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A B S T R A C T

Modelling the flow over terrain is a key element of wind resource assessments within the wind energy
industry. Existing flow modelling methods range from fast, low fidelity analytical models to time-consuming
and computationally expensive high-fidelity Computational Fluid Dynamics (CFD) software. In this work, a
Grid-Kernel Neural Network approach has been developed and used to create surrogate models to emulate the
WAsP wind resource software, by calculating the changes in wind speed and direction due to the orography and
roughness of terrain. This data-driven approach has proven to be successful in predicting the orographic speed
and direction changes at multiple heights above ground. At 100 m above ground, the mean absolute error
values were 1.6% speedup and 0.4◦ for the orographic speed and direction changes, respectively. Although
the WAsP model is a linear, potential flow solver, the findings here can be counted as a first step towards
creating a fully data-driven CFD wind resource model.
1. Introduction

When deciding on an appropriate location to situate a wind farm, a
developer must obtain an estimate of the energy which the wind farm
could produce. To do this, the wind resource over the potential sites
must be calculated, as the elevation and terrain characteristics affect
the speed and direction of the wind. A variety of flow modelling options
are available for calculating this wind resource, ranging from fast,
low-fidelity engineering models (Jensen, 1983; Frandsen et al., 2006)
to high-fidelity but computationally expensive CFD software (Song
et al., 2014; Bleeg et al., 2018; Navarro Diaz et al., 2019). Time and
computational power constraints can make engineering flow models
more attractive than full CFD. Interest in the use of artificial intelli-
gence in industrial applications is gaining momentum (Kareem, 2020),
and the wind energy industry in particular is investigating the use of
data-driven modelling to enhance or even replace current explicitly
physics-driven methods, such as blade loading calculation (Lalonde
et al., 2021) or damage detection (Regan et al., 2017), power produc-
tion optimisation (van der Hoek et al., 2020) and wind field recon-
struction (Zhang and Zhao, 2021) or speed prediction (Sharma et al.,
2020). Recently, investigations have been undertaken into applying
data-driven methods specifically to wind speed or resource calculation,
such as k-nearest neighbours approaches to predicting wind speeds
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E-mail address: helen.sheehan@bristol.ac.uk (H. Sheehan).

1 Dr. Elizabeth Traiger’s present address is: DNV Energy USA, Inc., Seattle, USA
2 Surrogate model here meaning a data-driven model that uses the same inputs and produces comparable outputs to a target model.

from terrain in Quiroga-Novoa et al. (2021) and Lee et al. (2022),
and the coupling of numerical weather prediction models with neural
networks for wind speed forecasting by Donadio et al. (2021). When ap-
propriately designed and trained, these data-driven models can perform
complex calculations more efficiently and with comparable accuracy
to the white-box models they have been trained on, for example the
MeshGraphNets model of Pfaff et al. (2020). This makes them desirable
as surrogate2 models for applications such as CFD.

In this work, machine learning models for the calculation of changes
in wind speed and direction over terrain have been created and their
performance evaluated. The Wind Atlas and Analysis Program (WAsP)
(DTU Wind Energy, 2022) has been used as the target model on which
the data-driven models were trained. While WAsP is a lower-fidelity
model than iterative CFD methods that solve the flow equations, it
is an industry-standard approach for determining the wind resource
over terrain, and its fast running times allow for the generation of
training data for a range of wind directions and a variety of terrains.
The approach developed here is a fast, grid-based neural network model
that provides estimates of the wind resource over a given terrain with
fidelity comparable to that of WAsP. This work can be seen as a first
step towards fully data-driven CFD for wind resource calculations,
which would be especially important for evaluating wind resource from
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Acronym

AGL Above Ground Level
B-Z Bessel expansion on a Zooming grid
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
DNN Deep Neural Network
GKNN Grid-Kernel Neural Network
MAE Mean Absolute Error
MSE Mean Squared Error
ReLU Rectified Linear Unit
std. dev. standard deviation
WAsP Wind Atlas and Analysis Program

a range of directions, or wind farm layout optimisation, both of which
require multiple flow calculation instances. Outside of wind resource
calculations, a fast and accurate data-driven CFD model would be useful
for the prediction of wind fields in a wind farm for e.g. wind farm con-
trol (Kheirabadi and Nagamune, 2019) or power prediction (Howland
and Dabiri, 2019).

This paper is organised as follows: Section 2 outlines the target
model and the machine learning methods used; Section 3 outlines
the data, the models’ inputs, and the evaluation techniques; Section 4
details the Convolutional Neural Networks tested; Section 5 describes
the development of and results from the novel Grid-Kernel Neural
Networks; finally, Section 6 details the conclusions made.

2. Methodology

When designing data-driven surrogates for physics-based models,
consideration must be given to the form of the target model, in this
case the WAsP software; this informs the choice of machine learning
techniques employed in the surrogate models.

2.1. WAsP

WAsP is an industry-standard software for modelling the air flow
over terrain, based on the European Wind Atlas (Troen and Lundtang
Petersen, 1989). WAsP uses a linear potential sub-model to calculate
the changes in wind speed and direction due to elevation, and a
separate sub-model for the effects of changes in terrain roughness on
the wind speeds. WAsP produces two-dimensional grids of the wind
resource at a user-specified height3 Above Ground Level (AGL). Each
of the wind resource variables is calculated for a range of constant
wind directions determined by the number of wind sectors chosen,
and are reported as dimensionless values that do not depend on the
incoming wind speed. The WAsP model has known limitations, such
as requiring shallow slopes in the terrain being analysed to satisfy
the assumption that the flow remains attached. From this point, the
changes in wind speed are referred to as speedup, the changes in wind
direction are known as turn, and the terms elevation and height refer to
terrain orography and the vertical distance of the wind resource map
AGL respectively.

The orographic sub-model of WAsP is based on the B-Z (Bessel
expansion on a Zooming grid) model of Troen (1990) (which was
developed from Jackson and Hunt’s model for air flow over a low
hill (Jackson and Hunt, 1975)) and calculates perturbations in the wind
velocity induced due to changes in elevation on a polar grid with
increasing radial spacing between grid points from the centre outwards

3 This height follows the terrain, to predict the wind resource at the hub
eights of turbines placed at any point on the terrain.
2

(a ‘‘zooming’’ grid) applied over the terrain. This model also takes the
roughness of the terrain into account, by applying an appropriate factor
to the orography-induced wind speed changes. The orographic speedup
is calculated as the ratio of the wind speed over the orography to the
wind speed over a flat terrain; the orographic turn is calculated as the
change in wind direction from the incoming wind direction.

The roughness sub-model of WAsP calculates the effect of changes
in the type of terrain on the wind speed. The transitions between areas
of different roughness lengths introduce turbulence into the flow at
(approximately) ground level, initiating an internal boundary layer,
giving a new wind profile which propagates vertically upwards with
distance downstream from the roughness change. WAsP assumes a
logarithmic wind speed profile, and uses the roughness lengths, the
number of roughness transitions in a given direction, and the meso-
scale roughness (meso-roughness) to calculate changes in wind speed.
The meso-roughness is calculated at each grid point over the terrain us-
ing a weighted sequence of the roughness changes upstream, ensuring
that more distant roughness changes have less influence on the flow at
the current location. From this, the equilibrium surface roughness to
which the geostrophic drag law applies is found, which is the meso-
roughness for the current grid point. The speedup due to roughness is
the ratio of the wind speed at each point on the grid to the wind speed
at those points if the terrain had a single meso-scale roughness length.

Jackson and Hunt (1975) compared the results of their linear po-
tential model for flow over a low hill against experimental data from
both wind tunnels and real terrain, and confirmed a reasonable match
between their calculated speedup factor and the measurements. After
incorporating Jackson and Hunt’s model into WAsP, Walmsley et al.
(1990) also conducted a series of comparisons of various wind re-
source models (including WAsP) and observations from Blashaval Hill
in Scotland, and found that for most wind directions the error in wind
speed from WAsP was less than 7%. More recent validation of the
WAsP model in Bowen and Mortensen (2004) showed that the errors
in mean wind speeds are between ±2% for a range of sites, which
is a good agreement. However, this work also suggested the use of a
ruggedness index to quantify whether the elevation of a given site is
too steep to be within the WAsP performance envelope, as the lack of
modelling of separated flow in WAsP can cause errors when predicting
the wind resource over such terrain. For the WAsP 11 version used in
this paper, the report by Mortensen (2016) recommends that WAsP’s
flow modelling errors for both horizontal and vertical extrapolation are
between 0 and 5% of the wind speed. Byrne et al. (2021) compared
WAsP 11 to LiDAR-measured data for a single wind turbine, with
errors in the mean wind speeds of mostly less than 7.5%, but were
very dependent on the height of the LiDAR and heavily affected by
surrounding buildings.

2.2. Machine learning

There is an extensive array of research into the use of machine
learning for fluid dynamics simulations, using many different types
of data-driven models from random forests (Ladický et al., 2015) to
neural networks (Lee and You, 2019). Deep Neural Networks (DNNs)
are interconnected nets of trainable ‘‘neurons’’, each of which has a
weight value; these neurons are usually organised into layers, each of
which has a bias value. These weights and biases can be optimised,
e.g. by supervised learning where the network aims to produce outputs
as close to known values as possible, given specific input data. DNNs
are typically fully-connected and feed-forward, meaning that each neu-
ron in a layer is connected to all neurons in the layers before and
after it, and that all of these connections pass information ‘‘forwards’’
(from the inputs towards the outputs), and no information is passed
‘‘backwards’’. Such machine learning models can be tuned through
the choice of architecture, activation functions, optimiser, and other

hyperparameters.
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To emulate the WAsP model, surrogate models would be required to
take in two-dimensional grids of terrain data (i.e. elevation, roughness)
and produce two-dimensional grids of the wind resource over this
area. Similarities were drawn between this task and image processing,
particularly data-driven image transformation models, as seen in Isola
et al. (2016). These are usually Convolutional Neural Networks (CNNs),
which convolve iteratively learned filters over channels of image data
to produce multiple feature layers, gradually transforming the image
data. Several papers have employed CNNs for flow field prediction,
with the calculation of flow around an aerofoil being a popular test
case. Both Bhatnagar et al. (2019) and Thuerey et al. (2020) created
CNN-based autoencoder networks to predict the steady-state velocity
and pressure fields around aerofoils, given the free stream condi-
tions and shape of the aerofoil as inputs, provided as a combination
of data grids and single numerical values. In another application of
CNNs, Lee and You (2019) used this type of network as both generator
and discriminator in a generative adversarial network for predicting
the time-varying velocity and pressure flow fields around a cylinder,
inspired by video processing networks.

An inevitable consequence of using black-box models such as neural
networks is the lack of transparency of the workings of the model,
potentially making it challenging to quantify their limits or prove their
reliability. Raissi et al. (2019) incorporated the physical equations
of training data sets into their DNNs through custom loss functions
in the training stage. These loss functions constrained the DNN to
learn the appropriate boundary conditions and constraints in order to
reliably determine correct equations, e.g. learning the Navier–Stokes
equations for a fluids data set. Including the physical basis in a data-
driven surrogate model in this way provides greater confidence to the
designers and users that the network has learned valid relationships
between the input and output data, as well as needing fewer input–
output data pairs to learn these mappings and hence train the model
(as proven in Raissi et al. (2019)).

After reviewing existing work on machine learning models for image
transformation and fluid dynamics, the spatial transformation abilities
of CNNs were clearly advantageous when handling grid-based data.
From this, Sections 3 and 4 detail the investigations carried out into
the use of CNNs as WAsP surrogate models.

3. Model set-up

Separate surrogate models for the orographic speedup, orographic
turn and roughness speedup sub-models of WAsP were developed in
this work. All neural networks described were built with the PyTorch
package.

3.1. Site data

Elevation and roughness input files were obtained for a number of
real sites, and the computer-generated Waspdale site included in the
WAsP 11 installation was added to the real training sites. Sites were
selected to give a diverse set of topographical features including lakes,
hills, valleys, and mountainous and flat areas. The terrains of sites used
for training and inference are given in Appendix A; Table 1 gives a
summary of their elevations and roughness lengths. The wind resource
maps were calculated at heights of 10 m and 100 m AGL, with a grid
resolution of 50 m in both the 𝑥 and 𝑦 directions, using the WAsP 11
software. Of the twelve direction sectors calculated for each site, nine
were used for training, two for validation, and one was held back for
final, blind testing (see Section 5.4).
3

Table 1
Site topography summary.

Site Elevation (m) Roughness length (m)

Minimum Mean Maximum Minimum Mean Maximum

1 100 178 350 0.0 0.029 0.030
2 710 786 910 0.0 0.048 0.35
3 785 849 924 0.0 0.011 0.30
4 839 919 960 0.0 0.027 0.50
5 500 808 1050 0.001 0.086 0.30
6 695 750 805 0.0 0.010 0.30
7 −4 9 32 0.0 0.30 1.5
8 360 431 766 0.0 0.23 0.30
9 620 661 700 0.0 0.020 0.35
10 585 650 692 0.0 0.024 0.35
11 180 200 230 0.0 0.088 0.50
12 176 453 720 0.0 0.037 0.50
13 825 896 951 0.0 0.010 0.50
14 570 592 685 0.0 0.045 0.50

3.2. Inputs

For the orographic speedup and turn models, the terrain elevation
is evidently a key input, and roughness is also included in the WAsP
calculations. Hence, the machine learning models investigated here
used combinations of the terrains’ elevation, elevation gradients and
roughness as inputs. To incorporate directional information into the
inputs, the elevation gradients were transformed into their components
parallel and perpendicular to the wind direction. The roughness lengths
over the training sites varied between 0.0 m (i.e. water) and 1.5 m
(e.g. for tall trees), the elevation gradient values ranged between
approximately ±1.0, and the elevation ranged from around −4 m to
1050 m (see Table 1). The elevation gradients were calculated via first
order central difference over the grid spacing in both 𝑥 and 𝑦 directions,
with first order forward or backward differences as required at the grid
edges. To prevent model bias towards the larger inputs, the elevation
values were normalised using the min–max technique:

𝑧𝑚𝑚 =
𝑧 − 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛
(1)

here z represents elevation, 𝑧𝑚𝑚 is the normalised elevation, and the
inimum (𝑧𝑚𝑖𝑛) and maximum (𝑧𝑚𝑎𝑥) elevations were determined over

ll sites used for training. The range of normalised elevation values
as then between ±1.0, giving a similar range of values for each of

he three input variable types. Where wind direction was included as a
odel input, it was also normalised to between 0.0 and 1.0 via:

𝑛𝑜𝑟𝑚 = 𝑑
360

(2)

where d is the wind direction in ◦ and 𝑑𝑛𝑜𝑟𝑚 is the normalised wind
direction.

As described in Section 2.1, the roughness speedup is dependent on
the roughness, meso-roughness and number of roughness changes in
a given terrain area. While the roughness and meso-roughness lengths
ranged between 0.0 m and 1.5 m, roughness changes are integer num-
bers of transitions ‘‘seen’’ by the wind in a given direction, and can be
up to 10 transitions per direction sector. Similar to the normalisation of
the elevation inputs for the orographic speedup models, the roughness
and meso-roughness lengths were transformed to have similar magni-
tudes to the number of roughness changes, to prevent any bias towards
one type of input. Based on the equations of the roughness speedup
sub-model in Troen and Lundtang Petersen (1989), the roughness and
meso-roughness were transformed to:

𝑟𝑡 = ln
(1
𝑟

)

(3)

where r is the roughness or meso-roughness, and 𝑟𝑡 is the transformed
value. Additionally, the difference between these transformed values
was included as an input in some cases (specified in the descriptions of
the models).
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Fig. 1. Results from the most promising Convolutional Neural Network for predicting orographic speedup at 100 m AGL; for (top–bottom) Sites 1 & 2, shows (left–right): WAsP
calculated speedup; CNN predicted speedup; difference (CNN-WAsP). Speedup values and differences are given in % speedup; speedup colour scales are based on WAsP outputs.
(Note that the Site 1 data shown here was part of the training data rather than the validation data, but is included here for consistency.).
Table 2
Error metrics for the orographic speedup GKNN models when compared to WAsP. All
errors in % speedup.

Height (m AGL) MAE Error std. dev. Minimum error Maximum error

10 1.90 2.79 −51.3 48.4
100 0.652 1.04 −14.7 14.6

Table 3
Error metrics for the orographic turn GKNN models when compared to WAsP. All errors
in ◦ clockwise turn.

Height (m AGL) MAE Error std. dev. Minimum error Maximum error

10 0.898 2.43 −179 180
100 0.397 0.635 −11.9 10.3

Table 4
Error metrics for the roughness speedup GKNN models when compared to WAsP. All
errors in % speedup.

Height (m AGL) MAE Error std. dev. Minimum error Maximum error

10 0.768 1.45 −23.0 24.1
100 0.517 0.980 −10.8 8.80

Table 5
Error metrics for inference on the final GKNN models compared to WAsP.

Height (m AGL) MAE Error std. dev. Minimum error Maximum error

Orographic speedup (% speedup)

10 3.68 7.04 −103 111
100 1.64 3.01 −31.1 23.8

Orographic turn (◦ turn)

10 1.39 3.09 −179 176
100 0.446 0.786 −9.77 9.50

Roughness speedup (% speedup)

10 0.472 1.16 −18.2 25.2
100 0.384 0.953 −9.91 11.7

3.3. Performance metrics

To compare the performance of the different surrogate models
tested, the output maps produced by each model were evaluated.
Several statistical metrics were calculated, including the minimum and
4

maximum error, the Mean Absolute Error (MAE):

MAE = 1
𝑁

( 𝑁
∑

𝑖=1
|𝑣𝑖 − 𝑣𝑖|

)

(4)

and the standard deviation (std. dev.) of errors:

std. dev. =

√

√

√

√
1
𝑁

( 𝑁
∑

𝑖=1
|(𝑣𝑖 − 𝑣𝑖) − 𝜇𝑒|

2

)

(5)

where N is the total number of output points, 𝑣𝑖 is the surrogate model-
predicted speedup or turn at a single coordinate, 𝑣𝑖 is the equivalent
WAsP calculated speedup or turn, and 𝜇𝑒 is the average error. Hence,
for a set of output wind resource grids produced by a data-driven
model, the MAE is the sum of the absolute differences between the
WAsP-calculated and predicted resource value (speedup or turn) at
each coordinate, divided by the number of coordinate points evaluated.
The standard deviation is calculated by assuming that the differences
between the WAsP and data-driven values over all coordinates can be
fitted to a normal distribution. The results presented in Tables 2–5, de-
scribed later in the paper, are calculated over all coordinate points for
the validation (or inference) sites and directions considered. While it is
difficult to evaluate two-dimensional data using single numbers, these
metrics are useful for defining the spread of errors, and diagnosing
where the models are generally under- or over-predicting.

Note that the model outputs plotted here and error metrics pre-
sented represent the validation data, unless otherwise specified.

4. Convolutional Neural Networks

Following the review of existing research on machine learning for
fluid dynamics in Section 2.2, the initial tests into creating surrogate
wind speedup models over terrain used CNNs in autoencoder-style
architectures, based on those of Bhatnagar et al. (2019) and Thuerey
et al. (2020), with small filter sizes relative to the input grids.

4.1. Orographic speedup results

Using autoencoder-style CNNs to predict the orographic speedup
over a terrain did not produce successful results, even after testing a
range of model hyperparameters such as filter size, number of network
layers, number of feature channels and combinations of input variables.
The most promising results are shown in Fig. 1. The speedups pro-
duced by this CNN were heavily influenced by the dominant elevation
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Fig. 2. Results from the most promising Convolutional Neural Network for predicting roughness speedup at 10 m AGL; for (top–bottom) Sites 1 & 2, shows (left–right): WAsP
calculated speedup; CNN predicted speedup; difference (CNN-WAsP). Speedup values and differences are given in % speedup; speedup colour scales are based on WAsP outputs.
features, such as the hill in Site 2. However, the more complex and
detailed changes in the wind speed due to more gradual changes in the
elevation (e.g. the hill and valley slopes in Site 1) were not captured.
Following on from the initial CNN surrogate models, a U-Net (Ron-
neberger et al., 2015) style CNN architecture was investigated; the
U-Net structure is a modified form of an autoencoder network, with
‘‘skip’’ connections between corresponding encoder and decoder layers.
These connections give the network an ability to ‘‘remember’’ input
data even in deeper layers, which was theorised to be similar to the
relation between orographic speedup and terrain elevation, but these
models were unsuccessful.

A possible reason for the lack of success here could be the com-
paratively small number of sites that were available. For context, the
U-Net style aerofoil flow model of Thuerey et al. (2020) was trained
on ∼27,000 sets of simulation data; this compares to ∼250 different
maps of each output variable available here. Classic image processing
data augmentation techniques such as ‘‘zooming’’ or rotating were not
possible here as these would require the input and output data to be
re-calculated in WAsP to ensure physical feasibility. In total around
250 CNN architectures and training data combinations were tested for
predicting orographic speedup at various heights.

4.2. Roughness speedup results

In the same vein, a range of CNNs were tested to predict roughness
speedup grids. The filter sizes used were relatively small compared
to the grid size (as in Bhatnagar et al. (2019)), and the number of
layers, channels and filters were investigated. The most promising
CNN results for roughness speedup are seen in Fig. 2 for 10 m AGL;
note that in this CNN, the input grids were rotated such that the
incoming wind direction was always 0◦. Results from 10 m AGL are
shown in this section rather than 100 m AGL as these were the best
performing cases out of models trained at each height. This model
was able to scale the outputs to the correct range of speedup values,
but did not learn to apply the changes in wind speed downstream of
roughness transitions. This was exacerbated in the tests at 100 m AGL,
with most of the CNNs collapsing and unable to generate output grids
that varied significantly from the input grids. As with the orographic
speedup CNNs, the comparatively small training data set could be a
significant factor in the lack of success with this approach. In total
around 100 CNN architectures and training data combinations were
tested for predicting roughness speedup at various heights.
5

5. Grid-Kernel Neural Networks

From the tests detailed above, training CNNs in an autoencoder
architecture on WAsP orographic and roughness speedups did not
produce accurate or robust surrogate models. A new approach, called
the Grid-Kernel Neural Network (GKNN), was therefore developed, and
is presented here. A schematic of the GKNN approach is shown in Fig. 3,
with the steps being:

1. From terrain elevation and roughness maps, calculate the ele-
vation gradients via finite difference and the wind resource and
associated parameters with WAsP;

2. (a) Take in maps of relevant input and output data;
(b) Split these maps into as many sub-grids (or kernels) of a

specified size (e.g. 15 × 15 grid points for inputs, single
point for output) as possible;

3. Use a given pattern of points from each kernel, as well as infor-
mation such as wind direction, as inputs and target outputs for
training a fully-connected, feed-forward Deep Neural Network.

The kernels in this GKNN approach are analogous to filters in a CNN,
but with a direct connection between the size of the kernels applied
to the input variables and the output values produced by the network.
Finding the optimum sub-grid size applied to a particular input in a
GKNN could be interpreted as the radius of influence of that input
variable on the output, e.g. the radius of influence of the elevation on a
single orographic speedup point. This optimal kernel size was intended
to inform filter sizes in CNNs, in addition to being a generally useful
finding.

5.1. Orographic speedup results

To determine an optimal input kernel size for calculating orographic
speedup values, a series of GKNN tests were completed with varying
input sub-grid sizes and a single output point, with all other parameters
(training data, number of neurons and layers, activation functions,
optimiser and loss function) kept the same. Fig. 4 shows the results
of these tests for Site 1 at 100 m AGL, using either the normalised
elevation or the elevation gradient components parallel to the wind
as input (as well as the normalised wind direction). The smallest
input kernel sizes lacked the capacity to transform the shapes of the
input maps, but did scale the values to match the orographic speedup
magnitudes. At the largest input sub-grid sizes in Fig. 4, the optimum
size had been surpassed, and the model outputs began to break down
into noise. However, at the optimum kernel size of around 1.2 km
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Fig. 3. Flow chart of the Grid-Kernel Neural Network process. Stage 1 (top): input and output map calculation. Stage 2 (bottom left): (a) splitting maps into kernels; (b) taking
data points from kernels. Stage 3 (bottom right): training a Deep Neural Network. ‘‘Oro.’’ and ‘‘Rough.’’ are shorthand for ‘‘Orographic’’ and ‘‘Roughness’’ respectively.

Fig. 4. Comparison of input kernel sizes for GKNN models predicting orographic speedup at 100 m AGL, using (top) min–max normalised elevation or (bottom) the component of
elevation gradient parallel to the wind direction as inputs, and using data from Site 1 only. From left to right: input maps; target output map; GKNNs with 0.2 km square input
kernel; GKNNs with 1.2 km square input kernel; GKNNs with 2.7 km square input kernel. Speedup values are in % speedup; speedup colour scales are based on WAsP outputs.
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Fig. 5. Results from the final GKNN model for predicting orographic speedup at 10 m AGL; for (top–bottom) Sites 1–4, shows (left–right): WAsP calculated speedup; GKNN
predicted speedup; difference (GKNN-WAsP). All speedup and difference values are in % speedup; speedup colour scales are based on WAsP outputs.
side length, using elevation gradient as input, the model had sufficient
information (despite having a sparse pattern of points from the input
kernel) to give recognisable predictions of the orographic speedup in
terms of both shape and scale across the whole terrain.

Using this GKNN approach and kernel size of 1.2 km, a compre-
hensive set of investigations into the input combinations, DNN archi-
tectures, training epochs and methods to augment the training data
were carried out, but for brevity are not described here.4 For the final
models, separate models were trained on orographic speedup data at
10 m and 100 m AGL, each using a DNN with 500 neurons split over
10 layers, 1-D batch normalisation (Ioffe and Szegedy, 2015) followed
by Rectified Linear Unit (ReLU) activation after each layer, and a single
output point. Each network used Mean Squared Error (MSE) loss and
was trained for between 50 and 60 epochs, stopping at the best epoch,
using data from eleven sites (Sites 1–11). The results can be seen in
Fig. 5 (the results at 100 m AGL are given in Appendix B), and the
error metrics for both heights are given in Table 2. Given that the
same model architecture was used for each height, this kernel size and
pattern contains enough information to give decent predictions of the
orographic speedup at multiple heights. The GKNNs produced WAsP-
style orographic speedups with good accuracy over flat, non-complex
terrain areas with gradual, small changes in speedup (e.g. MAE of
less than 1% speedup for Site 4 shown in Fig. 5), and had reasonable
predictions of the speedups in valleys and around hills in terms of
both scale and shape. In WAsP, the orography-based speedup (and
turn) maps are calculated over zooming, polar grids of points, which
is similar to the kernel approach of these GKNN models; this may be a
factor in the success of this method.

4 The MSc thesis, Sheehan (2022) presents the details and results of these
investigations.
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In some complex terrain areas the model did not achieve the most
extreme speedups observed in the target (WAsP) outputs, such as the
increase in speed over the tops of hills, and struggled around areas of
sharp changes in elevation such as the valley feature in the top right
of Site 3 in Fig. 5. The effect of the valley edges on the surrounding
speedups were seen in the model predictions, but not in the WAsP
speedup map; these sharp changes in elevation seemed to dominate
multiple sub-grids taken in their vicinity. Small-scale details were also
sometimes ‘‘overlooked’’ by the GKNN model (e.g. around the lower
valley of Site 3 in Fig. 5), potentially due to the spacing that exists
between adjacent input kernel points. If, similarly to a CNN, a denser
pattern of points within a kernel were used as inputs to the DNN of
the GKNN (which would require a significant increase in computing
power) this might give the surrogate model outputs better resolution.
By area, much of the terrain data provided in training was flat and with
low roughness lengths, which may be the cause of some overpredicted
speedup values over areas of high roughness in otherwise flat terrain
(e.g. Site 4 in Fig. 5).

After determining these optimal kernel sizes for GKNNs, more CNNs
were trialled using filters of this size. The outputs from these CNNs were
inferior to those from the GKNNs, so the CNNs were not investigated
further after this point.

5.2. Orographic turn results

As the GKNN models for predicting orographic speedup proved to
be successful, a similar approach was used to create surrogate models
for the orographic turn. The orographic turn is the deflection of the
wind due to the orography of the terrain, e.g. air flowing around
hills or following valleys. Firstly, various kernel sizes for the GKNN
were tested using single sites at heights of 10 m and 100 m AGL. The
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Fig. 6. Comparison of input kernel sizes for GKNN models predicting orographic turn at 10 m AGL, using data from Site 1 only. From left to right: WAsP output; GKNN output
with single point input; GKNN output with 1.2 km square input kernel; GKNN output with 3.2 km square input kernel. Turn colour scales are based on WAsP outputs.
inputs for these tests were the normalised wind direction, min–max
normalised elevation, elevation gradient parallel to the wind direction,
and the roughness; the output was the orographic turn value at the
centre of the sub-grid in ◦. All parameters and settings other than the
input kernel size were kept constant. From this investigation (Fig. 6
shows the results for Site 1 at 10 m AGL), the overall optimum kernel
size was found to be around 1.2 km side length for both heights, the
same as for the orographic speedup GKNN models (Section 5.1). As
with the orographic speedup GKNN development, there were some
additional investigations into the appropriate GKNN parameters for the
final orographic turn models, which are not described here but can be
found in Sheehan (2022).

Using the optimal kernel size of 1.2 km, data from Sites 1–11
and the settings described in Section 5.1, a model for predicting the
orographic turn at 10 m AGL was trained, with the outputs presented
in Fig. 7. These predictions generally showed good matches to WAsP in
terms of both scale and shape of the turn maps, with MAE of less than
1◦. However there were some areas of error around large orographic
features such as the prominent hill in Site 1; by contrast, in Site 4 the
errors were relatively uniform across the (flat) terrain. The performance
metrics for this model are given in Table 3.

Using this GKNN model at 10 m AGL, there were some outlying
large errors in the turn values, as seen in the range of errors in Table 3.
The most extreme errors of around ±180◦ occurred in the site displayed
in Fig. 8, in a valley feature to the right hand side of the site. This is
a large change in numerical values of the turn but a very small change
in the actual wind direction. It is therefore understandable that the
model might struggle to predict this sudden change in the direction,
given that this discrete jump in values is not present in any of the
input maps. There is also a question on how feasible a turn of ±180◦

in this narrow valley would be in reality. Only one other site (Site
8, Fig. A.8) has errors outside of approximately ±15◦, and these are
concentrated around a narrow gap between two peaks through which
WAsP calculates the flow is turned significantly. The GKNN’s tendency
to ‘‘smooth out’’ some small-scale flow features may have been the
cause of the errors at this site.

A kernel size of 1.2 km side length was used to train a separate
GKNN to predict the orographic turn at 100 m AGL, with the same
architecture and inputs as for 10 m AGL. The errors for this model
(Table 3) were smaller overall than those of the 10 m AGL orographic
turn model, which was expected as the terrain has less influence on
the flow with increasing height, giving smaller magnitudes of turn.
Visually, the orographic turn maps produced by the GKNN were similar
to those calculated by WAsP, but the magnitude of the orographic turn
was generally slightly under-predicted, with some small areas of high
turn not captured in the surrogate model. Given the similarities to the
10 m AGL model, these results have not been included here but are
presented in Appendix B.
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5.3. Roughness speedup results

Having found an optimal kernel size for orographic speedup and
turn GKNN surrogate models, the next stage was to investigate the
suitability of the GKNN approach for roughness speedup calculations.
Again, a range of input kernel sizes were tested, using the trans-
formed roughness and meso-roughness, number of roughness tran-
sitions and the normalised wind direction as inputs, and a single
roughness speedup output point; the results of these tests are shown
in Fig. 9. At 10 m AGL, the optimal kernel size was found to be
around 1.2 km square, which was the same as for the orographic
speedups at this height. At 100 m AGL, a larger kernel size of 3.2 km
square gave results most closely resembling the ground truth roughness
speedups. Given that the effect of a roughness transition on the wind
speed propagates vertically upward with downstream distance from the
transition, it is sensible for a larger kernel size to be more appropriate
for speedups at a greater height above ground. Although not presented
here, further experiments with GKNN architectures were carried out
and are detailed in Sheehan (2022).

As with the orographic speedup and turn surrogate models, the final
GKNN model for roughness speedups at 10 m AGL used an input kernel
of 1.2 km square, and a DNN formed of 500 neurons split over 10
layers, with batch normalisation and ReLU activation after each layer,
and a single output point. This model was trained using data from seven
sites5 (Sites 1, 2, 4, 5, 7, 8 and 11), for between 50 and 60 epochs,
using MSE loss. Note that for consistency, Site 3 is shown in Figs. 10
and 11, and the same validation sectors from Sites 1–11 as for the
orographic speedup and turn GKNNs are used to calculate the metrics
in Table 4. The inputs to the final model were the normalised wind
direction, number of roughness changes, natural log of the inverse of
the roughness and meso-roughness, and the difference between these
variables. The results from the GKNN for roughness speedup at 10 m
AGL are shown in Fig. 10, and the error metrics are given in Table 4.
In Fig. 10, the GKNN-predicted roughness speedups for Sites 1–4 were
very similar to their WAsP equivalents in terms of form and scale,
but the GKNN averaged out some of the detailed areas of high or low
speedup, such as those in the top left of Site 4. In the results from Site
1 in particular, it can be seen that the GKNN model learned to apply
changes in wind speed downwind of roughness transitions, although
in Site 3, this ‘‘roughness persistence’’ was not as pronounced in the
GKNN output as in WAsP. However, these results were very promising
overall, with good matches between the WAsP and GKNN outputs for
a range of terrains, and MAE of less than 1% speedup.

To predict roughness speedups at 100 m AGL, the optimum GKNN
configuration found consisted of a kernel size of 3.2 km square, and the
same architecture and parameters as for the 10 m AGL model described
above. The roughness speedup predictions for Sites 1–4 are shown in

5 Due to the higher number of input variables, fewer sites could be used
compared to training the orographic models.
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Fig. 7. Results from the final GKNN model for predicting orographic turn at 10 m AGL; for (top–bottom) Sites 1–4, shows (left–right): WAsP calculated turn; GKNN predicted
turn; difference (GKNN-WAsP). All turn and difference values are in ◦ clockwise; turn colour scales are based on WAsP outputs.
Fig. 8. Orographic turn output from the final GKNN model at 10 m AGL, for Site 5; the detail shown is of a valley with high orographic turn values. Left–right: terrain; WAsP
output; GKNN output; difference (GKNN-WAsP).
Fig. 11, and the error metrics are given in Table 4. Most significantly,
the area of speed increase due to the effect of the lake in Site 1 was
applied at approximately the correct position by the GKNN, which the
CNNs (Section 4.2) failed to learn. In Site 2, where the terrain has a
much more complex roughness map, the GKNN model produced less
believable outputs, but the reason for this remains unclear. In Site 4
the roughness speedups were more significant than the corresponding
orographic speedups, as the terrain is relatively flat but has an area
of large roughness lengths. This was captured well by the roughness
speedup GKNN model, in contrast to the errors in the predictions of
orographic speedups over this terrain seen in Fig. 5.

The WAsP roughness sub-model is based on the propagation of an
internal boundary layer, which is significantly different to the grid-
based orography sub-model. The GKNN method does not resemble
9

WAsP’s roughness speedup calculation as strongly as it does the oro-
graphic speedup, which is a possible explanation for the difference
in performance between GKNN models for roughness and orographic
speedup at 100 m AGL.

The roughness speedup GKNN at 100 m AGL was thought to be
affected by overfitting, as seen from the loss curves for training and
validation in Fig. 12. To prevent overfitting, the commonly used tech-
niques of weight regularisation and dropout were applied to models
preceding the final GKNN, with results shown in Fig. 13. From this
figure it is evident that neither technique improved on the predictions
from the baseline model (i.e. no dropout or weight regularisation), and
so these adaptions were not included in the final GKNN model for
roughness speedup at 100 m AGL.
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Fig. 9. Comparison of different input kernel sizes for roughness speedup GKNN models at (top) 10 m AGL and (bottom) 100 m AGL. From left to right: WAsP calculated speedups;
GKNNs with 1.2 km square input kernel; GKNNs with 2.2 km square input kernel; GKNNs with 3.2 km square input kernel. All speedup values are given in % speedup; speedup
colour scales are based on WAsP outputs.
Fig. 10. Results from the final GKNN model for predicting roughness speedup at 10 m AGL; for (top–bottom) Sites 1–4, shows (left–right): WAsP calculated speedup; GKNN
predicted speedup; difference (GKNN-WAsP). All speedup and difference values are in % speedup; speedup colour scales are based on WAsP outputs.
5.4. Inference

Once final configurations had been decided for each of the GKNN
models by reviewing the outputs and metrics from the validation data
sets, inference was undertaken on these surrogate models using data
10
from three new sites. Although one wind direction sector had been held
out from each training site for inference, the orographic speedup and
turn maps for opposing direction sectors were nearly perfect negatives
of each other, and so it was thought to be a better test of the models’ ca-
pabilities to apply them to previously unseen sites. The sites chosen for
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Fig. 11. Results from the final GKNN model for predicting roughness speedup at 100 m AGL; for (top–bottom) Sites 1–4, shows (left–right): WAsP calculated speedup; GKNN
predicted speedup; difference (GKNN-WAsP). All speedup and difference values are in % speedup; speedup colour scales are based on WAsP outputs.
Fig. 12. Loss curves for final GKNN for roughness speedup at 100 m AGL.
these blind tests consisted of a mountainous terrain (Site 12, Fig. A.12),
terrain with a single valley feature (Site 13, Fig. A.13), and a flat terrain
with significant areas of roughness (Site 14, Fig. A.14). The results for
Site 13 for each output variable are shown in Fig. 14 at both 10 m
11
and 100 m AGL, along with the WAsP calculated equivalents. The error
statistics are given in Table 5.

The results from the new sites were consistent with the results
from validation discussed in Sections 5.1 to 5.3. For the orographic
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Fig. 13. Application of techniques to prevent overfitting in a GKNN model at 100 m AGL, for Site 1 (top) and Site 4 (bottom), from (left–right): WAsP; GKNN with no dropout
or weight regularisation; GKNN with dropout of 10%; GKNN with weight regularisation with decay factor 0.1. Speedup colour scales are based on WAsP outputs.

Fig. 14. Results from inference on the final GKNN models on Site 13. Showing (left–right): WAsP calculated output at 10 m AGL; GKNN prediction at 10 m AGL; WAsP calculated
output at 100 m AGL; GKNN prediction at 100 m AGL. Output variables plotted are (top–bottom): orographic speedup; orographic turn; roughness speedup. All speedup values
are in % speedup; all turn values are in ◦ clockwise; speedup and turn colour scales are based on WAsP outputs.
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Fig. 15. Distributions of errors in the GKNN predictions over Sites 12–14, for (top) orographic speedup at 10 m AGL and (bottom) orographic turn at 10 m AGL. All speedup
values are in % speedup; all turn values are in ◦ clockwise. Bar colours represent the degree of over- (red) or under-prediction (blue), with more intense colours for larger errors.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
speedup and turn, the GKNN outputs were a good match overall to the
WAsP calculated data over the various terrains, with the shapes and
scales of the majority of speedup and turn values close to the ground
truth. As outlined in Section 5.1, the orographic speedup surrogate
models performed well where the speedup was closely correlated to
the elevation or its gradient (e.g. decreases in speed through valleys
as shown in Fig. 14 for both heights), but could not match the most
extreme changes in speed. Both the orographic speedup and turn surro-
gate models incorrectly predicted large changes in the wind speed and
direction respectively over the area of high roughness in the otherwise
flat Site 14 (see Fig. A.14); this behaviour was also seen in Site 4 of the
validation data, e.g. Fig. 5. Despite the large maximum and minimum
13
errors given in Table 5 for orographic speedup and turn at 10 m AGL,
Fig. 15 shows that these are outliers and that the majority of errors are
very small. The predictions for the roughness speedup over these three
new sites were very promising at both 10 m and 100 m AGL, with the
MAE decreasing in both cases compared to the validation sites. This
is unusual, and likely due to the (unintentional) choice of sites which
contain mostly uniform roughness, with small, well-defined areas of
differing roughness lengths (e.g. the valley shown in Fig. A.13) at
which the surrogate models excelled. Despite this, there is still evidence
that the GKNNs have not fully learned how to apply large areas of
‘‘roughness persistence’’, as seen in Fig. 14 at 100 m AGL.
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6. Conclusions

In this work, grid-based machine learning techniques were used to
create data-driven models for the calculation of terrain-induced wind
velocity changes, with the aim of emulating the WAsP orographic and
roughness sub-models at two distinct heights above ground. Convolu-
tional Neural Networks, while successful as surrogate models for other
fluid dynamics simulations, proved to be unsuitable for calculating
the orographic and roughness speedups. Hence, a Grid-Kernel Neural
Network method was developed here, which takes points from a given
kernel size and pattern (analogous to a filter in a CNN) over various
terrain data maps (as inputs) and speedup or turn maps (as outputs).

Separate GKNNs were created and trained for the orographic
speedup, orographic turn and the roughness speedup, at heights of
10 m and 100 m AGL. The GKNNs for orographic speedup produced
outputs which closely matched the WAsP speedup maps at both heights,
with MAE of 3.7% and 1.6% speedup at 10 m and 100 m AGL re-
spectively. The surrogate models performed best where the form of
the speedup was closely related to the input terrain (e.g. air flowing
through valleys), while some small areas of speedup were not captured
in the predictions. Using GKNNs as surrogate models for orographic
turn showed similar results, and correlated well to the equivalent WAsP
values over most sites at both heights (with MAE of 1.4◦ at 10 m
AGL and 0.4◦ at 100 m AGL), particularly where there were clear
influences of the terrain on the turn values. In WAsP, the effect of
roughness transitions on the wind speed propagates vertically upward
with downstream distance, unlike orography-induced changes which
are influenced by close terrain features. This made creating GKNN
models for roughness speedup more challenging, as different optimal
kernel sizes were found for the two different heights; the final models
both had MAE of less than 1% speedup. While the GKNNs did learn to
apply roughness speedups downstream of transitions, there were some
sites over which the GKNN produced poor predictions at 100 m AGL,
with no easily discernible reason for this other than possible overfitting.

Future work could focus on integrating the predictions from the
GKNNs for three separate output variables and different heights into
a single wind resource calculation at a user-specified height AGL,
possibly by interpolating between defined heights. More work could
also be done on the prevention of overfitting in the models, as they
showed signs of this issue, potentially through training with more sites,
additional input variables, or further investigation into dropout and
regularisation. Finally, given the aim of this work was to produce a
‘‘proof-of-concept’’ data-driven surrogate wind resource model, the next
step would be to apply the novel GKNN technique to CFD wind resource
data.
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Appendix A. Terrain maps

See Figs. A.1–A.14.

Appendix B. Additional validation results

B.1. Orographic speedup

See Fig. B.1.

B.2. Orographic turn

See Fig. B.2.
Fig. A.1. Elevation (left) and roughness (right) for Site 1 (Waspdale).
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Fig. A.2. Elevation (left) and roughness (right) for Site 2.

Fig. A.3. Elevation (left) and roughness (right) for Site 3.

Fig. A.4. Elevation (left) and roughness (right) for Site 4.
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Fig. A.5. Elevation (left) and roughness (right) for Site 5.

Fig. A.6. Elevation (left) and roughness (right) for Site 6.

Fig. A.7. Elevation (left) and roughness (right) for Site 7.
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Fig. A.8. Elevation (left) and roughness (right) for Site 8.

Fig. A.9. Elevation (left) and roughness (right) for Site 9.

Fig. A.10. Elevation (left) and roughness (right) for Site 10.
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Fig. A.11. Elevation (left) and roughness (right) for Site 11.

Fig. A.12. Elevation (left) and roughness (right) for Site 12.

Fig. A.13. Elevation (left) and roughness (right) for Site 13.
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Fig. A.14. Elevation (left) and roughness (right) for Site 14.

Fig. B.1. Results from the final GKNN model for predicting orographic speedup at 100 m AGL; for (top–bottom) Sites 1–4, shows (left–right): WAsP calculated speedup; GKNN
predicted speedup; difference (GKNN-WAsP). All speedup and difference values are in % speedup; speedup colour scales are based on WAsP outputs.
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Fig. B.2. Results from the final GKNN model for predicting orographic turn at 100 m AGL; for (top–bottom) Sites 1–4, shows (left–right): WAsP calculated turn; GKNN predicted
turn; difference (GKNN-WAsP). All turn and difference values are in ◦; turn colour scales are based on WAsP outputs.
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