [T]1 =
[T (τ)]1, [S]2 = [S(τ)]2, πped, πunity). We define Game1 identically to Game0, but after
the adversary returns cm along with the proof, Game1 additionally checks whether
there exists a, b such that z(X) = a(X − b) with aN = bN and abort if this is not
the case. Note that Game1 can extract z(X), the algebraic representation of [z]2,
because the adversary A is algebraic .

We observe that the adversarys advantage in Game0 and Game1 is identical,
unless it manages to break the knowledge soundness of Runity. Given such an A, we
can thus directly get a reduction B1 against the knowledge soundness of Runity and
let the advantage of this adversary be AdvB1 . The reduction B1 simply runs A and
returns πunity that is returned by A. It thus holds that

AdvlinkabilityA (λ) = AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvunityB1
(λ).

112

Now define Game2, which is identical to Game1, but after the (algebraic) adver-
sary A outputs cm the game Game2 extracts v and r such that cm = [v+gr]1. If this
extraction fails, meaning that cm is not correctly formed, then Game2 aborts. We
note that the As advantage in Game1 is identical to its advantage in Game2, unless
it manages to break the knowledge soundness of Rped. Given A, we can construct a
reduction B2 against the knowledge soundness of Rped analogously to the reduction
above and let the advantage of this adversary be AdvB2 . We observe that

AdvGame1
A (λ) ≤ AdvGame2

A (λ) + AdvpedB2
(λ).

Recall that any adversary who successful wins Game2 must output a proof that
satisfies the following equation from the verification procedure

C(τ)− v − gr1 = T (τ)z(τ) + gS(τ) ⇔
C(τ)− v = T (τ)a(τ − ks) + g(r1 + S(τ)),

while at the same time it must hold that

C(X)− v �= (X − ks)aT (X)

for any polynomial aT (X), since v is not in the committed vector v. Intuitively, the
adversary cannot satisfy this equation, since g is unknown to the prover and thus
(r1+S(X)) is chosen independently of g. More formally, we consider two cases here.
If

C(τ)− v �= T (τ)a(τ − ks)

then we can construct a reduction B3 breaking the discrete logarithm problem. Else
if

C(τ)− v = T (τ)a(τ − ks)

then we can construct a reduction B4 breaking the qSDH problem.

The reduction B3 takes as input a challenge [y]1. It runs the adversary A against
Game2 over an srs in which [g]1 = [y]1 and B3’s choice of τ (where τ is the trapdoor
information of the KZG commitment). Whenever the adversary returns an output
([z]2 = [z(τ)]2, [T]1 = [T (τ)]1, [S]2 = [S(τ)]2, πped, πunity) which wins the Game2 game,
then B3 returns

g =
C(τ)− v − T (τ)z(τ)

r1 + S(τ)
,

where T (X), r1 and S(X) are extracted from the outputs of A. The reduction’s
success probability is exactly the success probability of the adversary conditioned
on (r1 + S(τ)) �= 0.

The reduction B4 takes as input the challenge [y1]1, . . . , [yq]1. It runs the following
reduction BKZG as a subroutine. The BKZG runs the adversary A against Game2 over
an srs in which [τ]1 = [y1]1 and BKZG ’s choice of g. Whenever the adversary returns

113

an output ([z]2 = [z(τ)]2, [T]1 = [T (τ)]1, [S]2 = [S(τ)]2, πped, πunity) which wins the
Game2 game, then BKZG returns the KZG openings

(v, [a−1T]1) and (C(ks), [
C(τ)− C(ks)

τ − ks
]1)

for v �= C(τ). Then B4 can extract a qSDH solution from these openings following
the proof in Theorem 1 of [KZG10].

We can thus conclude that

AdvlinkabilityA (λ) ≤ AdvunityB1
(λ) + AdvpedB2

(λ) + AdvdlogB3
(λ) + AdvqSDH

B3
(λ).

Lastly, we prove the position hiding property of our construction. We define a
simulator Simulate that has access to the trapdoor x of srs that is indistinguishable
from an honest prover. First, Simulate calls the simulators of Rped and Runity on
input the trapdoor x, and gets simulated proofs πped and πunity. Then, it samples
a, r2 ← F and sets [z]2 = [a]2, [S]2 = [r2]2, [T]1 = (C− cm− [gr2]1)/a, and outputs
([z]2, [T]1, [S]2, πped, πunity). Note that honestly generated [z]2, [S]2 are randomized
by a and r2, respectively, and thus indistinguishable from [z]2, [S]2. Finally, [T]1
is the only element satisfying the verifying equation for given [z]2, [S]2 and thus
indistinguishable from honest [T]1 as well, which concludes the proof.

5.3.2 Correct computation of z(X)

The purpose of this section is to provide a zero-knowledge proof of knowledge for
relation Runity, i.e. that the prover knows a, b such that [z]2 = [aτ−b]2 and aN = bN .
This proof is used as a subprotocol in Fig. 5.1.

In order to prove that b
a
is inside the evaluation domain (i.e. is an Nth root of

unity) in zero-knowledge we add another polynomial f(X) of degree n = log(N)+6.
The polynomial f(X) essentially recovers a

b
from [z]2 and then includes its powers

2i until i = log(N). It will be enough then to prove that (i) f(X) is correctly
formed with respect to [z]2, (ii) it does indeed contain all 2-powers of a

b
, and (iii)

the coefficient corresponding to (a
b
)2

log(N)
= (a

b
)N equals 1.

The core of our construction is the following lemma:

Lemma 7. Let z(X) be a polynomial of degree 1, n = log(N) + 6 and U =
{u1, . . . , un} a set of roots of unity where ui = νi−1 for νn = 1. If there exists a
polynomial f(X) ∈ F[X] such that

1. f(X) = z(X) for u1, u2.

2. f(u3)(u1 − u2) = f(u1)− f(u2)

114

3. f(u4) = u2f(u3)− f(u2)

4. f(u5)f(u4) = f(u3)

5. f(u5+log(N)) = f(u6+log(N)ν
−1) = 1

6. f(u5+i+1) = f(u5+i)
2, for all i = 0, . . . , log(N)− 1

Then, z(X) = aX − b, where b
a
is an N-th root of unity.

Proof. Because z(X) has degree 1, there exist a, b ∈ F such that z(X) = aX − b.

From the first condition, we have f(u1) = a(u1) = a(ν0) = a − b, and f(u2) =
a(u2) = au2 − b. From items 2 and 3,

f(u3) =
f(u1)− f(u2)

u1 − u2
=

a− au2
1− u2

= a,

f(u4) = u2f(u3)− f(u2) = u2a− au2 + b = b.

By substituting f(u3) = a and f(u4) = b into condition 4 we see that f(u5) =
a
b
.

Therefore, from item 5 we have that for every i = 0, . . . , log(N)− 1,

f(u5+i+1) = f(u5+i)
2 =
�a
b

�2i+1

.

In particular,

f(u5+(log(N)−1)+1) = f(u5+log(N)) =
�a
b

�2log(N)

=
�a
b

�N
,

that equals 1 by the 5th condition, proving that a
b
is a Nth root of unity as required.

In our protocol the prover will construct the polynomial f(X) as

f(X) = (a− b)µ1(X) +(au2 − b)µ2(X) + aµ3(X) + bµ4(X)

+
�log(N)

i=0

�
a
b

�2i
µ5+i(X).

(5.1)

and commit to it in zero-knowledge. Then, it will show it is correct by comparing
f(ui) with the corresponding values from the constraints in Lemma 7. Namely, for
some α chosen by the verifier, it sets α1 = ν−1α, α2 = u−2α and sends v1 = f(α1) and
v2 = f(α2) along with the corresponding proofs of opening. Recall that uiα1 = ui−1α
and uiα2 = ui−2α.

115

Given v1, v2 it then shows that the following polynomial, which proves the con-
straints in Lemma 7, evaluates to 0 in α:

pα(X) =−Q(X)zU(α) +
�
f(X)− z(X)

�
(µ1(α) + µ2(α))

+
�
(1− u2)f(X)− f(α2) + f(α1)

�
µ3(α)

+
�
f(X) + f(α2)− u2f(α1)

�
µ4(α) +

�
f(X)f(α1)− f(α2)

�
µ5(α)

+
�
f(X)− f(α1)f(α1)

�
(α− un)

5�

j=1

(α− uj) +
�
f(α1)− 1

�
µn(α).

Note that the polynomials that are already evaluated in α in pα(X) are thus
that either the verifier can compute its own in log(log(N)) time, or are opened by
the prover.

Using v1, v2, the commitments to Q(X), f(X) and after computing µi(α) for
i = 1, 2, 3, 4, 5, n and (α − un)

�5
j=1(α − uj), the verifier computes a commitment

[P]1 to pα(X) and checks that (i) v1, v2 are correct openings of f(X) at α1 = ν−1α
and α2 = ν−2α, (ii) 0 is a correct opening of pα(X) at α, and (iii) [z]2 has degree 1.

For this last check, we ask the prover to include a term Xd−1z(X) in Q(X)
and then the verifier computes [P]1 without the terms including z(X), i.e, without
−Xdz(X)zU(α) − z(X)(µ1(α) + µ2(α)). It will instead add them in the group via
the pairing later, to assure that it cannot be the case that deg(z) > 1, unless
deg(pα) > d, which is not possible under the AGM.

We describe the protocol in Fig. 5.2. PC denotes the KZG polynomial commit-
ment scheme as described in Section 2.5.1.

Theorem 20. The protocol in Fig. 5.2 is a knowledge-sound argument (as defined in
Def.1) for relation Runity if KZG is a sound polynomial commitment scheme, under
the the Algebraic Group and Random Oracle models. When used as a building block
in the argument of Figure 5.1, it also satisfies zero-knowledge2.

Proof. We proceed through a series of games to show that the protocol defined in 5.2
satisfies knowledge soundness. We set Game0 to be the soundness game as in Def. 1
and consider an algebraic adversary A against it which has advantage Advk-soundA .
We define Game1, Game2 and specify reductions B1 and B2 such that

Advk-soundA (λ) = AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvqSDH
B1

(λ)

≤ AdvGame2
A (λ) + AdvqDHE

B2
(λ) + AdvqSDH

B1
(λ)

≤ AdvqSDH
B1

(λ) + AdvqDHE
B2

(λ) + negl(λ) .

2When used as an independent argument, [z]2 must be an output of the prover in the first
round, or in any round of the main scheme when plugged into other protocols.

116

Common input: [z]2

Prove: Sample r0, r1, r2, r3
$←− F and let r(X) ← r1 + r2X + r3X

2

f(X) = (a− b)µ1(X) + (au2 − b)µ2(X) + aµ3(X)

+bµ4(X) +
�log(N)

i=0

�
a
b

�2i
µ5+i(X) + r0µn(X) + r(X)zU(X),

p(X) =
�
f(X)− (aX − b)

��
µ1(X) + µ2(X)

�
+
�
(1− u2)f(X)

−f(ν−2X) + f(ν−1X)
�
µ3(X) +

�
f(X) + f(ν−2X)− u2f(ν

−1X)
�
µ4(X)

+
�
f(X)f(ν−1X)− f(ν−2X)

�
µ5(X) +

�
f(ν−1X)− 1

�
µn(X)

+
�
f(X)− f(ν−1X)f(ν−1X)

�
(X − un)

�5
j=1(X − uj),

Set ĥ(X) = p(X)
zU (X)

, Q(X) = ĥ(X) +Xd−1z(X),

Output ([F]1 = [f(τ)]1, [Q]1 = [Q(τ)]1).

Verify : Send challenge α ∈ F

Prove : α1 = ν−1α, α2 = ν−2α;

pα(X) = −zU(α)Q(X) +
�
f(X)− z(X)

��
µ1(α) + µ2(α)

�

+
�
(1− u2)f(X)− f(α2) + f(α1)

�
µ3(α)

+
�
f(X) + f(α2)− u2f(α1)

�
µ4(α) +

�
f(X)f(α1)− f(α2)

�
µ5(α)

+
�
f(X)− f(α1)f(α1)

�
(α− un)

�5
j=1(α− uj) +

�
f(α1)− 1

�
µn(α),

Compute ((v1, v2), π1) ← PC.Open(srsPC, f(X), deg = ⊥, (α1,α2)),

(0, π2) ← PC.Open(srsPC, pα(X), deg = ⊥,α),

and output
�
v1, v2, π1, π2

�
.

Verify : Set α1 = ν−1α; α2 = ν−2α,

[P]1 = −zU(α)[Q]1 +
�
µ1(α) + µ2(α)

�
[F]1 + µ3(α)

�
(1− u2)[F]1 + v1 − v2

�

+µ4(α)
�
[F]1 + v2 − u2v1

�
+ µ5(α)

�
v1[F]1 − v2

�
+ µn(α)

�
v1 − 1

�

+(α− un)
�5

j=1(α− uj)
�
[F]1 − v21

�
,

Parse π2 = [Q̂]1 and accept if and only if

1 ← PC.Verify
�
srsPC, [F]1, deg = ⊥, (α1,α2), (v1, v2), π1

�
,

e
�
[P]1, [1]2

�
+ e
�
− (µ1(α) + µ2(α))− zU(α)[τ

d−1]1, [z]2
�
= e
�
[Q̂]1, [τ − α]2

�

Figure 5.2: NIZK argument of knowledge for Runity and deg(z) ≤ 1.

117

In Game0 the adversary will return [z]2 along with a proof ([F]1 = [f(τ)]1, [Q]2 =
[Q(τ)], v1, v2, π1, π2). We also consider p̂(X), the algebraic representation of [P]1
as constructed by the verifier. Note that π2 is KZG opening proof for p(X) =
p̂(X) − z(X)(µ1(α) + µ2(α) − zU(α)X

d−1) opening to 0 at α. We define Game1
identically to knowledge soundness, but after the adversary returns [z]2 along with
the proof, Game2 additionally checks whether f(α1) = v1, f(α2) = v2, p(α) = 0 and
aborts otherwise. Note that Game1 can extract f(X), Q(X) because the adversary
A is algebraic, and p(X) is constructed from them.

We show the probability that f(α1) = v1, f(α2) = v2, p(α) = 0 is bounded by
qSDH. We construct a reduction B1 that takes as input a challenge [y]1, . . . , [yq]1.
It runs the following reduction BKZG as a subroutine. The BKZG runs the adversary
A against Game0 over an srs in which [τ]1 = [y]1. Whever the adversary returns an
output ([F]1 = [f(τ)]1, [Q]2 = [Q(τ)], v1, v2, π1, π2, π3) that wins the Game0 but not
the Game1 game, then BKZG returns the KZG openings

�
(v1, [F]1) and (f(α1), [

f(τ)− f(α1)

τ − α1

])
�
,

�
(v2, [F]1) and (f(α2), [

f(τ)− f(α2)

τ − α2

])
�
or
�
(0, [P]1) and (p(α), [

p(τ)− p(α)

τ − α
])
�

for either v1 �= f(α1), v2 �= f(α2) or p(α) �= 0. Then B1 can extract a qSDH solution
from these openings following the proof of Theorem 3 in [KZG10]. Thus

Advk-soundA (λ) = AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvqSDH
B1

(λ).

We define Game2 as Game1 except that Game2 additionally checks if deg(z) ≤
1 for z(X) being the algebraic representation of [z]2, and aborts otherwise. We
show that A’s advantage in both games is the same unless it breaks qDHE. Indeed,
assume deg(z) = 2, we construct an adversary BqDHE against qDHE. The B2 takes
as input the challenge [y1]1, . . . , [yq]1 and runs A against Game1 over an srs in which
[τ]1 = [y]1. When A returns an output ([F]1 = [f(τ)]1, [Q]2 = [Q(τ)], v1, v2, π1, π2)
that wins the Game1 but not the Game2 game, then B2 extracts p̂(X) =

�d+1
s=0 p̂sX

s

as the algebraic representation of [P]1 computed by the verifier. Note that, since�
−µ1(α)−µ2(α)−zU(α)X

d−1
�
z(X) does not vanish atX = α, we have that p̂d+1 �= 0.

Then, B2 sets P̂ (X) = P (X)− p̂d+1X
d+1 and outputs

�
[P]1− [P̂ (τ)]1

�
1

p̂d+1
= [τ d+1]1,

wining qDHE. Thus

AdvGame1
A (λ) = AdvGame2

A (λ) + AdvqDHE
B2

(λ).

Finally, let us show that

AdvGame2
A (λ) ≤ negl(λ) .

Consider f(X), Q(X) the algebraic representations of [F]1, [Q]1. The algebraic

118

representation of the element [P]1 that the verifier constructs is

p(X) = −zU(α)Q(X) +
�
µ1(α) + µ2(α)

�
f(X)

+ µ3(α)
�
(1− u2)f(X) + v1 − v2

�
+ µ4(α)

�
f(X) + v2 − u2v1

�

+ µ5(α)
�
v1f(X)− v2

�
+ µn(α)

�
v1 − 1

�
+ (α− un)

5�

j=1

(α− uj)
�
f(X)− v21

�

Since Game2 checks that v1 = f(ν−1α), v2 = f(ν−2α), we can replace these values
and see that

p(X) = −zU(α)Q(X) +
�
µ1(α) + µ2(α)

�
f(X)

+ µ3(α)
�
(1− u2)f(X) + f(ν−1α)− f(ν−2α)

�

+ µ4(α)
�
f(X) + f(ν−2α)− u2f(ν

−1α)
�
+ µ5(α)

�
f(ν−1α)f(X)− f(ν−2α)

�

+ (α− un)
5�

j=1

(α− uj)
�
f(X)− f(ν−1α)2

�
+ µn(α)

�
f(ν−1α)− 1

�

Now, because p(α) = 0 and α has been chosen by the verifier after the prover has
sent [Q]1, [F]1, except in the negligible case that α is a root of p(X), we have that
p(X) ≡ 0, i.e,

zU(X)Q(X) = −
�
µ1(X) + µ2(X)

�
f(X)

+ µ3(X)
�
(1− u2)f(X) + f(ν−1X)− f(ν−2X)

�

+ µ4(X)
�
f(X) + f(ν−2X)− u2f(ν

−1X)
�

+ µ5(X)
�
f(ν−1X)f(X)− f(ν−2X)

�

+ (X − un)
5�

j=1

(X − uj)
�
f(X)− f(ν−1X)2

�
+ µn(X)

�
f(ν−1X)− 1

�

zU(X) divides the right side of the equation and thus, the latter vanishes for all
{ui}ni=1. This implies that

• f(u1) = a(u1), f(u2) = a(u2)

• f(u3) =
v2−v1
u1−u2

= f(u3ν−2)−f(u3ν−1)
u1−u2

= f(u1)−f(u2)
u1−u2

• f(u4) = u2f(u4ν
−1)− f(u4ν

−2) = u2f(u3)− f(u2)

• f(u5)f(u5ν
−1) = f(u5ν

−2), i.e, f(u5)f(u4) = f(u3)

• 1 = f(unν
−1) = f(u5+log(N))

•
�
f(u5+i+1)− f(u5+i+1ν

−1)f(u5+i+1ν
−1)
�
(ui − un)

�5
j=1(ui − uj) = 0 for all i =

1, . . . , n. Note that (ui − un)
�5

i=1(ui − uj) �= 0 if i /∈ {1, 2, 3, 4, 5, n}, which
implies that 0 = f(u5+i+1)− f(u5+i+1ν

−1)f(u5+i+1ν
−1) = f(u5+i+1)− f(u5+i)

2

for all i = 0, . . . , log(N).

119

By Lemma 7 we have that z(X) = aX − b where a
b
is an N -th root of unity.

For zero-knowledge, we define a simulator Simulate that has access to the trap-
door of srs and is indistinguishable from an honest prover. The simulator first
chooses s1, s2, v1, v2 uniformly at random and sets [F]1 = [s1]1 and [Q]1 = [s2]1.
It computes α1 = ν−1α, α2 = ν−2α. It then computes [w1]1 =

�
[F]1 − v1η1(τ) −

v2η2(τ)
�

1
(τ−α1)(τ−α2)

, for η1(τ) =
τ−α2

α1−α2
, η2(τ) =

τ−α1

α2−α1
.

It sets [P]1 the same as the verifier i.e.

[P]1 = −[Q]1zU(α) + [F]1
�
µ1(α) + µ2(α)

�

+
�
[F]1(1− u2)− v2 + v1

�
µ3(α) +

�
[F]1 + v2 − u2v1

�
µ4(α)

+
�
[F]1v1 − v2

�
µ5(α) +

�
v1 − 1

�
µn(α) +

�
[F]1 − v21

�
(α− un)

5�

i=1

(α− uj)

and then computes [w2]1 = ([P]1 − (µ1(α) + µ2(α) + zU(α)τ
d−1)z) 1

τ−α
, where z = a

is the output of the simulator in the proof of Theorem 19.

It returns ([F]1, [Q]1, v1, v2, π1 = [w1]1, π2 = [w2]2).

We must argue that the simulators output is distributed identically to the honest
provers. Then the provers components are randomised by

F : r0µn(τ) H : r(τ)

v1 : r(ν−1α)zU(α) v2 : r(ν−2α)zU(α)

and the elements [w1]1, [w2]1 are the unique elements satisfying the verifies equa-
tions given [F]1, [Q]1, v1, v2. The probability that r0µn(τ), r(τ), r(ν−1α)zU(α),
r(ν−2α)zU(α) are dependent at random α is negligible because r0 is a random ele-
ment and r(X) a random degree 2 polynomial and the probability that ν−1α = τ or
ν−2α = τ is 2

|F| . Where the simulators terms [F]1, [Q]1, v1, v2 are chosen uniformly

at random and [w1]1, [w2]1 are the unique terms that satisfy the verifies equations,
we have that these distributions are identical except with negligible probability.

5.4 Lookup tables for hiding values

In this section we present position-hiding linkability for KZG vector commitment
schemes (Section 2.5.2). The aim is to prove that a commitment cm contains a subset
of some larger vector committed in C. We refer to a subset instead of a subvector
since our scheme proves that all the elements committed in cm are also committed
in C, but with no specific order and possible repetitions. This is essentially a lookup
table if we consider that C contains the honestly generated table.

120

Preliminaries We will consider three evaluation domains

1. K = {k1, . . . , kN} is a group of roots of unity of size N with Lagrange interpo-
lation polynomials {ρs(X)}Ns=1 where ρs(ks) = 1 and ρs(kj) = 0 if j �= s, and
vanishing polynomial zK(X).

2. For subset KI = {ks}s∈I of K defined by I ⊂ [N], we set {ηs(X)}s∈I as
its interpolation Lagrange polynomials with degree |I| − 1, and zI(X) as its
vanishing polynomial. Note that typically KI is not a subgroup.

3. For some constant m that bounds the size of the vector committed in cm, we
consider another group of roots of unity H = {h1, . . . , hm} and its Lagrange
and vanishing polynomials, {λj(X)}mj=1 and zH(X).

Our scheme uses a subprotocol a NIZK argument of knowledge for relation Runity,

Runity =

�
(srs, [zI]2, N ; (I, r)) : I ⊂ [N] ∧ [zI]1 = r

�
s∈I [τ − ks]1,

with (ks)
N = 1, ∀ s ∈ I

�

In our protocol, the prover takes as input a commitment C(X) =
�N

s=1 vsρs(X)
to the lookup table v, a structured reference string srs, and a commitment

cm = [φ(τ)]1 =

�
m�

j=1

ajλj(τ) + am+1zH(τ)

�

1

to some vector a and the opening witness a = (a1, . . . , am+1). Here am is a random
field element that blinds cm. The prover must show that it knows an opening
φ(X) =

�m
j=1 ajλj(X)+am+1zH(X) to cm such that aj ∈ {vs}Ns=1 for all 1 ≤ j ≤ m.

The full argument is given in 5.3 and can be divided into three steps.

First, the prover considers the subset I ⊂ [N] such that for all j = 1, . . . ,m,
aj = vs for some s ∈ I, and constructs the subvector vI = (vs)s∈I of v. It commits to
it in the Lagrange basis corresponding to {ks}s∈I ; namely, CI(X) =

�
s∈I vsηs(X).

Basically, the prover isolates the elements of v that will compare with a so they can
work with polynomials of smaller degree.

To convince the verifier that all the elements in CI(X) are elements of C(X), it
provides commitments to zI(X), Q1(X) such that

C(X)− CI(X) = zI(X)Q1(X). (5.2)

Here is the place where the precomputation is used: C(X) has degree N and so does
Q1(X). In order to compute a commitment to Q1(X) in time independent from N ,

121

we use the aggregation method described in 2.5.3, which consist on performing a
linear combination of the pre-computed [Qs]1 such that s ∈ I.

The challenge now is hiding CI(X) and zI(X) from the verifier without breaking
soundness. For CI(X) we use standard zero knowledge techniques and add a term
of the form r(X)zI(X), where r(X) is a polynomial with random coefficients. The
prover also blinds zI(X), but upon sending [zI]1 needs to provide a zero-knowledge
proof of well formation of it; indeed, that it is a commitment to the vanishing
polynomial of some subset KI of K.

We divide the proof of well formation of zI(X) in two steps. First, the prover
creates the polynomial f(X) =

�m
j=1 ksjλj(X) of degree m − 1 whose coefficients

are the roots of unity {ks}s∈I in some order and including repetitions. They then
prove, in zero knowledge, its well formation. For that, they demonstrate that for all
hj ∈ H it is the case that (f(hj))

N = 1, via a call to a subprotocol Πunity that we
describe in 5.4.1. This guarantees that f(X) is a commitment to elements in K.

Later, on input a commitment to f(X) as above and given that f(X) passes
the verification of Πunity, we prove well formation of zI(X) by showing that it is a
polynomial that vanishes at all the coefficients of f(X) in the basis {λj(X)}mj=1. For
that, the prover sends Q2(X) such that

zI(f(X)) = zH(X)Q2(X), for some polynomial Q2(X). (5.3)

Finally, note that CI(X) uses an unknown-to-the-verifier Lagrange basis, which
is {ηs(X)}s∈I . So the last step of our argument consists on linking the commitment
to CI(X) with [φ(τ)]1, which is an input to the argument and a commitment to a
in a known basis. The prover does so by providing Q3(X) such that

CI(f(X))− φ(X) = zH(X)Q3(X). (5.4)

In order to achieve zero-knowledge, upon receiving an aggregation challenge χ
from the verifier, prover actually provides one commitment [Q2]1 + χ[Q3]1 to prove
equations 5.3 and 5.4 together.

Note that for equation 5.2 to be satisfied, CI(X) cannot take more than once
each of the coefficients of C(X). On the other hand, when linking CI(X) and φ(X)
through equation 5.4, we can only prove that all the coefficients of φ(X) in the basis
{λj(X)}mj=1 are also coefficients of CI(X) in the basis {ηs(X)}s∈I , but we design the
scheme so the prover cannot say in which order or how many times each of them
appears. At the end, what we get, is a lookup table argument that assures that
some element [φ(τ)]1 is a commitment in the Lagrange basis {λj(X)}mj=1 to some
vector a = (a1, . . . , am) where for all j = 1, . . . ,m there exists some sj ∈ I such that
aj = vsj , i.e., a lookup table for potentially repeated indexes.

We describe the protocol in Fig. 5.2. PC refers to the KZG vector commitment
scheme of Section 2.5.2.

122

Common input: C = [C(τ)]1, for C(X) =
�N

s=1 vsρs(X) and cm = [φ(x)]1.

Prover: Take as input srs and φ(X) and proof [Q(τ)]2 attesting that {vs}s∈I are

openings of C. I.e., a commitment to Q(X) =
C(X)−�

s∈I vsηs(X)�
s∈I(X−ks)

.

Choose blinders r1, r2, r3, r4, r5, r6, r7 ← F uniformly at random.

For KI = {ks}s∈I , compute interpolation polynomials {ηs(X)}s∈I and

zI(X) = r1
�

s∈I(X − ks) and CI(X) =
�

s∈I vsηs(X) + (r2 + r3X + r4X
2)zI(X).

Find [Q1(τ)]2 = [r−1
1 Q(τ)− (r2 + r3τ + r4τ

2)]2 such that

C(X)− CI(X) = zI(X)Q1(X).

Define ksj as the jth element in {ks}s∈I and compute

f(X) =
�m

j=1 ksjλj(X) + (r5 + r6X + r7X
2)zH(X).

Compute a proof πunity that [F]1 has been correctly computed as in 5.4

Send [CI]1 = [CI(τ)]1, [zI]1 = [zI(τ)]1, [F]1 = [f(τ)]1, [Q1]2 = [Q1(τ)]2, πunity.

Verifier: Send challenge χ ∈ F
Prover: Find Q2(X) such that zI(f(X)) + χ(CI(f(X)) − φ(X)) = zH(X)Q2(X)

and output [Q2]1 = [Q2(τ)]1.

Verifier : Send challenge α ∈ F
Prover : Compute

p1(X) ← zI(X) + χCI(X)

p2(X) ← zI(f(α)) + χ(CI(f(α))− φ(X))− zH(α)Q2(X)

(v1, π1) ← PC.Open(srsPC, f(X), deg = ⊥,α)

(v2, π2) ← PC.Open(srsPC, p1(X), deg = ⊥, v1)

(0, π3) ← PC.Open(srsPC, p2(X), deg = ⊥,α)

Output
�
v1, v2, π1, π2, π3

�
.

Verifier : Compute [P1]1 ← [zI]1 + χ[CI]1 and [P2]1 ← v2 − χcm− zH(α)[Q2]1.

Accept if and only if (i) Vπunity
accepts, (ii)

1 ← PC.Verify
�
srsPC, [F]1, deg = ⊥,α, v1, π1

�

1 ← PC.Verify
�
srsPC, [P1]1, deg = ⊥, v1, v2, π2

�

1 ← PC.Verify
�
srsPC, [P2]1, deg = ⊥,α, 0, π3

�
,

and (iii),
e
�
[C]1 − [CI]1, [1]2

�
= e
�
[zI]1, [Q1]2

�
(5.5)

Figure 5.3: Lookup table that uses a proof for Runity as blackbox.

123

Theorem 21. Suppose that the argument of Fig. 5.3 is instantiated with a knowledge-
sound scheme for relation Runity. Then in the AGM with non-programmable ROs,
either the argument of Fig. 5.3 implies linkability for the vector commitment schemes
of C and cm, or there exists an adversary that breaks the qSDH assumption.

Proof. We will proceed through a series of games to show that the protocol defined
in Fig. 5.3 satisfies linkability as defined in Def. 23. Let A be an arbitrary PPT
adversary in the linkability game with advantage AdvlinkabilityA (λ). We define Game1,
Game2 and specify reductions B1 and B2 such that

AdvlinkabilityA (λ) ≤ AdvqSDH
B1

(λ) + Advk-soundB2
(λ) + negl(λ) .

Let us transition from the linkability game to a game Game1. Game1 behaves
as linkability except that when A returns v1, v2, Game1 checks whether f(α) = v1,
p1(v1) = v2, and p2(α) = 0, for f(X), p1(X), p2(X), the algebraic representations of
[F]1, [P1]1 = [zI]1 + χ[CI]1, and [P2]1 = v2 − χcm − zH(α)[Q2]1. If not then Game1
aborts. We design B1 such that

AdvlinkabilityA (λ) ≤ AdvGame1
A (λ) + AdvqSDH

B1
(λ)

Indeed, assume that A succeeds against linkability but not Game1. Then this
corresponds to the case where A returns verifying v1, v2, π1, π2, π3 but the equality
does not hold for some p(X) ∈ {f(X), p1(X), p2(X)}. Thus B1 takes as input a
challenge [y1]1, . . . , [yq]1 and runs the following reduction BKZG as a subroutine.
The BKZG runs the adversary A against Game0 over an srs in which [τ]1 = [y1]1.
Whenever the adversary wins the Game0 but not the Game1 game, then BKZG returns
the KZG opening

(v, π) and (p(α), [(p(X)− p(α))/(τ − α)]1)

for (v, p(X)) corresponding to either (v1, f(X)), (v2, p1(X)), (v3, p2(X)) and π the
corresponding proof. Then B1 can extract a solution from these openings following
the proof in Theorem 1 in [KZG10].

Now let us transition to a new game. Game2 behaves identically except that
when A returns [F]1, then Game2 checks whether its algebraic representation f(X)
is such that f(hj)

N = 1 for all j. If not then Game2 aborts. We design B2 such that

AdvGame1
A (λ) ≤ AdvGame2

A (λ) + Advk-soundB2
(λ)

Assume that A succeeds against Game1 but not Game2. Then B2 chooses [F]1 =
[f(τ)]1 in its own game and uses it as input to run A. When A returns πunity, B2

forwards it and wins knowledge-soundness of Πunity whenever A succeeds.

Next we transition to a game Game3 that behaves as Game2 except that when
A returns its proof, Game3 checks whether C(X) − CI(X) = zI(X)Q1(X), for

124

C(X), CI(X), zI(X), Q1(X) the algebraic representations of [C]1, [CI]1, [Q1]2, [zI]1.
If not then Game3 aborts. We design B3 such that

AdvGame2
A (λ) ≤ AdvGame3

A (λ) + AdvqSDH
B3

(λ)

The B3 takes as input a challenge [y1]1, . . . , [yq]1 and runs the adversaryA against
Game2 over an srs in which [τ]1 = [y1]1. Whenever the adversary wins the Game2
but not the Game3 game, then B3 learns

d(X) = C(X)− CI(X)− zI(X)Q1(X)

such that d(τ) = 0 and d(X) �= 0. Thus B3 returns (1, [1/(τ − 1)]1) as a valid qSDH
solution.

Finally we show that the probability that Game3 returns 1 but that for some
j ∈ [m], and for v such that C(X) =

�N
s=1 vsρs(X),

φ(hj) �∈ v

is negligible.

Recall that p2(α) = v2 − χcm − zH(α)Q2(α) = zI(v1) + χCI(v1) − χcm −
zH(α)Q2(α) = zI(f(α)) + χCI(f(α)) − χcm − zH(α)Q2(α) = 0. First, because α
has been sent by the verifier after the prover commits to φ(X), zI(X), f(X), Q2(X)
and CI(X), we have that

zI(f(X)) + χCI(f(X))− χφ(X)− zH(X)Q2(X) = 0

for all X except with negligible probability. Further, because χ has been sent by
the verifier after the prover commits, we have that there exists Q2,1(X) and Q2,2(X)
such that

0 = zI(f(X))− zH(X)Q2,1(X)

0 = CI(f(X))− φ(X)− zH(X)Q2,2(X)

except with negligible probability.

Thus,
zI(f(hj)) = zI(ksj) = 0 for all j = 1, . . . ,m.

and zI(X) =
�m

j=1(X − ksj)ẑ(X) =
�

s∈I(X − ks)ẑ(X), for some polynomial ẑ(X).
From the second equation we also we have that

CI(f(hj)) = φ(hj) ∀ j ∈ [m], i.e., CI(ksj) = φ(hj).

Using
C(f(X))− CI(f(X)) = zI(f(X))Q1(f(X))

we hence gets that

0 = C(f(hj))− CI(f(hj)) = C(kk)− φ(hj)

which concludes the proof.

125

Avoiding Repetitions. To convince the verifier that each element in v has been
chosen at most once, we run our protocol for lookup tables but with two addi-
tional steps: (i) the prover declares degz and proves deg(zI) = degz, and (ii) they
send a commitment to f̂(X) = f(X)/

�m
j=degz +1(X − hj), whose well formation can

be checked by the verifier performing the pairing equation e([f̂(τ)]1,
�m

j=degz +1[τ −
hj]2) = e([F]1, [1]2). These two steps combined prove that f(X) has no repeated
indexes and thus, our argument will guarantee that cm is a commitment to a poly-
nomial φ(X) where each element corresponds to a unique coefficient in C(X).

Range Proofs. We argue our protocol can be adapted to work as a range proof
where prover’s work is m2 + m log(log(M)) when showing some element v whose
binary representation has m non-zero elements is in [M]. We explain next the high
level idea of the scheme, omitting the necessary details to achieve zero-knowledge.
Let N − 1 = log(M) and C be a commitment to v = (1, 2, 22, . . . , 2N−1 = M),
i.e, C = [C(τ)]1 for C(X) =

�N
s=1 2

s−1ρs(X). The prover will select from v the
powers of 2 corresponding to the binary representation of v, that is, will take all the
sj ∈ J ⊂ [N − 1] such that

�
j∈J 2

sj = v. By using the two extra steps described
above, the prover convinces the verifier that there are no repeated coefficients of
v in φ(X). Finally, note that, because the {λj(X)}mj=1 are Lagrange polynomials
corresponding to a set of roots of unity, φ(0) = m−1

�m
j=1 2

sj = m−1v; that is, the
prover opens φ(X) in 0 to the verifier and convinces them that v ∈ [M]. When
implemented with Caulk as it is, the scheme above lacks of practicality since m
would be linear in log(N) in most of the cases. We aim to remove the log(N) factor
in prover’s work for Caulk and be able to implement these range proofs.

Subtables There is another nice feature that can be derived by the protocol in
Fig. 5.3 and is the creation of sub-lookup tables. Namely, for some I ⊂ [N], prover
generates t(X) =

�
s∈I(X − vs). To prove well formation of it, after having some

CI(X) that has been proven correct, it shows that there exists some Q3(X) such
that

t(CI(X)) = zH(X)Q3(X).

Then, for any polynomial a(X) of degree up to m−1, if there exists Q4(X) such
that

t(a(X)) = zH(X)Q4(X),

then the coefficients of a(X) in the basis {λj(X)}mj=1 are coefficients of CI(X) in
basis {ηs(X)}s∈I , with no specific order and potential repetitions. Note that, once
the subtable is created, prover’s work is quadratic in, potentially small, m and does
not need to store pre-computed proofs.

126

5.4.1 Multi-Unity Proof or Proving well formation of f(X)

The aim of this section is to prove in zero-knowledge that f(X) =
�n

j=1 kijλj(X) =�n
j=1 fjλj(X), where kij is the j-th element in KI , is well formed. Namely, that

f(X) is such that all its coefficients are elements in K and thus, they are all Nth
roots of unity, or what is the same, that fN

j = 1 for all j = 1, . . . ,m.

For this argument, we will consider another group of roots of unity of size n =
log(N) Un = {u1, . . . , un}, where ui = νi−1 for νn = 1. We denote the Lagrange
interpolation polynomials {µi(X)}ni=1 and vanishing polynomial zU(X).

Soundness. Let f0 = (f1, . . . , fm) ∈ Fn be the vector whose elements are the coeffi-
cients of f(X), and define f1 = f0 ◦ f0 = (f 2

1 , . . . , f
2
m). Now, define f2 = f1 ◦ f1 and

see that f2 = (f 22

1 , . . . , f 22

m). The intuition of the protocol below is that if the prover
constructs vectors {fi}ni=0 and proves that (i) f0 consists on the coefficients of f(X),
(ii) fi = fi−1 ◦ fi−1 meaning that fi = (f 2i

1 , . . . , f 2i

m) for all i = 1, . . . , n− 1 and (iii)
fn−1 ◦ fn−1 = 1, we have that all the coefficients fj are Nth roots of unity.

We will work with encodings as polynomials rather than vectors, so the prover
sets f0(X) = f(X) =

�m
j=1 ksjλj(X) =

�m
j=1 fjλj(X), fn(X) = 1, and shows to the

verifier that each of the following equations hold:

f(X)f(X)− f1(X) = zH(X)Q1(X),

f1(X)f1(X)− f2(X) = zH(X)Q2(X),

...

fn−1(X)fn−1(X)− 1 = zH(X)Qn(X),

Aggregation. Naturally, the equations above can be checked all together using stan-
dard aggregation techniques, i.e., that for some uniformly sampled field elements
γ1, . . . , γn,

�
γ1f

2(X) +
n�

i=2

γif
2
i−1(X)

�
−
�

n−1�

i=1

γifi(X) + γn1

�
= zH(X)

n�

i=1

γiQi(X). (5.6)

Importantly, the verifier must be the one computing the terms γ1f
2(X) and γn1

in order to check that the coefficients in all the other polynomials fi(X) are indeed
powers of thus in f(X), and that their Nth power is 1.

This aggregation, though, will not be performed by the verifier. Instead, we will
have the prover committing to the polynomials by using extra powers of X and

127

then partially open them at some challenge sent by the verifier. For instance, the
prover commits to U(X) =

�n
i=1 fi(X)µi(X

m) and upon receiving challenge β from
the verifier, partially opens U(X) at Xm = β, obtaining Uβ(X) =

�n
i=1 fi(X)µi(β).

That is, an aggregation as in Eq. 5.6 where γi = µi(β).

Well formation. The equation to be proven then is

�
f 2(X)µ1(X

m) +
n�

i=2

f 2
i−1(X)µi(X

m)

�

−
�

n−1�
i=1

fi(X)µi(X
m) + id(X)µn(X

m)

�
= zH(X)Q(X),

(5.7)

for some polynomial Q(X). For simplicity, we will make a change of notation and
set Y = Xm.

It is not difficult to see that two polynomials of the form
�n

i=1 p
2
s(X)µi(Y) and��n

i=1 ps(X)µi(Y)
�2

are the same modulus zU(Y), or for our case, that there exists
a polynomial h1(X, Y) such that

�
f 2(X)µ1(Y) +

n�
i=2

f 2
i−1(X)µi(Y)

�

=

�
f(X)µ1(Y) +

n�
i=2

fi−1(X)µi(Y)

�2

− zU(Y)h1(X, Y),

and thus the prover can convince the verifier of the well formation of f 2(X)µ1(Y)+�n
i=2 f

2
i−1(X)µi(Y) given

�n
i=2 fi−1(X)µi(Y) and h1(X, Y). It can also convince

them of correctness of partial evaluations by performing a KZG opening, and of the
correctness of Eq. 5.6 by providing h2(X, Y) =

�n
i=1 Qi(X)µi(Y).

The challenge is then to relate U1(X, Y) =
�n−1

i=1 fi(X)µi(Y) with U2(X, Y) =�n
i=2 fi−1(X)µi(Y).

Recall that because U = {u1, . . . , un} is a set of roots of unity, where ui = νi−1,
so we have

µi(Y ν−1) = µi+1(Y) and µn(Y ν−1) = µ1(Y).

Then, U1(X, Y) is a shift of the coefficients for µi(Y) in U2(X, Y), since U1(X, Y ν−1)+
f(X)µ1(Y) = U2(X, Y) + 1µ1(Y).

Namely, the verifier can compute U2(X, Y) from U1(X, Y) but, as it needs to
include the therm f(X)µ1(X), it will rather have access to a polynomial Ū(X, Y) =�n

i=2 fi−1(X)µi(Y), and check that (Ū(X, Y ν−1) + f(X)µ1(Y))2, modulus zU(Y)
and zH(X), equals Ū(X, Y) + id(X)µ1(Y).

The protocol is shown in Figure 5.4. As before, PC denotes the KZG polynomial
commitment scheme, as explained in Section 2.5.1.

128

Common input: [F]1 where [F]1 = [f0(τ)]1

Prover: Take as input srs and f(X)

Samples blinders t1, . . . tn ← F.

For i = 1, . . . , n, define fi(X) =
�n

j=1

�
kij
�2i

λj(X) + tizH(X),

Define U(X, Y) =
�n

i=1 fi−1(X)µi(Y).

Define Ū(X, Y) = U(X, Y)− f(X)µi(Y)

Define h2(X) =
�n

i=1 µi(Y)Qs(X) for Qs(X) = (f 2
i−1(X)− fi(X))/zH(X)

Output
�
[Ū]1 = [Ū(τn, τ)]1, [h2]1 = [h2(τ

n, τ)]1
�

Verifier: Send challenge α ∈ F
Prover: Define h1(Y) ←

�
U2(α, Y)−�n

i=1 f
2
i−1(α)µi(Y)

�
/zU(Y)

Output [h1]1 = [h1(τ)]1

Verifier: Send challenge β ∈ F
Prover:

p(Y) ← (U2(α, β)− h1(Y)zU(β))− Ū(α, βν) + id(α)µn(β))− zH(α)h2(α, Y)

(v1, π1) ← PC.Open
�
srs, f(X), deg = ⊥, X = α

�

([Ū(α, τ)]1, π2) ← PC.Open
�
srs, Ū(X, Y), deg = ⊥, X = α

�

([h2(α, τ)]1, π3) ← PC.Open
�
srs, h2(X, Y), deg = ⊥, X = α

�

((0, v2, v3), π4) ← PC.Open
�
srs, Ū(α, Y), deg = n− 1, Y = (1, β, βν)

�

(0, π5) ← PC.Open
�
srs, p(Y), deg = n− 1, Y = β

�

Set [Ūα]1 = [Ū(α, τ)]1, [h2,α]1 = [h2(α, τ)]1.

Output
�
[Ūα]1, [h2,α]1, v1, v2, v3, π1, π2, π3, π4, π5

�

Verifier: Set U ← v1µi(β) + v2, [P]1 ← U2 − [h1]1zU(β)− (v3 + id(α)µn(β)) −
zH(α)[h2,α]1. Accept if and only if

1 = PC.Verify
�
srsPC, [F]1, deg = ⊥, X = α, v1, π1

�

1 = PC.Verify
�
srsPC, [Ū]1, deg = ⊥, X = α, [Ūα]1, π2

�

1 = PC.Verify
�
srsPC, [h2]1, deg = ⊥, X = α, [h2,α]2, π3

�

1 = PC.Verify
�
srsPC, [Ūα]1, deg = n− 1, Y = (1, β, βν), (0, v2, v3), π4

�

1 = PC.Verify
�
srsPC, [P]1, deg = n− 1, Y = β, 0, π5

�

Figure 5.4: Argument for proving that some polynomial f(X) has Nth roots of
unity as coefficients in the basis {λj(X)}nj=1.

129

Theorem 22. The protocol in Figure 5.4 is a knowledge-sound argument for relation
Runity under the algebraic group model and random oracle model if the qSDH, qDHE,
and qSFrac assumptions hold.

Proof. We proceed through a series of games to show that the protocol defined in
5.3 satisfies knowledge soundness. We set Game0 to be the knowledge soundness
game as defined in 1 and consider an algebraic adversary A against it which has
advantage Advk-soundA (λ) . We define Game1 and Game2 and specify reductions B1

and B2 such that

Advk-soundA (λ) = AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvqSDH
B1

(λ)

≤ AdvGame2
A (λ) + AdvqDHE

B2
(λ) + AdvqSDH

B1
(λ)

≤ AdvGame3
A (λ) + AdvqSDH

B3
(λ) + AdvqDHE

B2
(λ) + AdvqSDH

B1
(λ)

≤ AdvqSFracB3
(λ) + AdvqDHE

B2
(λ) + AdvqSDH

B1
(λ) + negl(λ) .

In Game0 the adversary will return [F]1 = [f(τ)] along with a proof. We define
Game1 identically to Game0, but after the adversary returns [F]1 and a proof, Game1
additionally checks whether for f(X), Ūα(X), p(X) the algebraic representations of
[F]1, [Ūα]1, [P]1, it is true that u(α) = v1, Ūα(1) = 0, Ūα(β) = v2, Ūα(βν) = v3, and
p(β) = 0; and it aborts if one of the conditions does not hold.

The redution B1 takes as input the challenge [y1]1, . . . , [yq]1. It runs the fol-
lowing reduction BKZG as a subroutine. The BKZG runs the adversary A against
Game0 over an srs in which [τ]1 = [y1]1. Whenever A returns an output which
wins Game0, if (p(X),v, z) for some (p(X),v, z) ∈ {(f(X), v1,α), (Ūα(X), (1, β, νβ),
(0, v2, v3)), (p(X), β, 0)} is such that f(vi) �= zi, then BKZG computes f(z) = v� and
a valid proof π�. It outputs ([f(τ)]1, z,v, π) and ([f(τ)]1, z,v

�, π�) and wins evalu-
ation binding as they are both proofs that verify and open to different elements.
Then BqSDH can extract a qSDH solution from these openings following the proof in
Theorem 3 of [KZG10]. Thus

Advk-soundA (λ)=AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvqSDH
B1

(λ)

Now Game2 behaves identically as Game1 except that it additionally checks
whether deg(Ūα) ≤ n − 1 and deg(h2) ≤ n − 1. If it is not the case, it aborts.
Suppose A returns either deg(Ūα) = n − 1 + d or deg(h2) = n − 1 + d for some
d > 0. We argue the advantage of A in Game1 and Game2 is the same unless we
can build an adversary B2 that succeeds against qDHE. The B2 takes as input the
challenge [y1]1, . . . , [yq+d−1]1 and runs the adversary A against Game1 over an srs in
which [τ]1 = [y1]1. Whenever A returns an output which wins the Game1 game, if
(p(X),v, z) for

(p(X),v, z) ∈ {(Ūα(X), (1, β, νβ), (0, v2, v3)), (p(X), β, 0)}

130

is such that p(X) has degree greater than n − 1, then the corresponding proof
π = [q(τ)]1 has a representation q(X) has degree q+1. Thus B2 succeeds in returning
[π −�q−1

i=0 τ
i]1 and

AdvGame1
A (λ) ≤ AdvGame2

A (λ) + AdvqDHE
B2

(λ)

We define Game3 identically to Game2, but after the adversary returns [F]1 and
a proof, Game3 additionally checks whether for Ū(X), h2(X), Ūα(X), h2,α(X) the
algebraic representations of [Ū]1, [Ūα]1, [h2]1, [h2,α]1, it is true that

Ūα(X) =
�

i,j

αiŪijX
j and h2,α(X) =

�

i,j

αih2,ijX
j

and it aborts if one of the conditions does not hold.

The redution B3 against qSFrac [GG17] takes as input the challenge [y1]1, . . . , [yq]1
and runs the adversary A against Game2 over an srs in which [τ]1 = [y1]1. Whenever
A returns an output which wins the Game2 game, if (p(X), V, z) for

(p(X),φ(X), z) ∈ {(Ū(X), Ūα(X),α), (h2(X), h2,α(X),α)}

is such that φ(X) �= φ�(X) =
�

i,j α
ifijX

j, then set π be the proof for (p(X),
φ(X), z). Then B3 returns

φ(X)− φ�(X), (Xm − z), π −
�
f(τ)− φ�(τ)

τn − z

�

1

We have that deg(φ(X)−φ�(X)) < deg(Xm− z) because φ(X) has degree bounded
by n− 1. Hence this is as a valid solution and

AdvGame2
A (λ) ≤ AdvGame3

A (λ) + AdvqSFracB3
(λ)

Lets see that the advantage of A in Game3 is negligible.

Consider h1(X), h2(X, Y) the algebraic representations of [h1]1, [h2]1. We can
use the equations verified by Game1 and replace the corresponding values in p(X),
obtaining

p(X) = (v1µi(β) + v2)
2 − h1(X)zU(β)− (v3 + id(α)µn(β))− zH(α)h2,α(X)

=
�
u(α)µi(β) + Ūα(β)

�2 − h1(X)zU(β)− (Ūα(βν) + id(α)µn(β))

− zH(α)h2,α(X)

=
�
u(α)µi(β) + Ū(α, β)

�2 − h1(X)zU(β)− (Ū(α, βν) + id(α)µn(β))

− zH(α)h2(α, X)

From the fact that p(β) = 0 we get that

�
u(α)µi(β) + Ū(α, β)

�2 − (Ū(α, βν) + id(α)µn(β))− zH(α)h2(α, β)− h1(β)zU(β)

131

equals 0. Since [F]1, [Ū]1, [h1]1, [h2]1 have been sent by the prover before it sees
challenges β, we have that except in the case where (Y = β) is a root of the
polynomial below, which happens with negligible probability, for all Y ,

0 =
�
u(α)µi(Y) + Ū(α, Y)

�2 − (Ū(α, Y ν) + id(α)µn(Y))
−zH(α)h2(α, Y)− h1(Y)zU(Y)

(5.8)

Thus we have that

i = 0 ⇒ 0 = f 2(α)− Ū(α, ν1)− zH(α)h2(α, ν
1)

1 ≤ i ≤ n− 1 ⇒ 0 = Ū2(α, νi)− Ū(α, νi+1)− zH(α)h2(α, ν
i)

i = n ⇒ 0 = Ū2(α, νn−1)− id(α)− zH(α)h2(α, ν
1)

Since [F]1, [Ū]1, [h2]1 have been sent by the prover before it sees challenges α, we
have that except in the case where (X = α) is a root of the polynomial below, which
happens with negligible probability, for all X,

i = 0 ⇒ 0 = f 2(X)− Ū(X, ν1)− zH(X)h2(X, ν1)

1 ≤ i ≤ n− 1 ⇒ 0 = Ū2(X, νi)− Ū(X, νi+1)− zH(X)h2(X, νi)

i = n ⇒ 0 = Ū2(X, νn−1)− id(X)− zH(X)h2(X, ν1)

Over hj ∈ H we thus have that

i = 0 ⇒ 0 = f 2(hj)− Ū(hj, ν
1)

1 ≤ i ≤ n− 1 ⇒ 0 = Ū2(hj, ν
i)− Ū(hj, ν

i+1)

i = n ⇒ 0 = Ū2(hj, ν
n−1)− 1

Together these gives us the desired requirement that fN(hj) = 1 for all j = 1, . . . ,m
except with negligible probability.

Theorem 23. The protocol in Fig. 5.3 and 5.4 implies position-hiding linkability
between the vector commitment schemes of C and cm, provided that the zk proof for
Runity is instantiated with the protocol in 5.4 and provided that log(N) > 6.

Proof. We first define a simulator Simulate and then argue that their transcript is
indistinguishable from an honest provers transcript. The Simulate subverts the setup
algorithm such that it knows the secret τ contained in [τ]1, [τ

2]1, . . . , [τ
d]. It takes

as input some instance (C, cm) and aims to generate a verifying transcript.

It samples s1, s2, s3, s4, s5, s6, s7, s8 ← F at random and outputs [CI]1 =
[s1]1, [zI]1 = [s2]1, [F]1 = [s3]1, [Q1]2 = [(C − s1)/s2]2 and a simulated proof πunity

that we describe in the next paragraph. After receiving χ it outputs [Q2]1 = [s4]1.
After receiving α it outputs v1 = s5, v2 = s6. and

π1 = [(u− v1)/(τ − α)]1

π2 = [(zI + χCI)/(τ − v1)]1

π3 = [(v2 − χcm− zH(α)Q2)/(τ − α)]

132

To simulate πunity the simulate Simulate outputs [Ū]1 = [s7]1, [h2]1 = [s8]1. After
receiving α it outputs [h1]1 = [s9]1. After receiving β it outputs [Ūα]1 = [s10]1,
[h2,α] = [s11]1 and v1 = s12, v2 = s13, v3 = s14 and

π1 = [(u− v1)/(τ − α)]1

π2 = [(Ū + Ūα)/(τ − α)]1

π3 = [(h2 − h2,α)/(τ − α)]1

π4 = [τmax deg−n(Ūα + �(τ))/(τ − 1)(τ − β)(τ − βν)]1

π5 = [τmax deg−n((v1µi(β) + v2)
2 − h1zU(β)− (v3 + id(α)µn(β))− zH(α)h2,α)/(τ − β)]1

where �(τ) is the polynomial that interpolates to (0, v2, v3) at (1, ββν).

We now argue Simulate’s output is indistinguishable from an honest prover’s
output.

We consider each of the elements in 5.3 separately and argue they are identically
distributed with overwhelming probability.

• [CI]1 is blinded by r2 for the prover and s1 for the simulator.

• [zI]1 is blinded by r1 for the prover and s2 for the simulator.

• [F]1 is blinded by r5 for the prover and s3 for the simulator.

• [Q1]2 is the unique element satisfied by the pairing check for both the prover
and simulator given [CI]1 and [zI]1.

• [Q2]1 is blinded by r3 for the prover and s4 for the simulator. Note that

r3
χu(τ)zI(u(τ))

zH(τ)
is non-zero with overwhelming probability.

• v1 is blinded by r6 for the prover and s5 for the simulator. Note that r6αzH(α)
is non-zero with overwhelming probability.

• v2 is blinded by r4 for the prover and s6 for the simulator. Note that r4f
2αzI(u(α))

is non-zero with overwhelming probability.

• π1, π2, π3 are the unique element satisfied by the KZG opening checks for both
the prover and the simulator.

Finally we consider each of the elements in 5.4 separately and argue they are
identically distributed with overwhelming probability.

• [Ū]1 is blinded by t1 for the prover and s7 for the simulator.

• [h2]1 is blinded by t2 for the prover and s8 for the simulator. Note that there
exists a µ2(τ)t2 term in the provers [h2]1 which is linearly independent from
all other terms and thus not cancelled with overwhelming probability.

133

• [h1]1 is blinded by t3 for the prover and s9 for the simulator. Note that there is

a t23z
2
H(α)

µi4
2(τ)−µi4(τ)
zU (τ)

term in the provers [h1]1 which is linearly independent
from all other terms.

• [Ūα]1 is blinded by t4 for the prover and s10 for the simulator. Note that there
is a t4zH(α)µ5(τ) term in the provers [Ūα]1 which is linearly independent from
all other terms.

• [h2,α]1 is blinded by t5 for the prover and s11 for the simulator. Note that there
is a µ2(τ)t2 term in the provers [h2,α]1 which is linearly independent from all
other terms.

• v1 is blinded by r7 for the prover and s12 for the simulator.

• v2 is blinded by t5 for the prover and s13 for the simulator. Note that there is
a t5zH(α)µ6(β) term in the provers v2 which is linearly independent from all
other terms.

• v3 is blinded by t6 for the prover and s14 for the simulator. Note that there is
a t6zH(α)µ7(β) term in the provers v3 which is linearly independent from all
other terms.

• π1, π2, π3, π4, π5 are the unique elements satisfied by the KZG opening checks
for both the prover and the simulator.

5.5 Efficiency

In this section we describe some optimizations we apply to the protocols in Fig. 5.3
and 5.4 in order to achieve the efficiency claimed in Table 5.1.

Opening t polynomials in one point. As noted in [GWC19],[CHM+20], when-
ever we have t openings of different polynomials at the same point i.e. for t = 2 this
would be of the form

π1 ← PC.Open(srsPC, f1(X), deg = d,α)

π2 ← PC.Open(srsPC, f2(X), deg = d,α)

then we can send a single opening proof π as opposed to t opening proofs π1, . . . , πt.

134

Batching Pairings. We also apply standard techniques to batch pairings that
share the same elements in one of the two groups. Namely, we can aggregate the
equations

e([a]1, [b1]2) = e([c1]1, [d]2) and e([a]1, [b2]2) = e([c2]1, [d]2),

as e([a]1, [b1 + γb2]2) = e([c1 + γc2]1, [d]2)

for γ some random field element sampled by the verifier.

Note that we can adapt KZG openings equations so they can be batched fur-
ther, namely if we parse the verification pairing as e

�
[F1]1 − s1 + [Q1]1α, [1]2

�
=

e
�
[Q1]1, [τ]2

�
, then two openings of different polynomials at different points can be

verified by two pairings.

Fig. 5.1 and 5.2: In Fig. 5.1 proofs have the form ([z]2, [T]1, [S]2, πped, πunity). See
that πped consists of 1 G1 and 2F. In Fig. 5.2 proofs have the form ([F]1, [Q]1, v1,
v2, π1, π2) which amounts to 4G1 and 2F. Thus we have a total of 6G1, 2G2 and 4F.

For the verifier, their first pairing check in Fig. 5.1 uses pairings of the form
e(∗, [1]2), e(∗, [z]2), and e([h]1, ∗) amounting to 3 pairings. The Pedersen verifier
uses no pairings. In Fig. 5.2 we have a KZG verifier which uses pairings of the form
e(∗, [1]2), e(∗, [τ]2), and a pairing check that uses pairings of the form e(∗, [1]2),
e(∗, [z]2), and e(∗, [τ]2). Thus we can batch the pairing checks to get a total of 4
unique pairings over the two constructions.

Fig. 5.3 and 5.4: In Fig. 5.3 proofs have the form ([CI]1, [zI]1, [u]1, [Q1]2, [Q2]1,
v1, v2, π1, π2, π3, πunity). Here the π1, π3 are both openings at the same α and can be
batched into one proof. Thus there are 7G1, 1G2 and 2F in addition to the πunity. In
5.2 proofs have that form

�
[Ū]1, [h2]1, [h1]1, [Ūα]1, [h2,α]1, v

�
1, v

�
2, v

�
3, π

�
1, π

�
2, π

�
3, π

�
4, π

�
5

�
.

Here we can send the same verifier challenge α in both 5.3 and 5.4 (assuming we
run the protocols in parallel) which allows us to avoid sending v�1, π

�
1 in 5.4. Further,

this allows us to batch the proofs (π�
2, π

�
3) with the proof for (π1, π3) because these

all use the same α. Thus πunity contributes 7G1, and 2F Thus we have a total of
14G1, 1G2 and 4F.

For the verifier, their pairing check in Fig. 5.3 uses pairings of the form e(∗, [1]2)
and e([zI]1). We also have 3 KZG verifiers which use pairings of the form e(∗, [1]2),
e(∗, [τ]2). This amounts to 2 batched pairings. In Fig. 5.2 we have a 5 KZG verifiers.
Two use a degree check and thus use pairings of the form e(∗, [1]2), e(∗, [τ]2), and
e(∗, [τ d−n+1]2). The others have the usual pairings as these do not have degree
checks. Thus we can batch the pairing checks to get a total of 4 unique pairings
over the two constructions. In the protocol of Fig. 5.3, the work of the prover is
dominated by the computation of Q(X) and p2(X) which have degree m2, because
[Q1] is formed in time m by using the pre-computed individual proofs, and all the
other proof elements are commitments to polynomials of degree m. In the protocol

135

of Fig. 5.4, prover work is dominated by the computation of [Ū]1 and [h2]1 that
are commitments to polynomials of degree m log(N). The lookup proof has pre-
processing time for C of N logN G1, for N the size of the table, and update of
proofs can be done in O(N) G2 operations as described in [TAB+20].

5.6 Implementation

Caulk has been implemented by Dmtry Khovratovich and Mary Maller in Rust using
the arkworks library [ac22], and have released the implementation in open source3.
The code contains a subroutine that computes all KZG openings, which we need for
fast proof preprocessing and which can be used in other projects. For all the schemes
different from Caulk, we used the Legosnark implementation4. All the benchmarks
included in this section have been obtained by running the corresponding codes in
a laptop with CPU i7-8565U and 8GB of RAM.

In Figure 5.5 we compare Caulk’s prover time, in the y axis, with its alternatives
in the scenario where m = 1 and for different values of N , represented in the x axis
on a logarithmic scale. We consider the following schemes:

• Caulk: the m = 1 version;

• MT-Pos: SNARKed Merkle Poseidon tree with N elements.

• MT-SHA: SNARKed Merkle SHA-2 tree with N elements.

• Harisa([CFH+21]): RSA-2048 accumulator of N elements.

We see that Caulk is almost 100 times as fast as Merkle trees instantiated with a
Poseidon Hash and Groth16 zkSNARK on top, and 10 times as fast as the RSA
accumulator. Although the latter stays constant while Caulk’s time grows slowly, we
claim Caulk will still perform better for all values N that can be cosnider practical.

We compare Caulk’s performance for lookup tables in Figure 5.6. The y axis
represent prover time, while the x axis represent the value of m. The size of the
vector is diferent for every color line. We consider the following schemes:

• MT-Pos-20: SNARKed Merkle tree with Poseidon poseidon hashes and N =
220 elements.

• MT-Pos-8: SNARKed Merkle tree with Poseidon poseidon hashes and N = 28

elements.

3https://github.com/caulk-crypto/caulk
4https://github.com/matteocam/libsnark-lego/

136

• Caulk-8: Caulk for vectors of size N = 28.

• Caulk-20: Caulk for vectors of size N = 220.

• Harisa([CFH+21]): RSA-2048 accumulator for vectors of size N = 216 ele-
ments. The performance of the prover in RSA accumulators is independent
on the size of the vector.

Caulk is faster than Harisa for all the values of N we were able to compute, but
approaches as N grows, and will perform worse for bigger tables. Both constructions
are significantly faster than Merkle-SNARK.

6 8 10 12 14 16 18 20 22
10−2

10−1

100

101

102

log(N)

p
ro
v
in
g
ti
m
e
(s
)

Caulk

MT-Pos

MT-SHA

RSA Acc

Figure 5.5: Comparison of performance of Caulk and other arguments for zero-
knowledge single openings.

10 16 20 32 50

10−1

100

101

102

Lookup size (m)

p
ro
v
in
g
ti
m
e
(s
)

MTPos-20

MTPos-8

RSA

Caulk-8

Caulk-20

Figure 5.6: Comparison of performance between Caulk and other schemes for lookup
tables.

137

138

Bibliography

[AAC+17] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof
Pietrzak, and Leonid Reyzin. Beyond hellman’s time-memory trade-offs
with applications to proofs of space. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS,
pages 357–379. Springer, Heidelberg, December 2017. 73

[ABLZ17] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Za-
jac. A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS,
pages 3–33. Springer, Heidelberg, December 2017. 32

[ac22] arkworks contributors. arkworks zksnark ecosystem, 2022. 136

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy,
and Tyge Tiessen. MiMC: Efficient Encryption and Cryptographic
Hashing with Minimal Multiplicative Complexity. In ASIACRYPT
2016, volume 10031 of LNCS, pages 191–219, 2016. 104, 107

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments with-
out a trusted setup. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104.
ACM Press, October / November 2017. 2, 32

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random or-
acles. In EUROCRYPT, volume 3027 of Lecture Notes in Computer
Science, pages 56–73. Springer, 2004. 23

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society Press, May 2018. 2,
32

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for
accumulators with applications to IOPs and stateless blockchains. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 561–586. Springer, Heidelberg,
August 2019. 16, 72, 73, 74, 77

139

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable, transparent, and post-quantum secure computational in-
tegrity. Cryptology ePrint Archive, Report 2018/046, 2018. https:

//eprint.iacr.org/2018/046. 2, 32

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scal-
able zero knowledge with no trusted setup. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of
LNCS, pages 701–732. Springer, Heidelberg, August 2019. 2

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. Short accountable ring signatures based
on DDH. In Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl,
editors, ESORICS 2015, Part I, volume 9326 of LNCS, pages 243–265.
Springer, Heidelberg, September 2015. 107

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 327–357. Springer, Heidelberg, May 2016. 2, 32, 33

[BCF+21] Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and
Dimitris Kolonelos. Zero-knowledge proofs for set membership: Effi-
cient, succinct, modular. In Nikita Borisov and Claudia Dı́az, editors,
FC 2021, Part I, volume 12674 of LNCS, pages 393–414. Springer, 2021.
107, 108

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Se-
curity and Privacy, SP, 2014, pages 459–474. IEEE Computer Society,
2014. 2, 107

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and
Madars Virza. Secure sampling of public parameters for succinct zero
knowledge proofs. In 2015 IEEE Symposium on Security and Privacy,
pages 287–304. IEEE Computer Society Press, May 2015. 3

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019. 30, 32, 33, 36, 38

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive
oracle proofs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-
B, Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg,
October / November 2016. 31

140

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Scalable zero knowledge via cycles of elliptic curves. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of
LNCS, pages 276–294. Springer, Heidelberg, August 2014. 2

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM
STOC, pages 103–112. ACM Press, May 1988. 2

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs
from DARK compilers. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706.
Springer, Heidelberg, May 2020. 30

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280.
Springer, Heidelberg, April 2012. 64, 107

[BG18] Jonathan Bootle and Jens Groth. Efficient batch zero-knowledge ar-
guments for low degree polynomials. In Michel Abdalla and Ricardo
Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 561–
588. Springer, Heidelberg, March 2018. 107

[BGG19] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party
protocol for constructing the public parameters of the pinocchio zk-
SNARK. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark,
Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors, FC
2018 Workshops, volume 10958 of LNCS, pages 64–77. Springer, Hei-
delberg, March 2019. 3

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party compu-
tation for zk-SNARK parameters in the random beacon model. Cryp-
tology ePrint Archive, Report 2017/1050, 2017. https://eprint.

iacr.org/2017/1050. 3

[BMM+21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi
Vesely. Proofs for inner pairing products and applications. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III,
volume 13092 of LNCS, pages 65–97. Springer, Heidelberg, December
2021. 75, 108

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. 22

141

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryp-
tion and a framework for code-based game-playing proofs. In EURO-
CRYPT, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer, 2006. 7

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient proto-
cols for set membership and range proofs. In Josef Pieprzyk, editor,
ASIACRYPT 2008, volume 5350 of LNCS, pages 234–252. Springer,
Heidelberg, December 2008. 107

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their appli-
cations. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013,
volume 7778 of LNCS, pages 55–72. Springer, Heidelberg, Febru-
ary / March 2013. 3, 15, 71, 73

[CFF+21] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and
Hadrián Rodŕıguez. Lunar: A toolbox for more efficient universal and
updatable zkSNARKs and commit-and-prove extensions. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, vol-
ume 13092 of LNCS, pages 3–33. Springer, Heidelberg, December 2021.
19, 20, 29, 31, 34, 38, 45, 46, 49, 62, 66

[CFG+20] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and
Luca Nizzardo. Incrementally aggregatable vector commitments and
applications to verifiable decentralized storage. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of
LNCS, pages 3–35. Springer, Heidelberg, December 2020. 72, 73, 74,
75, 76, 77

[CFH+21] Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris
Kolonelos, and Hyunok Oh. Succinct zero-knowledge batch proofs for
set accumulators. Cryptology ePrint Archive, Paper 2021/1672, 2021.
https://eprint.iacr.org/2021/1672. 108, 136, 137

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In Anne Canteaut and Yuval Ishai, ed-
itors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–
768. Springer, Heidelberg, May 2020. 19, 20, 25, 29, 30, 31, 34, 38, 45,
49, 107, 134

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and
application to efficient revocation of anonymous credentials. In Moti
Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in Com-
puter Science, pages 61–76. Springer, 2002. 107

142

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
34th ACM STOC, pages 494–503. ACM Press, May 2002. 3

[CNR+22] Matteo Campanelli, Anca Nitulescu, Carla Ràfols, Alexandros
Zacharakis, and Arantxa Zapico. Linear-map vector commitments
and their practical applications. Cryptology ePrint Archive, Paper
2022/705, 2022. https://eprint.iacr.org/2022/705. 71, 95

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-
quantum and transparent recursive proofs from holography. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 769–793. Springer, Heidelberg, May 2020. 2

[CPZ18] Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng
Zhang. Edrax: A cryptocurrency with stateless transaction valida-
tion. Cryptology ePrint Archive, Report 2018/968, 2018. https:

//eprint.iacr.org/2018/968. 72

[Dam93] Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive
perfect zero-knowledge with proprocessing. In Rainer A. Rueppel, edi-
tor, EUROCRYPT’92, volume 658 of LNCS, pages 341–355. Springer,
Heidelberg, May 1993. 2

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and
Krzysztof Pietrzak. Proofs of space. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 585–605. Springer, Heidelberg, August 2015. 73

[DRZ20] Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. Updateable
inner product argument with logarithmic verifier and applications. In
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, PKC 2020, Part I, volume 12110 of LNCS, pages 527–557.
Springer, Heidelberg, May 2020. 29, 75

[Fil20] Filecoin. Filecoin powers of tau ceremony attestations, 2020. https:

//github.com/arielgabizon/perpetualpowersoftau. 4

[Fis18] Ben Fisch. PoReps: Proofs of space on useful data. Cryptology ePrint
Archive, Report 2018/678, 2018. https://eprint.iacr.org/2018/

678. 73

[Fis19] Ben Fisch. Tight proofs of space and replication. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477
of LNCS, pages 324–348. Springer, Heidelberg, May 2019. 73

[FK] Dankrad Feist and Dmitry Khovratovich. Fast amortized kate proofs.
26, 105

143

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group
model and its applications. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 33–62. Springer, Heidelberg, August 2018. 4, 23, 32, 74

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive
zero knowledge proofs under general assumptions. SIAM Journal of
Computing, 1999. 2

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solu-
tions to identification and signature problems. In Andrew M. Odlyzko,
editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987. 22

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769
of LNCS, pages 315–347. Springer, Heidelberg, March 2018. 32

[Gab19] Ariel Gabizon. AuroraLight: Improved prover efficiency and SRS size
in a sonic-like system. Cryptology ePrint Archive, Report 2019/601,
2019. https://eprint.iacr.org/2019/601. 29

[GG17] Essam Ghadafi and Jens Groth. Towards a classification of non-
interactive computational assumptions in cyclic groups. IACR Cryptol.
ePrint Arch., page 343, 2017. 23, 24, 131

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs.
In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Hei-
delberg, May 2013. 29, 38, 45

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how
to leak a secret and spend a coin. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 253–280. Springer, Heidelberg, April 2015. 107

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and
Ian Miers. Updatable and universal common reference strings with ap-
plications to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–
728. Springer, Heidelberg, August 2018. 11, 12, 13, 29, 32

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Arnab Roy, Christian Rech-
berger, and Markus Schofnegger. Poseidon: A new hash function for
zero-knowledge proof systems. Usenix Security 2021, 2021. 104, 107

[GMMM18] Sanjam Garg, Mohammad Mahmoody, Daniel Masny, and Izaak Meck-
ler. On the round complexity of OT extension. In Hovav Shacham and

144

Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993
of LNCS, pages 545–574. Springer, Heidelberg, August 2018. 3

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proofs. In SIAM Journal on Computing, pages
186–208, 1989. 2

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments.
In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
192–208. Springer, Heidelberg, August 2009. 33

[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In Masayuki
Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 341–358.
Springer, Heidelberg, December 2010. 2

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg,
May 2016. 2, 104

[GRWZ20] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang.
Pointproofs: Aggregating proofs for multiple vector commitments. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 2007–2023. ACM Press, November 2020. 72,
74, 76

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June
2011. 4

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified poly-
nomial protocol for lookup tables. IACR Cryptol. ePrint Arch., page
315, 2020. 104, 106

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive ar-
guments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953. 19, 20, 25, 29, 31, 66,
134

[Ish20] Yuval Ishai. Zero-knowledge proofs from informa-
tion theoretic proof systems. In Zkproofs Blog,
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/,
2020. 29

[JR13] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs
for linear subspaces. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer,
Heidelberg, December 2013. 33

145

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments
(extended abstract). In 24th ACM STOC, pages 723–732. ACM Press,
May 1992. 1

[KMSV21] Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov.
Snarky ceremonies. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 98–127.
Springer, Heidelberg, December 2021. 3

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-
knowledge proof system for np with general assumptions. Journal of
Cryptology, 1998. 2

[KPV19] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. Red-
Shift: Transparent SNARKs from list polynomial commitment IOPs.
Cryptology ePrint Archive, Report 2019/1400, 2019. https://eprint.
iacr.org/2019/1400. 30

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In ASIACRYPT,
volume 6477 of Lecture Notes in Computer Science, pages 177–194.
Springer, 2010. 3, 13, 24, 25, 30, 32, 114, 118, 124, 130

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidel-
berg, March 2012. 2

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments
from span programs and linear error-correcting codes. In Kazue Sako
and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of
LNCS, pages 41–60. Springer, Heidelberg, December 2013. 2

[LM19] Russell W. F. Lai and Giulio Malavolta. Subvector commitments with
application to succinct arguments. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 530–560. Springer, Heidelberg, August 2019. 16, 17, 72, 74, 75

[LRY16] Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional
commitment schemes: From polynomial commitments to pairing-based
accumulators from simple assumptions. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
ICALP 2016, volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl,
July 2016. 72, 74

[LSZ22] Helger Lipmaa, Janno Siim, and Michal Zajac. Counting vampires:
From univariate sumcheck to updatable zk-snark. Cryptology ePrint
Archive, Paper 2022/406, 2022. https://eprint.iacr.org/2022/

406. 31, 32

146

[LY10] Benôıt Libert and Moti Yung. Concise mercurial vector commitments
and independent zero-knowledge sets with short proofs. In Daniele
Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 499–517.
Springer, Heidelberg, February 2010. 3, 71, 74

[Mau09] Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In
AFRICACRYPT, volume 5580 of Lecture Notes in Computer Science,
pages 272–286. Springer, 2009. 28

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.
Sonic: Zero-knowledge SNARKs from linear-size universal and up-
datable structured reference strings. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 2111–2128. ACM Press, November 2019. xv, 29, 30, 31, 60

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In Carl Pomerance, editor, CRYPTO’87, volume 293 of
LNCS, pages 369–378. Springer, Heidelberg, August 1988. 72

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin.
Zerocoin: Anonymous distributed e-cash from bitcoin. In 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,
May 19-22, 2013, pages 397–411. IEEE Computer Society, 2013. 107

[Mic00] Silvio Micali. The knowledge complexity of interactive proofs. In SIAM
Journal on Computing 30 (4), pages 1253–1298, 2000. 1

[MRV16] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix
Diffie-Hellman assumption. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 729–
758. Springer, Heidelberg, December 2016. 41

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008. 2

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited
talk). In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 96–109. Springer, Heidelberg, August 2003. 4

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, vol-
ume 576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.
3

[PFM+22] Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Muñoz,
and Jose Luis Muñoz-Tapia. Plonkup: Reconciling plonk with plookup.
IACR Cryptol. ePrint Arch., page 86, 2022. 106

147

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In 2013 IEEE Sympo-
sium on Security and Privacy, pages 238–252. IEEE Computer Society
Press, May 2013. 2

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signa-
tures of correct computation. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 222–242. Springer, Heidelberg, March 2013. 30,
49, 75

[RD16] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I,
volume 9985 of LNCS, pages 262–285. Springer, Heidelberg, Octo-
ber / November 2016. 73

[RZ21] Carla Ràfols and Arantxa Zapico. An algebraic framework for universal
and updatable SNARKs. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–804, Virtual
Event, August 2021. Springer, Heidelberg. 29, 32

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of poly-
nomial identities. In Journal of the ACM 24.7, pages 701–717. ACM,
1980. 8

[SCP+22] Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papaman-
thou, Alin Tomescu, and Yupeng Zhang. Hyperproofs: Aggregating
and maintaining proofs in vector commitments. In 31st USENIX Se-
curity Symposium (USENIX Security 22), Boston, MA, August 2022.
USENIX Association. 75

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs with-
out trusted setup. In Daniele Micciancio and Thomas Ristenpart, edi-
tors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–737.
Springer, Heidelberg, August 2020. 29, 32

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS,
pages 256–266. Springer, Heidelberg, May 1997. 23

[SZ20] Alan Szepieniec and Yuncong Zhang. Polynomial iops for linear algebra
relations. Cryptology ePrint Archive, Report 2020/1022, 2020. https:
//eprint.iacr.org/2020/1022. 29, 31, 45

[TAB+20] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad
Feist, and Dmitry Khovratovich. Aggregatable subvector commit-
ments for stateless cryptocurrencies. In Clemente Galdi and Vladimir
Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 45–64.
Springer, Heidelberg, September 2020. 26, 74, 75, 76, 88, 93, 94, 105,
136

148

[TCZ+20] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny
Pinkas, Guy Golan-Gueta, and Srinivas Devadas. Towards scalable
threshold cryptosystems. In 2020 IEEE Symposium on Security and
Privacy, pages 877–893. IEEE Computer Society Press, May 2020. 75,
94

[Tor21] Tornado cash privacy solution version 1.4, 2021. https://tornado.

cash/Tornado.cash_whitepaper_v1.4.pdf. 107

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zkSNARKs without trusted setup. In 2018
IEEE Symposium on Security and Privacy, pages 926–943. IEEE Com-
puter Society Press, May 2018. 2, 32

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papa-
manthou, and Dawn Song. Libra: Succinct zero-knowledge proofs with
optimal prover computation. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
733–764. Springer, Heidelberg, August 2019. 2

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller,
Anca Nitulescu, and Mark Simkin. Caulk: Lookup arguments in
sublinear time. Cryptology ePrint Archive, Paper 2022/621, 2022.
https://eprint.iacr.org/2022/621. 103

[ZCary] ZCash protocol specification, 2022, 1st February. https://github.

com/zcash/zips/blob/master/protocol/protocol.pdf. 4, 104, 106

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In In-
ternational symposium on symbolic and algebraic manipulation., pages
216–226. Springer, 1979. 8

[ZkS21] Zksync rollup protocol, 2021. https://github.com/matter-labs/

zksync/blob/master/docs/protocol.md. 107

149

150

Appendix A

Publications

Conference proceedings

2021 Ràfols, C., & Zapico, A. An Algebraic Framework for Univer-
sal and Updatable SNARKs. Annual International Cryptol-
ogy Conference.

Abstract. We introduce Checkable Subspace Sampling Ar-
guments, a new information theoretic interactive proof system
in which the prover shows that a vector has been sampled in a
subspace according to the verifier’s coins. We show that this
primitive provides a unifying view that explains the technical
core of most of the constructions of universal and updatable
pairing-based (zk)SNARKs. This characterization is extended
to a fully algebraic framework for designing such SNARKs in
a modular way. We propose new constructions of CSS argu-
ments that lead to SNARKs with different performance trade-
offs. Our most efficient construction, Basilisk, seems to have
the smallest proof size in the literature, although it pays a
price in terms of structure reference string for the number of
multiplicative gates whose fan-out exceeds a certain bound.

151

2022 Daza, V., Haque, A., Scafuro, A., Zacharakis, A. & Zapico, A.
Mutual Accountability Layer: Accountable Anonymity within
Accountable Trust. International Symposium on Cyber Secu-
rity Cryptology and Machine Learning.

Abstract. Anonymous cryptographic primitives reduce the
traces left by the users when interacting over a digital plat-
form. However, they also prevent a platform owner to hold
users accountable in case of malicious behaviour. Revocable
anonymity offers a compromise by allowing only the man-
ager (and not the other users) of the digital platform to de-
anonymize user’s activities when necessary. However, such
de-anonymization power can be abused too, as a misbehaving
manager can de-anonymize all the activities without user’s
awareness. Previous work propose to mitigate this issue by
distributing the de-anonymization power across several enti-
ties. However, there is no comprehensive and formal treat-
ment where both accountability and non-frameability (i.e.,
the inability to falsely accuse a party of misbehavior) for both
the user and the manager are explicitly defined and provably
achieved.
In this paper we formally define mutual accountability: a user
can be held accountable for her otherwise anonymous digi-
tal actions and a manager is held accountable for every de-
anonymization attempt; plus, no honest party can be framed
– regardless of what malicious parties do.
Instead of distributing the de-anonymization power across en-
tities, instead, we decouple the power of de-anonymization
from the power of monitoring de-anonymization attempts.
This allows for greater flexibility, particularly in the choice
of the monitoring entities.
We show that our framework can be instantiated generi-
cally from threshold encryption schemes and succinct non-
interactive zero-knowledge. We also show that the highly-
efficient threshold group signature scheme by Camenisch et
al.(SCN’20) can be modified and extended to instantiate our
framework.

152

Preprints

2022 Campanelli, M., Nitulescu, A., Ràfols, C., Zacharakis, A., &
Zapico, A. Linear-map Vector Commitments and their Prac-
tical Applications.

Abstract. Vector commitments (VC) are a cryptographic
primitive that allow one to commit to a vector and then open
some of its positions efficiently. Vector commitments are in-
creasingly recognized as a central tool to scale highly decen-
tralized networks of large size and whose content is dynamic.
In this work, we examine the demands on the properties that
an ideal vector commitment should satisfy in the light of the
emerging plethora of practical applications and propose new
constructions that improve the state-of-the-art in several di-
mensions and offer new tradeoffs. We also propose a unifying
framework that captures several constructions and show how
to generically achieve some properties from more basic ones.
On the practical side, we focus on building efficient schemes
that do not require new trusted setup (we can reuse exist-
ing ceremonies for pairing-based powers of tau run by real-
world systems such as ZCash or Filecoin). Our implementa-
tion demonstrates that our work over-performs in efficiency
prior schemes with same properties.

153

2022 Zapico, A., Buterin, V., Khovratovich, D., Maller, M., Ni-
tulescu, A., & Simkin, M.. Caulk: Lookup Arguments in
Sublinear Time.

Abstract. We present position-hiding linkability for vector
commitment schemes: one can prove in zero knowledge that
one or m values that comprise commitment cm all belong to
the vector of size N committed to in C. Our construction
Caulk can be used for membership proofs and lookup argu-
ments and outperforms all existing alternatives in prover time
by orders of magnitude.
For both single- and multi-membership proofs Caulk beats
SNARKed Merkle proofs by the factor of 100 even if the latter
instantiated with Poseidon hash. Asymptotically our prover
needs O(m2 +m logN) time to prove a batch of m openings,
whereas proof size is O(1) and verifier time is O(log(logN)).
As a lookup argument, Caulk is the first scheme with prover
time sublinear in the table size, assuming O(N logN) prepro-
cessing time and O(N) storage. It can be used as a subprim-
itive in verifiable computation schemes in order to drastically
decrease the lookup overhead.
Our scheme comes with a reference implementation and
benchmarks.

154

