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Abstract: A thorough understanding of the effects of sloshing on aircraft dynamic loads
can be exploited for the future design of aircraft to be able to reduce their structural mass.
Indeed, the high vertical accelerations caused by the vibrations of the structure can lead to the
fragmentation of the fuel free surface. Fluid impacts on the tank roof are potentially a new
source of damping for the structure that have hardly been considered before when computing
the dynamic loads of the wings. This work aims at applying recently developed reduced-order
models for vertical sloshing to a representative aeroelastic testbed, to investigate their effects
on the wing’s response under pre-critical and post-critical conditions. The vertical sloshing
dynamics is considered comparing three different reduced order models based, respectively, on
neural networks, equivalent mechanical model, and surrogate model then integrated into the
aeroelastic system.

1 INTRODUCTION

The wings of civil aircraft are flexible structures that can deform significantly when withstand-
ing atmospheric turbulence or gust loads. In these cases, the fuel contained in the wing tanks
gives rise to vertical sloshing dynamics. When the structure is subjected to high vertical ac-
celerations, the fuel starts to move inside the tanks, eventually impacting their internal walls.
Therefore, liquid dynamics are coupled with aircraft structural dynamics and aeroelasticity and
generally provide an increase in the overall structural damping.

In this regard, the development of reduced order models can enhance the design phase of modern
aircraft.
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This article aims to present the latest results concerning the application of vertical sloshing
reduced-order models (ROMs) obtained within the European H2020 project SLOshing Wing
Dynamics (SLOWD) (Ref. [1]) integrated within representative aerolastic models. The com-
plexity in modelling this phenomenon lies in the peculiar dissipative behaviour in which Rayleigh-
Taylor (Ref. [2]) instabilities occur when the vertical acceleration (perpendicular to the free
surface of the liquid) imposed on the tank exceeds a certain threshold causing a chaotic regime
with continuous mixing of liquid and air. In addition, turbulence, impacts with the tank walls
and continuous free surface generation cause additional dissipation of energy (Refs. [3–5]). The
overall balance of elastic potential energy and fluid energy leads to a noticeable increase in the
effective damping of the structural motion.

It is worth emphasising that, vertical sloshing is not the only dynamic that can affect the aeroe-
lastic system. In fact, depending on the type and intensity of the perturbations to which the
aircraft is subjected, sloshing can exhibit different behaviours. Rotations and lateral motions of
tanks, in which the liquid generally presents standing waves within the cavity, provides dynamic
coupling with the structure and a possible change in the aeroelastic dynamic stability margin.
The effects of this type of sloshing on the aeroelastic flutter stability of aircraft have been dis-
cussed in Refs. [6–8] where liquid dynamics was modelled using equivalent mechanical models
(EMMs), frozen fluids and linear frequency domain approaches. Furthermore, the effects of
sloshing on aeroelastic typical section behaviour has been investigated in Refs. [9,10] by direct
time-marching analysis employing Smoothed Particle Hydrodynamics (SPH).

In this work, an aeroelastic model containing two tanks of the same dimensions is considered
to simulate and study the effects induced on its response by vertical sloshing. Specifically, two
aeroelastic methodologies exploiting three different types of reduced order models for sloshing
are compared.

The first approach involves the use of equivalent mechanical models to replace the dynamics
of vertical sloshing. We refer in particular to a bouncing ball model, designed to emulate the
impact mechanism of the phenomenon under investigation. This has been previously used to
replicate transient experimental response through two independently formulated models [5,11],
showing good correlation with the global dissipative behaviour. Aeroelastic studies in which
sloshing was modelled with this kind of ROM can be found in Ref. [12] where the damping
performance of the aeroelastic/sloshing system was characterised as gust speed and intensity
varied. The bouncing ball address the need to describe the complex liquid dynamics through a
simple physical model quickly and effectively.

Following this, a surrogate model for vertical fluid sloshing based on the direct interpolation of
experimental data is developed. Radial basis function interpolation is used to provide a smooth
representation of hydrodynamic force measurements taken from vertical harmonic excitation
of a fluid-filled tank [13]. This methods ensures a smooth and continuous function for use
in numerical models, that exactly recovers experimental data. Furthermore, this method can
be used directly with harmonically excited sloshing data and requires no calibration or pre-
processing stage.

The third methodology, which follows what has already been presented in [14], involves the use
of nonlinear systems identification techniques based on neural networks. They are a powerful
tool for approximating nonlinear dynamic systems, even when the structure of the system to be
identified is unknown and only input–output data are available, so allowing a sort of generalised
black-box modelling. This work makes use of a Nonlinear Finite Impulse Response (NFIR)
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yTi
[m] h(i)[m] V (i)[m3] α

tank 1 4.90 (0.8L) 0.08 0.05 0.50
tank 2 5.70 (0.93L) 0.08 0.05 0.50

Table 1: Parameters of the tanks: position of the geometric centre with respect to the y-axis yTi
, tank height h(i),

volume V (i) and filling level α.

network trained with an appropriate data series obtained by a suitable scaled experiment (see
Ref. [15]) spanning different values of frequencies and displacement amplitude. In addition, a
scaling law is implemented to adapt the model to the geometry of the wing tanks. The three
different approaches will be compared by assessing the effects they introduced in the response
of the considered aeroelastic system.

2 AEROELASTIC/SLOSHING FORMULATION
A sloshing/aeroelastic wing is modelled in this work using a hybrid model that combines a linear
differential problem (aeroelasticity) with sloshing models that can be data-driven or equivalent
mechanical models. More in details, the numerical testbed is represented by the Goland wing
model (Ref. [16, 17]) in which two tanks partially filled with liquid with characteristics listed
in Tab. 1 are integrated. Figure 1 shows the 1D structural model, along with the lifting surface
discretized by means of strip theory, and the position of the two tanks lying on the elastic axis
of the wing. Figure 2 shows the wing first six modes of vibration in the case of dry structure.

Figure 1: Goland wing aeroelastic/sloshing modelling.

A box-shaped, rigid structure is approximated for both the tanks embedded within the wing-box.
Their dynamic behaviour is condensed in a point placed in the tank geometric centre.

The wing structural displacements u(x, t) can be expressed by the spectral decomposition

u(x, t) ≃
N∑

n=1

ψψψn(x)qn(t) (1)

where ψψψn(x) are the modes of vibrations of the structure and qn(t) are the generalised coordi-
nates describing the body deformation in time. Note that a space-discretization for the structure
is assumed by including a finite number N of modes in the analysis, i.e., a frequency-band-
limited unsteady process. Considering this representation for aircraft wing dynamics, one has
the following Lagrange equations of motion in terms of N modal coordinates qn(t)

Mq̈+ Kq = e+ g + f(ext) (2)
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(a) f1 = 7.65Hz (b) f2 = 15.23Hz

(c) f3 = 38.65Hz (d) f4 = 54.96Hz

(e) f5 = 70.46Hz (f) f6 = 95.36Hz

Figure 2: Mode shapes of the wing model with their natural frequencies.

where q = [q1, q2, . . . , qN ]
T is the modal coordinates vector, M and K are, respectively, the

modal mass and stiffness (diagonal) matrices (provided by a FEM solver or the analytical so-
lution given by the beam theory), whereas e = [e1, e2, . . . , eN ]

T and g = [g1, g2, . . . , gN ]
T are,

respectively, the generalized aerodynamic and sloshing forces induced by the elastic motion.
The f(ext) is the vector of the current external forcing terms which includes gust loads. The
generalized aerodynamic forces (due to the aircraft motion only) are generally computed as a
function of the reduced frequency k = ωb/U∞ (with b semi-chord and U∞ free stream velocity)
and Mach M∞ domain (see Ref. [18]) as:

ẽ = qD Q(k,M∞) q̃ (3)

where Q(k,M∞) is the generalised aerodynamic forces matrix, qD is the dynamic pressure and
the symbol ˜ is used to represent the Laplace/Fourier transforms. For a fixed value of M∞, the
unsteady aerodynamics can generally be recast in time domain as:

e = qD A0 q+ qD
b

U∞
A1 q̇+ qD(

b

U∞
)2 A2 q̈+ qD C r (4)

Eṙ =
U∞

b
P r + B q̇+ Dq̈ (5)

where b is the reference half-chord and r is the vector of the aerodynamic finite states. Depend-
ing on the aerodynamic model and rational function approximation, matrices E and D are set
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to the identity and null matrix, respectively, within Sec. 3.2. Or alternatively follow from the
Peters’ finite-state model [19] as per Sec. 3.1.

At the same time, the generalised sloshing forces vector g can be expressed as a sum of contri-
butions g(i) of individual tanks:

g =

NT∑
i=1

g(i) (6)

with NT the number of tanks. The n-th component of g(i) is the projection of the fluid pressure
distribution pS evaluated on the wet tank surface S(i)

tank on each n-th modal shape ψψψn as in the
following (n unit normal vector to S(i)

tank)

g(i)n = −
"

S(i)
tank

pS n ·ψψψn dS (7)

By assuming a rigid tank identified by its geometrical centre in which the moment about the
tank geometric centre are negligible and the sloshing force lies mainly in the vertical direction,
Eq. 7 can be recast as:

g(i)n = i3 ·ψψψn(xTi
)F

(i)
S (8)

where i3 is the vertical unit vector and F
(i)
S is the component of the vertical sloshing force.

In this study, the sloshing force can be decomposed into two contributions: the inertial force
according to the frozen fuel modelling (Ref. [7]) and the perturbation resulting from the relative
motion of the fluid particles within the tank (Ref. [20]) providing:

F
(i)
S = −

N∑
k=1

m
(i)
l i3 ·ψψψk(xTi

)q̈k +∆f
(i)
Sz

(9)

where ∆f
(i)
Sz

, hereafter denoted as dynamic sloshing force is a non-conservative force that is a
nonlinear function of the history of the tank vertical displacement uz(xTi

, t). Based on Eq. 9
Eq. 8 can be recast as:

g(i)n = m
(i)
Lnk

q̈k + i3 ·ψψψn(xTi
)∆f

(i)
Sz

(10)
where the components mLnk

provides a further non-diagonal contribution to the mass matrix
given by the inertia of the fluid. Recast in state space, Eqns. 4 and 10 take the form

 I 0 0

0 M+ML − qD

(
b

U∞

)2

A2 0

0 D −E



q̇
q̈
ṙ

+

 0 −I 0
K− qD

b
U∞

A1 −qDA0 qDC

0 B U∞
b
P


q
q̇
r


=


0∑Nt

i b(i)∆f
(i)
Sz

0


(11)

where b(i) = [i3 ·ψψψ1(xTi
)], . . . , i3 ·ψψψN(xTi

)]T is a vector that collects the vertical displacement
of the vibration modes evaluated at the i-th tank position.

Three methods will be used to investigate the response of a sloshing aeroelastic wing, namely:
i) a bouncing ball model, where the interaction between the fluid and structure is mirrored in the
reaction forces between a ball and the tank walls (described in Sec. 2.1), ii) a surrogate model
based on interpolation of experimental data (Sec. 2.2), and iii) a neural network-based ROM in
which the sloshing forces are derived from an identified black box (covered in Sec. 2.3).
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2.1 Bouncing ball model
Previous work by the authors have noted that a simple rigid mass moving under vertical ex-
citation can provide surprisingly representative sloshing behaviour and dissipative characteris-
tics. Such equivalent mechanical models have been investigated in the purely vertical single-
degree-of-freedom case under large amplitude excitation, in both the transient [5, 11] and pre-
scribed [13] motion cases. Following from this analysis, an equivalent mechanical model based
on a ball bouncing inside a tank was applied to loads alleviation studies in the aeroelastic set-
ting [12]. Where visco-elastic impacts of the ball with tank boundaries dissipate energy and
drive the fluid motion in the coupled system. The bouncing ball model subsequently presented
here is an extension of that particular work.

This model makes the assumption that a fluid may be treated a singular rigid mass that travels
in a ballistic path during a free-flight period, before elastic impact with the containing vessel.
This limits the ability to capture free surface effects, in particular any surface waves (i.e. para-
metric sloshing below 1g acceleration excitation) or surface fragmentation. In doing so, fluid is
discretised as a single point mass (ml) which moves vertically with absolute position ub, which
is introduced as an additional state in the aeroelastic system. The vertical extent of the particles
motion is limited by visco-elastic barrier functions which act at the tank boundaries (floor and
roof) at [−Uf , Uf ]+ut, where ut is the vertical displacement of the wing at the tank centre. The
geometric constant Uf is the ‘free-flight’ range of the fluid set by tank height and fluid filling
ratio, specifically Uf = 0.5(1 − fill)Ht. Barrier functions are composed of two elements, an
elastic and smooth barrier force, shown in Fig. 3 and defined as

Fsb(r) =
Ku

π

[
(r + Uf )

(
π

2
+ tan−1 − (r + Uf )

ϵs

)
+ (r − Uf )

(
π

2
+ tan−1 (r − Uf )

ϵs

)]
(12)

where r = ub − ut is the relative position of the ball from the tank position on the wing.
ϵs controls the smoothness of the region between free-flight and barrier conditions as shown in
Fig. 3(a). Wall stiffnessKu and ϵs are mainly set to ensure the fluid is sufficiently retained within
the free-flight distance Uf during impacts, whilst ensuring a ‘soft’ impact that to minimise the
excitation of high-frequency modes in the coupled system. As shown in Fig. 3(b), the damping
function includes a smoothed activation of the non-conservative force in the vicinity of the wall
barrier

Fcb(r, ṙ) = f1(r)Cuṙ, f1(r) = [ϕ(r)H(Uf − |r|) +H(|r| − Uf )]H(|r| − (Uf − ϵD)) (13)

where H is the heaviside function, Cu the damping constant (2ζ
√
mlKu) and ϕ an interior

smoothing function

ϕ(R) = (1−R)4+(4R + 1), R = (Uf − |r|)/ϵD (14)

Included with these nonlinear barrier functions, weight of the fluid is included to drive the ball
in a ballistic flight in the interior free-flight region and ensure repeated impacts with the tank as
the wing settles. Therefore, equations of motion for each EMM take the simple form

mlüb = mlg − Fsb − Fcb (15)

Section 3.1 describes how this EMM is introduced into the aeroelastic framework and how
the sloshing forces are distributed onto the structure. It is noted that this model can provide
sensible dissipation characteristics and fluid-structure interactions, but may struggle to exactly
match experimental characteristics without calibration [5]. Despite this, the ballistic nature
of the model implies no restriction on the frequency and amplitude of excitation, given the
acceleration is above 1g which is required for the ball to be released from the wing.

6
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(a) Barrier stiffness (b) Barrier damping
Figure 3: Visco-elastic functions used in bouncing ball sloshing model

2.2 Surrogate sloshing model

Within the second fluid model considered, a surrogate model is developed to provide the dy-
namic sloshing loads on the wing structure, based upon direct interpolation of known exper-
imental response. Response surfaces are computed which provide the quasi-steady sloshing
force for a particular kinematic condition of excitation. A smooth interpolation allows for dis-
crete experimental data to be used directly in the numerical framework, where no pre-processing
or calibration phase is required. Further, the range of experimental data covers low-amplitude
parametric sloshing and violent vertical sloshing, allowing the numerical model to capture these
behaviours; making the assumption that the geometric tank characteristics that drive the slosh-
ing behaviour is preserved between scales.

Previous experimental work has considered the prescribed vertical harmonic excitation of a
fluid filled tank, across a series of excitation amplitudes and frequencies. For details on the
experimental characteristics see Ref. [13]. For a single amplitude and frequency of excitation
(for instance a single circle in the xy plane of Fig. 4) the hydrodynamic force was measured and
averaged over multiple cycles, providing the quasi-steady hydrodynamic force at each kinematic
condition in the cycle. From this the sloshing force is isolated by removing the inertial and
hydrostatic force component, i.e. the force resulting from having a dynamic medium inside the
tank. Specifically, from the total measured force Ft,

Fs = Ft − ü(ml +ms)− g(ml +ms) (16)

where ml and ms are the liquid and structural masses, respectively. The combination of these
individual cycles over multiple amplitudes of excitation can be used to form a response surface,
which provides the quasi-steady sloshing force at each kinematic state of excitation. To combine
the discrete experimental data points into a smooth and continuous function that can be used
within numerical analysis, a surrogate model is developed based on radial basis function (RBF)
interpolation of the discrete data.

Considering non-dimensional displacement û = u/h, velocity v̂ = u̇/(ωh) and sloshing force
F̂s = Fs/(mlhω

2), the function mapping kinematics to sloshing force takes the form F̂s =
g(x̂), x̂ = {û, v̂, ω}. Within the previous experimental work [13], normalisation of dissipated
energy via Ê = E/(mlω

2A2) where A is the amplitude of harmonic excitation, was shown
to provide a consistent scaling across excitation conditions. However, in the transient setting
a characteristic amplitude is not known a priori, thus the characteristic length of tank height is

7
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Figure 4: Interpolated experimental response surfaces. Traces on the xy-plane show experimental amplitudes for
the 3.3 Hz case forming the response surface.

used within this process. The RBF interpolation, including a polynomial of any degree, provides
the interpolated function values g(x̂) at an evaluation point x̂E ,

g(x̂E) =
N∑
i=1

γiϕ(|x̂E − x̂i|, r) +
M∑
k=1

βkqk(x̂E) (17)

where N is the number of experimental data points, q the M monomial coefficients based on
the degree of the included polynomial and dimensionality of the data and ϕ a compact basis
function (a Wendland C4 is used [21]) dependent on a support length r. Model coefficients
γ and β are found by requiring exact recovery of the experimental/sample points, requiring
solution of the linear system (

Φ Q
QT 0

)(
γ
β

)
=

(
g
0

)
(18)

where details of this process can be found in most RBF interpolation references, for instance
Ref. [21]. This interpolation ensures the experimental data points are exactly recovered, and
returns to a least-squares polynomial fit in the absence of RBF influence. Additionally, to
improve matrix conditioning and simplify dependence on support radius r, the experimental
domain (x̂i, i = 1, ..., N ) is scaled to the hypercube. Ultimately, the surrogate model forms the
operator G, which is introduced into the aeroelastic model in the form

∆f
(i)
Sz

= m
(i)
l h

(i)ω2
cG

(
u(xTi

, t)

h(i)
,
u̇(xTi

, t)

ωch(i)
, ωc

)
(19)

where ωc is a characteristic frequency chosen dependent on the dominate excitation component,
i.e. first bending of the aeroelastic system in free-stream conditions. Noting this sloshing model
therefore does not dynamically respond to the frequency of excitation from the aeroelastic input.
A series of interpolated response surfaces are shown in Fig. 4, where the experimental data
points for one frequency of excitation are shown on the xy axis.

2.3 Neural-network-based reduced order model

The third reduced-order model considered is based on a neural network trained directly with
experimental data, using the same approach as presented in Ref. [20]. Specifically, the model is
identified by exploiting the experimental data obtained from the set-up introduced in Ref. [15]
to investigate the dissipative behaviour of the fluid sloshing inside a tank set in vertical motion.

8
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This experimental configuration consists of a box tank (with a height of h = 27.2 mm and base
of sides l1 = 117.2 mm and l2 = 78.0 mm) placed over a controlled electrodynamic shaker
able to impose vertical sinusoidal displacement. The dynamic load at the interface between
shaker and tank is measured by two load cells, placed in the middle of the long side of the tank
base. The system is also equipped with two accelerometers placed at the opposite corners of the
tank upper closing side and with a control accelerometer used by the shaker controller. Figure
5(a) provides the non-dimensional energy dissipated by the sloshing fluid Ê = E/(mlA

2Ω2)
in a vertical harmonic motion uz = A cos(Ωt) (with A displacement amplitude of the im-
posed motion and Ω the excitation frequency) as a function of the non-dimensional frequency
ω̄ = Ω/

√
g/h and velocity v̄ = v/

√
gh (with v = ΩA). Note that different non-dimensional

(a) Maps of the Identified dissipated energy (b) Velocity path in non dimensional frequency-
amplitude domain

Figure 5: Experimental dissipated energy map and path considered for training data generation

quantities are defined for the neural network in this section with respect to Sec. 2.2. There-
fore the new non-dimensional quantities are here denoted by means of .̄ Subsequently, the
experimental set-up was used to generate a data set for training a neural network by means
of a 480 s long test with a variable frequency and amplitude harmonic imposed acceleration
üz = f(t) cos(

´
Ω(t)dt) such as to suitably cover the frequency-velocity domain of interest

(see Fig. 5(b)). A different data set 240 s long covering the same points in the frequency-
velocity domain is used for validation in order to avoid overfitting of training data. Figure 6
shows the vertical velocity of the tank obtained by integrating the acceleration signal, that is the
input feeding the network, whereas, the dynamic sloshing forces, estimated by the load cells
subtracting the frozen fluid and tank masses inertia is shown in Fig. 7. Among the wide vari-

Figure 6: Time history of the velocity profile used to train the network, see Ref. [20]

9
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Figure 7: Time history of the dynamic sloshing forces for the training data set

ety of dynamical models, a neural-network-based nonlinear finite impulse response (NN-NFIR)
model has been selected (see Fig. 8). NFIR models, simply made up by static approximator

Figure 8: Time-Delay Neural Network flowchart

(neural network) and a bank of filters with delay lines, generally ensures the stability of the
reduced order model (Ref. [22]). The used NN-NFIR model consists of 1 hidden layer with
20 neurons and 1 output layer whilst 60 tapped delay lines are considered for the input. Nor-
malised radial basis functions are employed as activation functions in all nodes of the hidden
layer, whereas the output layer is made up with a simple linear function. The model identi-
fied in this study was trained in Matlab® (Ref. [23]) using an error rate increase criterion over
6 consecutive epochs as the stopping criterion. The stopping of the training process occurred
after 76 epochs, when the mean-squared error performance had already stabilised at a constant
and relatively low value. The trained network was then converted into a Simulink® block to be
used for simulations and thus obtaining predictions for the output.

The tanks implemented in Goland’s wing model have different dimensions to those of the box
used to generate the training data for the neural network (see Tab. 1). In order to exploit the
reduced order model presented in this section, the scaling procedure introduced in Ref. [14] is
used. Since the operational parameters ω̄ and v̄ only cover a subspace of the space spanned
by the non-dimensional parameters influencing the sloshing-induced energy dissipation, it is
necessary to formulate the following hypotheses before scaling the NN-based ROM:

• The non-dimensional sloshing force, defined as ϕ = fSz/(mlAΩ
2), is assumed to be

mainly dependent on the non-dimensional velocity (Froude) and non-dimensional fre-
quency (or non-dimensional time).

• The principal dimension is assumed to be the tank height h (Ref. [24]).
• For each filling level α a different identification is required.

The re-scaled ROM must therefore work in similarity of v̄ and ω̄ as well as non-dimensional
sloshing force ϕ in order to replace the sloshing model with a neural network capable of re-
producing the real dissipative behavior. Figure 9 shows the Simulink® implementation of the
neural network unit and the scaling gain. More in details, from the non-dimensional frequency

10
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Figure 9: Scaling procedure implemented in Simulink®.

similarity between the experiment ω̄(exp) and the i-th tank ω̄(i), we obtain the scaling for the
time sampling dt(i). A proper time rate transition block is used within the simulation (see Fig.
9) to make the neural network working with a time rate compliant with the one used for its
identification. Furthermore, the similarity of the non-dimensional velocity of the vertical mo-
tion provides a gain to the vertical tank velocities v(i) before the call to the neural network (see
Fig. 9). From the similarity of the non-dimensional sloshing force ϕ, we obtain the gain for
the dynamic sloshing ∆f

(i)
Sz

forces to be applied after the call to the neural network within the
simulation framework (see Fig. 9). In this scaling procedure, velocity and displacements of the
tank are adjusted according to tank size, but the maximum accelerations achievable when the
tank works in similarity with the tank used for the network identification are retained.

3 NUMERICAL FRAMEWORKS

This section introduces the numerical frameworks used to perform numerical simulation of the
sloshing/aeroelastic response of the Goland wing. More specifically, two numerical framework
are described, that is the one from the University of Bristol in which the sloshing dynamics is
described by means of the bouncing ball model or the surrogate sloshing model and the one
from Sapienza University of Rome in which sloshing is described by means of neural networks.

3.1 University of Bristol

Within this particular approach, the aeroelastic model of Fazelzadeh et al. [17] is used for
coupling with the bouncing ball and surrogate fluid models. Structural dynamics is modelled
with the classical beam theory, including linear torsion and bending response only. Unsteady
aerodynamics is accounted for using Peters’ finite state model [19], which is an extension of
strip theory to capture unsteady wake effects in a set of finite induced-flow states. The Galerkin
method is used to discretise the structural dynamics within a set of assumed shape functions.
The global equations of motion for the aeroelastic case, including sloshing forces from the
surrogate model take the form of Eqn. 11. Where ML is the liquid inertia matrix, A0−2 strip
theory aerodynamics terms and matrices E, D, B and P arising from the Peters’ finite state
model, applying additional forcing from the inflow states via C. Hydrodynamic loading from
the surrogate model at each tank is computed via equation 19 and applied as point loads at the
tank centre.

Additionally, when the bouncing ball model is used the fluid displacement is introduced into
the state vector as additional mechanical states ub = {u1b , ..., u

Nt
b }T as within Eqn. 21. In this

form, liquid inertia is applied within the EMM equations of motion rather than the aeroelastic
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model, via the diagonal mass matrix

Ml =


m1

l 0 0

0
. . . 0

0 0 mNt
l

 (20)


I 0 0 0 0

0 M− qD

(
b

U∞

)2

A2 0 0 0

0 D −E 0 0
0 0 0 I 0
0 0 0 0 Ml




q̇
q̈
ṙ
u̇b
üb

+


0 −I 0 0 0

K− qD
b

U∞
A1 −qDA0 qDC 0 0

0 B U∞
b
P 0 0

0 0 0 0 −I
0 0 0 0 0




q
q̇
r
ub
u̇b

 =


0∑Nt

i

(
F sb
i + F cb

i

)
i3 ·ψ(xTi

)
0
0

gbi (q, q̇, ub, u̇b)



(21)

Finally, the visco-elastic forces and equations of motion Eqns. 12-15 are computed within gbi ,
and the resulting barrier forces applied to the wing as point loads [12]. In the subsequent
analysis, 3 bending and 3 torsion shapes are used, with 6 aerodynamic inflow states discretised
at 10 spanwise locations. Time integration of the ODEs is performed within Matlab® using the
explicit Runge-Kutta (4,5) method.

3.2 Sapienza University of Rome

The aeroelastic/sloshing modelling is implemented by Sapienza University of Rome (hereafter
simply denoted by means of the acronym USRS) in a Simulink® environment as illustrated in
Fig. 10. The aeroelastic blocks are purely differential whereas the sloshing block is modelled
with the identified data-driven neural-network-based ROM. The simulation model implements
Eq. 2, in which the sloshing forces i3 · ψψψn(xTi

)∆f
(i)
Sz

are the loads predicted by the neural
network, following the history of the modal velocity evaluated at the two tank positions xTi

as
equal to

∑
mψψψm(xTi

)q̇m(t).
The aeroelastic system is modelled by employing the finite element method (FEM) to get the
structural modes of the beam and by generating a lifting surface (see Fig. 1) based on the
Theodorsen theory. However, the latter could also be generalised using the doublet lattice
method (DLM) discretisation method for the unsteady aerodynamics (see Ref. [18]). The aeroe-
lastic analysis is based on the modes of vibration of the dry structure. Based on these, the FE
solver also allows for computation of the generalised aerodynamic force (GAF) matrices for
Mach number and reduced frequency k pairs provided by the user. To achieve a purely differen-
tial formulation for the unsteady aerodynamics, a rational function approximation (RFA) based
on Roger interpolation method (in which matrices E and D are, respectively, set to the identity
and null matrix, see Ref. [25]) is applied to the GAF matrix, resulting in the definition of a
new set of aerodynamic finite states. The numerical model also incorporates a block that allows
the gust to be included as an external input acting on the aeroelastic system. The analyses are
carried out using 20 modes of vibrations and the Roger interpolation is made considering 5 lags
yielding a total of 100 aerodynamic states.
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Figure 10: Aeroelastic/sloshing modelling in Simulink®.

Flutter velocity [m/s] Flutter frequency [Hz]
UB 161.7(→ 165.5) 9.18(→ 9.35)

USRS 163.1 9.

Table 2: Flutter velocity and frequency for the two models. Note that in parentheses it is highlighted the modifica-
tion of flutter scenario due to linear sloshing, if any.

4 RESULTS

In this section, the aeroelastic response results of the beam are presented comparing the the
performances of the three models. The comparisons are necessarily split in different plots
(USRS model responses on the left and UB model responses on the right) since the models
used by the two partners differ slightly in flutter scenario. The stability scenario (root locus) of
the aeroelastic system in frozen configuration (∆f (i)

Sz
= 0) is shown in Fig. 11. The stability

analysis is performed by evaluating the poles of the linearly differential aeroelastic system by
varying the free stream velocity U∞ between 100 m/s and 200 m/s and considering fixed the
Mach number M∞ = 0 and the air density ρ∞ = 1.225 kg/m3. Flutter occurs from the branch
that originates from the first bending mode (see Fig. 2(a)) and the critical eigenvector is mainly
given by the coupling from the first and second modes of vibration. Table 2 lists the flutter
speed and frequency obtained from the aeroelastic frameworks developed in this activity.

Aeroelastic response analyses to vertical gust are performed for different gust amplitudes and
different velocities. Specifically, in this analyses we consider the following standard gust pro-
file:

wg(t) =
1

2
wga

(
1− cos(

2πU∞t

Lg

)
)

(22)

where wga is the gust amplitude. The reference value for the gust length measured in chord
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Figure 11: USRS Root locus of the aeroelastic system in frozen configuration (∆f
(i)
Sz

= 0).

length b is Lg = 25 b. Spatially, the gust is assumed to be constant throughout the wing domain.
Two configurations are compared, namely the frozen fuel model and the sloshing fuel model that
employs the neural network to replace slosh dynamics or the surrogate model or the bouncing
ball model. Specifically, three different flight conditions are considered, that is U∞ = 130m/s
(corresponding approximately to the 80% of UF ) and U∞ = 160m/s, before the flutter margin
as evaluated by the frozen fuel model, and U∞ = 168m/s after the stability margin. Different
gust intensities are employed to highlight the increase of the sloshing induced damping at high
response amplitudes or the onset of limit cycle oscillations. In particular, Fig.12 shows compar-
isons of gust responses in the case where U∞ = 130,m/s and for three different gust amplitudes
wga , respectively equal to 0.1m/s, 3m/s and 5m/s. All comparisons will be shown in terms
of the acceleration response at the free end of the beam. From Figs. 12(a),12(c) and 12(e),
it is possible to appreciate how the presence of the neural network (representing the sloshing
dynamics, defined in red as sloshing fuel in the graphs) contributes in providing a noticeable
damping in the aeroelastic responses, if compared with those related to the frozen case. Sur-
rogate model in Figs. 12(b), 12(d) and 12(f) is in line with the neural network based model
but slight differences can be observed at wga = 0.1m/s in which the surrogate model seems
to be more dissipative than neural networks. Moreover, in general Surrogate model provides an
attenuation of the first peak less visible in neural network based model. This is a result of the
quasi-static nature of the surrogate model not accounting for the initial fluid transient, i.e. the
model instantly predicts the fluid is in the violent impacting and dissipative regime, without
accounting for the initial period of energy input to excite free-surface waves. On the other hand
the bouncing ball model looks to be ineffective in damping the structure at very low accelera-
tions (in the range of accelerations in which no impacts occur). In the other cases, bouncing ball
model seems to trigger the damping of the structure with a delayed mechanisms with respect
to the other two models. Additionally, within Figs.12(d) and 12(f) higher frequency content of
the other structural modes is excited in the bouncing ball response, resulting from the strong
short-duration impacting nature of the EMM.

Then, the flight speed is brought close to the flutter margin, at a free stream velocity of U∞ =
160m/s, with a gust intensity of wga = 3m/s. Figure 13 compares the beam tip response of the
sloshing fuel model with the frozen fuel model, for USRS in Fig. 13(a) and UB in Fig. 13(b).
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(a) USRS: wga = 0.1m/s (b) UB: wga = 0.1m/s

(c) USRS: wga = 3m/s (d) UB: wga = 3m/s

(e) USRS: wga = 5m/s (f) UB: wga = 5m/s

Figure 12: Comparison of tip acceleration responses to a gust with different amplitudes wga , between the frozen
case and the sloshing case, for the University La Sapienza of Rome (USRS) and the University of
Bristol (UB). The velocity is U∞ = 130m/s.
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The damping induced by vertical sloshing dynamics aids in reducing the gust response even
though the structure is closer to the flutter margin. However, in Fig. 13(b) the surrogate model
appears less dissipative than the NN and has a region of low amplitude lightly damped response.
This results from a lower aeroelastic damping in the frozen case, plus appears to have predicted
a parametric sloshing regime, a result of the experimental data used, which poses much lower
liquid damping than the initial violent transient. Furthermore, due to the nature of the bouncing-
ball it shows dissipative characteristics that are more in line with a friction model [5], compared
to the viscous like damping classically observed from liquid damping and correctly captured by
the other models.

(a) USRS (b) UB

Figure 13: Comparison of gust responses in sub-critical condition for U∞ = 160m/s and wga = 3m/s.

The post-critical gust response analysis is performed after the flutter speed limit at U∞ =
168m/s, with a gust intensity of wga = 0.1m/s. The beam tip response is shown in Fig.
13 comparing the two considered cases, again, highlighting the results obtained by USRS sep-
arately from those of UB (respectively shown in Fig. 14(a) and Fig. 14(b)). The linear frozen
case results in a fluttering response with diverging exponential envelope, whilst the sloshing
case develops a limit-cycle oscillation (LCO). This LCO is determined by the nature of the
sloshing forces, which become highly dissipative when the acceleration of the tank increases.

(a) USRS (b) UB

Figure 14: Comparison of gust responses in post-critical condition for U∞ = 168m/s and wga = 0.1m/s.

Several response analyses for different velocities (before and after the flutter) have been per-
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formed with the three considered models, collecting for each of them the value of the displace-
ment at the tip of the wing at steady state, in order to estimate a bifurcation diagram. It is worth
noticing that the amplitude of the deflections depends on the sloshing model as well as the
aeroelastic modelling which already exhibits a slightly different critical speed without slosh-
ing. Specifically the response analyses are carried out spanning free stream velocities from
160m/s to 172m/s. Figures 15(a) and 15(b) show the Hopf bifurcation diagram of the limit-
cycle oscillation of the wing tip displacement. Despite the nonlinear stabilising contribution
of the sloshing forces, the system is nevertheless unstable for the three models after a flight
speed slightly lower 173m/s for the model with neural network and 167m/s and 170m/s re-
spectively for the model with bouncing ball and surrogate model. This behaviour indicates the
presence of an unstable branch at the same time as the stable one. It is worth noting that the
range of existence of LCO is much lower for the bouncing ball model whereas the surrogate
model presents an anticipation of flutter mechanism that involve a pre-critical behaviour.

(a) USRS (b) UB

Figure 15: Comparison of bifurcation diagrams.

5 CONCLUSIONS
This work aimed at applying recently developed reduced-order sloshing models to study the
aeroelastic response of the Goland wing model (considered as the representative aeroelastic
testbed) to investigate the effects of sloshing on the wing’s response under pre-critical and
post-critical conditions. The vertical sloshing dynamics was considered using three different
reduced order models: a neural-networks-based dynamical model, a bouncing ball and a further
surrogate model trained with numerical and experimental data, and then integrated into the
aeroelastic system.

In order to compare the three models, gust response analyses were carried out at varying am-
plitudes and for different flight conditions. The neural-network based ROM was trained by
employing input/output data obtained by an experimental campaign carried out for the iden-
tification of the dissipative behaviour of a box tank when set on vertical motion. A tailored
scaling procedure was then applied to account for the integration of the sloshing model into
the considered aeroelastic system. On the other side, the bouncing ball model provides a quick
and simple fluid model to implement, that is independent of scaling. This can capture coarse
dissipative characteristics in some transient conditions, but struggles in regions of low acceler-
ation excitation and the initial transient, plus introduces un-physical impulsive loading on the
system. Finally, the surrogate model provides a balance between the bouncing ball and neural
network. Requiring no calibration, it produces good dissipative behaviour with respect to the
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higher-fidelity neural-network, but over-predicts damping during the initial transient due to the
quasi-steady nature of the model.

The results showed how the three models representing vertical sloshing contributes to damp-
ening the aeroelastic response, both in pre- and post-critical conditions. More in detail, after
the onset of the dynamic instability, the all the three models are able, even with differences, to
describe the existence of limit cycle oscillations for a limited range of flight speeds.
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