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ABSTRACT

Quantum dots have the potential to play a key role in emerging quantum technologies. Their
proposed uses range from sources of single or entangled photons needed for quantum
communication and photonic quantum computation, to as long term quantum memories

in which qubits can be stored for later use. Understanding and characterising the properties of
quantum dots is therefore of vital importance. In this thesis we investigate the impact of recent
measurements of the gradient elastic tensor - a fundamental part of the strain environment
of an InGaAs quantum dot, have on the properties of such a structure. We will show how the
quadrupolar interaction is modified by such re-calibration, and assess the impact such changes
may have for the possible applications of quantum dots. We will then investigate the advantages
that more symmetrical quantum dots may possess, both in terms of nuclear quadrupolar variation
and in the resulting coherence time of a trapped electron. Our work is largely computational, with
some distinct advantages in run time and ease of use as compared to other simulation methods.
Some simple theoretical models are discussed to aid intuitive understanding.
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INTRODUCTION AND MOTIVATION

Quantum dots have been a staple fixture of the emerging field of quantum technologies

since its inception in the latter half of the 20th century [1]. They have been presented as

the ideal candidate for a wide variety of applications, ranging from single or entangled

photon sources to long lasting quantum memories. In this thesis we investigate the effect of

recent re-measurements of phenomenological parameters that are vital to the accurate simulation

of quantum dots (and other solid state structures). We develop a tool that uses strain and

concentration data to characterise the properties of an InGaAs quantum dot, including the

electric field gradient throughout the structure and to simulate its NMR spectrum. We go on

to investigate the impact of structural and strain symmetry on the coherence time of electrons

trapped in the dot, and assess the suitability of said structures for use within various quantum

technologies.

1.1 Thesis Structure

The first half of this thesis concerns the fundamental concepts required to understand the second

half. The latter half describes our work to characterise a specific quantum dot, and to investigate

the effect of possible improvements to it’s structure. Here in Chapter 1, we discuss the motivation

for the work - why we want to understand the behaviour of quantum dots, how they fit into the

wider field of quantum technologies, and the possible benefits of those technologies. In Chapter 2

we describe the physics of electron behaviour inside a quantum dot, and demonstrate the theory

behind experimental protocols designed to produce entangled cluster states using a quantum

dot. In chapter 3 we introduce the fundamental physics of quantum dots, including the hyperfine

and quadrupolar interactions. We also discuss the sources and effects of electron and nuclear

spin decoherence, and present experimental procedures designed to minimise said decoherence.
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CHAPTER 1. INTRODUCTION AND MOTIVATION

Chapter 4 presents our work on modelling the impact of recent re-measurement of the gradient-

elastic tensor on the characteristic properties of a particular quantum dot structure. We calculate

the electric field gradient felt by nuclei within the structure, and use this to find quadrupolar

frequency distributions and simulate NMR spectra. Using these results we discuss how this

particular quantum dot may be best used within the landscape of quantum technologies. In

Chapter 5 we artificially create 2 highly symmetric structures, which we then use to investigate

the effect of such symmetry on the coherence time of a trapped electron and the behaviour of

the nuclear spin bath as a whole. The use of these dots as quantum memories is quantitatively

analysed in Chapter 6 by investigating the effect of optical pulses of various widths on the

NMR spectrum. Chapter 7 summarises our findings, and suggests how this work might best be

extended.

1.2 Quantum Dots

A self-assembled semiconductor quantum dot (QD) can be thought of as an artificial atom,

consisting of 105 atoms embedded inside a larger crystal lattice. They range in size from 5 -

50nm across, and are constrained in all 3 spatial dimensions, in contrast to quantum wells or

wires, which are constrained in only 1 or 2 dimensions respectively[2]. Quantum dots are formed

out of 2 distinct semiconducting materials: a substrate made of a high bandgap material (such as

GaAs) which encases a thin layer of a low bandgap material (such as InGaAs) - this thin layer

then forms the QD. Electron confinement occurs because the conduction band of the low bandgap

material sits at a lower energy than in the high bandgap material - thus restricting the ability of

conduction band electrons to move out of the central region into the wider substrate. Dots can

generally be categorised according to how they were fabricated, and there are 2 main methods:

the strain driven Stranski-Krastanov (SK) mode, and the largely strain free droplet epitaxy (DE)

process.

Stranski-Krastanov growth [4] relies on a mismatch in lattice constant causing a strain

between layers of 2 different semiconducting materials. The substrate (GaAs in our case) is laid

down first using molecular beam epitaxy (MBE)1, we then layer on InGaAs. This initially forms a

wetting layer atop the GaAs substrate, but as more InGaAs is added the strain induced by the

lattice mismatch (7% for these materials) leads to new layers preferentially being added atop

only the InGaAs wetting layer2 (WL). Over time, this leads to the growth of 3D islands of InGaAs,

sitting on top of the GaAs substrate. A final layer of GaAs is then laid down atop these islands,

in order to prevent them breaking apart, in a process known as capping. This tends to produce

QDs which are wider than they are tall, and hence have a greater electronic confinement in the z

direction. The SK growth method is widely used in the research community but does have some

significant downsides: the WL connects all dots grown atop the same substrate, we have only

1More details of which can be found here [5–7].
2This minimises the elastic potential energy of the structure
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1.2. QUANTUM DOTS

Figure 1.1: High-resolution STEM image of a single InGaAs QD embedded in the GaAs substrate.
We can clearly see the QD outlined in white. The dotted line shows where the structure bulges
outwards from the ideally symmetrical structure shown as a solid line. Figure reused with
permission from [3].

a limited ability to choose the shape and size of the resulting QDs, and the necessity of using

semiconductors with the required lattice mismatch limits the choice of materials [8]. The strain

required to grow the QD also remains within the structure after it has been formed - this has

both advantages and disadvantages, as we will see throughout this thesis. Nonetheless, SK dots

currently are the first choice for photon emission applications [9, 10].

Droplet epitaxy fabrication on the other hand, does not rely on lattice mismatch or strain

to grow the QD, and thus creates dots (and other nanostructures) which are virtually strain

free [8, 11, 12]. The standard materials used in DE are GaAs, embedded in a AlGaAs, but other

combinations of materials are possible [13–15]. In the first stage of DE fabrication, Ga atoms are

deposited onto an AlGaAs base layer. As more Ga is added, the atoms gradually form droplets due

3



CHAPTER 1. INTRODUCTION AND MOTIVATION

Figure 1.2: A simplified, not to scale, diagram of an InGaAs quantum dot, showing the host GaAs
lattice, the InAs wetting layer and the InGaAs quantum dot.

to both their stronger attraction to each other and the desorption of As atoms3. Once the droplets

have formed, they are crystallised in order to form the QD. This step requires the droplets to be

annealed while in an atmosphere of elemental As - the As atoms are gradually absorbed into the

droplet, creating a crystal structure as they bond to the Ga in the droplet. The main advantages

of this method are that it allows a far greater range of materials to be used (as there is no reliance

on lattice mismatch), and that the shape/size of the resulting QDs can be tightly controlled via

variation of experimental parameters during both the droplet formation and crystallisation steps.

However, DE QDs require post fabrication annealing in order to enhance their otherwise poor

optical properties due to subtle defects in the lattice structure [18]. It should be noted there

has been some success in using such annealing to fine tune such optical properties, potentially

turning this into a benefit of the DE procedure [19].

In this thesis, we will focus on InGaAs quantum dots, grown via the SK method. The ideas

discussed should carry over well to other dots grown using the SK method, but DE dots have a

very different nuclear environment and should therefore be examined separately. In particular,

we will be investigating the role of strain in determining the nuclear and optical properties of

a specific InGaAs quantum dot, grown via the SK mode. For completeness, it is also possible to

grow GaAs QDs by etching nano-holes in AlGaAs, an approach which has been shown to result in

QDs with good optical properties [20].

3These processes characterise the Volmer-Weber growth mode [16, 17].
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1.3 Quantum Computation

Since the famous paper by Richard Feynman [21] in 1982, the Everest of research into quantum

technologies has been the universal quantum computer - a machine which uses the laws of

quantum mechanics to perform calculations that would be infeasible on any classical machine4.

Such a device has been shown theoretically to be capable of solving problems such as prime

factorisation [24], function inversion [25] (and hence database searching), and of course the simu-

lation of naturally quantum systems [26, 27] - which has uses in academic and medical research

[28–30]. However, the construction of such a device poses significant practical challenge, and it

is only recently that experiments have demonstrated anything close to a quantum advantage

over a classical machine [31] and even then, there is no clear consensus that it has actually been

achieved [32]. It should also be noted, that the problem solved in this case was one specifically

designed to be easy for a quantum device, while posing an incredible challenge for a classical one,

we are still some way off from solving useful problems with a quantum computer.

1.3.1 The Gate Model

The base element of most (though not all) quantum computing schemes is the qubit, a quantum

analogue of the classical bit. While a classical bit is defined at all times to be in either the 0 or 1

state, a qubit behaves quantum mechanically and is thus allowed to exist in a superposition of

classical states. We represent a qubit as |Ψ〉 =α |0〉+β |1〉, with α and β the probability amplitude

of a particular state, subject to the normalisation condition that |α|2+|β|2 = 1. We see that we can

capture classical behaviour by setting α (β) to be 1 and hence our state becomes the classical 0

(1). However, we are not restricted to only these states, and in the case of n qubits we are able to

access 2n states in superposition - allowing for the manipulation of significantly more information

than a classical machine.

In much the same was as the qubit is the quantum equivalent of the bit, we can also define

quantum logic gates, which act on qubits much as classical logic gates act on classical bits. This

model of computation is unsurprisingly termed the ‘gate model’ of quantum computation, and

is the one most platforms use to model computation. In order to perform quantum information

processing (and hence computation) in this model, we can apply a series of these gates to our

qubits in sequence, and then measure the final state. Measurement will of course force our qubits

to collapse to a classical state, with probabilities dictated by the probability amplitudes of each

of the 2n states in can be in a superposition of. For this reason, many quantum algorithms are

probabilistic and must be run multiple times to be sure of a correct result5. Such an operation

4A machine which does better than any classical computer is often said to have achieved ‘quantum supremacy’
[22]. I will be using the term ‘quantum advantage’ instead, due to the political connotations of the word supremacy
[23].

5Though the potentially exponential speed advantage they can have still renders them faster than classical
machines.
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CHAPTER 1. INTRODUCTION AND MOTIVATION

FIGURE 1.3. Cluster state measurement based quantum computation. Each point in
the grid represents a measurement on a qubit (circles for σz, vertical arrows for σx
and angled arrows for measurements in the x-y plane). Which measurements are
taken is dependant on the outcomes of prior measurements, and hence quantum
information is propagated through the lattice. Reproduced with permission from
[37].

can be represented by applying a series of unitary operators (U(t f , ti), with each gate represented

by a different unitary operator) to our quantum state |Ψ〉, such that:

|Ψ(t f )〉 =Ua(t f , t f−1)...Ub(t1, ti) |Ψ(ti)〉 . (1.1)

At the end of this process, the state |Ψ(t f )〉 holds the answer to the question we asked via our

series of unitary quantum gates6. In principle, a quantum dot can be used as one of the qubits

in a system such as this - the central electron spin forms a 2-level system and thus can act as a

qubit. However, we do not believe this is the best use for quantum dots in quantum information

processing. For that, we need to look at measurement based quantum computing (MQC).

1.3.2 Measurement Based Quantum Computing

Measurement based quantum computing is a completely different way of thinking about quantum

computation than the gate model, though the two are equivalent in terms of computational

power[34, 35]. Within the world of MQC, there are 2 schemes: teleportation based [36] and

one-way/cluster state based [37]. We shall focus on the latter, as it is in the creation of cluster

states that quantum dots may come play to a key role.

Cluster state based MQC7 functions by taking a large ‘resource state’ and selectively perform-
6We have skipped over the incredibly important role that entanglement plays in this model (without it, this

paradigm would be no more powerful than classical computation). For a more detailed look, please see works such as
Quantum Computation and Quantum Information by Nielsen and Chuang [33]

7Also known as ‘one way’ quantum computing
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1.3. QUANTUM COMPUTATION

ing measurements on it. The precise sequence of measurements performed encode the algorithm,

with the results of the final set of measurements giving us the answer to our encoded question.

The nature of the resource state is thus of paramount importance. It has been shown that a

2D lattice of particles, each entangled with their 4 nearest neighbours, is sufficient to perform

any quantum algorithm and work is ongoing as to find out exactly how much this lattice can

be distorted before it stops being suitable for computation [38, 39]. The key advantage of this

method of MQC is that the measurements needed are only performed on a single qubit at a time,

and thus may be much easier to practically perform than the multi-qubit operations needed in the

gate model. That said, the preparation of a large, entangled cluster state is no easy task - in some

sense we have simply moved the experimental difficulty to a different stage of the calculation!

The production of a sufficiently large and well-entangled resource state then becomes the

principle challenge of experimentally implementing MQC. Several experiments have successfully

created such states, across a variety of platforms, including: atomic lattices [40, 41], photonics

[42–49] and trapped ions [50], though all at very small scales. We will focus in particular on

photonics as our platform of choice, as it is here that quantum dots are expected to play a key

role.

1.3.3 Physical Implementations

In order to implement gate-based quantum computation, any physical system must meet 5

criteria8, initially put forward by DiVincenzo in 2000 [51]. These criteria are:

1. A well characterised qubit, which can be replicated en mass. Making a single good qubit

isn’t enough, we must be able to make many of them in order to do anything useful.

2. It must be possible to reliably initialise the qubits to a known quantum state. This is

completely analogous to the initialisation of registers in a classical computer. It also has

implications for error correction, which typically requires a large amount of qubits in known

states [52, 53].

3. Long coherence times. A qubit must be able to retain quantum information long enough

that we can perform multiple operations on it, and read out the results.

4. Implementation of a universal set of gates. In much the same way as Turing completeness

matters for a classical gate set, a quantum gate set must be sufficiently powerful perform

any possible quantum computation. Which precise set of gates is chosen is likely to depend

on the specific physical system.

5. The ability to measure each qubit to a high degree of accuracy. The calculation is obviously

pointless if we cannot read out the results.
82 additional criteria are put forward in the paper, each having to do with the communication of quantum

information, rather than computation itself.
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CHAPTER 1. INTRODUCTION AND MOTIVATION

Every physical system currently being investigated for use in quantum computation will be

well suited to some of these criteria, and less so for others. The list of possible platforms is almost

constantly expanding, but for now the leading candidates (beside QDs) seem to be: supercon-

ducting circuits [31], ion traps [54], atomic lattices [55], linear optics [56], continuous variable

quantum optics [57] and various topological implementations [58]. Each of these platforms is at a

different stage of research, and there is currently no clear consensus which (if any) will emerge

as the dominant implementation.

1.4 Dots for Quantum Information

As we have seen in previous sections, there remain a multitude of challenges before we can achieve

reliable, useful quantum information processing and computing. The question now becomes, how

can QDs help us solve any of these challenges?

First, let us look at how QDs might be used as the qubit in a gate based quantum computer,

with reference to the criteria defined above. Criterion 1 is met is the sense that qubits in dots are

well characterised, but we cannot yet fabricate multiple identical QDs - each is subtly different,

and these differences can have huge impacts on qubit performance. Meeting criterion 2 has been

possible for many years, and presents few barriers to a QD based system [59]. Criterion 3 remains

a significant problem in the field, despite good progress in recent years [60, 61], and we will later

discuss some of the mechanisms behind this. Criteria 4 has also been well addressed - ultrafast

optical rotations have been possible in QD systems for over a decade [62–65]. Criterion 5 is also

well understood, with techniques such as resonance fluorescence achieving fidelities of at least

96% [66–70]. We are therefore left with 2 main problems: an inability to manufacture identical

QDs, and the issue of decoherence. In this thesis, we shall concentrate on decoherence processes -

the effects they have and how those effects can be mitigated.

Now, we shall consider the role QDs could play in other aspects of a quantum computer.

Quantum dots have long been known to be exceptional single photon sources, as they seem to

meet all of the key criteria for such a device: single-photon purity, indistinguishability, brightness

and reliability. That is to say, the ideal single photon source should be a button that one presses,

which with 100% probability then emits a photon with well defined properties that do not change

if the button is pressed again. Quantum dots perform very well in all of these categories [10].

In addition, QDs have also been suggested as a good source of linear cluster states [71, 72],

which are a key resource necessary for the generation of the entangled resource states needed for

linear optical quantum computing [73]. In this way, QDs seem to be a natural partner of optical

quantum computing schemes, and it is in this context that we shall examine and characterise

them in this thesis.
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2
ELECTRON ENERGY LEVELS AND ENTANGLEMENT GENERATION

PROTOCOLS

In this chapter, we will explain the fundamental physics of quantum dots and how they

can be used as a 2 level quantum system. We will then discuss recent proposals for the

generation of entangled linear cluster states of photons, and how those states can be used

to create the resource states necessary for measurement based quantum computation.

2.1 Electrons in Quantum Dots

The parallels between quantum dots and atoms are very useful to understand the basic behaviour

of a QD - we can reasonably expect them to have a series of discrete energy levels, and we can

therefore use them to absorb and emit photons with well-defined energies. However, in contrast

to atoms, the energy levels in a QD come about as a result of their shape, size and semiconductor

composition, rather than mainly the number and distribution of electrons as in an atom. By

tweaking our fabrication procedures we can produce QDs in a huge range of sizes and shapes [74],

and hence with vastly different electron confinement potentials and photon emission properties.

The energy levels themselves come about as a result of the QD inheriting the band structure of

the semiconductors it is made from.

2.1.1 Band Structure in Semiconductors

When atoms are bound together to form a lattice, their atomic orbitals overlap [75]. However, due

to Pauli exclusion it is impossible for more than 2 electrons to occupy exactly the same orbital. In

a crystal environment, where there might be of the order 1020 atoms and electrons, this forces

the orbitals to be spaced incredibly close together. Hence we see the formation of energy bands,

9
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PROTOCOLS

Figure 2.1: Simplified diagram of the band structure of direct (a) and indirect (b) band gap
semiconductors. Eg is the same in both instances, but the bottom of the conduction band is offset
in the indirect bandgap material, and hence a transfer of angular momentum is needed to excite
an electron from the valence band.

which appear to be continuous regions in energy space capable of accommodating huge numbers

of electrons. In a crystal made up of only a small number of atomic species (as in the case of GaAs

and InGaAs), there will be gaps present in this continuum of levels, simply as a reflection of the

spacing between the energy levels of the atoms that make up the lattice. The arrangement of the

lattice also impacts the energy level distribution, any asymmetry present will distort the shape of

the band structure and so electrons travelling in different directions (and hence having different

wavevectors k) will behave differently.

For semiconductor applications the important bands are those that are closest to the Fermi

level (FL) of the material: the band immediately below the FL is the valence band (VB), and the

one immediately above is the conduction band (CB). When discussing the bandgap of a crystal,

we are referring to the spacing between the VB and the CB. The size of the bandgap (Eg) will

vary depending on the composition of the lattice, and it can be the case that some transfer of

angular momentum (in the form of a phonon) is needed to transfer electrons from the VB to the

CB. This is the difference between direct and indirect bandgap semiconductors (see Fig. 2.1).

When a semiconductor crystal absorbs a photon, an electron is excited from the VB to the CB,

leaving behind a hole. This process is reversed for the emission of a photon, with an electron

and hole recombining as the electron rejoins the VB, though this can only happen when the

total angular momentum of the electron/hole pair is equal to a possible value of photon angular

momentum (0 or ±1).

We now turn our attention to GaAs and InGaAs specifically, both are direct bandgap materials,
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2.1. ELECTRONS IN QUANTUM DOTS

and as such phonon processes (though still in existence) are not required to understand their

basic behaviour, we can mainly concern ourselves with the strong zero phonon line transitions.

In bulk, the CB of both materials is formed by the overlap of s-shell orbitals, and therefore has

orbital angular momentum L = 0 and electron spin angular momentum S = 1
2 for a total angular

momentum J = L+S = 1
2 . These have the same spin projections as an isolated electron in an

atomic orbital, and hence we will label them as |↑〉 and |↓〉 for sz = 1
2 and sz =−1

2 respectively. The

VB on the other hand is formed by the overlap of p-shell orbitals, and thus has orbital angular

momentum L = 1. This means that the VB has a total angular momentum of J = L+S = 1
2+ 3

2 , and

by adding these angular momenta we are left with states of total angular momentum J = 1
2 and

3
2 . The J = 1

2 split-off band has a very large energy separation from the rest of the VB, and hence

can be ignored. The J = 3
2 band has 2 sub-bands, split according to the possible spin projections

jz =±1
2 ,±3

2 . These are referred to as light holes (LH) and heavy holes (HH) respectively due to

the differences in their effective masses [76]. In a bulk semiconductor, the LH and HH bands are

mixed, however in a QD the effects of confinement and in-plane strain cause a small splitting

between these bands1, though it is not large enough to prevent all mixing from occurring [77].

This splitting can be intuitively understood as being similar to the increase in band separation

when a simple particle in a box model is horizontally shrunk. In a bulk semiconductor the

equivalent box is essentially infinite in width, and thus has a continuum of bands, while when

confined in a quantum dot the box is of finite (and small) width and thus energy levels (bands)

emerge. The HH band is shifted less, and so has a smaller bandgap than the LH band and so is

treated as the dominant band with regard to coupling to the CB. The possible spin projections of

the HH are sz = 3
2 and sz =−3

2 , which we will label |⇑〉 and |⇓〉 respectively. Further complications

in the band structure arise from the wetting layer, which consists entirely of InGaAs (which has

a smaller bandgap than GaAs), but lacks the confinement effects which cause sub-band splitting.

The resulting energy structure is shown in Fig. 2.2.

2.1.2 Photons and Excitons

The process of absorbing a photon necessities the movement of an electron from the valence band

to the conduction band, as it gains energy equal to that of the absorbed photon. In doing so, it

leaves behind a positively charged heavy hole in the valence band. This hole, due to its positive

charge, can form a bond with a conduction band electron - such a pairing is called an exciton.

Excitons are relatively stable, with lifetimes of a few nanoseconds [78] and generally resemble

a hydrogen atom - the light electron orbits the much heavier hole. As such, there is a Coulomb

binding energy Eχ associated with exciton formation, which in a bulk material is given by:

Eχ =− µe4

32π2~2ε2
rε

2
0

(2.1)

1Referred to as sub-band splitting
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Eb Ew

Energy

Eg

Conduction Band

Valence Band

p-shell

s-shell
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z (growth) axis

Figure 2.2: The band structure of an InGaAs/GaAs quantum dot. Eb is the band gap in bulk
GaAs, Ew the band gap in the InGaAs wetting layer, and Eg the band gap in the quantum dot.
There is also sub-band splitting into light and heavy holes in the valence band, and into s and p
shells in the conduction band.

where ε2
0 and ε2

r are the vacuum and relative permittivity, and µ is the reduced mass of the

electron-hole pair, given by:
1
µ
= 1

m∗
e
+ 1

m∗
h

. (2.2)

As a result of the binding energy, the exciton sits at an energy level just below that of the

conduction band, effectively slightly reducing the band gap of the structure. This leads to there

being 2 methods of exciton formation - resonant and non-resonant. In resonant excitation, a

photon with energy Eγ = ~ν= Eg −Eχ excites an electron and directly creates an exciton, this

is in contrast to non resonant excitation in which a photon with energy Eγ = ~ν > Eg excites

an electron to a higher level inside the conduction band. This electron then binds with a lower

energy hole to again form an exciton.

In a quantum dot, the confinement imposed by the structure modifies the exciton energy

structure significantly [79]. The Hamiltonian of an exciton in a quantum dot is of the form [80]

Ĥ = p2
e

2me
+ p2

h

2mh
+Vc(re)+Vc(rh)− e2

4πε0εr

1√
(re −rh)2 +a2

. (2.3)

Here, the first 2 terms are the electron and hole kinetic energies, Vc are the relevant confinement

potentials and the final term modifies the standard Coulomb interaction to account for the size of

the electron and hole wavefunctions in the growth direction, characterised by a - the mean-square

12



2.1. ELECTRONS IN QUANTUM DOTS

Figure 2.3: The fine structure splitting of a neutral exciton. Split first by the exchange interaction
δ0, and then by asymmetry in the dot structure δ1,δ2. These splittings vary as a magnetic field is
applied, but are typically measured in meV or µeV [81].

separation of the electron and hole in the z direction. The exact form of Vc depends on the shape

of the confining potential, a standard parabolic confinement of the electron yields

Vc(re)= 1
2

m2
eω

2
e r2

e, (2.4)

with the equivalent term for the hole confinement potential found by simply replacing the

relevant parameters. By finding the eigenstates of Eq. 2.3, we can find the exciton binding

energy of any particular quantum dot. It has been shown [80] that dots with a small radius and

steep confinement potentials have the highest exciton binding energies. A tall dot (with height

approaching the radius) will have a much lower exciton binding energy than a shorter dot of the

same lateral size.

The exact energy structure of an exciton depends on the charge state of the quantum dot it is

found in. A neutral quantum dot is one in which the ground state of the system has no electrons

in the CB, whereas in a charged dot extra electrons have been injected to force the ground state

to contain 1 or more electrons in the CB. In a neutral quantum dot, there are 4 possible exciton

spin states, corresponding to combinations of the possible spin states of the electron and hole:

|↑⇓〉± |↓⇑〉 and |↑⇑〉± |↓⇓〉. These are arranged in doublets (see Fig. 2.3), with angular momentum

projections of m =±1 referred to as bright states, and m =±2 as dark states. These doublets are

then split by the strain present in the dot, leading to fine structure splitting (FSS). FSS results in

the pair of bright states having a higher energy than the pair of dark states. As such, transitions

are possible between the 2 bright states, and between the 2 dark states via optical transitions

to the ground state, but are much less common between the 2 pairs. As there is no change in

angular momentum within the doublets, we can excite these transitions with linearly polarised

photons. The exact size of the FSS (δ) depends on the strain characteristics of the structure, and

as such varies significantly between dots.
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a) b)

Figure 2.4: The allowed transitions of a charged QD. Each initial electron state can only be
excited by the corresponding circular polarisation of light - σ+ for spin 1

2 and σ− for spin −1
2

Charging a quantum dot is accomplished by the application of a small voltage Vg over the dot

or by injecting excess electrons in a process known as doping. Both result in an electron entering

the conduction band of the dot without creating a corresponding hole, and so not forming an

exciton. This effect can be observed by measuring the corresponding change in capacitance [82].

When we optically excite a second electron into the conduction band, Pauli exclusion requires

that it enters the opposite spin state to the one already present. This results in there being only

2 possible excited states: |↑↓⇑〉 and |↑↓⇓〉 with spin 3
2 and −3

2 respectively, these are called trion

states. As each trion state differs only by the orientation of the hole spin, which one we arrive at

depends on the initial spin of the VB electron. Therefore, in the absence of any HH-LH mixing,

a spin up initial state will transition to a positive spin trion, and a spin down initial state will

result in a negative spin trion. These transitions require a photon with unit angular momentum,

as they take a spin ±1
2 electron to a spin ±3

2 trion and hence can only be excited by circularly

polarised light with Jp = 1 and jp =±1. To allow other transitions to occur in a charged dot, we

must apply a magnetic field.

It is useful at this point to briefly discuss the polarisation of light. The polarisation of a

wave is the direction of the oscillation of its component electric field2. This of course allows for

infinite possibilities in principle, however these can all be treated as linear combinations of

pairs of orthogonal polarisations. The standard convention is to label horizontal and vertical

polarisation as |H〉 and |V 〉 respectively, and then define diagonal and anti-diagonal polarisations

as |D〉 = 1p
2
|H〉+ 1p

2
|V 〉 and |D〉 = 1p

2
|H〉− 1p

2
|V 〉. Circular polarisation is the steady rotation

of this linear polarisation state. This gives rise to 2 further useful states of polarisation - right

handed and left handed, which we write as |R〉 and |L〉 respectively. These circular polarisations

carry angular momentum Jp = 1 and jp = ±1, and this is why they are used to create spin 3
2

trions from spin 1
2 electrons in a quantum dot.

2Which is obviously perpendicular to the direction of travel.
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2.1. ELECTRONS IN QUANTUM DOTS

Figure 2.5: Defining the orientations of applied magnetic fields, relative to the quantum dot
growth axis along z. A Faraday field BF is parallel to z, whereas a Voigt field BV is perpendicular,
and defines the x axis (as the ideal dot is cylindrically symmetric).

2.1.3 Faraday and Voigt Geometries

The choice of along which axis to orient an applied magnetic field has a significant impact on the

energy level structure of a QD. Here we shall concentrate on the effect on a charged quantum dot,

as these are the type needed for generating entangled states, and those that most strongly feel

the effect of nuclear interactions3.

In a Faraday field, we describe the system using the Hamiltonian:

ĤF = (gz
e + gh)

µBBz

2
σz, (2.5)

with ge (gh) the electron (heavy hole) g-factor4, and σx, σy, σz the standard Pauli matrices.

The lowest energy eigenstates are those comprised of only the electron spin: |↑〉 and |↓〉, with

eigenvalues λe =± geµBBz
2 respectively. The trion state is also split, with each spin becoming a

superposition along z, resulting in the eigenstates

|T⇓〉 = 1p
2

(|↑↓〉− |↓↑〉) |⇓〉

|T⇑〉 = 1p
2

(|↑↓〉− |↓↑〉) |⇑〉 ,
(2.6)

which have eigenvalues of λt = ~ν∓ ghµBBz
2 . We can see that the effect of a Faraday field is to keep

the eigenstates along z, while lifting the degeneracy of the ground state.
3For a detailed description of the fine structure of InGaAs quantum dots in all configurations, please see [81].
4The g-factor of of both electrons and holes is different along the x and z axes [83], and care should be taken to

use the correct value. In this case, each g should be treated as having the same subscript as σ.
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Our analysis of the Voigt orientation proceeds in much the same way, we begin with the

Hamiltonian5

ĤV = (ge + gh)
µBBx

2
σx. (2.7)

The eigenstates of this system are along the x axis, but we shall write them as superpositions of

z spin states

|eg±〉 = 1p
2

(|↑〉± |↓〉) (2.8)

with eigenvalues

λg =± geµBBx

2
. (2.9)

which are identical in form to the eigenstates of the ground state in a Faraday geometry, but

along the x axis instead of z. However, the behaviour of the trion state is more complicated, and

in general depends on the splitting between the LH and HH states. In general, they are of the

form

|e t±〉 = (a |⇑〉+b |⇓〉) |↑↓〉 (2.10)

with a and b dependent on the LH-HH splitting. In the case where the splitting is large, and

hence the system cannot easily shift between the 2 HH states, we approach the state a = b = 1p
2

.

The exact nature of the eigenstate depends on the HH-LH splitting, the g-factors in that material

and the strength of the applied field. The associated eigenvalues are

λ= ~ν∓ ghµBBx

2
. (2.11)

From this we see that in a Voigt orientated field, the eigenstates will remain along the z axis

even though this is no longer the energy eigenbasis. This results in a set of allowed transitions

that are different from those in a charged dot that isn’t in a magnetic field. In a Voigt field, the

vertical transitions show in Fig. 2.4 are instead excited by vertically polarised light, and the

previously forbidden cross transitions are excited by horizontally polarised light. As such, left or

right circularly polarised light will now excite into both excited states, whereas without a Voigt

field only a single transition was allowed.

2.2 Entangled State Generation

The generation of large entangled states is a necessity for the implementation of measurement

based quantum computation. However, the creation of such states is a significant challenge. Here

we outline proposals and some early experimental results for the creation of photonic cluster

states, using quantum dot emitters.

5Again, we note that the electron and hole g-factors are now in the x direction and suitable values should be used.
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2.2. ENTANGLED STATE GENERATION

2.2.1 The Cluster State Machine Gun

The cluster state machine gun (CSMG), as proposed by Lindner and Rudolph [71], is a procedure

designed to produce a string of photons, each entangled with the preceding and following ones in

the chain. If the entanglement is structured such that individual links can be broken without

disentangling the entire structure, then the state is referred to as a cluster state. The three qubit

cluster state, written in the computational basis and ignoring normalisation, is:

|ψ〉 = |000〉+ |100〉+ |010〉− |110〉+ |001〉+ |101〉+ |−011〉+ |111〉 (2.12)

The CSMG produces 1D cluster states, and it has been shown that many such states can then

be combined using ‘fusion’ gates to create the 2-dimensional entanglement necessary for MQC6

[73, 84, 85]. This has been proposed as the basis for a photonic quantum computer, in which QDs

would play a key role [56].

The CSMG relies on a system with a degenerate ground state with the standard spin pro-

jections |↑〉 and |↓〉, and an excited state with spin eigenvalues of j =±3
2 . Fortunately for us, as

we have seen in Section 2.1, this is exactly the energy level structure present in a charged QD.

Referring to the states |↑↓⇑〉, |↑↓⇓〉 as |⇑〉 and |⇓〉, as only the exciton spin state is relevant, we

know that if we excite the |↑〉 (|↓〉) state, we end up in the |⇑〉 (|⇓〉) excited state and from here

decay back down via the emission of a right (left) circularly polarised photon - which we shall

label |R〉 (|L〉). If instead we had started with an initial state of |ψi〉 = |↑〉+ |↓〉,7 and then excited

it with linearly polarised light8 and waited for the system to decay, the electron spin/emitted

photon pair would end up in the state |ψ f 〉 = |↑,R〉+ |↓,L〉, which is an entangled Bell state.

While we could entangle another photon by repeating this procedure, this would create 3 photon

GHZ states, instead of the desired 3 photon cluster state [86]. Both are fully entangled 3-photon

states, but a single measurement will collapse all the entanglement in a GHZ state, whereas the

entanglement of 2 photons in a cluster state is not affected by measurements of other entangled

pairs in the state.

Instead, we shall first apply a π
2 rotation to the spin, around the Y axis9. By doing this, we

evolve our 2 particle state from

|↑〉 , |R1〉+ |↓〉 , |L1〉 , (2.13)

where the subscripts are labelling specific photons, to the state

(|↑〉+ |↓〉), |R1〉+ (−|↑〉+ |↓〉), |L1〉 . (2.14)

6It should be noted here that fusion gates are inherently probabilistic, and so do not entirely solve the problem of
deterministically generating 2D cluster states.

7Here, and for the rest of this section, we will ignore normalisation in an attempt to keep the fundamental physics
clear.

8Remembering that linear polarisation is a superposition of left and right circular polarisation.
9This has the effect of taking |↑〉→ (|↑〉+ |↓〉 and |↓〉→ (−|↑〉+ |↓〉) [33]
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From here we can again excite the system, and it will decay into a spin/2-photon state of the form

(|↑〉 |R2〉+ |↓〉 |L2〉) |R1〉+ (−|↑〉|R2〉+ |↓〉 |L2〉) |L1〉
=|↑〉 |R2〉 |R1〉+ |↓〉 |L2〉 |R1〉− |↑〉 |R2〉 |L1〉+ |↓〉 |L2〉 |L1〉 .

(2.15)

After another π
2 pulse, we will have the state

|↑〉 |R2〉 |R1〉+ |↓〉 |R2〉 |R1〉− |↓〉 |L2〉 |R1〉+ |↑〉 |L2〉 |R1〉
− |↑〉 |R2〉 |L1〉− |↓〉 |R2〉 |L1〉− |↓〉 |L2〉 |L1〉+ |↑〉 |L2〉 |L1〉 .

(2.16)

Now, if we label our states according to

|R〉 , |↑〉 = |0〉
|L〉 , |↓〉 = |1〉

(2.17)

we can see that this state is equivalent to

|0〉 |0〉 |0〉+ |1〉 |0〉 |0〉− |1〉 |1〉 |0〉+ |0〉 |1〉 |0〉− |0〉 |0〉 |1〉− |1〉 |0〉 |1〉− |1〉 |1〉 |1〉+ |0〉 |1〉 |1〉 (2.18)

which is local unitary equivalent to the 3-qubit linear cluster state shown in Eq. 2.12.

From here, repeated application of an excitation pulse, followed by decay and then a π
2 rotation

of the spin will add 1 photon at a time to the cluster state. When a state of sufficient size has

been made, the electron spin can be disentangled by measuring the polarisation of the most

recently produced photon. In order to experimentally implement this scheme, we must have a

dot with a LH-HH splitting large enough that we can neglect the mixing between the states. We

then take this dot and place it in constant magnetic field, aligned along the Y axis 10. This has

the effect of continually rotating the central spin, at a frequency of ωB = geµBBy
2 , which therefore

completes a π
2 rotation with a period T = π

2ωB
. So long as the optical excitation and exciton decay

are both faster than this time, we can generate cluster states. Recent experiments have shown

that optical excitation of quantum dots can be done in the ps regime [65], and trion lifetimes are

of the order of ns [87]. Taking reasonable values of ge = 0.25 [88] and µB = 9.3×10−24JT-1 [89],

we can rearrange the above to see that in order for the rotations to happen on a timescale of 10s

of ns, we require a field of the order

B = π~
geµBT

= π~
0.25×9.3×10−24 ×10−8 ≈ 0.01T. (2.19)

Increasing the field will lessen the time taken per cycle, meaning that fields much larger than a

few 10s of mT will not allow enough time for exciton decay to occur. It is possible to increase the

field size by using an optical cavity, though even to get to the 100s of mT regime would require a

cavity with a Purcell factor of 10 - it is clear that this procedure requires low external fields in

order to work well.

Experimentally, the CSMG has been demonstrated using a quantum dot source [48], though

this particular implementation used a dark exciton transition, rather than the standard one

originally proposed.
10In the plane of the dot.
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Figure 2.6: An outline of the first few cycles of 2D cluster state generation using 2 QDs. The
coloured dots represent spins contained within a pair of quantum dots, while the empty dots are
generated photons. In step (a) the spins are initialised, in (b) they are entangled via a CZ gate, in
(c) and (d) photons are produced as per the CSMG, and then in (e-h) the steps are repeated to
produce larger states. Reused with permission from [91].

2.2.2 Other Entanglement Schemes

The cluster state machine gun is not the only protocol proposed for producing entangled states

using quantum dots, though it may be the most widely discussed. Other protocols have been

suggested, nearly all of which build on the CSMG in some way.

2.2.2.1 2D Cluster State Generation

The CSMG proposes to generate 1D cluster states, and then use optical fusion gates to form

the 2D states necessary for quantum computation. A fusion gate probabalistically combines

multi-photon cluster states (for example GHZ or W states) into larger states of the same type

[73, 90]. The probabilistic nature of this combination creates implementation problems, and thus

other solutions are being sought.

By using 2 quantum dots, it is possible to generate 2D states without the need for fusion gates

[91]. This is done by entangling 2 QDs before each cycle of the CSMG, leading to the production

of a 2D cluster state. The procedure for entangling the dots is as follows: first they are initialised

to the |↑〉 |↑〉 state11, and then a π
2 rotation is applied to give the state (|↑〉+ |↓〉)(|↑〉+ |↓〉), this is

then entangled via the use of a controlled-z (CZ) gate to give the state |↑〉 |↑〉+|↑〉 |↓〉+|↓〉 |↑〉−|↓〉 |↓〉,
which is entangled. From here, the standard CSMG pulses are applied to both dots, but with an

additional re-entanglement step before each CSMG cycle. This results in a ladder of entangled

states - a 2D cluster state, as shown in Fig. 2.6.

The question remains of how to implement the required CZ gate in a pair of QDs. It has

been shown that it is possible to optically implement quantum logic gates on spins by taking

11This can be done using repeated circularly polarised pulses, without an external magnetic field [92].
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advantage of the electron-hole exchange interaction [93], and this protocol builds on that idea.

By exciting the pair of QDs to higher energy trion states, we create an additional electron which

is delocalised across the QDs, and a hole which can be confined to one of them. This system of 3

electrons and a hole has 16 possible states, and it is shown in [91] that they are sufficiently far

apart in energy such that a σ+ pulse couples only the |↓↓〉 state to this higher manifold, and thus

a resonant 2π pulse with σ+ polarisation will implement the CZ gate. This implementation of

a CZ gate has been demonstrated experimentally [94–96], though the full procedure discussed

here has not yet been implemented.

2.2.2.2 Decoherence Resistant Generation

DiVencenzo’s 3rd criteria states that any qubit must have a sufficiently long coherence time,

which is achieved by isolating it from its environment. The same idea holds true for the generation

of cluster states, whatever physical system we use to create entanglement must have a lifetime

long enough to do so. Here we are defining lifetime in a loose way to mean something like: ‘the

time for which the system is useful for the purpose of generating high quality entangled photons’.

In the case of QDs, this system is an electron trapped in a quantum dot, and the markers of

‘usefulness’ are the T1, T2 and T∗
2 times. Chapter 3 discusses in detail the mechanisms within a

dot that affect these times, but we will introduce them here in order to introduce another proposal

for entanglement generation. The T1 time of a QD measures the amount of time needed for the

electron spin to lose energy, causing it to flip from the state |↑〉→ |↓〉. This is typically as a result

of phonon emission, and T1 times are typically of the order of at least ms [65, 97], and potentially

ranging to seconds [98]. Both the T2 and T∗
2 times measure the time taken for the spin to lose

coherence - the information represented as the phase difference between possible states of a

superposition. The T2 time is this measurement for a single quantum dot in a single experiment,

and has been found to be of the order of ns [99, 100]. The T∗
2 time is more complicated, it tries

to capture the average behaviour of an ensemble12 of quantum dots rather than the snapshot

of behaviour characterised by T2. As such, the T2∗ of a system will always be less than or (in

the best case) equal to the T2. Procedures such as Hahn echo experiments have been shown

to increase T2 and T∗
2 times to the µs regime [99] - though this can be thought of as merely

revealing a longer T2 by refocussing the nuclear spin bath. It should be noted that the concepts

of T1, T2 and T∗
2 are not unique to electrons - the same ideas apply to any single spin and we

shall see later on that the nuclear coherence time plays a key role in determining the behaviour

of a QD.

In order to counteract the effects of spin dephasing, Denning et al [72] proposed a protocol

which relies on off-resonant scattering from a quantum dot in an optical cavity. By exciting the

system with horizontally polarised light (H), we create a superposition between 2 possible photon

12An ensemble can be either a group of many dots each measured concurrently or a single dot measured many
times in succession.
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Figure 2.7: An outline of a dephasing resistant entanglement generation protocol. (a) QD sitting
inside a single sided optical cavity, with a field perpendicular to the cavity. (b) Simplified band
structure of the QD, showing the transitions under Right and Left circularly polarised light. (c)
Incidence of a narrow photon, resonant with the 0 field transition, overlapping with the transition
energies split by the applied field. (d) The possible transitions are shown in blue (a coherent
transition which leaves the spin and photon states unchanged) and orange (Raman scattering,
which flips the spin state and photon polarisation). Reused with permission from [72]

excitation modes (see Fig. 2.7), by repeating the photon scattering, we create a state of the form

|ψ〉 =1
2

(|H,ω0〉1 (|H,ω0〉2 |φ+〉− i |V ,ω+〉2 |φ−〉)

+|V ,ω+〉1 (|H,ω0〉2 |φ+〉− i |V ,ω+〉2 |φ−〉)),
(2.20)

where H and V refer to photon polarisation (horizontal or vertical), ω0/+ to photon energy, φ±
to spin energy and state subscripts label successive photons. This state is equivalent to the 3

qubit linear cluster state, and has the additional advantage of both terms having the same total

energy. We can see this by noting that an initial Raman spin-flip will transfer energy bx from the

dot to the scattered photon, while the second will do the opposite. Thus, each term has energy

E = 2ω0 + bx

2 and will only pick up global phases as they evolve in time. In addition, fluctuations

in the Overhauser field13 will not cause dephasing either. States of n photons can then be created

by simply repeating the cycle for as long as needed. It should be noted that such states are no

longer equivalent to the n qubit linear cluster state, but are still highly entangled and provide a

good resource for fusion.
13See Section 3.1
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2.2.3 Entanglement Using Dots

We can clearly see that quantum dots are of great value in the production of photons for use in

quantum computation. In principle, they are the ideal single photon source, and can be used

to generate complex entangled states without the need for a great many additional optical

elements. However, we have also seen that experimental implementation of suggested protocols

lags behind the theoretical work, and this is largely due to the impact of spin decoherence. The

first 2 protocols presented here take advantage of the complex band structure of a dot to generate

entanglement, however they neglect the other complexities present in the system. The third

protocol does attempt to rectify this, but it has not seen the experimental success of the cluster

state machine gun, and requires the state to be modified after creation in order to be as useful for

quantum computation. We have also seen that the machine gun imposes an upper limit on the

possible applied magnetic field. In the next chapter, we will dive deeper into the world of spin

decoherence in quantum dots, and see how the presence of ≈ 105 nuclear spins causes an electron

to behave somewhat differently to the ideal cases we have considered thus far.
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3
STRUCTURE OF THE NUCLEAR SPIN BATH

Quantum dots, though often referred to as artificial atoms, differ in a key way from individual

atoms or spins - they are composed of tens of thousands of individual atoms, each with their

own nuclei and electrons. The discussion in Chapter 2 treated the electron spin as though it was

only under the influence of the crystal lattice and the external field. However, such a spin is

navigating a far more complicated environment and the impact of the nuclear spin bath must be

understood.

The fundamental physics that governs the behaviour of both electrons and nuclei in a

quantum dot is that of a spin in a magnetic field. Classically, a charged, spinning particle of mass

m, angular momentum S and charge q has a magnetic dipole moment of

µ= q
2m

S. (3.1)

When considering a quantum spin, it becomes necessary to introduce a dimensionless g-factor g,

which differs both between particles and between spin and orbital angular momentum, to relate

the angular momentum quantum number to the observed magnetic moment. This results in

µ= g
q

2m
S = g

q~
2m

S
~

, (3.2)

as the standard equation describing a quantum spin in a magnetic field. The factor q~
2m has the

units of JT-1, and thus is the magnetic dipole moment of the particle in question. For an electron

this is termed the Bohr magneton, and has the value µB = 9.27×10−24JT-1 which is approximately

2000 times larger than the nuclear magneton of µN = 5.05×10−27JT-1 [101]. Applying a magnetic

field B to a generic spin, defining γ= gq
2m and setting ~= 1 for convenience, we arrive at a system

with Hamiltonian

Ĥ =−µ ·B =−γB ·S. (3.3)
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If we simplify to the case of a magnetic field along only the z axis (Ĥz = −γBŜz) and use the

Schödinger equation we find the time evolution operator

Û(t,0)= exp
(−iĤt

)= e(−iBz Ŝz t), (3.4)

which we recognise as a rotation acting on the spin. To see the effect of this, we take a spin state

initially aligned with the angles (θ0,φ0),

|ψ〉 (t = 0)= cos
θ0

2
|+〉+sin

θ0

2
eiφ0 |−〉 , (3.5)

where |±〉 are the eigenstates of Ĥz obeying Ĥz |±〉 = ∓γB
2 |±〉. We can apply the time evolution

operator Ûz(t,0)= exp(−i(−γBtŜz)) to obtain the state after time t

|ψ〉 (t)= cos
θ0

2
e

iγBt
2 |+〉+sin

θ0

2
eiφ0 e

−iγBt
2 |−〉

= e
iγBt

2

(
cos

θ0

2
|+〉+sin

θ0

2
ei(φ0−γBt) |−〉

)
.

(3.6)

Ignoring the global phase we recognise that this is the same spin state as at t = 0, but now

orientated along the angles (θ = θ0,φ = φ0 −γBt). The spin has rotated around the z axis at a

rate determined by the strength of the applied magnetic field. This precession is known as Lamor

precession and a general spin precesses around an arbitrary field at the Lamor frequency

ωL =−γB. (3.7)

Lamor precession occurs for every single spin in our system. The electron and the nuclei

all have their own spin vectors and evolve in multiple magnetic fields: the applied field, the

field generated by the nuclei and the field generated by the electron. In a system of at least

105 constantly changing spins and magnetic fields, we have no hope of modelling all of their

behaviour individually with either analytic or simulation methods. We must therefore treat the

nuclear spins as a collective.

3.1 Nuclear Spins in Quantum Dots

A huge range of approximations and simulation methods have been put forward, including

various numerical methods, master equation techniques and perturbation theory approaches.

[102–107]. These techniques aim to capture the behaviours first introduced in Section 2.2.2.2:

spin relaxation and spin dephasing.

3.1.1 Electron Spin Relaxation

Spin relaxation is the process of a spin1 losing energy by flipping from the state |↑〉→ |↓〉, this is

characterised as the T1 time of the spin. In the general case of a free spin in a lattice this is largely
1In our case, an electron spin in a QD.
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Figure 3.1: Illustration of T1, T2 and T∗
2 . (a) T1 is the average time for a spin to lose energy and

flip from |↑〉→ |↓〉. Inset shows how 2 angles can be used to represent the direction of a spin. (b)
T2 is the time required for an observer to lose all knowledge of the possible phase of the spin,
possible directions are show in blue. (c) T∗

2 is the time required for an ensemble of N spins to
become dephased with each other, possible directions are shown in blue. Reused with permission
from [108].

the result of the spin-orbit interaction, which couples the spin and orbital angular momenta of an

electron and further splits the valence and conduction bands [109–111]. However, in a quantum

dot, the spin-orbit interaction is suppressed by the confinement of the electron [112–114], and

hence the chief form of energy loss is via phonon interactions [115–117]. Experimental results

indicate that T1 is typically of the order of µs, but can be extended to the ms or s regime. As such,

while spin relaxation places a ceiling on the timescales over which to implement an entanglement

generation scheme, it is of less importance than the often far shorter dephasing times found in

QDs.

3.1.2 Electron Spin Dephasing

Spin dephasing (or decoherence) is the loss of information contained in the phase of a superpo-

sition state. In a quantum dot, these processes are split into 2 types: homogeneous dephasing

is irreversible and characterised by the T2 time, while inhomogenous dephasing can be undone
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via spin echos and is characterised by T∗
2 . Theoretically, it is always the case that T∗

2 ≤ T2, but

equality is not achievable in practice due to the impossibility of knowing the initial state of every

nuclear spin individually. Both homogeneous and inhomogeneous dephasing come about as a

result of the hyperfine interaction between the electron and the nuclear spin bath.

3.1.2.1 The Hyperfine Interaction

We first consider the Hamiltonian of an electron in a magnetic field2

Ĥe = 1
2me

(p̂+ e
c

A)2 +2µBŜ ·B, (3.8)

where p̂ is the electron momentum, Ŝ the electron spin and B =∇× A is the magnetic field. The

vector potential A is chosen in such a way to satisfy the Coulomb gauge ∇ · A = 0, and for a

stationary nucleus with magnetic moment µN takes the form

A = µN × r
r3 =∇× µN

r
(3.9)

at a point defined by the displacement vector r. By substituting this into Eq. 3.8 and expanding

the first set of brackets we arrive at

Ĥe = 1
2me

(p̂2 + e
c

(p̂ · A+ A · p̂)+ e2

c2 A2)+2µBŜ · (∇× µN
r

). (3.10)

We note that this Hamiltonian is structured as Ĥe = Ĥ0 + Ĥi, where Ĥ0 = p̂2

2me
is the free electron

Hamiltonian and Ĥi can be treated as a perturbation. By substituting Eq. 3.9 into Eq. 3.10, and

taking only terms to first order in Â, we find the interaction Hamiltonian

Ĥi = e
2mec

(p̂ · Â+ Â · p̂)+2µBŜ · (∇× (∇× µN
r

)). (3.11)

We can further separate this Hamiltonian into two parts ĤL
i and ĤS

i . The second term

ĤS
i = 2µBŜ · (∇× (∇× µN

r
)), (3.12)

describes the action of the spin component of electron angular momentum. It can be rewritten as

ĤS
i = 2µB

(
(Ŝ ·∇)(µN ·∇)− 1

3
(Ŝ ·µN )∇2

)(
1
r

)
− 4µB

3
(Ŝ ·µN )∇2

(
1
r

)
. (3.13)

In the limit r > 0, the first term in Eq. 3.13 is equal to

2µB

(
3(Ŝ · r)(µN · r)

r5 − (Ŝ ·µN )
r3

)
, (3.14)

2This derivation can be found in [118], however this work is not for the faint of heart and does not go into the
details of the required vector analysis. Any steps or identities we have found useful are noted in Appendix A.1.

26



3.1. NUCLEAR SPINS IN QUANTUM DOTS

and the second term is a δ function of r (−∇2 1
r = δ(r)). Hence we find that the spin part of the

interaction takes the form

ĤS
i = 2µB

(
− (Ŝ ·µN )

r3 + 3(Ŝ · r)(µN · r)
r5 + 8πµB

3
(Ŝ ·µN )

)
. (3.15)

It is useful to note that Eq. 3.14 is the standard dipole-dipole interaction between 2 spinning

charges.

We now turn our attention to the first term in Eq. 3.11, which corresponds to the electron

orbital angular momentum. Using the definition of orbital angular momentum ~l̂ = L̂ = r× p̂, we

can rewrite the ĤL
i = e

2me c (p̂ · Â+ Â · p̂) term to be of the form

ĤL = 2µB
l̂ ·µN

r3 . (3.16)

From here we find the complete description of the interaction Hamiltonian by substituting Eqs.

3.15 and 3.16 into Eq. 3.11 to arrive at

ĤI = 2µBµN ·
(

l̂
r3 − Ŝ

r3 +3
r(Ŝ · r)

r5 + 8
3
πŜδ(r)

)
. (3.17)

The conduction band of a QD is made up of s orbitals with no orbital angular momentum.

When evaluated for such an electron, all of the terms in Eq. 3.17 vanish, because of the lack of

orbital angular momentum, and the symmetry of the s orbital, except the one proportional to

δ(r). This surviving term is the Fermi contact interaction, and it forms the basis for spin flips in

quantum dots. It is necessary to extend this Hamiltonian to account for the many nuclei present

in a QD system, this is done by summing the contact term over all the nuclei to find

ĤHF =∑
k

Ak Î · Ŝ

=∑
k

AkI z
kSz +∑

k

Ak

2
(S+I−k +S−I+k ),

(3.18)

where we sum over the nuclei k and

Ak =
16
3
πµB|ψ(0)|2. (3.19)

This Hamiltonian results in correlations between the electron and nuclear spins in a QD. In

an experiment where we measure only the state of the electron (and hence trace out the nuclear

spins) these correlations manifest as dephasing of the electron spin, a key phenomenon in the

study of QD systems [98, 108, 119–122].

3.1.2.2 The Frozen Fluctuations Model

In many cases, this dephasing is well described by the frozen fluctuations model, first introduced

in QDs by Merkulov et al in [123]. This model treats the nuclear spin bath as a randomly directed,
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CHAPTER 3. STRUCTURE OF THE NUCLEAR SPIN BATH

static magnetic field, termed the Overhauser field (BN ), with which the electron then interacts

alongside any externally applied field. We can treat BN as static because the effect of the electron

on any individual nucleus is much smaller than the effect of all the nuclei on the electron. The

evolution of the electron spin under these assumptions can be found by first calculating BN by

taking the expectation value of ĤI over all nuclear spin states

BN = 1
µB ge

〈∑
j

A j Î j

〉
, (3.20)

and then evaluating this expectation value for a maximally mixed nuclear spin state to find a

distribution of polarisation probabilities for the nuclear spin bath

p(BN )= 1

π
3
2∆3

exp
(
−

(
BN

∆

)2)
, (3.21)

which is a Gaussian distribution with variance

∆= 2
3

∑
j

I j(I j +1)
( A j

µB ge

)2
(3.22)

and mean BN = |BN |. We now take the electron spin vector

S(t)=


〈Ŝx〉(t)
〈Ŝy〉(t)
〈Ŝz〉(t)

 (3.23)

and average it over all possible values of the total magnetic field experienced by the electron

(BT =B+BN ) to find

〈S(t)〉 = (R∞
∥ +R∥(t))(S0 ·b)b

+ (R∞
⊥ +R0

⊥(t))(S0 − (S0 ·b)b)

+R1
⊥(t)((S0 − (S0 ·b)b)×b).

(3.24)

The coefficients R(t) have analytic forms defined in [123], and describe the orientation of the vari-

ous components of the electron spin relative to the externally applied field. The time-dependant

coefficients all tend to 0 in the long time limit, therefore the electron spin polarisation will always

eventually lie in the plane spanned by the initial spin S0 and the external field direction b. If

|B| À |BN | (the large field limit), then we also have R∞
∥ À R∞

⊥ and the electron spin comes to

align with the external magnetic field.

The decoherence here has been calculated by averaging over all possible orientations of the

effective magnetic field, and as such is an ensemble effect. If the initial orientation and strength

of the Overhauser field were known, and then the system allowed to evolve, we would not see

this effect. It is only in the ensemble average of many dots, or a single dot measured many times,

that we see this behaviour - see Fig. 3.1. For any single QD, the evolution of the electron spin
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over short times is coherent. This can be seen by performing a spin echo3 experiment, where the

spin evolution is reversed by flipping the spin using optical pulses [124–126]. Such experiments

have shown coherence times up to 3µs [65, 127]. Of course, Eq. 3.24 is only valid for timescales

over which the nuclear spins are static4. At timescales longer than this, the evolution of the

nuclear spins under interaction with each other and the central electron become significant, and

the Overhauser field vector will have substantially changed from the initial randomly selected

value as a result of nuclear spin flips. This evolution of the effective field leads to electron spin

decoherence which cannot be undone by a spin echo as it is not coherent over even a single

experimental run.

3.2 Controlling Nuclear Spins

Dephasing processes present a substantial barrier to the use of QDs as single or entangled

photon sources. What then can be done to reduce these effects? The ideal case is of course that we

engineer a single electron inside the QD, isolated perfectly from the nuclei5 but this is obviously

not practical. If we accept that there will be some interaction with the spin bath, what can we do

to minimise its impact? There are 2 obvious routes to take: we can try to weaken the interaction

between the electron and the nuclei, or we can try and prepare and maintain the nuclei in a

known state and then undo or account for their impact on the electron spin. Weakening the

interaction would require reducing the value of the coupling constants Ak, as we can see from Eq

3.19 this would require changing either the value of the fundamental magnetic moments of either

the electron or nucleus, or moving them away from each other - neither of which are possible

inside a specific quantum dot. We are thus left only with the option to prepare and maintain

the nuclear spin bath in a specific, useful state. There also exist experimental protocols such

as dynamic decoupling which have been used to extend heavy hole coherence times into the µs

regime [128].

The ideal nuclear spin state will of course depend on what we are trying to do with the QD. In

the case of generating entangled photons, we want long electron coherence times and low magnetic

fields. Long coherence times will allow us to produce larger cluster states, both by allowing more

cycles of the generating procedure and maintaining a high degree of indistinguishability between

the first and last photons in the cluster. Low magnetic fields are needed specifically in the case

of the CSMG as high fields cause spin rotations that are faster than trion decay and ruin the

protocol. How can we achieve these twin goals? What state do we want the spin bath to be

in? Equation 3.20 demonstrates that the Overhauser field BN comes about as a result of the

distribution of nuclear spins. In the extreme case that all of the nuclear spins were exactly

3Often also called a Hahn echo, which technically refers to the exact polarisation of the pulses used to generate
the spin echo.

4Hence the term frozen fluctuations.
5And indeed any other environment save that created by our readout and manipulation pulses.
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aligned, the resulting Overhauser field would be strong and well defined in a single direction.

However, as nuclear spin flips occur and the distribution of nuclear spins changes, so too will

the direction and strength of the resulting Overhauser field. In order to achieve long electron

coherence times, we need to engineer an Overhauser field which is well defined and does not

change quickly - we must polarise the nuclear spins in a specific direction and then keep them

there for as long as possible. Knowing the direction of the Overhauser field allows us to apply

an external field of the correct size and direction such that the overall magnetic field felt by the

electron is exactly what we need for the particular experiment we are doing.

3.2.1 Preparation and Maintenance of the Bath

The most obvious method to polarise a nuclear spin bath is by applying a large magnetic field,

which will align the spins in the same way as it would align an array of bar magnets. However,

in the case of nuclear spins we must think about the relative size of thermal fluctuations to the

splitting. For illustrative purposes, consider the case of a single spin in a field aligned along

the z axis, the relevant Zeeman splitting has a magnitude of the order |Es| = µNB. Thermal

fluctuations will be of the order kBT, leading us to require

µNB > kBT

=⇒ B
T

> kB

µN
≈ 2700T K-1.

(3.25)

We might expect a typical QD experiment to occur with T = 4 K and B = 1 T, leading to a ratio of
B
T = 0.25 TK-1. Achieving the required ratio would require either temperatures of the order 10−4

K or magnetic fields of the order 104 T. Neither of these are currently practically achievable, and

if they were would substantially alter the behaviour of the system in other ways. For example, a

magnetic field of this strength would cause electron spin rotations to happen with a frequency

of f ≈ 2.8×1014 Hz - far faster than is useful for any practical purpose. Therefore we must find

alternative methods to polarise the spin bath.

Several protocols have been put forward to solve this problem [129–131], most of which rely on

dynamic nuclear polarisation (DNP). As an example we will discuss nuclear frequency focussing

(NFF), a protocol first implemented by Greilich et al [132], in which the nuclear spin bath is used

to synchronise the precession of an electron spin with an optical pulse to reduce dephasing.

3.2.1.1 Dynamic Nuclear Polarisation

Since it’s theoretical prediction in the 1950s [133], dynamic nuclear polarisation (DNP) has been

studied extensively. First confirmed soon after being predicted [134], it has since been studied in

a huge array of contexts [123, 135–147]. Here we will present an outline of the mechanisms of

DNP, further discussion can be found in works such as Economou & Barnes [148] and Wu et al

[149].
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3.2. CONTROLLING NUCLEAR SPINS

The basic mechanism of DNP is very simple: the central electron spin is polarised via some

external source of angular momentum, then this polarisation is passed to the nuclear spin bath

via the contact interaction and finally the electron spin is re-polarised and the process repeats.

Over time, this leads to a build up of nuclear spin polarisation, though complete polarisation

cannot practically be obtained due to the precession of nuclear spins. In a quantum dot system,

the polarisation of the electron spin is typically done optically [150, 151], though electrical

pumping methods have also found success in double quantum dot systems [152, 153]. The end

goal of much of this research is to use DNP to extend the coherence time of central electron spin.

A protocol which has seen some success in this area is nuclear frequency focussing, which relies

on DNP to synchronise the precession periods of the electron and the nuclei in a QD.

a)

b)

c)

d)

e)

Figure 3.2: Schematic illustrating the principles of optical dynamic nuclear polarisation in a
quantum dot. a) The central electron (large dark blue arrow) is polarised by an incoming photon.
b) Exchange of angular momentum via the contact interaction (red double headed arrow) between
the electron and a nearby nucleus (smaller, light blue arrows). c) The central electron is re-
polarised by another incoming photon. d) Another exchange of angular momentum between the
electron and a different nucleus in the bath. e) After many cycles of this process, a substantial
fraction of the bath nuclei have been polarised.

3.2.1.2 Nuclear Frequency Focussing

First described by 2 papers by Greilich et al [99, 132], nuclear frequency focussing (NFF) is the

result of applying a sequence of time-resolved Faraday rotations to a QD system. A mode locked

laser is used to apply a periodic train of circularly polarised pulses, resulting in the synchronisa-

tion of the electron spin frequency across an ensemble of quantum dots. This synchronisation

allows for constructive interference between the electron spins in the ensemble, and hence an

increase in their overall coherence time. This procedure is therefore of great interest to anyone
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V V
H

H

a) b)

Figure 3.3: The energy level and transition structure of a negatively charged dot in a Voigt field.
a) The energy level structure with respect to the eigenstates of the Hamiltonian, as described
in Section 2.1.3, vertically (dark blue) and horizontally (light blue) polarised photons couple
the ground states to individual trion states. b) The energy level structure as seen by circularly
polarised light, interacting with spin states aligned along the optical axis of the QD. The state
|T〉 is a trion state, composed of a mixture of the |T+〉 and |T−〉 states. Right (σ+, dark blue) or
left (σ−, light blue) circularly polarised light both couple to the same mixed trion state, which
can then decay to either spin state.

wanting to generate entangled cluster states, and running into the problems caused by short

electron coherence times (as previously discussed in Section 2.2).

In the following section, we use a model put forward by Economou & Barnes [148], which

has been used to understand multiple DNP processes including NFF. We note the labelling

convention put forward by Economou & Barnes, in which the QD growth axis is labelled x and

the perpendicular axis is labelled z. This is a rotation of the coordinate system used in the rest of

this thesis, initially described in Fig. 1.2. We note that alternative models have recently been put

forward, which use the central spin approach to model the behaviour of a QD undergoing NFF

[131].

Consider a negatively charged QD, placed in a Voigt field (in the plane of the dot, labelled the

z axis in this case). Such a dot will have an energy level structure as described in Section 2.1.3,

and shown in Fig. 3.3. If we excite this dot using only light of a particular circular polarisation

(σ− for example), then only electrons in a specific spin state (|↓〉) will be excited to the trion state.

From there the spin can decay to either ground state, which are themselves rotating due to the

applied magnetic field. As we are pumping only one of these ground states, over many repeated

excitations there will be a shift in spin population to a steady state which is polarised towards the

non pumped spin state (|↑〉. This electron spin polarisation can last for as long as the pumping

continues, and over time will begin to polarise the nuclear spin bath via the contact interaction.

Eventually, the nuclear spin bath can become polarised enough that it acts to maintain the

electron spin polarisation even in the absence of the pump excitation, this increases the coherence

time of that electron which can then be used for other experiments - like single or entangled

photon generation.
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As shown in [148], and expanded on in [61]6, the Hamiltonian of this system has the form7

Ĥ =ωeŜz +εT |T〉〈T|+∑
j

q(t− jTR) |↓〉z 〈T|+H.C. (3.26)

where ωe = gµBB is the Lamor frequency of the electron and H.C. denotes the Hermitian conjugate

of all prior terms. The term in |T〉〈T| gives the population of the trion state with energy εT ,

and the third term represents the pulse train. Each pulse is given a label j and described by

a parameter q = q0eiφ, where 0 ≤ q0 ≤ 1 is the pulse area and 0 ≤φ≤ 2π is the pulse detuning

(which is also the angle of rotation about the x axis induced by the pulse). A resonant π pulse

has q = 0, and no pulse has q = 1. Using this Hamiltonian as our starting point, we derive the

following Kraus operators in the case where the trion decays equally to both spin states8

E1 =
(
1 0

0 q

)

E2 =
0

√
1−q2

0
2

0 0


E3 =

0 0

0
√

1−q2
0

2

 .

(3.27)

These Kraus operators act on the generic initial density matrix

ρ0 =
(
ρxx ρxx̄

ρ x̄x ρ x̄x̄

)
(3.28)

where we define |x〉 = |↑〉 , |x̄〉 = |↓〉 and ρ i j = |i〉〈 j|. We note that ρ0 does not represent the trion

state, this is because it is defined only at those points in time after the trion state has decayed -

ie before the initial excitation pulse, and shortly before each successive pulse thereafter. We are

therefore assuming that the repetition rate of the pump laser is much slower than the lifetime of

the trion state. To see the action of an optical pulse on the electron state we calculate

ρp =∑
k

Ekρ0E†
k

=
ρxx + 1−q2

0
2 ρ x̄x̄ q0e−iφρxx̄

q0eiφρ x̄x
1+q2

0
2 ρ x̄x̄

 .
(3.29)

Using this, we can see that in the case where no pulse is applied (q0 = 1,φ= 0), Eq 3.29 is equal

to Eq 3.28 as expected. For a π pulse (q0 = 0), we find that

ρπ =
(
ρxx + 1

2ρ x̄x̄ 0

0 ρ x̄x̄

)
. (3.30)

6The appendices are of particular use, as they give a complete derivation of each term found in this model.
7We stress for the final time that the axis labels in this section are rotated from the convention used in the rest of

this work.
8For a good introduction to the Kraus operator (also called operator-sum) formalism, we (as always) recommend

[33].
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Again, this is as expected - we have moved half the initial population of the state |x̄〉 to the state

|x〉.
Our goal with NFF is of course to generate electron polarisation along the z axis, which can

then be passed onto the spin bath. We can measure the amount of such polarisation in the initial

state by calculating Z0 = 〈z〉ρ0 = tr(ρz) = ρxx̄ +ρ x̄x = 2Re[ρxx̄]. It turns out to be useful to know

the polarisation along the y axis as well, which is calculated similarly as Y0 = 〈y〉ρ0
= tr(ρy) =

i(ρ x̄x −ρxx̄)= 2Im[ρxx̄]. Combining these results, we can calculate the z polarisation generated by

any pulse by calculating these quantities for the density matrix presented in Eq 3.29. Doing so

we find

Zpol =Re[q0e−iφρxx̄ + q0eiφρ x̄x]

= 2q0(cos(φ)Re[ρxx̄ +sin(φ)Im[ρxx̄]

= q0(cos(φ)Z0 +sin(φ)Y0).

(3.31)

We can see from this that any increase in z polarisation requires φ 6= 0 in order for the second

term to exist and hence provide additional polarisation. We also require q0 6= 0 as otherwise any

initial z polarisation will be destroyed. As such, we cannot use perfect π pulses, and all pulses

must also rotate the spin around the x axis - a conclusion that agrees with our physical intuition.

So far our model only includes the effects of the optical pulses, we must now include the

applied magnetic field that rotates the system between pulses. At the start of this chapter we

showed that the action of this Lamor precession is described by a time evolution operator of the

form

UB = e−iωeTR |z〉〈z| =
(

cos(TRωe) −isin(TRωe)

−isin(TRωe) cos(TRωe).

)
(3.32)

We calculate the effect of this on an arbitrary initial density matrix as

ρB =UBρ0U†
B

=
(

cos(TRωe) −isin(TRωe)

−isin(TRωe) cos(TRωe)

)(
ρxx ρxx̄

ρ x̄x ρ x̄x̄

)(
cos(TRωe) isin(TRωe)

isin(TRωe) cos(TRωe)

)

=
(
ρB,xx ρB,xx̄

ρB,x̄x ρB,x̄x̄

)
,

(3.33)

where

ρB,xx = ρxx cos2(TRωe)+ i(ρxx̄ −ρ x̄x +ρ x̄x̄ sin2(TRωe)

ρB,xx̄ = ρxx̄ cos2(TRωe)+ i(ρxx −ρ x̄x̄ cos(TRωe)sin(TRωe)+ρ x̄x sin2(TRωe)

ρB,x̄x = ρxx̄ cos2(TRωe)− i(ρxx −ρ x̄x̄ cos(TRωe)sin(TRωe)+ρ x̄x sin2(TRωe)

ρB,x̄x̄ = ρxx sin2(TRωe)− i(ρxx̄ −ρ x̄x +ρ x̄x̄ cos2(TRωe).

(3.34)
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We again calculate the effect this has on the z polarisation by calculating

ZB = 2Re[ρxx̄ cos2(TRωe)+ i(ρxx −ρ x̄x̄ cos(TRωe)sin(TRωe)+ρ x̄x sin2(TRωe)]

= 2cos2(TRωe)Re[ρxx̄]+2sin2(TRωe)Re[ρ x̄x]

= 2Re[ρxx̄](cos2(TRωe)+sin2(TRωe))

= 2Re[ρxx̄]

= Z0.

(3.35)

Therefore, the Lamor rotation of the spin state leaves the z polarisation unchanged and the

optical pulses are necessary to the procedure. We can combine the effects on the optical pulse and

the applied field by defining new Kraus operators of the form

E i = E iUB, (3.36)

meaning the state after n cycles of NFF (composed of a magnetic rotation followed by optical

excitation) is given by9

ρn+1 =
∑

i
E iρnE

†
i . (3.37)

Using Eq 3.37 we can calculate the steady state of the electron, which will determine the amount

of nuclear polarisation that can be generated using NFF. By writing the spin vector of the electron

in matrix form, finding a recursive formula for the evolution of the state and then solving the

resulting eigenvalue equation, it can be shown10 that the steady state polarisation in the z

direction is

Sz = q0 sin(φ)sin(ωeTR)

2+ q2
0 −2q0 cos(φ)cos2(ωeTR

2 )− cos(ωeTR)
. (3.38)

3.2.1.3 Dephasing in Nuclear Frequency Focussing

We now consider the result of applying a basic model of dephasing to the nuclear frequency

focussing model described above. We introduce a toy model which we use to demonstrate the

impact even a small amount of dephasing can have on a protocol, and hence why understanding

and accounting for it is so important. This brief analysis is not intended to fully capture the

behaviour of a system undergoing NFF, it is merely a demonstration that dephasing effects can

very quickly become significant.

9We define a cycle as a rotation then an excitation as it allows us to incorporate the first cycle of NFF using the
same formalism as all subsequent rounds.

10See the aforementioned appendices of Hinchliff 2018 [61] for the explicit calculations.
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We take the standard Kraus operators for a generic dephasing channel [33] (rotated to account

for the different basis definitions)11, with a dephasing characterised by γ

D1 =p
γ 1=

(p
γ 0

0 p
γ

)

D2 =
√

1−γσz =
(

0
√

1−γ√
1−γ ,0

)
,

(3.39)

and apply them to the density matrix found in Eq. 3.37 to find

ρd,n+1 =
∑
m

Dmρn+1D†
m

=∑
m

Dm
∑

i
E iρnE

†
i D†

m.
(3.40)

We can then calculate the effect of this dephasing on the amount of polarisation generated in a

single cycle of this dephased NFF protocol, acting on a simplified initial density matrix ρ0 =
(0 0

0 1
)
,

and we find the resulting polarisation to be

ZD = (1−2γ)q3
0 sin(ωETR)sin(φ). (3.41)

Applying the non-dephased protocol to the same initial state ρ0 gives Z =−q3
0 sin(ωETR)sin(φ).

We can see therefore that even a small amount of dephasing will reduce the magnitude of gener-

ated polarisation substantially. The evolution of this model over time is much more complicated

than that of the non-dephased model, and the resulting eigenvalue equation proved beyond the

power of Mathematica to solve exactly. We can therefore draw only the intuitive conclusion that

dephasing of the electron spin massively harms the usefulness of nuclear frequency focussing as

a technique for producing electron spin coherence - which may go some way to explaining the

apparent experimental limits to the technique.

3.2.1.4 Implementing Nuclear Frequency Focussing

The first examples of NFF being implemented are from Greilich et al in 2006 [99] and 2007

[132]. These experiments were done in the high field regime, using a magnetic field of 6T [155].

Later experiments have lowered the required field to 1T [156], with other demonstrations of

the effect using fields of 3T [157] and 1.28T [158]. These fields are all much larger than the

maximum fields tolerable when implementing a protocol like the CSMG which we have shown

would benefit from the increased coherence times offered by NFF. It is of course not practical to

simply implement NFF using a 1T field, and then rapidly switch to the 100mT field needed for

the CSMG - commonly used superconducting magnets would likely quench during the switch,

and a classical electromagnet would have significant heat problems and interfere with the cooling

11An exact understanding of the Kraus operator formalism is not necessary for any section besides this one, further
details can be found in Nielsen and Chuang’s excellent textbook [154].
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Bq(t)

Ba

Bn(t) 

Figure 3.4: The interactions seen by a nuclear spin inside a quantum dot, ignoring hyperfine
coupling. The nuclear spin (dark blue) is acted on by both an applied field Ba and an effective
field Bq (both light blue) produced by the quadrupolar interaction and specific to that nuclear site.
The total effective field Bn (red) is the vector sum of these 2 fields, and is therefore also different
between each nuclear site.

required for the rest of the experiment. This all therefore begs the question: why has NFF

not been performed at lower magnetic fields? What source of additional electron (or nuclear)

decoherence becomes relevant at lower applied fields?

3.2.2 The Quadrupolar Interaction

The nuclear quadrupolar interaction (QI) is a second order interaction12 between the spin of a

nucleus, and the gradient of a nearby electric field. In a quantum dot the gradient of the electric

field is determined by the local strain environment, via the 4th rank gradient-elastic tensor Si jkl ,

according to the relationship

Vi j =
∑
k,l

Si jklεkl . (3.42)

As such each nucleus in a quantum dot will experience a different quadrupolar interaction and

hence evolve differently over time. This has the effect of reducing the lifetime of the frozen

fluctuations assumption, and hence the T2 time of the central electron spin.

In order to understand the effects of the QI, we follow [159] and take as our starting point

the classical expression for the interaction energy of 2 charge distributions, ρn(rn) and ρe(re),

representing the nucleus and an orbiting electron respectively

E = k
Ï

drndre
ρn(rn)ρe(re)

|rn − re|
, (3.43)

12The first order interaction is the dipole-dipole interaction.
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with k = 1
4πε0

. Assuming that rn < re
13 we can use the following expansion of the denominator

into spherical harmonics Y m
l (θ,φ)14 [160]

1
|rn − re|

= 4π
∞∑

l=0

l∑
m=−l

1
2l+1

rl
n

rl+1
e

Y m
l (θn,φn)Y m∗

l (θe,φe). (3.44)

to write this energy as a sum over operators Am
l and Bm

l

E =
∞∑

l=0

l∑
m=−l

Am
l Bm∗

l , (3.45)

where

Am
l =

√
4π

2l+1

∫
drnρn(rn)rl

nY m
l (θn,φn) (3.46)

represents the nucleus and

Bm
l = 1

4πε0

√
4π

2l+1

∫
dreρe(re)r−(l+1)

e Y m
l (θe,φe) (3.47)

the electron. In order to introduce quantum mechanical behaviour to this model, we first write

the nuclear ground state wavefunction |Ψn(r1,r2, ...,rNn )〉, and define the nuclear charge density

operator ρ̂n(r̂n) as

ρ̂n(r̂n)=
〈
Ψn

∣∣∣∣∣ Nn∑
i=1

e iδ(r̂n − R̂ i)

∣∣∣∣∣Ψn

〉
. (3.48)

This operator represents a nucleus as being made up of N nucleons, each with charge e i
15. We

then plug this into Eq. 3.46 to find the expectation value of this charge distribution over the

nucleus

A m
l =

〈
Ψn

∣∣∣∣∣
∫

drn

√
4π

2l+1

Nn∑
i=1

e iδ(r̂n − R̂ i)rl
nŶ m

l (θn,φn)

∣∣∣∣∣Ψn

〉
. (3.49)

Using the δ-function to evaluate the central integral, we find that the quantum mechanical

nuclear operator is

Âm
l =

√
4π

2l+1

Nn∑
i=1

e iR l
iŶ

m
l (Θi,Φi), (3.50)

where R l
i ,Θi,Φi are the spherical coordinates of the ith nucleon.

Following a similar procedure for the classical electron operator, we find its quantum equiva-

lent

B̂m
l =−e

√
4π

2l+1

Ne∑
i=1

R−(l+1)
i Ŷ m

l (Θi,Φi), (3.51)

13Valid, as the radius of a nucleus is much smaller than the orbital radius of any of it’s electrons.
14An important note here is that the Y m

l are spherical tensor operators. See Section A.2 for details on these and
other tensors.

15e for protons, 0 for neutrons.
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where the sum now runs over all electrons in the system rather than nucleons as before. We now

use Eqs. 3.50 & 3.51 to find a fully quantum mechanical description for the interaction energy

Ĥ =
∞∑

l=0

l∑
m=−l

Âm
l B̂m†

l

=
∞∑

l=0

l∑
m=−l

(−1)m Âm
l B̂−m

l .

(3.52)

This provides a complete description of the electrostatic interactions between the electrons and

the nucleus. The indices l and m are the total angular momentum and spin projection of the

relevant particle. Though at first sight this sum is rather daunting, we note that it quickly

converges as a result of all terms carrying a factor of rl
n

rl+1
e

, which rapidly tends to 0 because

rn << re. We also note that all terms in Am
l where l is odd vanish due to parity considerations

[161]. Therefore the first term of interest is that of the order Am
2 , which describes the quadrupolar

interaction. This term itself will only exist for nuclei with total spin I ≥ 1, as a consequence of the

Wigner-Eckart theorem16.

Taking only the terms with l = 2, and defining the spherical harmonics in Cartesian co-

ordinates [163] we find the components of Âm
2

Â0
2 =

1
2

∑
i

e i(3ẑ2
i − r̂2

i )

Â±1
2 =∓

√
3
2

∑
i

e i ẑi(x̂i ± i ŷ2
i )

Â±2
2 =

√
3
2

∑
i

e i(x̂i ± i ŷ2
i )2.

(3.53)

The quadrupolar moment of a nucleus is defined to be

eQ = 2
〈
I I

∣∣ A0
2
∥∥ I I

〉
=

〈
I I

∣∣∣∣∣∑i
e i(eẐ2

i − r̂2
i )

∣∣∣∣∣ I I

〉
,

(3.54)

where the state |I I〉 is one in which the spin projection m is equal to the total nuclear spin I.

This quadrupolar moment is typically found experimentally. The Wigner-Eckart theorem (WET)

is going to be useful again here, as it means we only need to know this single constant from Eq

3.54 and we can then calculate the other components of Am
2 . We can also exploit the WET and

some generic properties of spherical-tensor operators [162] to rewrite the operators as sums of

nuclear spin operators like so

Q̂0
2 =

2α
3

Î2
z − Î(Î +1))

Q̂±1
2 = αp

2

(
Îz Î±+ Î± Îz

)
Q̂±2

2 =αÎ2
±

(3.55)

16See Appendix A.2 for an introduction to this, or for a more detailed description we recommend Edmonds’ book on
spin and angular momentum [162].
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We find the constant α by noting that these operators must produce the same physics as the

original Âm
2 , leading us to

〈
I I

∣∣ A0
2
∥∥ I I

〉= eQ
2

=α〈
I I

∣∣Q0
2
∣∣ I I

〉
= α

2
I(2I −1)

∴α= eQ
I(2I −1)

.

(3.56)

Again we apply the same procedure to the electronic nuclear operators B̂m
2 , plugging in the

spherical harmonics as before, we find

B̂0
2 =

1
2

Ne∑
i=1

(−e)
3ẑ2

i − r̂2
i

r̂5
i

)

B̂±1
2 =

p
6

2

Ne∑
i=1

(−e)
(x̂i ± i ŷi)ẑi

r̂5
i

B̂±2
2 =

p
6

4

Ne∑
i=1

(−e)
(x̂i ± i ŷi)2

r̂5
i

.

(3.57)

To make these more intuitive, we take advantage of classical electromagnetism. Electrons see a

potential of the form V = 1
r from the nucleus of an atom, and therefore we calculate the following

quantities:17

Vzz = 3ẑ2 − r̂2

r̂5

Vxz ±Vyz = (x̂± i ŷ)ẑ
r̂5

Vxx −Vyy ±2iVxy = 3
(x̂± i ŷ)ẑi

r̂5

(3.58)

By comparing equations 3.58 to equations 3.57, we can see that

B̂0
2 =

1
2

Vzz

B̂±1
2 = 1p

6
(Vxz ± iVyz)

B̂±2
2 = 1

2
p

6
(Vxx −Vyy ±2iVxy).

(3.59)

We can now think about our choice of axes. The 9 possible second order derivatives Vi j form

a symmetric second rank tensor, and this can be rotated to find the most useful form. We can

therefore choose our axes such that the cross terms Vxy =Vxz =Vyz = 0, and then label the leftover

components to ensure that

|Vzz| ≥ |Vyy| ≥ |Vxx|. (3.60)

17We write ∂V
∂x as Vx and ∂2V

∂x2 as Vxx, and similarly for other mixtures of derivatives.
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These axes define the principle axis frame, which differs between each nuclear site in a lattice. By

convention, we define Vzz = eq and η= Vxx−Vyy
Vzz

to arrive at the final form of the electronic operator

components in the principal axis frame

B̂0
2 =

eq
2

B̂±1
2 = 0

B̂±2
2 = eqη

2
p

6
.

(3.61)

We are now at last in a position to write the quadrupolar Hamiltonian by combining Eqs 3.52,

3.53, 3.55 and 3.57 we find

ĤQ = e2qQ
4I(2I −1)

(
3Îz − Î(Î +1)+ η

2
(Î2

++ Î2
−)

)
. (3.62)

As presented here, ĤQ is in units of Joules. Some works present it instead in frequency units,

using the constant ωQ
2 = e2qQ

8~I(2I−1)~ , while others instead use the line splitting found in a 0 field

experiment fQ = 3ωQ
4π = 3e2qQ

2hI(2I−1) . It is also possible to define the spin tensors inside the brackets

differently, though this is not a common convention in more modern work. This Hamiltonian

forms part of the total Hamiltonian of each nucleus in a quantum dot, but each nuclear site sees

different values of η and eQ, according to the electric field gradient (EFG) at that point in the

lattice. It is vital to understand that this Hamiltonian is given in the principle axis frame of a

single nucleus, and comparisons between nuclei therefore require rotation back into a standard

reference frame in order to be meaningful.

When using a quantum dot as a source of entangled photons, we have seen that it is vital to

consider the impact of effects at each scale of the structure and how they interact. At the most

fundamental level, we must consider the shape and composition of the structure itself (though

we concentrate on InGaAs QDs in this work), these feed through by creating the strain profile

of the dot. The strain profile then creates the electric field gradient felt by the nuclei, which

each in turn evolve over time in an environment which may be unique to them. The sum total of

nuclear effects is then felt by an electron spin trapped in the dot, which is then in turn used to

produce entangled photons. A change to any part of this underlying chain of effects can have a

substantial impact on the final quality and quantity of any photons produced from the dot. In

the next chapter, we shall set out how the electric field gradient is created by the strain profile

of a quantum dot, and investigate how updated measurements of the gradient elastic tensor

result in dramatic changes to the strength and distribution of the quadrupolar interaction over a

particular quantum dot. This allows us to draw informed conclusions about which measures of

quality are useful for assessing the value of a dot for entangled photon production.
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4
CHANGING THE GRADIENT-ELASTIC TENSOR

4.1 Introduction and Methods

In this chapter we investigate the impact of recent improvements to measurements of the gradient

elastic tensor (GET). We will calculate the strength and direction of the quadrupolar interaction

in a quantum dot from a 2D slice through the structure, making reasonable assumptions about

the strain distribution in order to do so. We will compare the results of these calculations

with previous work, and show there is a substantial difference in the calculated nuclear spin

environment. We extend previous analysis by investigating the distribution of quadrupolar

strengths within the structure, and discussing the effect of increased biaxiality within each

nucleus on the coherence time of a central electron spin. We also introduce a toy model of a

2D strained lattice in order to intuitively explain the behaviour of strained materials and the

calculation of the relevant mathematical objects. The codebase underlying this analysis is used

in later chapters to investigate hypothetical highly symmetric quantum dots according to the

measures of quality set out in this chapter, and therefore here we shall also briefly outline how it

functions.

Intuitively, the gradient elastic tensor is responsible for translating the mechanical strain in

a material into an electric field gradient (EFG). As such, we can expect that changing any of the

components of the tensor will result in a different EFG than would be measured using a different

tensor. Therefore if we were to compare 2 structures with the same strain distribution, but with

somehow different GET components1 we would find them to have different resulting EFGs. As

we have seen in Section 3.2.2, the EFG determines the size and direction of the quadrupolar

interaction felt by each nucleus. Section 3.1.2 demonstrated the importance of a central electron

1This would imply the structures being made of different materials, but pretend that it doesn’t for the purposes of
this paragraph.
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interacting with homogeneous nuclear spins. Therefore in the ideal case, the EFG should be as

similar as possible throughout the dot and we therefore require the strain to be as similar as

possible as well. However, the precise impact of the strain is mediated by the GET, and hence

accurate knowledge of the components of this tensor is vital to any attempt to assessing the

usefulness of a particular QD. Hence, we investigate just how large an impact the GET has

on the overall quadrupolar field across all nuclei in a QD, and show that slight changes to the

component values make a significant difference to the resulting quadrupolar field.

4.1.1 Strain

As we saw in Section 1.2, a QD grown by the Stranski-Krastanov method must be a strained

structure. By this we mean that the position of the atoms within the InGaAs portion of the lattice

are different from where they would be in a pure GaAs structure. A simple way of understanding

this is to think of a 2-dimensional grid of alternately coloured blocks connected by springs. A

red block represents a gallium atom and a blue block represent an arsenic atom. The tension

in a spring connecting 2 blocks represents the strength of the bond between the 2 atoms, and

the length of the spring represents their distance apart. In a toy model consisting of such a grid

covering an infinite plane, we would expect each spring to have exactly equal length and tension,

and we can think of these values as the ‘natural’ values. If we now introduce a green block in

place of a red (representing indium replacing gallium in the lattice), with its own springs of

different natural length and tension we will see a distortion of the lattice surrounding that point.

If the springs attached to the green block are weaker than the red then the surrounding blue

blocks will be pulled away from the green, and vice versa if the springs are stronger.

We can examine this behaviour using a simulation in which we create a lattice of interlinked

springs, each with their own spring constant k and natural length x0. Hooke’s law tells us that

the energy of a spring of length x is therefore E = k(x− x0)2. The total energy H of this system of

springs is found by simply summing over the energies of the springs individually

H =∑
n

En =∑
n

kn(xn − x0,n)2. (4.1)

We minimise this function under varying xn
2 to find the configuration with the lowest total

energy. From there, we take the lengths of each spring and calculate the new positions of the

blocks. An example of the results of this procedure is shown in Fig. 4.1

The parameters of the toy model can then be varied to match the relative bond strengths

and lengths of In-As and Ga-As bonds, in order to get a quick understanding for the effect on

the lattice that an indium atom (or a collection therefore) may have. These parameters are well

known - see Vurgaftman et al [164] and we only need their relative values as summarised in

Table 4.1

2Subject to constraints on the total length of the springs in the x and y directions.
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Figure 4.1: The effect of adding a green block with far stronger springs can be clearly seen. The
strained lattice is massively distorted by the impact of a single green block, which pulls the
surrounding blocks towards itself. In this extreme example, the green block both pulls on blue
blocks 20 times harder and is connected to them via springs which are 10 times shorter than
those connecting red and blue blocks. These are significantly larger effects than would ever be
seen in a real crystal.

Length Strength
Ga-Ga 1 1
Ga-As 1 2.56
Ga-In 1 1.22
As-As 1 2.99
As-In 1.06 2.30
In-In 1 1.58

Table 4.1: The lengths and strengths of various bonds that could be found in an InGaAs lattice,
each normalised with respect to the Ga-Ga bond. Data taken from [164]. Only the data in the
highlighted rows is used in the calculation of most lattice structures, we include the rest for
completeness.
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Figure 4.2: The effect of introducing a single indium atom to a 2D lattice of GaAs. We show only
a small region, to highlight that the effect of a single indium atom is small.

Having obtained the positions of the atoms in the new lattice, we can then calculate the strain

tensor for this simple model, according to the definition

εkl =
1
2

(
δuk

δxl
+ δul

δxk

)
(4.2)

where uk = xk−xk,0 is the displacement of a point from it’s original position and the corresponding

derivative captures the change in displacement with respect to each axis [165]. To do this, we first

define 2 sets of vectors to define the displacements between each point k and every other lattice

point, respectively before and after the strain is applied: {Rk1,Rk2, ...,Rkl } and { rk1, rk2, ..., rkl }

. We can then define the deformation gradient F according to3 rkl −FRkl = 0 where F =WV−1

[167] and

W =∑
l

rkl ⊗Rkl

V =∑
l

Rkl ⊗Rkl .
(4.3)

The displacement gradient ∇u = F − 1 can then be calculated and from that we calculate the

strain tensor at the site k as

ε= 1
2

(
∇u+ (∇u)T

)
. (4.4)

Unfortunately, we have now reached the limit of what this toy model can tell us about the system,

the computational time required to calculate the positions and consequent strains on a large

3This is the Cauchy-Born approximation [166], and in practice it is often computationally faster to minimise this
expression to be as close to 0 as possible than it is to minimise the total energy. We have described minimising the
energy as we find this description of the model to be more intuitive.
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Figure 4.3: Map of the strain tensor components for a system consisting of a rectangular block of
indium inside a GaAs lattice. We omit the εyx component as the tensor is symmetric.

system of atoms is much larger - notwithstanding the need to extend the model to 3D for it to

be a complete simulation. Such extended calculations are typically conducted using software

like LAMMPS [168], though other methods have also been proposed [167]. Examples of such

calculations for InGaAs quantum dots can be found in work by Bulutay [169], among others.

4.1.2 The Gradient Elastic Tensor

The gradient-elastic tensor (GET), denoted Si jkl , is a 4th rank symmetric tensor which relates

the strain in a material εkl to the electric field gradient (EFG) Vi j according to

Vi j =
∑
k,l

Si jklεkl . (4.5)

Though it is a purely phenomenological parameter, accurate knowledge of its components is

necessary for simulating the effect of strain in a variety of nanostructures. As a 4th rank tensor

in 3D space, the tensor has 34 = 81 components - fortunately many of these are inter-dependant

due to the symmetries present in any particular lattice structure. For a cubic crystal lattice as

found in an InGaAs QD, the tensor can be described using only 3 components [170]: Sxxxx =
Syyyy = Szzzz ≡ S11, Sxxyy = Syyzz = Sxxzz ≡ S12 and Sxyxy = Syzyz = Sxzxz ≡ S44. These terms are

commonly described in the literature using Voigt notation of the form Smn [171]. In addition, we

can define S12 =−S11
2 by assuming that the gradient of the electric field vanishes at the centre

of each nucleus4, further simplifying the information needed to calculate the EFG. All other

components of the tensor are 0 in a cubic lattice, and thus we need only to know the values of

S11, S12 and S44 in order to calculate the EFG from the strain.

4Mathematically, this is done by requiring that Tr [S]= 0.
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NAR Measurements NMR/PL Measurements
69Ga 71Ga 75As 115In 69Ga 71Ga 75As 115In

S11 2.73 2.73 3.96 5.01 -2.2 - 2.42 -
S12 -1.365 -1.365 -3.97 -2.505 1.1 - -1.21 -
S44 -2.76 -2.73 7.94 -2.998 0.88 - 4.792 -

Table 4.2: The relevant components of Smn as found by NAR [172, 173] and PL/NMR spectroscopy
[176, 177]. All values are given in SI units of 1022 Vm-2, measurements originally given in cgs
units of statcoulomb cm-3 have been converted by multiplying them by 2997924.5805. So far,
PL/NMR spectroscopy has not been used to measure either 71Ga or 115In - we believe this would
be a very valuable experiment given the drastic changes in both magnitude and sign of the
components for other species - 69Ga especially.

The values of Si jkl vary with atomic species and lattice structure, and must be measured

experimentally. The most extensive of these experiments were performed using nuclear acoustic

resonance (NAR) by Sundfors in 1974 and 1976 [172, 173]. In these experiments, a material

sample is attached to a quartz transducer and the resulting change in the resonance frequency of

the transducer is used to measure the elastic response of the crystal. Using these measurements

and knowledge of the quadrupole moment of the nuclei the values of Si jkl can be found. Sundfors

performed these measurements for a vast array of nuclei and crystal structures, and they

have been in regular use since then. However, work performed since then has found that NAR

experiments tend to systematically overestimate the values of Si jkl [174, 175], potentially as

a result of the lower absorption of acoustic waves for materials with a smaller quadrupolar

moment [172]. In 2018/19, Chekovich, Griffiths et al performed photoluminescence (PL) and

nuclear magnetic resonance (NMR) spectroscopy to measure the values of Smn in a GaAs/AlGaAs

quantum dot [176, 177]. In these experiments, they measure the change in bandgap across the

structure when it is mechanically stressed between 2 plates. Different combinations of magnetic

field orientation and incoming photon polarisation are used to measure bandgaps across different

nuclear spin polarisation regimes so that all the relevant terms of Smn can be found. These

experiments showed a significant deviation from the values found using NAR for both 69Ga

and 75As nuclei, and are all summarised in Table 4.2. As these results are based on a direct

measurement of quadrupolar effects, they are likely to be more accurate than those found using

NAR. In addition, modern crystallography techniques have lead to the production of much higher

quality samples than were feasible in the 1970s. Therefore, we believe that the NMR/PL results

are closer to the true value and that there is a need to investigate how much of a difference this

change might make.
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4.1.3 Calculating the EFG

By assuming that the QD is cylindrically symmetric6, we can let εxy = εyz = εzx and εxx = εyy and

hence the calculation of the EFG is reduced to

V =


S12(εzz −εxx) 0 S44εxz

0 (S12 +S11)εxx +S12εzz S44εxz

S44εxz S44εxz 2S12εxx +S11εzz

 , (4.6)

where we have also exploited the inherent symmetry of the strain tensor to set εi j = ε ji for the

off-diagonal terms. From this we see that the data present in Fig. 4.6 is sufficient to calculate the

EFG. The EFG varies across the structure, and is therefore calculated separately for each lattice

point, the resulting matrix can be used to find the principal axis frame of a particular nucleus via

eigenvalue decomposition. We then have V ′
i j = RVi j, where V ′

i j = 0∀i 6= j and |V ′
zz| ≥ |V ′

yy| ≥ |V ′
xx|

are the components of the EFG in the principal axis frame as described in Section 3.2.2 and R is

the matrix formed by the eigenvectors of V arranged in descending order of eigenvalue. From R

we can also calculate the angle of the principal axis frame with respect to the laboratory frame,

defined by the external field and QD growth axis [179]7. It is this angle that determines the

orientation of the quadrupolar interaction for a nucleus at a particular lattice site, and which

would therefore be identical between nuclei in the ideal case.

4.2 Analysing a Quantum Dot

4.2.1 Calculation Methods

The calculations presented throughout this thesis are done primarily in Python 3, with some

assistance from Mathematica when necessary. We make heavy use of the following packages:

Numpy [180] for large scale array manipulations and general mathematics, Scipy [181] for

fitting distributions, Qutip [182, 183] for the calculation of Hamiltonians, matrix elements and

the implementation of a wide variety of quantum operators and Matplotlib [184] for figure

plotting. The code itself closely follows the mathematics presented in previous sections, with

some differences for the purposes of minimising computational time when dealing with large

arrays - these changes make no difference to the results of the calculations, but allow us to do

them in parallel and hence significantly reduce the time required8. The results of these methods

can be compared to similar work like that of Bulutay [185], which instead of using real strain and

6This is a strong assumption, and marks a significant difference between this work and a full 3D simulation as
done by Bulutay for example [169]. The advantages of our method are the speed of calculation and the relative ease
with which real data can be used as an input to the model.

7We define the Euler angles as rotating around the axes of the laboratory frame in the order X →Y → Z. Other
conventions would give the same final angles, but we find this order to be the most intuitive.

8The full codebase is reasonably accessible to anyone familiar with Python 3, and it and the data used are available
on Gitlab here.
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Inputs: Strain and
Conc Data

Reformat/clean data

Calculate EFG

Calculate Hamiltonian
(Faraday or Voigt)

Create Graph

Create Graph

Calculate NMR
Absorption Rates 

Create Summary
Distributions

Find Eigenvalues and
Eigenvectors 

Create Graph

Create Graph

Create Graph

Figure 4.4: A schematic outline of the logic employed in our code. This entire process is reasonably
similar between both single and many nuclei. In the many nuclei case we are able to run the
calculations on individual nuclei in parallel using the mapping functions available in numpy and
scipy. The full codebase is available on Gitlab here.

concentration data uses atomistic simulation as a base point. We include Fig 4.19 for comparison

with our similar plot Fig 4.20.

4.2.2 Taking Real Strain Data

Instead of our toy model, here we shall consider the strain fields present in a real quantum

dot, as measured using high angle annular dark-field (HAADF) imaging and reconstructed from

geometric phase analysis (GPA). The data we use is that originally found in Sokolov et al [3], and
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Figure 4.5: The In concentration across part of a lattice, as measured by Sokolov et al using
HAADF imaging [3]. The central region with a higher concentration defines the quantum dot,
and the shape of it appears in many other measures throughout this work.

our analysis begins in a similar place to theirs - though we later extend it to show distributions

of quadrupolar effects and the impact of more recent knowledge to the values of the gradient-

elastic tensor. This data consists of arrays of xx, xz and zz strain tensor components and indium

concentrations - for the latter array we use a cubic spline interpolation algorithm to populate it to

the same resolution as the strain tensor components. The quantum dot structure takes up an area

of approximately 1100x450 data points in the centre of an image, at a resolution of approximately

1 atom per 25 square pixels of the image. As such, we cannot be sure exactly where any particular

atom or nucleus is, and there is little value in assessing the particular qualities of any individual

lattice point. We can however assess the overall distribution of parameters across the structure -

and it is on this idea that we base our analysis. The dot can be clearly seen by mapping out the

indium concentration through the lattice, as found by HAADF imaging and shown in Fig 4.5.

In this image we see the typical lens like shape of a dot grown by Stranski-Krastanov growth,

with a slight bump apparent on the left hand side. This bump is of particular interest, as we

expect asymmetry in the dot structure to lead to asymmetry in the strain profile and hence in the

resulting quadrupolar interaction.

The strain environment present in the structure (as found using GPA) is shown in Fig 4.6 -

in this and all subsequent figures showing a quantum dot we align the growth axis along the

z axis of the image, and refer to the horizontal axis as x9. Though we only have data for a 2D

slice through the centre of the QD, by assuming the dot to be cylindrically symmetric we can

9Of course, this could be the y axis as we have assumed a level of cylindrical symmetry.
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Figure 4.6: The measured strain environment of the quantum dot, as first described in Sokolov
et al [3]. Here we use the original data from that paper (kindly provided by Paul Sokolov) to
recreate their results using a cubic spline interpolation.
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calculate the electric field gradient according to Eq 4.6. Of course, the results of this calculation

depend on the values of the GET components that we decide to use. Once we have found the EFG,

we can calculate and plot the direction and magnitude of the quadrupolar interaction across

the quantum dot, according to the equations derived in Section 3.2.2. We do this first using the

components of the GET as found using NAR, as was originally done by Sokolov et al - the results

of this calculation are shown in Fig 4.7. We also plot the local xy asymmetry (the biaxiality) of the

quadrupolar field at each point in Fig 4.8. All of these results agree with those found by Sokolov

et al, which also used the values of the GET as found by NAR.

Figure 4.7: The direction and strength of the quadrupolar interaction felt by a 69Ga nucleus is
shown by the size and direction of the black arrows, while the background colour represents the
strength of the quadrupolar interaction felt by the nucleus. As we do not know exactly which
species is present at which lattice site, we show the field as a 69Ga nucleus would see it were one
to be present.

Figure 4.8: The biaxiality (η) of 69Ga nuclei, as calculated originally in Sokolov et al. The central
hemispherical region is the quantum dot, which is found to have a low value of η throughout. The
outer substrate has some regions of higher biaxiality. 4.7

We now introduce the results of the NMR/PL experiments into our calculations. Using the
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same strain and concentration data, we again calculate the EFG across the dot and the resulting

quadrupolar field strength, direction and biaxiality at each point. We expect these calculations to

give different results by virtue of having updated the parameters, though exactly how they will

change is difficult to intuit due to the inherent complexity of tensor multiplication. The results of

this parameter update are shown for 69Ga in Figures 4.9 and 4.10.

Figure 4.9: An updated version of Fig 4.7, in which we have performed the same calculation using
the updated values of the GET as found by Chekhovich and Griffiths. We note that inside the
quantum dot, there is a much stronger tendency towards the vertical direction than is present in
the original figure, and many of the interactions are weaker as well.

As expected, in Fig 4.9 we see a substantial change in both the average direction and overall

strength of the quadrupolar field throughout the QD as compared to Fig 4.7. At least for 69Ga,

the newly recalculated field is (at least qualitatively) much more aligned to the growth axis of

the QD, and the maximum strength of the interaction has decreased by almost 20% from being

equivalent to an applied field of almost 2.5T to one of just over 2T. These results are in agreement

with other values found in the literature, where the quadrupolar interaction has been found to be

equivalently to a field of approximately 1.3T [186]. Bearing the ideas of Section 3.1.2 in mind, we

might therefore expect this recalculation to result in a smaller contribution of the Overhauser

field of the 69Ga nuclei to the overall dephasing rate than would have been predicted using the

NAR measurements of the GET.

We also see in Fig 4.10 that the biaxiality has a much higher average value when found using

the NMR/PL values of the GET components, though the overall distribution appears to be the

same. This increase in magnitude of the biaxiality is of key importance, as it further increases

the differences between any pair of nuclei in the structure. If we again consider the quadrupolar

Hamiltonian as first introduced in Section 3.2.2:

ĤQ = e2qQ
4I(2I −1)

(
3Îz − Î(Î +1)+ η

2
(Î2

++ Î2
−)

)
, (4.7)

we see that an increase in biaxiality (η) will result in any particular nucleus being significantly

different from its neighbours when rotated back to the common laboratory frame, as the ladder
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Figure 4.10: The biaxiality (η) of 69Ga nuclei, as calculated using the gradient elastic tensor as
measured by Chekhovich and Griffiths using NMR and PL spectroscopy [176, 177]. The central
region in which the dot lies is again fairly uniform, but the entire structure is now shown to
exhibit a much higher biaxiality than was found when using the older measurement values.

operator terms Î± take on a more significant role. Following the arguments of Chapter 3, we see

that this will lead to a lowering of the lifetime of the Overhauser field, and hence a decrease in

overall electron coherence time. While for most nuclear characteristics it is the spread that is

important, for biaxiality an increase in magnitude has much the same effect as an increase in,

for example, the variance of the strength of the quadrupolar field.

Thus far, our analysis has been qualitative - though the effects are clear to see from the graph.

In order to pin down exactly what is going on, we now extend our analysis to the distributions of

quadrupolar frequency.

4.2.3 Distribution of Quadrupolar Frequencies

In order to more clearly see the effect of changing these values, we plot the distributions of the

first quadrupolar frequencies for each species present in the dot, using both the NAR measured

values (shown in Fig 4.11) and the NMR/PL values (shown in Fig 4.12). A direct comparison

of the changes is shown in Fig 4.13 - showing only the distributions for 69Ga and 75As as we

do not have NMR/PL data for the components of the GET for 71Ga or 115In10. We see that the

distribution of values for 69Ga has broadened significantly, while that for 75As has narrowed

slightly. There is also a change in the modal direction of the interaction as seen by 69Ga. All of

these plots drop to 0 at a frequency of 0Hz. We believe this to be the result of our data sample

containing no nuclei with 0 strain. This is an artefact of the interpolation we have applied to the
10Though the values for 71Ga can be calculated using the ratio of quadrupolar moments between 69Ga and 71Ga.

We do not calculate it here as there is so little 71Ga in our sample (< 1% of the Gallium present that it makes no
difference to any of our calculations.
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original data to align the strain and concentration data. Without a perfectly aligned set of strain

and concentration data, performing this interpolation is unavoidable and hence these graphs

will all suffer from this flaw. We do not believe it detracts from the overall message of the graph,

which is the drastic change in shape of the distributions11.

Figure 4.11: The distribution of quadrupolar frequencies over all nuclei in the quantum dot,
calculated using the Sundfors acoustic resonance values of the GET. The frequency here refers to
the energy level splitting between the lowest energy states of the nucleus, with the sign of the
frequency corresponding to alignment (or anti-alignment) with the external field.

To directly compare the change, we fit a gamma distribution

f (x)= 1
Γ(k)θk xk−1e−

x
θ (4.8)

to the absolute values of the transition frequencies. Our fitting parameters are the shape k and

scaled θ of the distribution, and we fit to the absolute value as our distributions are weighted

heavily to a single sign (positive for 71Ga, 75As and 115In, negative for 75As) and this allows us to

directly compare them. An example of this fit is shown in Fig. 4.14, and a complete summary

in Table 4.3. A gamma distribution is appropriate as it captures the probability of a member of

an ensemble having a particular energy, typically this is applied to an ideal gas by setting k = 3
2

and θ = kBT. In our case, the ensemble is the nuclear spin bath rather than the molecules of an

ideal gas, hence we allow k to vary as we are not modelling a particle with 3 velocity degrees

of freedom, though we can estimate the effective temperature of the bath as T = θ
kB

as would

be done classically. The fitting is done using a maximum likelihood estimation algorithm, as

implemented in Scipy.

We find that the distribution for 69Ga widens by a factor of 3, though this result is distorted

slightly by taking the absolute value and hence absorbing the fraction of oppositely aligned
11Experimental results showing the effect of near 0 strain nuclei on a central electron can be found in the work of

Ragunathan [187].
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Figure 4.12: The distribution of quadrupolar frequencies across the dot as calculated using the
Chekhovich measurements. Note that 115In and 71Ga remain unchanged as the values of the
GET for those species has not been found via NMR/PL.

Figure 4.13: A direct comparison of the distributions shows the size of the shift and the change
in width when using updated (in dark colours) and older (in light colours) of the GET. 69Ga is
shown in blue, and 75As in green. Other species are omitted as the GET for them has not been
measured using NMR/PL.
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Figure 4.14: The distribution of transition frequencies for 75As nuclei (as calculated using
NMR/PL GET measurements), is show in dark blue, with a fitted gamma distribution overlaid as
a light blue dashed line. The fitted distribution has a mean value of 1.97 MHz and a variance of
0.92 MHz, both significantly reduced from the NAR measurement based calculations, suggesting
that the effects of the quadrupolar interaction would be lower in this dot than could be assumed
by using the NAR values of the GET.

frequencies into the overall distribution - it is likely that this distortion results in a narrower

distribution than is actually present and hence the increase may be of a larger size than we

report here. The distribution for 75As is found to narrow by a factor of ≈ 2.7, when combined with

the significant reduction in the mean value (from 3.25 to 1.97MHz) this demonstrates a large

reduction in the number of outlying nuclei and hence an increase in uniformity over what would

have been found using the NAR GET values.

NAR Measurements NMR/PL Measurements
69Ga 71Ga 75As 115In 69Ga 71Ga 75As 115In

Shape (k) 3.85 3.83 4.20 3.14 3.35 - 4.20 -
Scale (θ) 0.25 0.15 0.77 0.19 0.45 - 0.47 -

Mean (MHz) 0.94 0.59 3.24 0.58 1.52 - 1.97 -
Variance (MHz) 0.23 0.09 2.50 0.11 0.69 - 0.92 -

Table 4.3: The parameters (shape and scale) for and results of fitting a gamma distribution to
the calculated distributions of quadrupolar frequencies, as found using both NAR and NMR/PL
GET values. Dashes (-) indicate data which cannot be found as there are no new parameters
for calculation. The distribution for 69Ga is wider by a factor of 3 when using updated values,
whereas for 75As it is approximately 2.7 times narrower with a significantly reduced mean value.
This highlights the need to update the values for both 71Ga and 115In, as it is not so simple as to
say that the distributions will definitely narrow or widen.
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4.3 NMR and Quadrupolar Spectra

An excellent way of assessing the properties of a quantum is by nuclear magnetic resonance

(NMR) spectroscopy, in which an oscillating magnetic field is used to probe the natural transition

frequencies of the nuclei being examined. This is the same technique by which the components

of the gradient elastic tensor were re-measured by Chekhovich and Griffiths. We examine the

NMR & quadrupolar spectra of both individual nuclei and the quantum dot as a whole to assess

how suitable this quantum dot might be to various protocols that have been suggested in the

literature. The methods described are applicable to any set of strain and concentration data in

the same format as this data.

4.3.1 Quadrupolar Spectra

We begin by finding the quadrupolar spectra for single atoms within the quantum dot. We select

a nuclear site within the structure, and construct the quadrupolar Hamiltonian in the principal

axis frame (denoted by primed coordinates), according to

ĤQ = 3e2qQ
2I(2I −1)

(
2Î ′2z + (η−1)Î ′2x − (η+1)Î ′2y

)
. (4.9)

This Hamiltonian is equivalent to Eq 3.62, but we use this form to highlight the requirement to

rotate the spins appropriately.The energy level structure of this nucleus can then be found by

calculating the total Hamiltonian, including the Zeeman splitting experienced by a nucleus in an

external magnetic field, as

Ĥ = ĤZ + ĤQ . (4.10)

At this point it becomes necessary to specify the orientation of the external magnetic field (Faraday

or Voigt), and apply the appropriate rotations to the spin terms to transform the Hamiltonian

into the principle axis frame. We calculate the spin operators in the principal axis frame as

Î ′ = RÎR†. (4.11)

where R is a rotation operator defined by the Euler angles (α,β&γ) of the principle axis frame

with respect to the laboratory frame:

R = e(−iαÎx)× e(−iβÎ y)× e(−iγÎz). (4.12)

The size of the Euler angles depends on which field orientation we are investigating, as we always

keep the component rotations in the order X →Y → Z, as defined in the laboratory frame by the

growth axis of the quantum dot. The final nuclear spin Hamiltonian then has the form

Ĥ =ωBBÎz,x + 3e2qQ
2hI(2I −1

(
2RÎ2

zR† + (η−1)RÎ2
xR† − (η+1)RÎ2

yR†
)
, (4.13)

where R,R† and Îz,x all depend on the choice of external field orientation. The constants ωB (a

conversion factor between applied field and Zeeman frequency) and Q depend on the choice of

nuclei, and the values we use for them are shown in Table 4.4.
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69Ga 71Ga 75As 115In
Q (10−31m2) 172 107 314 770
ωB (MHz T-1) 10.22 12.98 7.22 9.33

Table 4.4: Values of the quadrupolar moment Q and the Zeeman frequency per Tesla ωB used in
this work. Values for quadrupolar moments are as found in [188], and for Zeeman frequency per
Tesla as found in [189].

4.3.1.1 Single Nucleus Energy Spectra

We can now find the eigenvalues and eigenstates of this Hamiltonian, and hence it’s energy struc-

ture. This structure will of course change depending on the exact parameters of the Hamiltonian,

including external field orientation and strength, and hence in section a of Figure 4.15 we plot

an example of the results of this calculation for an indium atom with parameter values taken

from a single lattice point within our data set, and an external field in the Faraday orientation. It

must be noted that these images do not represent experiments that could be easily performed -

scanning over multiple values of the external field would be incredibly difficult over large ranges,

and the procedure to measure the energy states would then destroy the quantum character of

the system before the external field was adjusted. As indium has a spin of I = 9
2 , we expect it to

split into 2I +1= 10 energy levels when an external field is applied - which we see in this plot.

However, the quadrupolar interaction also splits the spin states without an external field being

present, supporting the notion of thinking about the quadrupolar field as acting like another

applied field for the purposes of intuition. We can also see the differences between the Faraday

and Voigt geometries by plotting the same features with a different orientation, as seen in Fig

4.15 section b. In this graph we see the same energy level structures as the Faraday case at both

low and high external fields, but in the mid-field range there is a significantly different mixing of

the energy levels.

Previously, we discussed the impact of the biaxiality (η) of the quadrupolar field on the

behaviour of the nuclei. By analysing the splitting of the Hamiltonian with respect to changing η,

we can more properly see why it is so important for η to be low when producing single photons. Fig

4.16 shows the significant impact that biaxiality has on the energy structure of an indium nucleus.

As η increases, the topmost energy levels remain approximately static, but the lower levels are

split significantly more, with the gap between the lowest levels increasing from approximately 2

MHz at η= 0 to over 6MHz at η= 1. Most of this variation occurs as η varies from 0.5 to 1 - the

range in which we found it to be inside the quantum dot in Section 4.2.2. This further highlights

the conclusions drawn there - in the high biaxiality regime there is significantly more variation

between otherwise comparable nuclear spins which can lead to a decrease in electron coherence

times as discussed in Section 3.1.2.
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Figure 4.15: a) The energy structure of 115In in a Faraday geometry, constructed using data from
a point within the dot structure introduced in Chapter 4. We can see that at high external fields
(B > 1T), the Zeeman splitting dominates, but at sub 1T fields there is significant mixing between
spin states. At 0 field, as expected, we see only the quadrupolar splitting. b) The energy structure
of 115In in a Voigt geometry. While the features are the same as the Faraday case at 0 field and in
the high field limit, there is a significant difference in the intermediate field.

4.3.2 Multiple Nuclei Energy Spectra

We now use the same procedure to investigate this structure specifically, by looking at the spectra

for multiple nuclei randomly sampled from across the quantum dot. In doing so, we hope to gain

further insight into the spread of quadrupolar effects within the dot. A large spread of course

leading to a lower electron coherence time and therefore a QD that is less useful for production of

entangled photons. We see from Fig 4.17 that a random sample of indium nuclei preserves the

basic structure that we see for a single nucleus in Fig 4.15, but there is a substantial overlap

between the energy levels before the Zeeman splitting takes over at higher fields. The threshold

for defining a ‘high field’ also increases, with distinct bands only emerging above approximately

2.3T in the Voigt orientation, in comparison to a clear separation being seen at approximately 1.5T

in the single nucleus case. This increase in mixing demonstrates that even among a relatively

small number of nuclei (a random sample of 25 was used to generate Fig 4.17) there can be a

large variation in quadrupolar characteristics. This obviously conflicts with the ideal case of

maximally similar quadrupolar effects.
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Figure 4.16: The change in energy level splitting of an 115In nucleus with respect to a changing
biaxiality, as calculated at 0 external field. In the absence of Zeeman splitting, we can see how
the same nucleus experiences significant splitting just as a result of different values of η.

Figure 4.17: By taking a random sample of 115In nuclei and combining their spectra, we can
understand the mixing of quadrupolar energy levels within the structure. We plot the Faraday
orientation in a), and the Voigt in b). The stark differences present in Fig 4.15 are still observable
at the extreme ends of the energy scale, but at smaller energies the orientations are almost
indistinguishable. We see that at larger fields the Zeeman splitting dominates - as we would
expect.
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4.3.3 NMR Spectra

Nuclear magnetic reference (NMR) is an excellent way of characterising the properties of material

or structure. When exposed to a radio frequency field, while in a magnetic field, nuclei within a

structure transition between the spin energy levels that have been split by the magnetic field.

The exact frequency of this varies between different nuclear species (according primarily to their

spin) and between nuclei of the same species (according to whatever changes the eigenstructure

of the Hamiltonian as seen in Section 4.3.2). Therefore, we can gain insight into a material or

structure by measuring the NMR effect at a variety of radio frequency (RF) field and external

field strengths/orientations. An example of experimental work of this type can be found in [190].

We can simulate the results of an NMR experiment by considering the effect of an applied

field and incident RF field on a nuclear spin system. The eigenstates of the Hamiltonian of a

nucleus (see Eq. 4.9) exposed to an RF field with angular frequency ωr f along an axis defined by

Br f
x ,Br f

y ,Br f
z are mixed by the action of the RF Hamiltonian according to

Ĥrf =−~γ
(
Br f

x Îx +Br f
y Î y +Br f

z Îz

)
cos(ωr f t). (4.14)

Here the Îk are the nuclear spin operators in the principle axis frame and γ defines the amplitude

of the field. We use Fermi’s golden rule to calculate the absorption rate Wi j between an initial

state |i〉 and final state | j〉 as

Wi j(ωr f )= |〈 j| Ĥ′
r f |i〉 |2

2∆
~

(E j −E i −~ωr f )2 +∆2 , (4.15)

where Ĥ′
r f =−~γ

(
Br f

x Îx +Br f
y Î y +Br f

z Îz

)
and ∆ is the fundamental linewidth of the transition in

question (which we take to be 10 kHz for all species in this work [191]). By calculating this rate

for a range of incident RF fields and applied fields, we can examine the behaviour of individual

nuclei, or a structure as a whole.

In Fig 4.18 we plot the simulated outcome of an NMR experiment on a single indium nucleus

within the quantum dot structure. We can clearly see specific spin transitions shown in the

absorption spectra - as 115In is a spin 9
2 particle we expect there to be 10C2 = 45 possible

transitions12, which are present in the spectra. Though this simulation is inherently nonphysical

(we cannot investigate a single nucleus within a quantum dot), it demonstrates the possibility of

calculating spectra from the data we have.

Similar plots can be found in the work of Bulutay [169], and the results seen in 4.18 can

be compared directly with that work. A plot from Bulutay is included in Fig We observe the

same structure in the transition lines as Bulutay, without requiring the use of complex and

computationally expensive modelling using software such as LAAMPS. Though the run time of a

calculation is of course dependant on the computer used, our python code can generate an NMR

12A spin 9
2 particle has 2∗ 9

2 +1= 10 spin energy levels, and a transition can in principle occur between any 2 such
levels. Hence there 10C2 possible transitions.
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Figure 4.18: The simulated NMR spectra of a single 115In nucleus in the centre of the quantum
dot. In (a) we show the results for a Faraday orientated field, and in (b) we show the results for a
Voigt field. Darker colours indicate a stronger absorption. We can see significant differences in
the structure over the entire range of applied field and RF frequency.

plot from initial strain and concentration data in under an hour on a modern laptop - significantly

faster than is possible when performing a complete molecular-statics simulation. Much of this

advantage comes from the use of real strain and concentration data rather than performing the

relaxation required for a full simulation. Our code is well suited for rapidly understanding the

potential of a real structure, without resorting to a full simulation.

We can also sample from the set of available indium nuclei to get a better understanding of

the overall distribution of parameters for that atomic species13. In Fig. 4.20 we show the result of

sampling from multiple indium atoms across the entire dot structure. The resulting spectra is

significantly noisier (as might be expected), but still displays the same essential structure as the

single nucleus spectra shown in Fig. 4.18.

In order to investigate the impact of updating the gradient elastic tensor (GET) on the NMR

spectrum of the sample, we must look at the spectra for either 69Ga or 75As, as the measured

values for 115In have not changed significantly since the original NAR experiments in 1974. We

plot these comparisons for 69Ga in Fig. 4.21 and for 75As in Fig. 4.22. The results shown in these

graphs agree with those shown in Section 4.2. We see that the spectra for 69Ga is significantly

wider when using the NMR/PL values of the GET than when found using the NAR values, in

agreement with the increase in width of the frequency distribution as summarised in Table 4.3.

This again suggests that these nuclei would have a larger than previously anticipated effect on

the coherence time of a central electron spin in this dot. We also see the same result as we found

previously for 75As nuclei - a significant narrowing of the NMR spectra can clearly be seen. This

13Of course, this analysis can also be done for other atomic species - such graphs are included in Appendix A.3.
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Figure 4.19: A comparison figure from Bulutay [169] showing Faraday geometry NMR spectra for
InAs and In 0.7 Ga 0.3 As QD nuclei (top row), together with their element-resolved contributions,
As (centre row) and In (bottom row) for the InAs QD, contrasted with respective single-nucleus
spectra (right panel, centre and bottom rows). It can be clearly seen that these figures are in
agreement with the relevant plots from our work. This demonstrates the usefulness of our
calculation methods.
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Figure 4.20: The outcome of an NMR probe on a random sample of 16 indium 115 nuclei from
within the quantum dot. The wide variation in the spectra suggests it would be very difficult to
isolate an individual nucleus (for use in a quantum memory for example), and that the indium
atoms present in this dot would cause a large reduction in the coherence time of a central electron
exposed to them. Sampling a larger number of atoms is possible with our methods, but does not
significantly change the result.

is in good agreement with the effect found previously, where the distribution of quadrupolar

frequencies narrowed substantially, and supports the conclusion that these nuclei would have

a lesser effect on electron coherence times than would previously have been found. All further

simulations have been done using only the NMR/PL values of the GET, though the same analysis

is of course possible using the older values.

These simulations are of course nonphysical - if an NMR experiment is performed, there is no

reason to believe that only a single nuclear species would resonate at any one time. As we can see

from Figures 4.20, 4.21 and 4.22, there is substantial overlap between the resonant frequencies

of all the component nuclei in this quantum dot. Whether or not this is a problem depends on

what we wish to gain by conducting an NMR experiment. Our simulations up to this point have

investigated primarily the effect of re-measuring the gradient elastic tensor and the implied

impact of that on electron coherence times. However, quantum dots are a leading candidate

for the demonstration of other quantum effects and the creation of other devices beside photon

sources. Chief amongst these at the moment is the quantum memory. In essence, a quantum

memory is some device or system in which a quantum state can be stored for an extended period
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Figure 4.21: The NMR spectra of a sample of 8 69Ga nuclei within the quantum dot structure,
under a Faraday geometry. In (a) we plot the spectra as found using the NMR/PL values of the
GET, while in (b) we plot the spectra as found using the NAR values. We find for 69Ga there is a
qualitative broadening of the NMR spectra, implying that the nuclei are more different to each
other than previously thought. Therefore we would expect them to cause a larger decrease in the
coherence time of an electron in the quantum dot than we would have previously thought.

Figure 4.22: The NMR spectra of a sample of 8 75As nuclei within the quantum dot structure,
under a Faraday geometry. In (a) we plot the spectra as found using the NMR/PL values of the
GET, while in (b) we plot the spectra as found using the NAR values. We find for 75As there is a
significant narrowing of the NMR spectra, which results in a lowering of the required frequency
for transitions to occur. This suggests that the nuclei are behaving more alike to each other, and
hence would cause a smaller reduction in the coherence time of a central electron.
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of time, and then recovered unchanged. Such devices have been suggested as almost essential for

a realistic implementation of fault tolerant quantum communication and computation [192, 193],

and quantum dots are a front runner in terms of their applicability to this problem [194, 195],

with some systems achieving lifetimes in the milliseconds [196]. In a quantum dot, the basic

principle is to imprint the desired quantum state onto the nuclear spin bath, via the hyperfine

interaction between a central electron and the bath [197–199]. Once the state is written onto

the bath, it should last for the lifetime of the Overhauser field (as this lifetime is defined as the

time taken for the spin bath configuration to substantially change). It may also be possible to

write the state onto a small subset of the spin bath which is sufficiently separate energetically -

such a subset essentially forming a smaller spin bath. These methods both require the nuclear

spins to be very similar to each other: in the first case the similarity must extend over the entire

bath, and in the second there must be at least 2 subsets which are internally similar but differ

significantly from each other. A more realistic simulation of an NMR experiment should show us

whether this dot is suitable for such a task. For the first case, we would ideally see only a narrow

band of transitions, indicating that the total nuclear spin bath is very self-similar - judging from

Figures 4.20, 4.21 and 4.22 this seems unlikely given the inherent variation seen in those graphs.

The second case may be more plausible - we require some subset of transitions to be energetically

separate from the rest, which may be seen at the higher frequency range.

In Figures 4.23 and 4.24 we plot the result of simulating an actual NMR experiment on this

quantum dot in the Faraday and Voigt geometries respectively. These results are calculated using

the same method as previous figures, but with a higher number of sites sampled - 40 in this

case14, out of an estimated 55 nuclear sites within our image. We weight the proportion of indium

nuclei examined according to the experimentally measured indium concentration (see Fig. 4.5) at

the sample site and assume that 50% of nuclei within the lattice are 75As with the remainder

being 69Ga. Unfortunately, the results of this simulation do not suggest this quantum dot would

be a good candidate for the first type of quantum memory in either orientation - the transition

lines are too broadly spread to be useful, even in the Voigt field where they are much closer than

in Faraday. This agrees with the work of Gangloff and Denning et al, which places an upper

limit on quadrupolar induced inhomogeneity of approximately 100 kHz [194, 195], and goes on to

suggest such low bounds are only achievable in quantum dots grown via droplet epitaxy - which

are inherently low strain, especially in comparison to strain based dots such as this one. The

second type may however be a possibility. The indium nuclei are the only ones to respond to fields

in the regime of FRF > 40 MHz at lower fields, and the relevant transitions are strong and well

defined for a Faraday orientated magnetic field.

14The number of sites used is always a multiple of 8, to best take advantage of the 8 cores of our machine.
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Figure 4.23: Simulation outcome of an NMR experiment on our quantum dot, with a Faraday
orientated field. Lines are coloured according to the atomic species that produced them, in order
to identify if any subsets of interest belong to a particular species. Grey features correspond to
115In nuclei, blue to 69Ga and red to 75As. We ignore the tiny fraction of 71Ga present in the
sample. We see that at lower applied fields, there is significant mixing between the different
species over a broad range of frequencies, though only 115In nuclei resonate at high frequency
at low field. This may allow us to isolate a subset of these nuclei from the others to use as a
quantum memory. Transitions which are resonant with an RF frequency greater than 40 MHz,
with applied fields of less than 0.75 T are distinct in comparison to other regions and may be well
suited to such an approach.
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Figure 4.24: Simulation outcome of an NMR experiment on our quantum dot, with a Voigt
orientated field. Lines are coloured according to the atomic species that produced them, in order
to identify if any subsets of interest belong to a particular species. Grey features correspond to
115In nuclei, blue to 69Ga and red to 75As. We ignore the tiny fraction of 71Ga present in the
sample. We see significant clustering at low applied fields, though still broader than would be
needed to implement a quantum memory. At higher fields the transitions begin to separate by
species, though to a lesser extent than occurred in the Faraday orientation. There are almost
no absorption lines present at low fields for RF frequencies greater than 35 MHz, and at higher
fields such lines are much weaker than in the Faraday case. The Voigt orientation is therefore
much less desirable for use as an isolated spin quantum memory than the Faraday case, where
such absorption lines are both stronger and more isolated.
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4.4 Conclusions

We find that the update of the measured values of the gradient elastic tensor as found in [176, 177]

can result in a significant change in the calculated properties of an InGaAs quantum dot. When

characterising such a system, one may well be led to wrongly throw out acceptable dots as a result

of calculating distributions using old/incorrect values of the relevant parameters - which can lead

to 3-fold changes in the width of the nuclear quadrupole distributions. However, the required

experimental work has not yet been conducted to investigate whether or not the standard values

of the GET in 115In need to be updated - we suggest this would be a very valuable experiment to

perform. We also show that these parameter changes have a significant impact on the simulated

NMR spectra of this quantum dot, and use such simulated spectra to qualitatively assess the

suitability of this dot for use as a either a magnon or spin-subset based quantum memory, finding

that it is likely not suitable for the former (in agreement with previous research into strain based

quantum dots) but may hold promise for the latter - especially if the electron coherence time

might be improved. By incorporating real data, we are able to calculate these results substantially

faster than performing an otherwise necessary molecular-statics simulation. The resulting code

will be of use to anyone who wishes to rapidly estimate the results of an NMR experiment on a

specific quantum dot or assess whether that dot is well suited to a particular task.

In the next chapter we will consider how we might improve the suitability of a strain based

InGaAs quantum dot by making it more symmetric. As can be seen in Fig. 4.5, the dot we are

studying has a large bulge on the upper left hand side, and a long tail to the right of the image.

This has the effect of creating an asymmetric strain distribution throughout the dot (as can be

seen in Fig. 4.6) and hence a wide distribution of quadrupolar frequencies across the dot (see

Table 4.3). We propose therefore that a more symmetric dot might have narrower distributions of

quadrupolar frequency, and a more ordered overall spectrum. Unfortunately, we were unable to

obtain more experimental data to test this hypothesis due to the COVID-19 pandemic. Therefore

we instead create ‘fake’ dots by mirroring the underlying strain and concentration data along the

central axis of the dot we have data for. We will investigate the properties of these mirrored dots

in the next chapter, using the tools introduced here.
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MIRRORED QUANTUM DOTS

5.1 Introduction

In the previous chapter, we saw how more accurate measurements of the Gradient Elastic Tensor

(GET) can lead to substantial changes in the predicted behaviour of an InGaAs quantum dot,

both in terms of the coherence time of any central electron and in the potential for the QD to

serve as a quantum memory. Here we investigate how we might improve the performance of a

strained quantum dot in these key functions.

First, let us set out the interactions at work, the scale at which they are present and how they

interact with each other. At the largest relevant scale we have the quantum dot structure itself

- in our case this is a region within a GaAs lattice which has a non-negligible concentration of

indium, as a result of Stranski–Krastanov growth processes. The formation of this structure is

reliant on strain, and the presence of indium causes the structure to be strained in comparison to

the surrounding GaAs lattice (as seen in Section 4.1.1). If we zoom in slightly, we see the electron

trapped within the confining potential of the dot. This electron is the one used in the production

of single photons, and its wavefunction is distributed throughout the structure - as such it ’sees’

the following interactions: Zeeman effects due to any external magnetic field and hyperfine

interactions between the electron and the nuclear spin bath. The Zeeman effect is unchanging in

direction and strength, while the relative size and direction of the hyperfine interaction changes

as the nuclear spin bath evolves (see Section 3.1) - the timescale over which the bath remains the

same is therefore a limit to the coherence time of the electron, defining the frozen fluctuations

time (see Section 3.1.2.2). If we zoom in more, we see the atoms which make up the lattice, and

their nuclei which make up the nuclear spin bath seen by the electron. This spin bath (if thought

of as a single large spin) interacts with any external field, and with the central electron via the
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hyperfine interaction and will thus precess over time - setting an upper limit to the lifetime of

the frozen fluctuations model. This limit is lowered further by the interactions between nuclei

that make up the bath. Each of these nuclei sees the following effects: the external magnetic

field, a component of the hyperfine interaction with the electron, nuclear-nuclear interactions

and the quadrupolar interaction with the local electric field gradient (which is determined by

the strain and the values of the GET, though for this chapter we will solely be using the updated

values of the GET found using NMR/PL spectroscopy). Of these, we are primarily interested

in the quadrupolar interaction. Each nucleus sees a different electric field gradient, and has

a quadrupolar interaction strength which depends on its spin and quadrupolar moment (both

dependant on the nuclear species). The different electric field gradients seen by each nucleus

cause each to precess subtly differently from all the others (even within a particular species while

assuming that the effect of the external field and the hyperfine interaction are the same between

nuclei - assumptions which are not necessarily valid). As a result, the nuclear spin bath will

change at a higher rate if its component nuclei are experiencing significantly different electric

field gradients - as would be caused by substantially varying strain.

5.2 Mirrored Dots

The obvious way to improve the performance is to minimise the variation in the strain across

the quantum dot - which is equivalent to making the overall structure more symmetric. Exper-

imentally this might be achieved via processes such as thermal annealing. Annealing results

in a diffusion of impurities in the lattice (indium in the case of an InGaAs quantum dot) from

areas of high to low concentration, leading to a more uniform distribution and hence a more

even strain and quadrupolar distribution [200, 201]. This process has also been experimentally

shown to decrease fine structure splitting [202] and modelling predicts that the resulting changes

in electron localisation volume and central indium concentration will reduce the variance in

hyperfine interaction between different quantum dots after annealing [203]. A simple way to

investigate this hypothesis is to take the strain and concentration data we already have and

mirror it along the vertical axis to create an artificially symmetric structure. We can create 2

structures in this way by mirroring the dot left -> right to create one, and then right -> left to

create the other. This mirroring is not at the scale of the individual strain components, but rather

a replication of the data such that the strain tensor of a nucleus located immediately to the left

of the mirror line is exactly equal to that of one immediately to the right of the line. Mirroring

the structure at the exact strain level essentially amounts to performing a full-scale atomic

simulation of a different structure, a process we are explicitly trying to avoid in this analysis1.

We can then investigate these structures using the techniques described in Chapter 4, and

determine if the artificially symmetric structures would perform better than the original from
1An extension of this method could be to create a ‘superposition’ of strain data such that Mirrored Dot= Dot LR

2 +
DotRL

2 , which may provide a better approximation of an artificially highly symmetric dot.
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which they are derived. This method has some clear limitations - it introduces a significant

discontinuity along the mirror line which would not be present in a physically grown structure,

the choice of line along which to mirror is completely arbitrary and the resulting structure has

not been adjusted to take into account higher or lower strain than was previously present and is

therefore inherently nonphysical in that respect. Improving the model in this respect would be

highly complicated, and would be less worthwhile than completely simulating a highly symmetric

structure using a library such as LAMMPS. Our approach is designed to highlight the effect of

structural symmetry while still being based in real data. We have chosen to mirror along a line

which falls approximately halfway down the structure, which in this case allows us to investigate

the effect of the inherent asymmetry of the original structure. The non-mirrored dot (see Fig. 4.5)

has a large bulge on the upper left of the image, which results in greatly different shapes of the 2

structures created by mirroring along a central line.

5.2.1 Indium Concentrations

The two mirrored dots are shown in Figures 5.1 & 5.2. The first was created by mirroring the left

hand side of the structure along the central axis, and the second by mirroring the right hand side.

The resulting structures are of course highly symmetric, but maintain some differences between

each other. The left-right flipped dot (referred to as Dot LR) is larger than the right-left flipped

dot (Dot RL), and has a slightly higher peak indium concentration (0.32 vs 0.30). It also has a

long thin tail out to each side, which widens its footprint without substantially increasing the

total volume of the structure.
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Figure 5.1: The indium concentration of the structure created by mirroring the left hand side of
the original quantum dot. This structure is wider than the original due to the tail present in the
original and the bulge on the left hand side of the original structure results in a doubly humped
shape in the new structure. The peak indium concentration is 0.32, as a result of the original
structure having its highest concentration on the left hand side. The large size and irregular
shape of this structure leads us to believe that it will have a wider distribution of nuclear spin
environments than the dot created by reflecting the right hand side.
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Figure 5.2: The indium concentration of the structure created by mirroring the right hand side of
the original quantum dot. This structure is smaller than the original, and has a more uniform
shape. The maximum indium concentration is 0.30, as a result of the original structure having
its highest concentration on the left hand side. As a result of the highly uniform shape of this dot,
we expect it to have a narrower distribution of nuclear spin environments than both the original
and left-right mirrored dot.

5.2.2 Strain Profiles

As before, the first step in our analysis is to map out the strain profiles of these 2 structures along

the xx, xz&zz directions. These mappings are shown in Figures 5.3 & 5.4 respectively and show

that Dot LR shows a smaller difference between the strain inside the structure as compared to

the lattice surrounding it, even though the Dot LR has a larger maximum strain than Dot RL.

This suggests that Dot LR may be less isolated from the surrounding lattice, further reinforcing

the idea that it will have a wider distribution of nuclear environments (though it should still be

narrower than found in the original data). The strain in Dot RL is highly centralised to the dot

itself, showing a clear differentiation between the dot and the surrounding lattice.
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Figure 5.3: The strain environment of Dot LR, as expected we see a much more uniform dis-
tribution of strain in a mirrored dot than we do in the original, though this example has more
high-strain regions due to most of these being present on the left hand side of the original
structure. The second image (showing εzz) clearly outlines the shape of the new structure, which
has a significantly higher strain than the background lattice (as expected for a quantum dot
grown using Stranski–Krastanov methods).
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Figure 5.4: The strain environment of Dot RL. The εxx strain in this structure is far more
centralised than in DOT LR, though it has a slightly lower maximum value - as would be
expected for a structure with a slightly lower maximum indium concentration. There is a very
clear contrast between the quantum dot and the surrounding GaAs lattice along all 3 strain axes.
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5.2.3 Electric Field Gradients

We use Eq 4.6 to calculate the electric field gradient (EFG) across the structure as we did in

Section 4.2.2. After calculating this at each lattice site, we again find the principal axis frame

and hence the size and direction of the quadrupolar interaction that each nuclear species would

feel at each lattice point. The results of these calculations for indium are shown in Figures 5.5 &

5.6. In both of these graphs we see a much more homogeneous direction to the quadrupolar field,

especially in the case of Dot LR, which has an almost uniform field across the entire structure.

Dot RL has a similar uniformity across the dot structure, but has a large region of inhomogeneous

field outside of the dot in the top left and right corners of the image. This is important to note, as

these data will need to be accounted for when calculating distributions across the quantum dot,

as they are a part of the lattice and not the quantum dot itself.

In Figures 5.5 & 5.6 we show the fields as felt by an 115In nucleus, however the same

calculation can be performed for each nuclear species2, leading to similar conclusions regarding

the direction and strength of the field in all cases. It is important to note that the direction of the

effective field is reversed for 69Ga nuclei, as was the case for the original structure when using

the NMR/PL gradient elastic tensor values. This again highlights the importance of updating the

values of the gradient elastic tensor - we cannot predict whether a similar reversing of the field

direction will occur for either 115In or (less importantly) 71Ga without performing the requisite

experiments, and the results of these experiments may have a drastic impact on the results we

present here.

2See Appendix A.4 for these graphs.
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Figure 5.5: The direction (arrows) and strength (background colour) of the quadrupolar field as
felt by an indium 115 nucleus at each point in the structure of Dot LR. The field is approximately
uniform in direction, though varies in magnitude according to indium concentration - as would be
expected. This dot almost entirely fills the rectangular area defining the image, and thus there is
little need to exclude external regions from subsequent analysis.

Figure 5.6: The direction (arrows) and strength (background colour) of the quadrupolar field
as felt by an indium 115 nucleus at each point in the structure of Dot RL. Inside the dot, the
field is almost uniform in direction, and very similar in strength as well. The regions outside
show significant deviation, but this is misleading as these are regions of the GaAs lattice, not the
quantum dot itself and thus there is no indium present. As such, we must be careful to exclude
these regions from subsequent analysis.
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5.2.4 Frequency Distributions and Fits

Plotting the distribution of quadrupolar frequencies (see Figures 5.7 & 5.7) highlights both

the narrowing of possible nuclear environments across Dots LR and RL, and the problems

caused by mirroring a region outside the quantum dot itself. In Fig 5.7, the distributions of

quadrupolar frequencies are very similar in shape to those seen in the original structure, though

they have been narrowed by the mirroring effect as expected. However, in Fig 5.8 the shape of

the distributions has changed significantly. For each nuclear species, we see 2 distinct peaks in

the distribution - one over positive frequencies and the other over negative frequencies.

The absolute sign of the distribution is an artefact of the method used to calculate the

principal axis frame (a spin pointed left on a diagram such as Fig 5.5 has a positive sign and vice

versa) and hence tells us little about the preferred alignment of the spin in reality, a substantial

splitting of the values around 0 means there is a significant spin population orientated differently

to the others. In the case of Dot RL, we can see from Fig 5.6 that this discrepancy likely results

from regions outside the quantum dot that have nonetheless been caught by our calculation

programme. The ideal solution to this issue is of course to only include that region of the image

which is the quantum dot, however this presents some implementation challenges3. Instead,

we will choose to throw out the data with a negative value for transition frequency4, we justify

3It is substantially more difficult than one might expect to select a triangular region of an array in Python, and
any region selected like this is fundamentally an arbitrary choice of what is or isn’t part of the quantum dot.

4Or a positive value of Ga69, as the predominant spin direction inside Dot RL is reversed for this species.

Figure 5.7: The distribution of quadrupolar frequencies in Dot LR. In comparison to the original
data (shown in Fig 4.12) there is a substantial narrowing in the distribution of Ga69 transition
frequencies, and a lesser narrowing in the distribution of 75As transition frequencies.
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Figure 5.8: The distribution of quadrupolar frequencies in Dot RL. The same narrowing is seen
here as is seen for Dot LR in Fig 5.7, but in this case there is a substantial secondary peak (of
opposite sign to the primary peak) for each of the nuclear species present. We believe this to be a
result of the mirroring of a distorted region of the GaAs lattice, which when duplicated has an
oversized effect on the resulting distribution.

this by noting that inside the Dot RL structure all spins are pointing the same direction - spins

pointing the other way exist only in regions outside of the dot.

In order to analyse these distributions, we fit gamma distributions to the data, and from these

calculate the mean and variance of the nuclear quadrupole transition frequency. These data are

summarised in Table 5.1 and the fits for all nuclear species for both dots are shown in Figures

5.9 & 5.10 respectively. We would expect these new structures to have a narrower distribution of

nuclear spin transition frequencies than the original structure, both as a result of their increased

symmetry and because we have simply removed some data from the calculation.

We find that for both Dot LR and RL there is a decrease in the variance of the quadrupolar

frequency distributions as compared to the original structure, for all 4 nuclear species. This

narrowing is most pronounced for Ga69 for which the fitted distributions have a variance of

0.14 MHz2 and 0.13 MHz2 for Dots LR and RL respectively, as compared to the variance of the

distribution over the original structure 0.69 MHz2. The decrease in variance for 75As is less

pronounced, dropping from 0.92 MHz2 in the original quantum dot to 0.86 MHz2 in Dot LR

and 0.84 in Dot RL. The variance for the distributions of both 71Ga and 115In is not substantial,

though for these species we are forced to use the outdated NAR values in our calculations and

therefore we have less confidence that these results reflect the reality of the original structure

and we can draw fewer conclusions about the effect of mirroring these species than we can for

Ga69 or 75As. We also note that these distributions were very narrow to begin with, and therefore

a reduction in their variance is much harder to achieve by any means. In all cases we find a

slightly lower variance in transition frequency in Dot RL than Dot LR - as expected given Dot
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Figure 5.9: Fitted gamma distributions for Dot LR. Absolute values of the quadrupolar frequencies
are shown in dark blue, while the fitted distributions are overlaid in light blue. Each fit was
calculated using a maximum likelihood estimation, as implemented in Scipy. Each of these fitted
distributions (except that for Ga69) has a slightly higher mean frequency than was found for the
original dot, but a substantially lower variance.

RL is a result of mirroring the side of the original QD without a bulge and that we discounted

some of the data representing the outer edge of the lattice when performing our calculations.

All of these results support the hypothesis that a more symmetrical dot will experience a lower

variation in nuclear spin environment and will therefore be better suited to acting as a source of

single or entangled photons.

The effect on the mean values of the transition frequency is slightly more complex. For all

4 nuclear species, Dot LR has a higher mean frequency than Dot RL - a result of the higher

indium concentration in this structure causing a higher average strain across the dot and hence

a larger electric field gradient. In the case of Ga69, the mean frequency is lower in both mirrored

structures than it was in the original. This comes about because of the large variance of the

distribution over the original QD results in a higher mean value compared to the far narrower
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Figure 5.10: Fitted gamma distributions for Dot RL. Absolute values of the quadrupolar frequen-
cies are shown in dark blue, while the fitted distributions are overlaid in light blue. Each fitted
distribution has a lower mean and substantially lower variance than was found for the original
structure.

distributions over Dots LR and RL. The mean frequencies for all of 71Ga, 75As and 115In are

higher in Dot LR than they are in the original dot, and lower in Dot RL. This effect can be

understood by considering that the original structure has an asymmetric strain profile, with a

higher strain on the left hand side due to the bulge present on that side (see Fig 4.5), and hence

will have an average strain somewhere between that of the structures formed by mirroring either

side. As the magnitude of the strain directly contributes to the value of Vzz, this leads to the

pattern of mean values of quadrupolar frequency seen here.

85



CHAPTER 5. MIRRORED QUANTUM DOTS

Left-Right Mirror Right-Left Mirror
Ga69 71Ga 75As 115In Ga69 71Ga 75As 115In

Shape (k) 3.78 5.14 5.27 4.32 2.17 3.29 3.67 2.61
Scale (θ) 0.20 0.13 0.40 0.15 0.24 0.15 0.48 0.18

Mean (MHz) 0.74 0.65 2.13 0.65 0.52 0.49 1.76 0.47
Variance (MHz) 0.14 0.08 0.86 0.10 0.13 0.07 0.84 0.09

Table 5.1: Fitting parameters (shape and scale), and mean and variance values for gamma distri-
butions fit to quadrupolar frequency data calculated for Dots LR and RL. All fitted distributions
are defined to begin at 0 MHz.

5.2.5 NMR Simulation

As before, we wish to understand the behaviour of our mirrored dots under NMR spectroscopy,

so that we might gain insight into how useful they would be for use as quantum memories or

sources of entangled photons. Therefore we again simulate the results of an NMR experiment

performed on Dots LR and RL in both the Faraday and Voigt geometries, with the contributions

of each species weighted by the indium concentration of the new structures (as shown in Figures

5.1 & 5.2).

The two types of spin memory will be represented in very different ways in such an NMR

spectra, and thus we have 2 measures of quality to look for. A magnon spin memory requires

a very narrow frequency response, where all of the spins in the bath behave as a single much

larger spin onto which we can project the quantum state we wish to store. This will manifest

in the simulated NMR spectra as a significant clumping together of possible transitions, with

very low absorption present outside this narrow band. The results of Section 5.2.4 suggest we are

unlikely to see such a result for either Dot LR or RL. While the quadrupolar distributions have

narrowed significantly, they are still spread over a range of MHz - far too large for the nuclei

across the dots to show up as almost identical under in an NMR experiment. Our other measure

of quality is the identification of a set of transitions which could be used to isolate a subset of the

spin bath that might be suitable for use as a memory of a different kind. Our previous results

(see Section 4.3.3) suggest that the Faraday orientation may give better results for this than a

Voigt orientated field, though we examine both orientations here to determine if this differences

carries over to our mirrored dots.

There is a significant change in the simulated spectra of Dot LR in comparison to that of the

original structure. In the Faraday orientation, shown in Figures 5.11 & 4.23 for Dot LR and the

original structure respectively, we see a dramatic clustering of the absorption lines in Dot LR,

especially at lower applied fields. At 0 field the original dot has an indium absorption line at ≈ 41

MHz, while the reflected structure’s highest absorbed frequency is one for 75As which occurs at

≈ 25 MHz. Investigating the different species in turn, we see that Ga69 forms a much tighter

cluster at much lower frequencies in the reflected dot, as does 115In (though 115In still extends

to higher frequencies at lower fields than the other 2 species). The absorption of 75As however
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is spread over a wider range of frequencies at low fields, but broadens slower such that it ends

up with a very similar structure between the 2 structures at higher fields. This clustering is

potentially good news for using Dot LR as a magnon type quantum memory, however the spread

of absorption lines is still very wide relative to the 100 kHz width suggested to be necessary by

Denning et al [195]. The Faraday orientation appeared to be the better of the 2 choices for the

construction of a subset type memory, however this advantage disappears for Dot LR at low fields

where there are no well isolated subsets. Several bands of absorption lines can be seen at fields

between 0.75 and 1 T for RF frequencies above 40 MHz, however they are faint relative to those

seen at lower frequencies - suggesting there are fewer nuclei than would be necessary to form

a well isolated subset. The story could not be more different in the Voigt orientation, shown in

Figures 5.12 & 4.24, in which we see a significant spreading of absorption lines at all applied

fields - especially at lower applied fields, though the trend continues all the way to 2 T. There are

not large differences between the spectra of Ga69 and 75As, though there is a slight narrowing in

the overall structure of the spectra for both species. It is in the spectra of 115In that the difference

appears. At 0 field we see absorption lines present for 115In all the way up to 55 MHz, with strong

lines present up to 45 MHz. The indium absorption lines remain strong and well isolated over

the entire region spanning 45-75 MHz and 0-1.5 T, presenting a substantial regime where it may

be possible to create a subset style quantum memory using indium nuclei. The prospects of a

magnon type memory are again lacklustre, especially given the wide spread of absorption lines

exhibited by indium. Turning our attention to Dot RL, we again find significant differences in

the expected NMR spectra as compared to the original structure. Beginning with the Faraday

orientation, shown in Fig 5.13, we see a sharp increase in the density of absorption lines in low

field at frequencies above 30 MHz. This trend continues as the field increases, with indium nuclei

dominating the spectrum at higher frequencies until the field reaches approximately 1.25 T. The

absorption bands corresponding to arsenic nuclei are much narrower for any range of frequency

and applied field, while those for gallium are almost unchanged. Overall, this structure is likely

unsuitable for use as a magnon based quantum memory due to the broad nature of the absorption

spectra. The original structure in a Faraday orientation may have been suited for use as a

subset-type memory if an experiment were addressing the low field/high frequency transitions,

however Dot RL does not exhibit the same set of well isolated transitions in this orientation and

so would most likely not work for this type of memory either. The most significant difference

in the spectra of Dot RL in a Voigt orientated field (see Fig 5.14 is a substantial clustering of

absorption lines in the low field regime. At 0 field, the mirrored structure has no absorption

of frequencies higher than 20 MHz, as compared to a clear absorption line at 30 MHz as seen

in the spectra of the original structure. Both Ga69 and 75As nuclei retain the same spectral

structure as the applied field increases, differing only in that their absorption lines begin at lower

frequencies in Dot RL than they would otherwise. This translation of absorption lines is not as

apparent for 115In nuclei, though there is a small reduction in their frequency at 0 field. As a
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Figure 5.11: Simulation of the results of an NMR experiment conducted on Dot LR in a Faraday
orientated field. Ga69 transitions are in blue, 75As in red and 115In in grey. We ignore the tiny
fraction of 71Ga present in the sample. We can see there is a tighter clustering of absorption
lines at lower applied fields than is present in the original quantum dot, though the overall
structure of the spectrum is similar. We no longer see the isolation of 115In transitions in the high
frequency/low field regime, though as the field strength increases the nuclear species begin to
separate as before.
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Figure 5.12: Simulation of the results of an NMR experiment conducted on Dot LR in a Voigt
orientated field. Ga69 transitions are in blue, 75As in red and 115In in grey. We ignore the tiny
fraction of 71Ga present in the sample. This plot is substantially different from the equivalent plot
as found from the original structure. The separation of multiple indium nuclei can be seen very
clearly in the high frequency/low field regime to the bottom-left of the image. These transitions
are both strong and separated from the others, suggesting the presence of a set of indium nuclei
that are energetically well isolated from the bath and hence might be suitable for use as a
quantum memory.
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Figure 5.13: Simulation of the results of an NMR experiment conducted on Dot RL in a Faraday
orientated field. Ga69 transitions are in blue, 75As in red and 115In in grey. We ignore the tiny
fraction of 71Ga present in the sample. At lower fields, this plot is almost identical to that of
the original dot, though it shows a slightly more complex distribution of indium spins at low
frequencies and fields of ≈ 0.75 T. Both the Ga69 and 75As absorption lines are more tightly
clustered in this dot, while the 115In lines are much more spread out - with absorption present at
frequencies in the range of 50 MHz at fields lower than 0.25 T.
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Figure 5.14: Simulation of the results of an NMR experiment conducted on Dot RL in a Voigt
orientated field. Ga69 transitions are in blue, 75As in red and 115In in grey. We ignore the tiny
fraction of 71Ga present in the sample. The overall structure of this plot remains unchanged,
however there is a significant narrowing of the spectra as a whole. At low field there is no
absorption of frequencies higher than 20 MHz, in comparison to the 75As absorption at 30 MHz
seen in the original dot. At higher applied fields, this clustering continues but to a lesser extent,
with 115In absorption lines branching out to almost the same degree once the field passes 0.75 T.

result, we see an almost entirely unchanged structure between the original structure and Dot RL

- especially as the applied field increases. Overall, we would not expect Dot RL to function well

as either type of quantum memory. Though the overall NMR spectra has narrowed slightly, it

is not narrow enough to function as a magnon type memory. There are also no suitably isolated

yet strongly absorbing sets of transitions that would be suitable for a subset type memory. In

summary, we observe changes in the NMR spectra of both Dot LR and RL in comparison to the

original structure from which they are derived. In the case of Dot LR, we find that the Voigt

orientation offers the best outlook for creating a subset style quantum memory - and could well

be a better fit for this than the original dot. However, Dot LR performs no better as either type
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of memory in the Faraday orientation, and may in fact be a worse structure for a subset type

memory due to the vanishing of any isolated indium absorption lines. Dot RL fares worse than

Dot LR as a prospect for a quantum memory - in neither orientation does it exhibit the required

features to act well as either type of memory, though its prospects have improved somewhat for

both kinds from the original.

5.3 Toy Model of Decoherence

In order to understand how the electron coherence time of these structures may have changed

from the original, we construct a simple toy model to illustrate the effect of narrowing the width

of the quadrupolar distribution - as has been the case for all species in both Dot LR and RL, but

most clearly for Ga69. This toy model approximates an electron spin as a cosine wave of some

frequency (the exact magnitude of the frequency merely sets the timescale for the decay, and as

we are only interested in relative decay rates we do not need to pick any particular frequency),

and then observes how this wave decays when mixed with other waves whose frequencies are

drawn from a gamma distribution matching those found in our previous analysis. A collection

of waves mixed like this decays in much the same way as a damped oscillator, and hence we

can fit a function g( f ,λ, t)= exp(−λt)cos(2π f t) of frequency f and time t to the overall waveform

to find the decay rate λ of the envelope. A model this simple cannot be expected to capture the

real behaviour of a spin in a quantum dot, but it should provide a quick estimate of the effect of

reducing the variance of the quadrupolar distribution. According to Section 3.1.2.2, we would

expect a reduction in the variance σ2 of the nuclear spin distribution to be met with a proportional

increase in the lifetime of the electron spin coherence τc.

We perform this analysis for all 4 nuclear species, across the three structures we have been

investigating (the original quantum dot, Dot LR and Dot RL). The results for Ga69 shown in

Figure 5.155. As can be seen from Table 5.2, there is not a 1:1 ratio between a reduction in the

width of the quadrupolar frequency distribution and the corresponding increase in estimated

electron coherence time. For example, the width of the Ga69 quadrupolar frequency distribution

in Dot LR is 5 times smaller than that of the original dot, but we find that the lifetime increases

only by a factor of 2. In every case except that of 71Ga in Dot LR we find that a reduction in the

variance of the quadrupolar frequency distribution corresponds to an increase in the estimated

electron coherence time. In the case of 71Ga for Dot LR we see a small reduction in variance

resulting in a slight decrease in coherence time. We believe this anomaly to be the result of

the much smaller variance of the quadrupolar frequency distribution for 71Ga in the original

structure combined with the margin for error of the fitting - the decay rate λ varies by ±0.03

between modelling runs.

5Similar graphs for other species can be found in Appendix A.5.
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Figure 5.15: Modelling the decay of an electron exposed to the distribution of Ga69 nuclei
within each of the quantum dot structures we have introduced. Coherence and time are both
measured in arbitrary units, as we are only interested in the comparison between decay rates
- not in calculating expected coherence times. The decay envelopes are found using a least
squares estimation. We see that both mirrored dots have slower decay envelopes (and hence
longer coherence times) than the original dot structure, as would be expected from the dramatic
reduction in the variance of the quadrupolar field for Ga69 nuclei in those structures.
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σ2 λ τc
σ2

σ2
0

τc
τc,0

Ga69 (QD) 0.69 3.46 0.29 - -
Ga69 (LR) 0.14 1.70 0.59 0.20 2.03
Ga69 (RL) 0.13 1.40 0.71 0.19 2.47
71Ga (QD) 0.09 1.27 0.79 - -
71Ga (LR) 0.08 1.29 0.78 0.89 0.98
71Ga (RL) 0.07 1.14 0.88 0.78 1.11
75As (QD) 0.92 4.19 0.24 - -
75As (LR) 0.86 4.07 0.25 0.93 1.03
75As (RL) 0.84 3.87 0.26 0.91 1.08

115In (QD) 0.11 1.37 0.73 - -
115In (LR) 0.10 1.33 0.75 0.91 1.03
115In (RL) 0.09 1.13 0.88 0.82 1.21

Table 5.2: Data found via the fitting to the results of our toy model of electron spin coherence. The
data generally follow our expectation that a decrease in variance of the quadrupolar frequency
(as seen in Column 4 of this table) results in an increase in expected electron coherence time (in
Column 5). However, this correspondence is not 1:1.

This model supports our expectation that reducing the variance of the quadrupolar frequency

distribution across an InGaAs quantum dot increases the coherence time of an electron within the

dot. In almost all cases we demonstrate that reducing the variance of the distribution by making

the underlying structure more symmetrical has a noticeable impact on the coherence time. Dot

LR consistently underperforms Dot RL according to the relative increase in coherence time, in

agreement with the results of Section 5.2.4 in which we showed that Dot RL has a narrower

distribution of quadrupolar frequencies. The indium concentration maps shown in Figures 5.1 &

5.2 show us that Dot RL is visually more symmetric as well - lacking the outward bulge seen in

the original structure and hence replicated in Dot LR. Unfortunately we do not have enough data,

nor is our model suitably physical, to properly calculate the relationship between the change in

variance and the change in coherence time. However, we do not expect it to be 1:1 based on these

results and suggest this as a possible extension to this section of the work.

5.4 Conclusions

In this chapter we have investigated the effect of an artificial increase in symmetry on the

characteristics of an InGaAs quantum dot. We have done this by taking the data defining the

structure first seen in Chapter 4 and mirroring it along the central axis of the quantum dot. This

‘creates’ 2 more structures with an artificially high degree of lateral symmetry - Dots LR and RL.

By applying the same techniques as introduced in Chapter 4 we investigate the strain profiles,

electric field gradients, quadrupolar frequency distributions and the expected results of NMR

spectroscopy of these fabricated structures.
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We show that this increase in symmetry results in a decrease in the variance of the quadrupo-

lar frequency distribution across all nuclear species present in the quantum dots, though the

effect is most pronounced for Ga69, which exhibits a 5-fold decrease in this variance. Both 71Ga

and 115In exhibit a very small change, which we attribute to their already incredibly narrow

distributions of quadrupolar frequency. We treat the results for these 2 species with a grain

of salt, as the calculations rely on data from 1974, for which more modern values are not yet

available but sorely needed (as seen in Chapter 4). The simulated NMR results are examined in

the context of assessing suitability for using the dot in question as a quantum memory - based on

either magnons or a spin subset. Our results in this section are less heartening. We find that

while artificially increasing the symmetry of a dot does substantially change the NMR spectrum,

it does not do so in a particularly consistent way and not to the degree necessary to enable such a

dot to function as a memory of a type it was not already suited for. In particular, we agree with

previous results that suggest that InGaAs quantum dots may never be appropriate for use as

a magnon based quantum memory, due in large part to the wide variance of the quadrupolar

frequency distribution within them. Spin subset based quantum dots may fare better, though we

note that our results suggest that careful choice of which magnetic field direction is best will be

necessary to best isolate a particular set of transitions within the ensemble.

We finally introduce a simple toy model to begin to capture the effect of decreasing variance

on electron coherence time. By modelling a central electron as a collection of cosine waves whose

frequencies are drawn form a gamma distribution representing the quadrupolar spin bath, we

show that decreasing the variance of this distribution can increase the coherence time by up to

147%. However, in most cases an increase in symmetry does not have this substantial an impact,

and it may well be the case that growing a strain free dot results in larger benefits. This model

does not capture the complex dynamics and behaviour of an electron in a quantum dot, but serves

as a useful benchmark against which to check our intuition. Though we have kept our analysis

tied to the data we have, the introduction of arbitrary frequency distributions may be useful to

further investigate the relationship between nuclear quadrupole frequency variance and electron

spin coherence time.
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NUCLEAR SPIN MEMORIES

In Chapters 4 & 5 we briefly investigated how useful the Sokolov and mirrored dots would

be as quantum memories. In this chapter we will deepen this investigation by simulating the

impact of RF pulses on absorption spectra. Following on from the results discussed in these

previous chapters, we will focus on single spin quantum memories as it is plain to see from

the experimental NMR spectra previously presented that a magnon type memory is unlikely to

succeed with a strain based quantum dot - a result born out by recent experimental work into

these memories [194, 195, 204, 205].

6.1 Quantum Memories

A quantum memory is a device into which we can write a quantum state, and later retrieve

that state with a high degree of fidelity. Quantum dots have been put forward as a leading

candidate for such memories due to their long coherence times - ranging into the milliseconds

in some experiments [197, 198]. As we have previously seen, there are 2 candidate methods for

the implementation of this in quantum dots: magnon based memories and single spin memories.

Below we give a brief introduction to each, along with the requirements they impose on the host

quantum dot. We will then extend the qualitative analysis of previous chapters by simulating the

effect of an RF pulse on our quantum dot system. This analysis is not intended to be a full-scale

simulation of a possible experiment, but more to investigate the feasibility of such control in an

ideal case. While we discuss the experimental practicality, it was not the focus of this work to

design or simulate a working nuclear spin memory experiment.
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6.1.1 Magnon Memories

Though magnons are a phenomenon more commonly associated with the study of crystal lattices,

it has become common to borrow the terminology to describe the collective behaviour of nuclear

spin waves in a quantum dot. Therefore, when we use the term magnon we are discussing an

excitation of the entire spin bath (or at least a very large subset of it). Work by Denning et al

[195] has shown that it is in principle possible to use the electron spin as an intermediary to write

the quantum state of a photon onto the nuclear spin bath. This process requires that the nuclear

spin bath be as homogeneous as possible. Intuitively, we can understand this by considering a

perfectly homogeneous spin bath to be a single very large spin which can then interact with the

central electron via the hyperfine interaction as would any other individual nuclear spin. As

the bath becomes less homogeneous this approximation breaks down and each nucleus in the

bath interacts with the electron slightly differently. This results in both the reading and writing

processes of the memory having a significantly reduced fidelity and eventually the memory is no

longer able to read or write a quantum state at all.

The requirements on a quantum dot to be useful as a magnon based memory are then

chiefly that the nuclear spins be as homogeneous as possible. We therefore presume (and our

presumption is supported by the NMR spectra seen in Chapter 4) that a strain based dot such

as those studied in this thesis is unlikely to be suitable for this type of memory. This is because

the variation in strain across such a dot results in a large variation of nuclear energy levels.

We have seen this manifest in both the original structure (see Section 4.3 and the 2 artificially

mirrored structures (see Section 5.2.5). In neither case could we see that the NMR spectra was

narrow enough to reasonably expect the nuclear spin bath to be homogeneous. This is further

supported by the work of Denning et al in which they show that their protocol can tolerate

quadrupolar frequency distribution widths of approximately 50 kHz - far lower than the MHz

width distributions we have found in Sections 4.2.3 & 5.2.4. Therefore, we will instead focus our

quantitative analysis on single spin memories.

6.1.2 Single Spin Memories

A single spin memory works along much the same lines as a magnon based memory, but replaces

the collective spin excitation with that of a single, well isolated, spin. A protocol for such an

experiment was put forward by Hinchliff [61] in which a photon state is mapped onto a central

electron and then a
p

SWAP gate is used to write the electron spin onto a single nucleus.

The electron-nuclear system can then be disentangled and the photon’s initial state is then

stored on the nucleus until readout. Readout itself is performed via a quantum non-demolition

measurement1 using an ancillary polarised photon. The different polarisation components of this

photon experience a different phase shift depending on the electron spin state (which is itself

1For more detail on these, please see [206, 207].
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entangled with the nuclear spin state) - from this we can then use a single photon detector to

read the photon spin state and hence the nuclear spin state2.

This protocol is designed for a system in which the electron spin only interacts with a single

nuclear spin, and also assumes a symmetric strain environment (to ensure there is no mixing

between ground states of the nuclear spin state [208]). Obviously this is not well suited to our

quantum dots with their variable strain distribution. However, we can see from the full NMR

spectra presented in Figures 4.24, 5.12 & 5.14 there are distinct sets of transitions which may be

the result of a small isolated set of nuclei that are very self-similar. If such a subset exists, we can

think of it as working essentially like a small magnon style memory within the greater nuclear

spin bath. Here we assess whether or not we can find such a small subset by investigating the

available transitions more closely. We therefore will refer to this type of memory as a spin-subset

type.

6.2 Dot Analysis

In previous chapters we have presented results such as Figures 4.24, 5.12 & 5.14. These give a

good initial picture of the transitions within a quantum dot, but are time consuming to create at

high enough resolution to use as the basis for identifying specific sets of transitions which may be

useful for a spin-subset type memory. The first step is to identify which field orientation is best

for our use case. From there we need to identify the best experimental parameters for a memory.

These include the strength of the applied magnetic field, the number of nuclei we wish to include

in our simulation and the relative amplitude of the RF pulse.

6.2.1 Simulation Parameters

First, we try to identify the better of the magnetic field orientations for the observation of an

isolated set of nuclear transitions. Ideally, we would find that the Voigt orientation sees such

a set of transitions as it is the required orientation to perform fast electron spin rotations. In

Figures 6.1 & 6.2 we plot the absorption spectra of a single 115In nucleus in a 3T magnetic field

applied in the Faraday and Voigt orientations respectively. In both cases we see isolated peaks

corresponding to the transitions present in an indium nucleus. We scan over a frequency range

of 0-150 MHz with a resolution of 100 kHz. These spectra are calculated using Eq. 4.15, which

we state again below for ease of reading. The Hamiltonian Ĥr f contains a parameter γ which

defines the amplitude of the pulse. For these simulations we set γ= 0.005, the same value as

used in previous chapters.

Wi j(ωr f )= |〈 j| Ĥ′
r f |i〉 |2

2∆
~

(E j −E i −~ωr f )2 +∆2 . (6.1)

2A full description of this protocol, with accompanying mathematics can be found in Chapter 4 of [61].
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Figure 6.1: The NMR absorption spectrum of a single 115In nucleus in Faraday geometry. The
y-axis is presented in arbitrary units, scaled to the highest absorption peak. The simulation uses
an applied field of 3T, and an RF-field strength of 0.005T - though we shall later show that this
value does not affect the overall behaviour. We see a large cluster of peaks between 20-40 MHz, a
smaller cluster at 50-60 MHz and a small isolated peak at approximately 80 MHz.

The absorption described by Eq. 6.1 is the simplest way of modelling the absorption rate. A more

complete method is via the Optical Bloch Equations, which describe the coupling between a

2-level quantum system and an electromagnetic field. The simulation we describe here is meant

only as a first-look approximation, and thus we do not believe bringing the full force of these

equations to bear is necessary for our discussion. Implementation of these interactions would be

an excellent extension of this work. In particular, the behaviour of a π pulse under the action of

these equations may well be different than that discussed using the method presented here.

In both orientations we see a large collection of peaks between RF values of 20-40 MHz, with

other peaks appearing at approximately 60 and 80 MHz. Other simulation runs extended to

higher RF frequencies, but we did not find significant absorption peaks above 100 MHz and thus

we present these simulations which run up to 150 MHz. The Faraday geometry has a larger

peak at 60 MHz, which for our purposes presents a problem - we want whichever peak we use

as a memory to be as isolated as possible and thus if we wish to use the peak at 80 MHz, the

presence of a large peak at 60 MHz limits the bandwidth of our the excitation pulse as we do

not want to excite that peak. For that reason, and bearing in mind the inherent advantages of

the Voigt geometry we will ignore the Faraday orientation in the subsequent parameter search,

concentrating only on the Voigt geometry.

Figures 6.1 & 6.2 show the absorption spectra of a single nucleus, chosen at random from all

those points for which we have data within the quantum dot. In a real dot however, an incident
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Figure 6.2: The NMR absorption spectrum of a single 115In nucleus in Voigt geometry. The y-axis
is presented in arbitrary units, scaled to the highest absorption peak. The simulation uses an
applied field of 3T, and an RF-field strength of 0.005T - though we shall later show that this value
does not affect the overall behaviour. We see a large cluster of peaks between 20-40 MHz, and
small isolated peaks at approximately 60 and 80 MHz.

RF pulse would see the entire spin bath, consisting of the order 105 nuclei. Figure 6.3 shows

the result of calculating the NMR spectrum for varying numbers of nuclei within the quantum

dot. When multiple nuclei are included we select them randomly from the central region of the

quantum dot, and for the larger numbers of nuclei (10,000 or more) we are likely to select the

same data point multiple times. The computation time required for larger numbers of nuclei

scales approximately linearly with the number required, though due to the parallel nature of the

simulation code there is some small overhead which makes up a larger percentage of overall run

time for smaller numbers of nuclei. The data presented here for 10,000 nuclei required upwards

of 5 hours of computational time on a modern desktop. The most significant change that occurs

as we add additional nuclei is a broadening of the absorption peaks that we first identified in the

previous section. We also see an increase in the overall strength of the absorption, though the

units of this remain arbitrary. The difference between simulations of 1000 and 10,000 nuclei is

not substantial - we observe peaks of approximately the same width centred on the same location

in both cases. However, the computational cost is significantly lower and we avoid the problem of

sampling the same data point multiple times. Therefore we use simulations of approximately

1000 nuclei for the remainder of this chapter3

We now investigate the effect of varying magnetic field on the absorption spectrum. We

3We actually use 1200 nuclei in most of these simulations, as it is a round number that is cleanly divisible by both
6 and 8 - the number of cores in the 2 computers used to perform all our simulations.
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Figure 6.3: The effect of varying the number of nuclei present in the simulation on the resulting
absorption spectrum for 115In nuclei in a Voigt orientated magnetic field. We see the same peaks
as are present in Figure. 6.2, though each has widened from a single line to a distribution, and
hence lowered in height as all distributions are normalised to the same area. Larger numbers of
nuclei dramatically increase the computational time required to run these simulations.

have seen in previous chapters that higher magnetic fields are associated with the absorption

spectra becoming dominated by magnetic field splitting rather than quadrupolar effects. In these

parameter finding simulations we are only considering indium nuclei, which are the only nuclei

with transitions at higher RF frequencies until impractically large applied magnetic fields. In

Figure. 6.4 we plot the absorption spectra of 1200 indium nuclei for an increasing set of applied

magnetic fields in Voigt geometry. We see that there is a general trend for significant peaks to

move towards higher RF frequencies as the applied field increases. This trend continues as fields

increase, with no significant variation until we apply fields that are substantially too large to be

practical for an experiment.

The governing Hamiltonian for the RF interaction is

Ĥrf =−~γ
(
Br f

x Îx +Br f
y Î y +Br f

z Îz

)
cos(ωr f t), (6.2)

where the parameter γ represents the interaction strength between the RF pulse and the

nuclear spin. Our model does not model pulses in any detail beyond this, concentrating as we

are on nuclear spin physics. However, in Figure 6.5 we plot the change in absorption spectra

with changing γ. As might be expected from the Hamiltonian and the rate equation (Eq. 4.15),

increasing γ has the effect of increasing the absorption - as a direct result of increasing the

interaction probability. Because we do not model pulse physics accurately, this is the only direct

effect. The spectrum appears to widen in Figure 6.5 but this in an artefact of all of the peaks
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Figure 6.4: The effect of increasing the strength of the applied magnetic field on the absorption
spectra of 1200 115In nuclei in a Voigt field. The general structure matches that seen in Figure
4.24 - at higher field strengths the absorption shifts to higher RF frequencies. We limit ourselves
to fields of up to 5T as larger fields become experimentally more difficult and do not substantially
change the behaviour of the system.

being normalised to the same height and not a real physical effect. As such, we keep the value

γ= 0.005 throughout our simulations, primarily because it is the same value used in our previous

chapters and in other works [169].
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Figure 6.5: The effect of increasing the value of the RF field strength γ (as defined in Eq. 4.14).
While there is an increase in the overall height of the peaks as γ increases, there is no substantial
change to the shape of the spectrum, and thus we choose to keep γ= 0.005 T constant throughout
all other simulations.

6.2.2 Applying a Pulse

Now that we have found a set of simulation parameters that are both experimentally reasonable

and somewhat optimal for observing the absorption lines that we require to use the dot as a

quantum memory. We now move to simulate the effect of an RF pulse on these spectra. Fast and

highly specific pulses are a necessary component of the quantum memories described earlier. A

simple way to think about the initialisation of a spin-subset quantum memory is that we are

attempting to apply a π pulse to a small subset of transitions while leaving the others alone.

This highlights the need for isolation we have discussed in the previous section - if the target

transitions are not well isolated from the rest of the bath then an applied pulse will rotate

other nuclei in addition to the target set. These other nuclei will be rotated by some amount

proportional to how much of a full π pulse they have received, which is itself related to the energy

absorbed by that region of the spectra.

In Figure 6.6 we show the total line spectra for a RF pulses between 0-150 MHz, for a field

of 3T, for 1200 nuclei allocated proportionally according to the nuclear concentrations we first

presented in Figure 4.5. The addition of 69Ga, 71Ga and 75As has resulted in a widening of the

largest peak to RF values between 20-40 MHz. There is also an additional spike in this range

at almost exactly 40 MHz, this is due to the presence of 75As specifically. The smaller peaks at

larger RF values are the best candidates - the further they are from the large peak the better.

We use a simple peak finding algorithm to identify the exact locations of these peaks, and find
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Figure 6.6: Simulation of an NMR experiment on the original Sokolov quantum dot discussed in
Chapter 4. We use a simple peak finding algorithm (as implemented in Scipy) to find the exact
location of each absorption peak. The likely best candidate for use as a memory is found to be at
an RF frequency of 80.2 MHz.

that the best candidate is found at fRF = 80.2 MHz. We therefore centre our applied pulse on this

frequency.

Electromagnetic pulses are most often modelled by Lorentzian distributions of the form

P( f )= 1
π

1
2Γ

( f − f0)2 + (1
2Γ)2

, (6.3)

where f0 is the location of the pulse and Γ specifies the width of the distribution [209]. We know

that our pulses need to be centred on f0 = 80.2 MHz, but the width still needs to be found. In

general, the optimal pulse will be as wide as possible such that the operations it performs on

the quantum dot happen as quickly as possible. However, a wider pulse will be absorbed by

more transitions than we want it to be. If we make the pulse too wide, we will start to see the

transitions that make up the large peak at 20-40 MHz. In addition, there is a minimum width

required to capture the entirety of the absorption peak. Figure 6.8 shows that this peak extends

over the range 77.5−82.5 MHz, and therefore we require a sufficiently wide pulse to capture this

peak entirely.

In principle it is possible to craft a pulse or series of pulses to exactly perform a desired

operation. This field of research is known as optimal control theory, an introduction to which

can be found in the works of Khaneja and Palao [210–212]. Were we aiming to design an

experiment completely it would absolutely be necessary to incorporate that work into this

simulation. However, the complexity of that field does not well suit the simplicity of a model
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Figure 6.7: The smaller peaks found in the combined NMR spectrum at 3 T. We can see that what
appeared in 6.6 to be a single peak at approximately 60 MHz is in fact 2 smaller peaks. These
are not suitable for use as a memory even though they are of a larger area because of both this
split and the proximity to the substantially larger peaks found between 20-40 MHz. We therefore
centre our applied pulse at the frequency of 80.2 MHz.

such as the one presented here, and hence we neglect it in favour of the simpler application of a

Lorentzian pulse. It is also worth noting that while a Lorentzian is the standard assumed shape

of an incident electromagnetic pulse, other distributions can well be applied. A Gaussian pulse

for example has smaller tails than an equivalently defined Lorentzian and may well be more

suitable for the purposes discussed here.

In Figure 6.9 we plot the effect of pulses of increasing width on the absorption spectra shown

in Figure 6.6. These effect of a pulse on the spectrum is found by applying a Lorentzian filter to

the spectrum, which was generated by uniformly exciting each transition. In the leftmost plot

we apply an incredibly narrow pulse that picks up only the absorption at exactly 80.2 MHz. We

then expand the width of the pulse in 1 MHz steps and very quickly observe the presence of the

20-40 MHz peak due to it’s large height relative to the 80.2 MHz peak. Applying a peak of width

9 MHz (80.2±4.5 MHz) is sufficient that the absorption from this large peak is of equal height

to that of the target peak. However, the height of a peak in this graph is not the best measure

of the number of nuclear transitions, instead we must calculate the area under each peak. This

is proportional to the energy absorbed by the nuclei and hence functions as an approximate

measure of the fidelity of our access to the memory.

The speed at which we can apply operations is critical for any application of quantum dots.

Given an optimistic lifetime measured in milliseconds, we must be able to perform operations

on a timescale of at most 100s of nanoseconds. We therefore require a distribution of width at
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Figure 6.8: The peak we are targeting with our pulse is highlighted in red. We can see that
in order to fully capture the peak our pulse must be approximately uniform over the region
77.5−82.5 MHz.

Figure 6.9: A comparison of the effect of applying pulses of different widths on the spectrum
shown in Figure. 6.6. Each peak is a Lorentzian centred on 80.2 MHz, with widths increasing
from left to right. At arbitrarily small widths we see only the peak the distribution is centred on,
and as the width increases we begin to observe the far larger peaks seen between 20-40 MHz. At
widths of approximately ±4.5 MHz these peaks are equivalent in height, and the 80.2 MHz peak
is lower in height than the 20-40 MHz peak when the applied pulse is wider than this.
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Figure 6.10: The absorption (in arbitrary units) in the target region (78.5-82.5 MHz) is show in
dark blue, and the absorption into the rest of the transitions is show in light blue. We can see
that at low pulse widths (Γ < 1.5 MHz) the absorption is dominated by the target transitions.
However, as Γ increases absorption into the rest of the spectrum begins to dominate.

least 1
100ns = 10MHz. Our other conditions on the pulse are that it must be wide enough such

that transitions in the target frequency range (approximately 78.5-82.5 MHz) are excited with as

close to uniform intensity as possible - these are the spins we wish to apply a full π pulse to. Both

of these conditions essentially impose a lower bound on pulse width (Γ) that we must meet. An

upper bound is imposed by the requirement that we not substantially excite other transitions, so

as to minimise the spin flips generated in other regions of the spin bath. Figure 6.10 shows the

absorption into the target region of the spectrum compared with those transitions we do not wish

to excite. This graph suggests that we cannot apply a pulse with Γ= 10 MHz as we can see that

pulses with Γ> 4 MHz are already absorbed predominantly by transitions outside of the target

region. However, we note that absorption into the target region begins to level off when Γ> 3

MHz, suggesting this as a plausible lower bound to satisfy the second of our minimum width

criteria.

The flattening off of the absorption into the target region (and hence the saturation of these

transitions) is in stark contrast to the behaviour of the absorption into the rest of the spectrum.

This is because the rest of the spectrum contains far more transitions than the small region we

are trying to excite, and thus can absorb significantly more energy. In fact, the peak at the target

region comprises less than 1% of the total area of the spectrum. This plays to our advantage -

it takes a lot more energy to perform a π pulse on the rest of the spectrum than it does on the

target region. To highlight the impact of this, we plot in Figure 6.11 the same data as presented
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Figure 6.11: The energy absorbed by the target region of the spectrum is shown in dark blue,
and that of the remainder of the spectrum is shown in light blue. Each are scaled to the areas
of the respective spectral regions before any pulse is applied. A fractional absorption value of 1
indicates that a particular set of transitions has absorbed as much energy as possible, and hence
felt the full effect of whatever pulse is applied to it.

in Figure 6.10, now scaled to the respective areas of each region of the spectrum before a pulse is

applied. In this plot we can clearly see that the target region is saturated quickly in comparison

to the rest of the spectrum. When the transitions in the target region are saturated, we are

guaranteed to have performed the operation we are attempting - for example a π pulse. The

rest of the transitions meanwhile will have experienced some fraction of the effects of the pulse

dependent on the energy absorbed. Figure 6.11 therefore suggests we can increase the pulse

width substantially beyond 10 MHz before running the risk of significantly altering the state of

the rest of the spin bath. However, this analysis fails to capture a vitally important feature of the

spectrum as a whole, one we have been relying on implicitly throughout this section. Different

transitions are not located uniformly throughout the spectrum, and therefore the pulse is not

split evenly amongst them. We are taking advantage of this to apply a pulse only to the target

region, but we cannot ignore the variations in absorption that will be present in the rest of the

spectrum.

The full spectrum (as seen in Figure 6.6) shows us there are 2 significant sets of transitions

we do not wish to excite - a very broad set of peaks between 20-40 MHz, and a much smaller set

spanning 50-70 MHz. In Figure 6.12 we plot the fractional absorption for each of these peaks

as compared to the target region. As expected, we see that the target region is saturated first,

but even as we increase the width of the applied pulse to 20 MHz, the set of transitions between

50-70 MHz are only absorbing up to 20% of the energy required for a perfect operation, while
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Figure 6.12: The fractional absorption into distinct regions of the spectrum. The target region of
77.5-82.5 MHz is shown in dark blue, the 50-70 MHz transition set is shown in light blue, and
the 20-40 MHz set in green.

the set between 20-40 MHz remain substantially lower than this throughout. These results are

sufficient to say that a pulse with Γ= 10 MHz is plausibly wide enough to saturate the target

transitions, while remaining narrow enough to not have a substantial action on other transitions

to cause them to have a high chance of ruining a subset-style quantum memory protocol.

Setting Γ= 10 MHz should allow an experiment to perform a π pulse with a timescale of ≈ 100

ns. This is the minimum necessary time to allow us to perform the multiple operations needed

for a quantum memory protocol. In the ideal case, wider pulses would be used on quantum dots

possessing longer coherence times. We have not attempted to simulate the effect of the exact

pulse sequence needed to run the protocols discussed in Section 6.1.1, as this goes beyond the

scope of the programme we have written. We also do not discuss or simulate the effect of pulse

sequences designed to narrow the range of excited transitions for a given pulse width, or those

(like the Hahn echo) designed to undo the effects of decoherence in a particular part of the spin

bath. We intend this work to be a study of the plausibility of spin-subset type memories in strain

based dots, rather than a complete description of a protocol4.

6.2.2.1 Experimental Feasibility

The simulation discussed above pays very little attention to the experimental feasibility of the

required pulses. While we believe that is appropriate for a theoretically lead discussion, it would

be remiss to avoid the implications of what we have discussed entirely. Our simulations have

4Such a protocol is left as an exercise to the reader.

110



6.3. CONCLUSIONS

suggested that a pulse of width 10MHz would be required. Such a pulse obviously has a lifetime

of approximately 10ns. A back of the envelope calculation of the power required to generate such

a pulse uses the relationship E f =µNB, where E f is the pulse energy in frequency units, and µN

is the nuclear magneton, which has a value of 7.6 MHz T-1 [101]. Plugging in a pulse frequency

of approximately 80 MHz results in a required magnetic field of approximately 11T. This is a

large, but not yet ridiculous, magnetic field. However, this field must be reached in less than 10ns,

resulting in a required magnetic flux of approximately 109 T s-1. This is an extremely large rate

of change of magnetic field, and would present a significant experimental challenge to implement.

So much so that it may well be impossible5.

6.3 Conclusions

We have shown in this chapter that the quantum dot we have studied may plausibly be used to

construct a spin-subset type quantum memory. Through simulation of the NMR spectra under a

variety of possible experimental configurations - as first presented in previous chapters, we have

identified a set of nuclear spin transitions that are suitably well isolated. We have then simulated

the action of an incident π pulse on this structure, having identified the peak location exactly.

The effect of varying pulse width on the resulting excitation was examined, and we determined

that a lower bound of 10 MHz is the minimum required width to allow for the successful action of

a π pulse on our target set of transitions. We investigated the impact of such a pulse on the entire

set of transitions present in the spectrum, and determined that such a pulse would not have too

large an impact on the rest of the bath to render the spin-subset style memory implausible. The

practical requirements of the experiment are likely to need closer examination. The next steps

in this work might be to examine the impact of a specific set of pulses on the nuclear spin bath.

The simulation code developed for this project could prove invaluable, as it is capable of quickly

simulating both the NMR spectrum of large numbers of nuclei based on experimental data, and

the action of RF pulses on the spin bath. It can be quickly updated to include new measurements

of GET values, and is easily extendable to other quantum dots beside InGaAs. Given only strain

and concentration data, we may be able to design RF pulses or pulse sequences that are specific

to a particular structure.

5By now we hope it is clear that the author are not an experimental physicist.
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In this thesis we have first introduced quantum dots as a field of study, and provided a brief

motivation for their use in various quantum technologies - specifically measurement based

quantum computation and the creation of quantum memories. We outline the mechanisms of

both of these technologies, and show where and how quantum dots may be of use. We also provide

an introduction to the methods of fabrication for InGaAs quantum dots via Stranski–Krastanov

growth, and show how this strain based fabrication method goes on to influence the properties

and behaviour of the dot across multiple use cases. In Chapter 2 we discuss the physics of

electrons in quantum dots. We examine the band structure, the emission of photons via the

creation of excitons and the differences in energy level structure between Faraday and Voigt

geometries. We move on to highlight various protocols that have been proposed to produce

strings of entangled photons from a quantum dot, focussing on the cluster state machine gun. We

discuss the theoretical operation of the machine gun, and highlight potential issues regarding

the magnetic fields necessary to allow the required spin rotations to occur while still remaining

measureable. Other entanglement schemes are also discussed, with a focus on how they mitigate

the downsides of the machine gun or address the decoherence issues that are apparent in InGaAs

quantum dot. In Chapter 3 we zoom in past the electron trapped in a quantum dot to examine

the nuclei that make up the lattice. We see how the hyperfine interaction between an electron

and a nucleus causes both relaxation and dephasing of the electron spin as it precesses around

any relevant magnetic fields. The hyperfine interaction is derived from the Hamiltonian of an

electron in a magnetic field, and we include all relevant mathematical steps to ensure ease of

comprehension. The dephasing that arises as a result of the hyperfine interaction is modelled

according to the frozen fluctuations approximation, in which the spin bath is assumed to evolve far

slower than the precession frequency of the electron. It is in this section that we first discuss the
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ideas that form the heart of this thesis. An electron will ‘see’ any field applied by an experiment,

and an effective field resulting from its collective interaction with the nuclear spin bath. The

longer this spin bath remains unchanged, and the smaller any changes in it are, the higher the

ceiling on the coherence time of the electron. It is therefore vitally important to understand

the mechanisms that cause changes in the collective state of the nuclear spin bath, so that the

behaviour on an electron interacting with that bath might be better understood as a result. To

this end we discuss dynamic nuclear polarisation and nuclear frequency focussing - mechanisms

for preparing and maintaining a well behaved nuclear spin bath. Dynamic nuclear polarisation

is an observed effect allowing for the transfer of spin polarisation from a trapped electron to

the spin bath, while nuclear frequency focussing is an experimental protocol which has been

to designed to consistently inject electron angular momentum in such a way that we achieve a

desired polarisation state of the nuclear spin bath via dynamic nuclear polarisation. We present a

mathematical treatment of NFF which places requirements on the pulse used, and then introduce

a simple form of dephasing to that formalism in order to understand how the protocol itself acts

when exposed to a non-ideal environment. We find that even a small amount of such dephasing

has a significant impact on the effectiveness of the protocol, which may go some way to explaining

the limited experimental success it has found. In the second half of Chapter 3 we describe the

nuclear quadrupolar interaction by deriving the interaction Hamiltonian from the interaction

energy between 2 classical charges. We again present the derivation in its entirety so that the

effect of the interaction can best be understood. Our attempts to understand the effect of this

interaction on the behaviour of an InGaAs quantum dot form the basis of the results presented

in Chapters 4 & 5.

Chapter 4 presents our work on understanding the gradient elastic tensor, and how recent

experimental work to update the measured values of the tensor components necessitate a

recalculation of the properties of an InGaAs quantum dot. We first present a toy model of strain

across a 2-dimensional lattice, to ensure we have an intuitive understanding of how varying

electric field gradients arise within a quantum dot. This toy model also provides an ideal testing

ground for methods to calculate more complex properties of a quantum dot without requiring

a more computationally intensive molecular simulation. We then detail the gradient elastic

tensor, a phenomenological object which relates the lattice strain to the electric field gradient

felt by nuclei within said lattice. We explain the simplifying assumptions we make regarding the

symmetry of the lattice, and of the strain field for which we have data. The data we use was kindly

provided by Paul Sokolov, and consists of indium concentration and strain field measurements

across an InGaAs quantum dot. Using this data, we first replicate previously described plots

showing the electric field gradient across the structure, before extending the analysis to include

updated values of some components of the gradient elastic tensor. We compare the differences

between the calculated values of a variety of observable quantities within the quantum dot: the

electric field gradient, the resulting quadrupolar field (both its strength and its direction), the
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distribution of possible quadrupolar transition frequencies and the nuclear magnetic resonance

spectra. For all such quantities we find significant differences between them when calculated

using the older (as found using nuclear acoustic resonance (NAR) spectroscopy) and newer (as

found using nuclear magnetic resonance/photo-luminescence (NMR/PL) spectroscopy) values of

the gradient elastic tensor. Most importantly, when separated by nuclear species we find that

the changes in each property are inconsistent - for example the transition frequency distribution

of 69Ga nuclei becomes 3 times wider when found using the NMR/PL values, while that of 75As

narrows by a factor of 2.7. This highlights the need for further measurements to be conducted

using the newer technique to ensure confidence in the values of these parameters for 71Ga and,

more importantly, 115In . When examining the simulated NMR spectra, we also consider how this

dot may be used as a quantum memory. We define 2 types of quantum memory - magnon and

spin-subset, and discuss the necessary properties for each in order to determine the possible uses

of this quantum dot. We find that in neither a Faraday nor a Voigt orientated field would it be

plausible to use this dot as a magnon type memory, owing to the wide range and strong mixing of

absorption lines seen in the spectra. However, the dot may be suitable for use as a spin-subset

memory when in a Voigt orientated field where we see strongly absorbing yet isolated transitions

between 115In energy levels. We compare our calculated NMR results with those found using full

molecular lattice simulations and find they produce very similar results while taking a fraction

of the calculation time due to the inclusion of real strain data.

Chapter 5 investigates the effect of increasing the symmetry of the quantum dot studied

in Chapter 4. We do this to test the following intuition: a more symmetric dot should contain

a more self-similar set of nuclei, and hence these nuclei will produce an Overhauser field that

is longer lasting and more stable - increasing the ceiling on the electron spin coherence time.

Unfortunately, the COVID-19 pandemic put a stop to our efforts to gather more data from real

quantum dots, and so we create 2 new structures from the data used in the previous chapter.

By taking both our strain and indium concentration data, and reflecting the data arrays along

the central axis we are able to generate 2 new structures which are physically plausible but

by construction much more symmetric than the original from which they are derived. We refer

to these structures as Dot LR (left-right reflected) and Dot RL (right-left reflected). We then

use those tools introduced in Chapter 4 to analyse the impact of this increase in symmetry. As

expected we find that for all species in both new dots there is a decrease in the width of the

quadrupolar frequency distribution, though the magnitude of that decrease varies considerably.

The already narrow distributions of 71Ga and 115In are barely affected (though of course these

results rely on old values of the gradient elastic tensor and should therefore be treated with

caution), while those of 75As and 69Ga are changed by a much larger amount. We introduce

another toy model to investigate the impact that decreasing the width of these distributions has

on the electron coherence time. Modelling the electron spin as a cosine wave, we mix in additional

waves with frequencies drawn from the distributions we calculate in previous sections. The
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resulting waveforms are well modelled by a cosine wave decaying within an exponential envelope.

We calculate the decay constant of this envelope and hence the relative coherence time of the

electron. By comparing the change in coherence time between different our 3 structures to the

change in quadrupolar frequency variance we find that a decrease in variance corresponds to an

increase in coherence time. Unfortunately we do not have enough data to meaningfully calculate

this relationship, however we can say with some certainty that it is not a simple 1:1 ratio where

reducing the variance by a certain factor increases the coherent time by the same amount. Large

decreases in variance are needed to produce relatively small increases in coherence time. Finally,

we refer to the calculated NMR spectra of Dots LR and RL to assess their suitability for use as

either type of quantum memory. The results of this analysis are sadly similar to those of the

base structure. Increasing the symmetry of the quantum dot does result in changes to the NMR

spectra - in particular it narrows the spectra in almost all circumstances. However these changes

are never significant enough to create the conditions necessary to use the dot as a magnon type

memory - this agrees with previous work which suggests that a strain based quantum dot is

unlikely to ever be suitable for use as this type of memory. There is more hope in the world

of spin-subset memories, where we find that both new structures may be suitable, though in

different orientations. We suggest that this type of memory is the better way to go when using an

InGaAs (or any other strain based) quantum dot.

Chapter 6 addresses the possible uses of strain based dots as quantum memories in more

detail. We further discuss the differences between magnon and spin-subset type quantum memo-

ries, with a particular focus on the requirements each places on the structure of a quantum dot.

We first discount the possibility of a magnon type memory in a strain based quantum dot, based

both on our own results showing that the spin bath is too varied across such dots (even if they are

made arbitrarily more symmetric) and external experimental results on droplet epitaxy dots that

have been published recently. We then quantitatively investigate the possibility of a spin-subset

type memory (itself an extension of a single nuclear spin memory) by first searching for the ideal

set of simulation parameters. Having found these, we apply Lorentzian pulses to our absorption

spectra in an attempt to minimise the timescale of the operations needed to initialise or control

a quantum memory. The width of these pulses have 2 separate constraints - the first is that a

wider pulse results in faster optical operations and the second is that a narrower pulse results

in absorption only into those nuclear transitions we have identified as suitable for a quantum

memory. Analysis of these conditions allows us to suggest that a 10 MHz pulse is of sufficient

width to ensure both saturation of the target transitions as well as providing an operational time

of 100 ns - fast enough to allow for the multiple pulses necessary in the creation of a spin-subset

memory within the coherence time of an InGaAs quantum dot. The effect of such a pulse on the

rest of the nuclei is found to be small enough that they are likely to have little impact on the

overall workings of such a memory.

This most obvious expansion of this work is to perform the calculations we have presented
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using data found from other structures. This would serve the dual purpose of validating the

methods demonstrated here, and showing how the inclusion of data into models of this type

serves to dramatically speed up the calculation process. We would also like to use the results

of future experiments into the values of the gradient elastic tensor in both 71Ga and 115In to

further investigate the behaviour of these species - which under our current understanding

behave very similarly in a lattice despite being quite different species. The electron coherence

time model presented here could be improved upon with the addition of more physically grounded

calculations of spin projection, perhaps incorporating the ideas we mention in Chapter 2. The

tools developed for the simulation of the action of RF pulses on an NMR spectrum may well

prove useful in the design of pulse sequences - potentially allowing for the fine tuning of pulse

sequences to a specific quantum dot should the strain profile and indium concentration be known.

The understanding and characterisation of quantum dots is vital if they are to serve a role in

the emerging world of quantum technologies, the ideas and methods presented here go some way

towards those goals and can be built upon to even further develop our knowledge.
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A.1 The Hyperfine Hamiltonian

The derivation of the hyperfine interaction Hamiltonian presented in Section 3.1.2.1 is complete,

but several steps are not immediately obvious. Here we have written out these steps in detail,

including where necessary the vector calculus/analysis identities required. Hopefully this will

make the derivation a little easier to follow than how it is presented in Abragam [118]. A good

introduction to the mathematical framework and identities used here can be found in Chapter 10

of Riley [163].

A.1.1 Spin Component

The exact steps required to go from Eq. 3.12 to Eq 3.13 are reasonably involved. We begin with

the stated form of the spin component of the interaction Hamiltonian

ĤS
i = 2µBŜ ·

(
∇×

(
∇× µN

r

))
, (A.1)

and then expand the curl of the curl operator according to the standard formula ∇× (∇×a) =
∇(∇·a)−∇2a to arrive at

ĤS
i = 2µBŜ ·

(
∇

(
∇· µN

r

)
−∇2µN

r

)
. (A.2)

In order to evaluate the divergence of µN
r we employ the product rule, and use the fact that µN is

independent of position and thus ∇·µN = 0 to find that

∇· µN

r
=µN ·∇1

r
+ 1

r
(∇·µN )

=µN ·∇1
r

.
(A.3)
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We then plug this into Eq. A.2 to find

ĤS
i = 2µBŜ ·

(
∇

(
µN ·∇1

r

)
−∇2µN

r

)
. (A.4)

Our next step is to evaluate the first term inside the brackets. We can again use a standard

identity, this time for ∇(a ·b)= a× (∇×b)+b× (∇×a)+ (a ·∇)b+ (b ·∇)a to show that

∇
(
µN ·∇1

r

)
=µN × (∇×∇1

r
)+∇1

r
× (∇×µN )+ (µN ·∇)∇1

r
+ (∇1

r
·∇)µN

= (µN ·∇)∇1
r

.
(A.5)

Here we have used the fact that ∇×∇φ= 0 for any scalar field φ to eliminate the first term, the

fact that ∇×µN = 0 (because µN is independent of position) to eliminate the second term, and the

fact that µN is a constant and therefore any directional derivative of it will be 0 to eliminate the

fourth term. We can also exploit the independence of µN from position to see that ∇2 µN
r =µN∇2 1

r .

By plugging these results into Eq. A.4 we find

ĤS
i = 2µBŜ ·

(
(µN ·∇)∇1

r
−µN∇2 1

r

)
. (A.6)

From here we apply the dot product with the spin vector Ŝ, move the 1
r outside the brackets to

the right, and rearrange the scalar products of the form (a ·∇) to arrive at

ĤS
i = 2µB

(
(Ŝ ·∇)(µN ·∇)− (Ŝ ·µN∇2)

) 1
r

. (A.7)

At this point, we split the term in (Ŝ ·µN ) into 2 pieces with relative magnitudes 2
3 and 4

3

respectively. The term of magnitude 2
3 is grouped with the other terms, while that with magnitude

4
3 is separated and will form the basis of the contact interaction1. We thus arrive at Eq. 3.13

ĤS
i = 2µB

(
(Ŝ ·∇)(µN ·∇)− 1

3
(Ŝ ·µN )∇2

)(
1
r

)
− 4µB

3
(Ŝ ·µN )∇2

(
1
r

)
. (A.8)

The result in Eq. 3.14 is found by first noting the following definitions: r =
√

x2 + y2 + z2 ,

µN =


µx

N

µ
y
N

µz
N

 , Ŝ =


Ŝx

Ŝ y

Ŝz

 , and ∇=


d
dx
d

d y
d
dz

 .

1The justification for this is unclear. We believe it is necessary so that the theory agrees with experimental results.
In principle, both of these new terms should result in δ functions, and hence contribute to the contact interaction
magnitude.
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Using these, we evaluate the first term in Eq. A.7

(Ŝ ·∇)(µN ·∇)
1
r
= (Ŝ ·∇)

(
µx

N
d
dx

(
1
r

)
+µy

N
d

d y

(
1
r

)
+µx

N
d
dx

(
1
r

))
= (Ŝ ·∇)

(
−µ

x
N x+µy

N y+µz
N z

r3

)
= (Ŝ ·∇)M

= Ŝx d(M)
dx

+ Ŝ y d(M)
d y

+ Ŝz d(M)
dz

= 3
r5

(
Ŝxµx

N x2 + Ŝ yµ
y
N y2 + Ŝzµz

N z2)− Ŝxµx
N + Ŝ yµ

y
N + Ŝzµz

N

r3 ,

(A.9)

and find the form of Eq. 3.14
3

(
(Ŝ · r)(µN · r)

)
r5 − Ŝ ·µN

r3 . (A.10)

A.1.2 Orbital Angular Momentum Component

The orbital angular momentum component of the interaction as presented in Eq. 3.16 is easier to

find, but does involve some complications. We begin with the first term in the overall Hamiltonian

ĤL
i = e

2mec
(p̂ · Â+ Â · p̂). (A.11)

We then act with this Hamiltonian on some electronic wavefunction ψ(r), and use the definitions

of the momentum operator p̂ =−i~∇ and the Bohr magneton µB = e~
2me c to write2

ĤL
i ψ(r)=−iµB

(∇· Â+ Â ·∇)
ψ(r)

=−iµB
(∇· Âψ(r)+ Â ·∇ψ(r)

)
.

(A.12)

Applying the product rule to the first term, and remembering that we are using the Coulomb

gauge with ∇· Â = 0, we find

ĤL
i ψ(r)=−iµB

(
Â ·∇ψ(r)+ψ(r)(∇· Â)+ Â ·∇ψ(r)

)
=−2iµB

(
Â ·∇ψ(r)

)
.

(A.13)

We now use the definition3 Â =∇× µN
r =µN × r

r3 to write

ĤL
i ψ(r)=−2iµB

((µN × r
r3

)
·∇

)
ψ(r)

= 2µB

~

((µN × r
r3

)
· p̂

)
ψ(r),

(A.14)

and then use the cyclic property of the scalar triple product to write

ĤL
i ψ(r)= 2µB

~

((
r× p̂

r3

)
·µN

)
ψ(r). (A.15)

2This definition of µB, and the entire hyperfine interaction as presented here, are written in the Gaussian CGS
units system. Converting to SI units doesn’t change the structure, but does change the value of some constants.

3The second equality in this definition can be shown by direct calculation, and is not as bad as it first appears. Not
fun, but not awful either.
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Recognising that the LHS of this dot product is equal to the orbital angular momentum L̂ = r× p̂
we can now write this as

ĤL
i ψ(r)= 2µB

~

(
L̂ ·µN

r3

)
ψ(r)

= 2µB

(
l̂ ·µN

r3

)
ψ(r)

(A.16)

where the last line is found by substituting l̂ = L̂
~ . We therefore recognise that the Hamiltonian

for the orbital angular momentum interaction has the form given in Eq. 3.16

ĤL
i = 2µB

(
l̂ ·µN

r3

)
. (A.17)

A.2 Notes on Tensors Relevant to the Quadrupolar Interaction

Much of the following draws on books by Rowe [213], Zare [214] and Jones [215]. It is not

intended to provide much more than a passing introduction to the ideas needed to understand

the derivation present in Section 3.2.2.

A.2.1 Tensors

Tensors are the general class of objects that represent transformations between vectors, matrices,

scalars and other tensors. The order of a tensor is essentially the dimension of the array required

to write it out4. So a scalar is a 0th order tensor, a vector is a 1st order tensor, a matrix a 2nd

order tensor and so on5. All of the spin tensors found in this thesis are of 2nd order, and are

therefore written with 2 indices, eg Am
l . The number of possible values of each index does not

affect the order of the tensor, what matters is there are 2 of them. The positioning of the labels

denotes whether the respective index is co-variant (denoted as a subscript) or contra-variant (a

superscript). The differences between these are not so important for this surface level discussion,

but we will attempt to be consistent nonetheless.

A.2.1.1 Rotations of Tensors

The most significant difference between tensors of different orders is how they behave under

rotations. Indeed, it is this property that determines which order tensor is needed to model a

physical quantity. Something that is invariant under rotation is represented using a 0th order

tensor and behaves as

R̂(Ω) : a 7→ a′

= a
(A.18)

4This quality is also called the rank of a tensor.
5Strictly speaking, one can make an argument that these objects merely represent the underlying tensors. For our

purposes this distinction makes little difference, and so we shall ignore it.
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With R̂(Ω) denoting a generic rotation (in the abstract sense). As a has been unchanged by the

action of R̂(Ω), we know that a is an 0th order tensor6. Moving on to a vector V i, whose rotation

behaves as

R̂(Ω) : V i 7→V ′
i

=∑
i′

R(Ω)ii′V j′

= R(Ω)V .

(A.19)

Here Rii′(Ω) is the matrix representation of the operator R̂(Ω), and the third line expresses this

sum as standard matrix multiplication. For example, if R̂(Ω) is a rotation of an angle θ around

the z axis in 3D, then

R̂(Ω)= Rz(θ)=


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (A.20)

From now on I omit the Ω when writing the rotation operator. Note that the rotation operator

itself is unchanged regardless of the object it acts on, but the representation of it changes

according to the order of the target. Now, let us look at the rotation of 2nd order tensors Ti j.

Rotations act on these objects as

R̂ : Ti j 7→ T ′
i j

= ∑
primed

Rii′R j j′Ti′ j′ .
(A.21)

Again we have that Rαβ is the matrix representation of R̂. It is important to note that there is

only one matrix in equation A.21, but it is being used to rotate both elements of Ti j. It is of course

possible to define the rotations of tensors of any order, but as we only need those of 2nd order, we

shall go no further in this particular quest.

A.2.1.2 Spherical Tensor Operators

A tensor operator is a tensor where each element is itself an operator. As tensors, they also are

defined in large part by how they behave under rotation, but sometimes additional care must

be taken to account for the components being operators rather than numbers. Unfortunately,

there is not a standard notation for writing tensors of this form, and in various literature you

may find the following notations in use: T(k)
q ,Tk

q ,Tq
k . All of those refer to the qth element of an

operator of order k. This is a fundamentally different notation to the one used above for 2nd

order tensors (Ti j). The number q = i× j, and uniquely labels each element of the tensor. We

will adopt this notation in the following sections, as it aligns with our intuition when specifically

discussing angular momentum and the Wigner-Eckart theorem.

6Note that a requires 0 indices to define, so both definitions work.
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The tensor operators found in Section 3.2.2 are specifically spherical tensor operators. These

are a sub-class of tensor operators which possess some form of spherical symmetry. Angular

momentum states possess such symmetries, and can therefore be represented by spherical tensor

operators. The most common example of such operators are the spherical harmonics Y m
l , which

can be used to represent objects with total spin l and spin projection m - an written Y 0
2 is

therefore the 0th element of a 2nd order tensor. A powerful result about this type of tensor is that

a relationship that holds for one of them will also hold for others, up to changes of some scale

factor [162].

A.2.1.3 The Wigner-Eckart Theorem

The Wigner-Eckart theorem (WET) states that for any spherical tensor, Tq
k , we can calculate

matrix elements with respect to any 2 angular momentum states (| j′m′〉 , | jm〉) by splitting it into

angular and radial components:

〈
j′m′ ∣∣Tq

k

∣∣ jm
〉= 〈

j′m′;kq
∣∣ jm

〉〈
j
∥∥Tk

∥∥ j′
〉

. (A.22)

On the LHS of this equation we have the matrix element we want to calculate. The first term on

the RHS is the Clebsch-Gordon coefficient (CGC) for the coupling of angular momentum states.

The second is what’s called the reduced matrix element, which depends only on the total angular

momenta j, j′, not on the projections m,m′ of the states in question. The advantage comes in that

this second term is unchanging with respect to q,m,m′, and so if we calculate an easy matrix

element we can then look up the required CGC and find the reduced matrix element using

〈
j
∥∥Tk

∥∥ j′
〉= 〈

j′m′ ∣∣Tq
k

∣∣ jm
〉

〈 j′m′;kq | jm〉 . (A.23)

From there, we can then use this to calculate other, more difficult, matrix elements as long as we

do not change q. An example may make this more apparent. Let’s take the STO L̂m
1 , with specific

elements

L̂1
1 =− L̂+p

2

L̂0
1 = L̂z

L̂−1
1 = L̂−p

2
.

(A.24)

We now calculate the reduced matrix element
〈
J′M′ ∣∣L0

∣∣ JM
〉

〈
J′M′ ∣∣ L̂0

1
∣∣ JM

〉= 〈
J′M′ ∣∣ L̂z

∣∣ JM
〉= δJJ′δMM′ M (A.25)
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And so we know use the Wigner-Eckart theorem to calculate

〈
J

∥∥ L̂z
∥∥ J

〉= 〈
JM

∣∣ L̂z
∣∣ JM

〉
〈JM;10 |JM〉

= M
M

((2J+1)J(J+1))
1
2

= ((2J+1)J(J+1))
1
2

∴〈
J′∥∥ L̂z

∥∥ J
〉= ((2J+1)J(J+1))

1
2δJJ′ .

(A.26)

Armed with this knowledge we can then calculate more exotic matrix elements of Lq
0, for example:

〈
42

∣∣ L̂−1
1

∣∣41
〉= 〈

42
∣∣ L̂−

∣∣41
〉

= 〈42;1−1 |41〉〈4
∥∥ L̂1

∥∥4
〉

= 3

2
p

5
∗ ((2∗4+1)∗4∗ (4+1))

1
2

= 3

2
p

5
∗
p

5∗4∗5

= 3
p

5 .

(A.27)

The point of all this is that we did one calculation to find
〈
J′∥∥ L̂1

∥∥ J
〉
, which we can then use to

trivialise the calculation of any other matrix elements of L̂q
1.

A.2.1.4 Angular Momentum Coupling

The other important use of the Clebsch-Gordon coefficients is in the coupling of angular momen-

tum states. The idea is to construct states with a specific total angular momentum, by combining

systems of lower angular momenta. Mathematically, this is analogous to constructing a spherical

tensor of higher order out of multiple lower ordered tensors. In general, this is done as follows

T̂KQ = ∑
j j′mm′

( jm, j′m′|KQ)T̂ jmT̂ j′m′ . (A.28)

We must always have: K = j+ j′, while ensuring that j, j′ < K , and that −K ≤Q ≤ K and Q = m+m′.
Physically, these restrictions amount to conservation of angular momentum.

A physically motivated example may make this clearer. Let us try and construct the spin

operator Ŝ21 out of 2 lower order spin operators. We take K = 2 and Q = 1, and therefore must

restrict our values of j, j′, m and m′ accordingly. The first restriction is that j = j′ = 1, as this

is the only combination such that j+ j′ = 2 while still keeping j, j′ < 2. These constraints then

create constraints on m,m′, as we also require that − j ≤ m ≤ j and − j′ ≤ m′ ≤ j′. The possible

combinations of m and m′ are therefore
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m m’

0 1

1 0

After staring at this for a while, we notice that if we set j = j′ = 1 and m′ = 1−m, we can replace

the sum over all j, j′,m,m′ in equation A.28 with a single sum over m running from 0 to 1. Thus,

the equation becomes

Ŝ21 =
1∑

m=0
(1m,1(1−m)|21)Ŝ1mŜ1(1−m)

= (10,11|21)Ŝ10Ŝ11 + (11,10|21)Ŝ11Ŝ10

= 1p
2

Ŝ10Ŝ11 + 1p
2

Ŝ11Ŝ10

= 1p
2

(ŜzŜ++ Ŝ+Ŝz).

(A.29)

Here we have calculated the CGCs using Mathematica, but tables of them are also available. Now

that we have this operator, we could use equation A.28 again to calculate higher rank operators

if we so desired.

A.3 Additional NMR Spectra

Here we present additional figures showing the calculated NMR spectra as found for 115In nuclei

in Section 4.3. First we present comparisons between the spectra of single nuclei in the Faraday

and Voigt geometries (similar to Fig 4.18), followed by comparisons of the Voigt orientated spectra

for both 69Ga and 75As - similar to the Faraday orientated spectra of Figures 4.21 & 4.22. These

graphs all demonstrate the same effects as seen in Section 4.3, and thus we include them here

for completeness rather than to gain new insight.
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Figure A.1: The simulated NMR spectra of a single 69Ga nucleus in the centre of the quantum
dot. In (a) we show the results for a Faraday orientated field, and in (b) we show the results for a
Voigt field. Darker colours indicate a stronger absorption.

Figure A.2: The simulated NMR spectra of a single 71Ga nucleus in the centre of the quantum
dot. In (a) we show the results for a Faraday orientated field, and in (b) we show the results for a
Voigt field. Darker colours indicate a stronger absorption. The change in structure is least obvious
for 71Ga out of all the nuclear species in the quantum dot, however it accounts for a negligible
fraction of the overall number of gallium nuclei in the lattice and therefore we do not investigate
it in any more detail than we do the other species.
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Figure A.3: The simulated NMR spectra of a single 75As nucleus in the centre of the quantum
dot. In (a) we show the results for a Faraday orientated field, and in (b) we show the results for a
Voigt field. Darker colours indicate a stronger absorption. There is a significant difference in the
structure of the spectra between the 2 field orientations, demonstrating the effects discussed in
Section 2.1.

Figure A.4: The NMR spectra of a sample of 8 69Ga nuclei within the quantum dot structure,
under a Voigt orientated magnetic field. In (a) we plot the spectra as found using the NMR/PL
values of the GET, while in (b) we plot the spectra as found using the NAR values. We see a
clustering of absorption lines as the underlying quadrupolar frequency distribution narrows.
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Figure A.5: The NMR spectra of a sample of 8 75As nuclei within the quantum dot structure,
under a Voigt orientated magnetic field. In (a) we plot the spectra as found using the NMR/PL
values of the GET, while in (b) we plot the spectra as found using the NAR values. We see a
clustering of absorption lines as the underlying quadrupolar frequency distribution narrows, in
addition there are fewer outlying 75As nuclei in our sample set - an unfortunate artefact of the
random sampling method we employ to create these plots.

A.4 Additional EFG Calculations

Here we present additional figures showing the electric field gradients for 69Ga, 71Ga and 75As in

both mirrored dots - as is done for 115In in Figures 5.5 & 5.6.

Figure A.6: The direction (arrows) and strength (background colour) of the quadrupolar field as
felt by a 69Ga nucleus at each point in the structure of Dot LR. We see here the wide nature of
Dot LR, resulting from the long tail present on the left hand side of the original structure.
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Figure A.7: The direction (arrows) and strength (background colour) of the quadrupolar field as
felt by a 69Ga nucleus at each point in the structure of Dot RL. Dot RL is much more compact
than Dot LR, which is reflected here in the centralised nature of the EFG.

Figure A.8: The direction (arrows) and strength (background colour) of the quadrupolar field as
felt by a 71Ga nucleus at each point in the structure of Dot LR. Though these results appear
similar to those of 69Ga, it is important to note that the field points the opposite direction for
71Ga, and the maximum value of the EFG is much lower in this species than in 69Ga.
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Figure A.9: The direction (arrows) and strength (background colour) of the quadrupolar field as
felt by a 71Ga nucleus at each point in the structure of Dot RL. Though these results appear
similar to those of 69Ga, it is important to note that the field points the opposite direction for
71Ga, and the maximum value of the EFG is much lower in this species than in 69Ga.

Figure A.10: The direction (arrows) and strength (background colour) of the quadrupolar field as
felt by an 75As nucleus at each point in the structure of Dot LR. The strength map plots out a
distinct picture for Dot LR, with the region of high EFG being much more centrally concentrated.
This central region also has a much higher peak value, necessitating careful comparison between
this and similar plots for other species.
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Figure A.11: The direction (arrows) and strength (background colour) of the quadrupolar field
as felt by an 75As nucleus at each point in the structure of Dot RL. This plot is much the same
as those for other species in Dot RL, though as for all 75As EFG plots, we must notice that the
maximum value of the EFG is much higher in this species than any other.

A.5 Additional Decay Modelling

Here we present additional figures showing the modelled decays of 71Ga, 75As and 115In as found

using the toy model introduced in Section 5.3. These do not show as significant a difference

between the original and mirrored structures, as a result of the smaller decreases in variance

between the original structures and those found in the mirrored dots. Nevertheless, in all cases

except 71Ga in Dot LR, we find that a decrease in variance results in an increase in coherence

time.
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Figure A.12: Modelling the decay of an electron exposed to a set of 71Ga nuclei, as described in
Section 5.3. Here Dot LR has a shorter coherence time, despite the underlying distribution having
a smaller variance. However, the differences are incredibly small, and well within the margin of
error for the fitting process. In addition, the distributions are calculated using older NAR-derived
values of the gradient elastic tensor, and therefore care should be taken when analysing them.
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Figure A.13: Modelling the decay of an electron exposed to a set of 75As nuclei, as described
in Section 5.3. Again we find that Dot RL has the longest coherence time, in addition to the
narrowest distribution of quadrupolar frequencies - though the times are very similar in this
case.
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A.5. ADDITIONAL DECAY MODELLING

Figure A.14: Modelling the decay of an electron exposed to a set of 115In nuclei, as described in
Section 5.3.Dot RL exhibits a much longer coherence time than either the original structure or
Dot LR, a consequence of it’s much narrower quadrupolar frequency distribution.
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