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Spin-1 fields and RG flows in 4 dimensions
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The most general local, classically scale invariant, perturbatively renormalizable, globally (* (#)

invariant Lagrangian is constructed for spin-1 fields in 4 dimensions. The total number of

independent couplings is 7 and the 1-loop V-functions are computed in the MS scheme. A number

of asymptotically free RG flows are identified corresponding to non-trivial QFTs. None of these

are gauge theories. The details of the large-# limit are also worked out and it is shown that the

RG phase space is qualitatively similar for all # > 5 including the # → ∞ limit.
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Spin-1 fields and RG flows in 4 dimensions

1. Introduction

In this work a straightforward QFT question is asked: what type of QFT can describe interacting,

asymptotically free spin-1 (vector) fields in 4 dimensions? If gauge invariance is imposed Yang-

Mills theory is unique and well-known, hence we do not require gauge invariance here only a global

(* (#) invariance, beyond locality, perturbative renormalizability and classical scale invariance.

The latter requirement is not essential it simply limits the number of allowed couplings to those

which are dimensionless.

At first one might think that gauge theory is the only option for having asymptotic freedom

with spin-1 fields but it turns out this is not the case, at least in Euclidean signature. The explicit

computation of the 1-loop V-functions in the space of 7 couplings (corresponding to the 7 allowed

operators in the most general Lagrangian) shows that for any # a finite number of asymptotically

free RG flows exist, more precisely 4 of these for # > 5. These RG flows correspond to non-

trivial perturbative and asymptotically free quantum field theories which are not gauge theories.

Straightforward large-# scaling works as expected, and the qualitative features of the # → ∞

model is the same as with finite # > 5.

Similar questions as the one addressed in this work were discussed in the abelian case in [1]

and rather qualitatively for the non-abelian case in [2].

The most general Lagrangian for the study of spin-1 fields is given in section 2. The V-functions

are computed in section 3 to 1-loop and the resulting RG flows are studied as well. Asymptotically

free RG flows are identified and the large-# limit is also spelled out. Finally, section 4 contains our

conclusions and outlook to possible refinements and further research.

2. Lagrangian

The spin-1 fields will be labelled by �0
` in the adjoint representation of (* (#). We seek

the most general 4-dimensional, globally (* (#) and Euclidean invariant Lagrangian with at most

two derivatives, dimensionless couplings and perturbatively renormalizable interactions. It is

straightforward to show that up to total derivatives a possible parametrization in terms of 7 couplings,
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(I, 61, 62, 63, 64, ℎ1, ℎ2) is,
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where 5012 is the totally anti-symmetric and 3012 is the totally symmetric tensor of (* (#). For a

well-defined path integral representation I ≥ 0 is required as well as a non-negative potential �.

The requirement on (61, 62, 63, 64) for the latter to hold is non-trivial, one of the following two

conditions is necessary,

61 ≥ 0 , 62 + 63 ≥ −61(# − 2)

61 ≤ 0 , 62 + 63 ≥ −61

2(# − 2)2

# − 1
, (2)

and any one of the following is sufficient,

61 ≥ 0 , 462 + 63 ≥ 0 , 63 ≥ 0 , 64 ≥ 0

61 ≥ 0 , 462 + 63 ≥ 861 , 63 ≥ 0 , 364 ≥ −261

61 ≥ 0 , 62 + 63 ≥ 0 , 63 ≤ 0 , 64 ≥ 0

61 ≤ 0 , 62 + 2(# − 1)61 ≥ 0 , 63 ≥ 0 , 64 ≥ 0 .

(3)

A complete set of minimal necessary and sufficient conditions is presently not known.

3. V-functions and RG flows

Since all possible terms allowed by symmetry are included in (1), all terms are perturba-

tively renormalizable and a well-defined path integral can be defined in Euclidean signature, the

V-functions of the 7 couplings can be computed in a straightforward manner. The diagrams con-

tributing in MS at 1-loop are listed in figure 1. For simplicity let us introduce 65 = ℎ2
1

and 66 = ℎ2
2
.

Schematically, the 1-loop V-functions are,

`
3I

3`
= VI = I!I (65, 66)

`
368

3`
= V8 = &8 (61, 62, 63, 64, 65, 66) 8 = 1, 2, 3, 4 (4)

`
368

3`
= V8 = 68!8 (61, 62, 63, 64, 65, 66) 8 = 5, 6 ,
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Figure 1: Diagrams contributing at 1-loop order in dimensional regularization. Rows from top to bot-

tom: propagator, renormalization of I; 3-vertex, renormalization of (ℎ1, ℎ2); 4-vertex, renormalization of

(61, 62, 63, 64).

where &1,2,3,4 are quadratic monomials in the couplings with coefficients which are themselves

polynomial in I and !I,5,6 are linear in the couplings and also polynomial in I. All expressions

depend on # as well. Clearly, I, 65, 66 renormalize multiplicatively. The precise form of the

V-functions can be found in [3], which were computed with the extensive help of FORM [7–9].

There is a line of Gaussian fixed points in the space of couplings given by an arbitrary I and

68 = 0 for all 8 = 1, . . . , 6. Clearly, VI = V8 = 0 everywhere on this line. We will be looking for

RG flows which in the UV end up on this line asymptotically. Such an RG trajectory will define a

non-trivial perturbative quantum field theory. Both 65 and 66 can not be identically zero, but for

the sake of simplicity let’s assume 65 = 0. The situation with 65 ≠ 0 is spelled out in detail in [3].

Now we are dealing with 6 couplings (I, 61, 62, 63, 64, 66) and look for RG flows which for ` → ∞

behave as,

68 (`) ∼ 16c2 �8

log
`

Λ

, 8 = 1, . . . , 4, 6

I(`) ∼ 2>=BC , (5)
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with some scale Λ and constants �8 which are subject to the non-trivial positivity constraint

mentioned in section 2. Assuming an asymptotically free RG flow as in (5), clearly the ratios

A8 = 68/66 for 8 = 1, . . . , 4 are constant towards the UV, A8 → �8/�6. Hence our goal is to find

UV fixed points in the space (I, A1, A2, A3, A4) and asymptotically free 66, which is a straightforward

exercise once the V-functions are known explicitly. The results will be solutions of complicated

polynomial equations for every # and are given in table 1.

It is clear from table 1 that for any # there is a finite number of asymptotically free RG flows.

Once an RG flow is identified it may be characterized by the stability or instability of � and also

by its stability in the RG sense.

The point I = 0 is always a fixed point and the only fixed point for # > 5. The # ≤ 5 cases

are qualitatively different from # > 5 also in the sense that in the latter case there is a unique fixed

point in the I = 0 plane which is stable in the RG sense. Furthermore, all fixed points for # > 5

correspond to a stable potential �. Fixed points which correspond to a stable � lead to perfectly

well-defined perturbative quantum field theories of spin-1 fields, which are not gauge theories.

Those which are stable in the RG sense as well are insensitive to small deformations, as usual. The

I = 0 fixed points can be interpreted as having a constraint m`�
0
` = 0 because of the appearance of

the coupling 1/I in (1). As a result the original 4 degrees of freedom are reduced to 3. Note that

the m`�
0
` = 0 constraint has nothing to do with gauge fixing since gauge invariance is not present

to begin with. The constraint arose dynamically from the nature of the particular UV fixed points.

It should be noted that we have been working in Euclidean signature and Wick rotation back to

a unitary theory in Minkowski space time is not possible. This is because, as is well-known, gauge

invariance is required to kill off the negative norm states which is of course not present on any of

the RG flows considered here. In order to study how gauge symmetry emerges in a perturbative

treatment such as ours, one must include ghost fields; for more details see [3].

Another aspect of table 1 is the smoothness of the large-# limit. Similarly to the situation in

gauge theory the # → ∞ limit is performed at constant #68. The fixed point ratios A8 = �8/�6 have

well-defined large-# limits of course and so does #�8. Qualitatively all # > 5 cases are similar,

the strict # → ∞ limit only makes some of the ratios between different fixed points degenerate.

The 4 fixed points only differ in A2 and A3 in this limit and one of them is stable in the RG sense.

4. Conclusion and outlook

In this work a seemingly simple QFT question was posed: what is the most general QFT

describing a set of spin-1 fields with global (* (#) invariance. The RG phase space was mapped

out in the 1-loop approximation and a finite number of asymptotically free RG flows were found for

any# . More precisely, only classically scale invariant couplings were considered, i.e. dimensionless

couplings. Note that in this case scale invariance does not imply conformal invariance [4–6]. If

dimensionful couplings are allowed, but global (* (#) invariance is still imposed, a mass term can

be added to the Lagrangian,

ℒ< =
<2

2
�0
`�

0
` . (6)

The perturbative expansion of the corresponding anomalous dimension is beyond the scope of the

present work but would be interesting to work out in the future.
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# I A1 A2 A3 A4 #�6 �

3 0 0.054652 0.122003 0.485317 0.970537 0.138656 stable

3 0 0.064145 0.133021 0.665179 0.964086 0.137153 stable

3 0 -0.647582 -0.580231 1.889786 1.204615 0.138656 unstable

3 0 -0.562664 -0.493787 1.918797 1.173022 0.137153 unstable

3 25/3 0.000334 0.079592 -0.251950 1.020083 0.148484 unstable

3 25/3 0.010673 0.074642 -0.144563 1.004360 0.145542 unstable

3 25/3 -0.108161 -0.028903 -0.034960 1.056248 0.148484 unstable

3 25/3 -0.080316 -0.016348 0.037417 1.034690 0.145542 unstable

4 0 0.044841 0.106784 0.351786 0.979028 0.140948 stable

4 0 0.074162 0.083060 1.368389 0.960858 0.136196 stable

4 25/3 0.004413 0.111209 -0.323177 1.013219 0.146900 unstable

4 25/3 0.016297 0.243636 -0.344606 0.995511 0.145494 unstable

4 25/3 0.017435 0.119096 -0.223217 0.997309 0.144605 unstable

4 25/3 0.017931 0.235838 -0.327356 0.993784 0.145177 unstable

5 0 0.042754 0.103223 0.327436 0.981138 0.141567 stable

5 0 0.054311 1.073479 0.536511 0.957994 0.142046 stable

5 0 0.067257 -0.066910 1.896637 0.967324 0.136857 stable

5 0 0.069027 0.516675 1.600829 0.956705 0.138188 stable

5 25/3 0.012566 0.149475 -0.375377 1.003344 0.145326 unstable

5 25/3 0.021321 0.180212 -0.347564 0.993910 0.144298 unstable

6 0 0.041817 0.101590 0.316866 0.982127 0.141864 stable

6 0 0.048648 1.137578 0.428569 0.966346 0.142530 stable

6 0 0.059916 -0.214070 2.277709 0.972682 0.137748 stable

6 0 0.062649 0.434621 2.043391 0.963808 0.138624 stable

7 0 0.041301 0.100682 0.311136 0.982683 0.142032 stable

7 0 0.045944 1.161333 0.383774 0.971232 0.142626 stable

7 0 0.054742 -0.321825 2.541816 0.976034 0.138570 stable

7 0 0.057376 0.412019 2.341096 0.968497 0.139238 stable

10 0 0.040625 0.099483 0.303720 0.983425 0.142259 stable

10 0 0.042691 1.184351 0.334451 0.977917 0.142606 stable

10 0 0.047136 -0.495636 2.966144 0.980468 0.140207 stable

10 0 0.048800 0.401667 2.839408 0.975942 0.140564 stable

50 0 0.040047 0.098451 0.297474 0.984071 0.142458 stable

50 0 0.040124 1.198242 0.298567 0.983855 0.142474 stable

50 0 0.040300 -0.680516 3.425269 0.983967 0.142360 stable

50 0 0.040376 0.410710 3.418741 0.983752 0.142375 stable

100 0 0.040030 0.098420 0.297287 0.984091 0.142464 stable

100 0 0.040049 1.198589 0.297559 0.984037 0.142468 stable

100 0 0.040093 -0.686738 3.440904 0.984065 0.142439 stable

100 0 0.040112 0.411281 3.439259 0.984011 0.142443 stable

∞ 0 0.040024 0.098409 0.297224 0.984097 0.142466 stable

∞ 0 0.040024 1.198704 0.297224 0.984097 0.142466 stable

∞ 0 0.040024 -0.688818 3.446135 0.984097 0.142466 stable

∞ 0 0.040024 0.411476 3.446135 0.984097 0.142466 stable

Table 1: Non-trivial fixed points with 65 = 0 for the ratios A8 = 68/66 = �8/�6, and the coefficient �6; see

(5). The last column indicate whether the potential � is stable or not. For # > 5 there is a unique fixed

point for which � ≥ 0 and is stable in the RG-sense in the I = 0 plane, these are shown in bold.
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Similarly, a worthwhile extension of the present work would be the calculation of the V-

functions to 2-loops or more. Since asymptotic freedom can be established by the 1-loop calculation

alone, it is expected that the main conclusion will not change, namely that for any # well-defined,

asymptotically free, perturbative Euclidean quantum field theories exist, which are not gauge

theories.
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