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Role of boundary conditions in the full counting statistics of topological defects after crossing
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In a scenario of spontaneous symmetry breaking in finite time, topological defects are generated at a density
that scales with the driving time according to the Kibble-Zurek mechanism (KZM). Signatures of universality
beyond the KZM have recently been unveiled: The number distribution of topological defects has been shown
to follow a binomial distribution, in which all cumulants inherit the universal power-law scaling with the quench
rate, with cumulant rations being constant. In this work, we analyze the role of boundary conditions in the
statistics of topological defects. In particular, we consider a lattice system with nearest-neighbor interactions
subject to soft antiperiodic, open, and periodic boundary conditions implemented by an energy penalty term.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal
scaling with the quench rate that is independent of the boundary conditions except for an additive term, which
becomes prominent in the limit of slow quenches, leading to the breaking of power-law behavior. We test our
theoretical predictions with a one-dimensional scalar theory on a lattice.
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I. INTRODUCTION

In the past few decades, progress in engineering and con-
trol of experimental quantum platforms has enabled the study
of phenomena previously limited to the realm of theory [1–5].
A prominent example is the experimental implementation of
the paradigmatic quantum Ising model in different settings,
which include cold atoms [6,7], trapped ions [8], and optical
lattices [9], among other examples. Naturally, progress has
not been restricted to quantum systems. New advances have
been made in the classical domain, which have made it possi-
ble to explore critical phenomena in and out of equilibrium
in Coulomb crystals [10–15], convection systems [16,17],
colloidal monolayers [18], superconducting films [19–21], su-
perconducting loops [22], Josephson junction [23,24], liquid
crystals [25–27], multiferroic materials [28], and hexagonal
manganites [29], among others.

A major application of these systems has been the advance
of nonequilibrium physics. In this context, the Kibble-Zurek
mechanism (KZM) describes the nonequilibrium dynamics
across a continuous phase transition [30–35]. This offers a
paradigmatic scenario for spontaneous symmetric breaking as
a result of driving the system through a critical point in a
finite time τQ. The divergence of the relaxation time in the
vicinity of the critical point, known as critical slowing down,
leads to the breakdown of adiabatic dynamics and the cre-
ation of topological defects. According to the KZM, the mean
number of topological defects scales as 〈n〉 ∝ ξ̂ (t̂ )−D, where
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D denotes the dimensionality of the system (or the effective
dimension, i.e., the spatial dimension minus the dimension-
ality of the formed topological defects). This power-law
behavior has been widely studied in both homogeneous
[35–41] and inhomogeneous systems [10,11,42–46]. Recent
theoretical and experimental works have shown scaling rela-
tions of the defect statistics beyond the KZM [47–52].

Yet, experimental platforms often have limitations in the
system size and can be dominated by boundary effects.
Similarly, theoretical studies often rely on convenient simplifi-
cations (e.g., the thermodynamic limit and periodic boundary
conditions). As a consequence, it is desirable to derive theo-
retical predictions taking these effects into full consideration.
The effect of boundary conditions (BCs) has been recurrently
analyzed in different branches of physical science. In quan-
tum and classical lattice systems, boundary effects have been
studied in conjunction with different techniques [53–58]. This
is particularly relevant in the context of defect formation, as
considered within the celebrated KZM. However, the role that
different BCs play in the KZM has not yet been systematically
addressed.

In this work, we analyze the role of boundary conditions
in the number distribution of topological defects, and we
explore the fate of universal signatures beyond the KZM. We
generalize the theoretical setting introduced in [49] to account
for the role of the BC. As a reference system, we consider a
one-dimensional lattice system with nearest-neighbor interac-
tions. BC effects are induced by a finite interaction term in the
Hamiltonian. We focus on three kinds of boundary conditions:
antiperiodic (APBCs), free (FBCs), and periodic (PBCs). The
case of a periodic lattice, often preferred in theoretical stud-
ies, is translationally invariant. This symmetry allows for the
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existence of conserved quantities, for example, momentum,
magnetization, vorticity, among others [59–61]. In this case,
topological defects are created in pairs, a feature shared by
APBCs. Therefore, the distribution of topological defects is
restricted to even values, regardless of the system size. By
contrast, FBCs allow for both an even and odd number of
defects. Additionally, we derive the scaling properties for the
cumulants of the topological defect distribution. We show that
the cumulants of the distribution of the number of formed de-
fects across a phase transition exhibit a universal scaling with
respect to the finite rate 1/τQ, irrespective of the considered
BC. Yet, we find that different BCs lead to cumulants that
differ by a constant term.

The paper is organized as follows: Section II A presents
the theoretical and numerical framework. We give a brief
overview of the KZM and describe the testbed model moti-
vating our theoretical predictions. In Sec. III, we characterize
the distribution of topological defects as a function of the
BC. Specifically, we posit that the distribution of topological
defects is a binomial distribution conditioned on unrestricted
or restricted outcomes, depending on the BC. In Secs. IV A
and IV B, we derive the scaling relations for the high-order
cumulants for FBCs and PCBs/APBCs, respectively. Finally,
we present the conclusions.

II. THEORETICAL AND NUMERICAL FRAMEWORK

In the first part of this section, we review the KZM [30–35].
Since its conception in the mid-1970s, the KZM has been the
paradigmatic framework to describe the dynamics of a con-
tinuous phase transition, in which symmetry breaking leads
to the formation of topological defects (e.g., vortices in a
superfluid or kinks in a spin chain). Its key testable prediction
is that the average number of topological defects scales as a
universal power law with the quench rate, that is, the rate at
which the critical point is crossed. In the second part of this
section, we introduce a conventional model as a testbed for the
KZM and its extensions. The model describes the structural
transition of a linear chain with a doubly degenerate zigzag
phase in the low-symmetry phase [10,62].

A. Kibble-Zurek mechanism

The nonequilibrium dynamics in a scenario of spontaneous
symmetric breaking is described by the KZM [30–35]. The
symmetry breaking is the result of driving the system through
a critical point across a second-order quantum phase transi-
tion. The system is controlled by tuning an external control
parameter λ with a value of λc at the critical point. The phase
transition leads to the power-law divergence of the correlation
length ξ and the relaxation time τ . In the neighborhood of the
critical point, these quantities scale as

ξ = ξ0|ε|−ν, τ = τ0|ε|−zν, (1)

where ε is a reduced parameter given by ε(t ) = λc − λ(t )/λc

and varies from ε < 0 to ε > 0 in the course of the transition
from the high-symmetry phase to the broken symmetry phase.
In Eq. (1), ν and z are the correlation length and dynamic
critical exponents, respectively. Let us assume a linear quench
given by λ(t ) = λc(1 − t/τQ) so that the reduced control

parameter takes the form ε(t ) = t/τQ, where τQ is a finite
quench time.

The system is driven through the phase transition, reach-
ing the critical point at t = 0. The KZM uses the adiabatic
impulse approximation, according to which the dynamics can
be divided into three stages. Far away from the critical point,
both in the high- and low-symmetry phase, the relaxation time
scale is small and the system evolves adiabatically. Between
the two adiabatic stages, in the neighborhood of the critical
point, the system is effectively frozen, as a result of a critical
slowing down. This frozen stage extends over the time interval
extending between −t̂ and +t̂ , where t̂ is referred to as the
freeze-out time. The latter can be estimated by equating the
instantaneous relaxation time τ [ε(t )] to the time elapsed after
crossing the critical point ε/ε̇. Therefore, the freeze-out time
is given by t̂ ∼ (τ0 τ zν

Q )
1

1+zν . The seminal prediction of the
KZM is the identification of the average of the size of the do-
mains ξ̂ in the broken symmetry phase using the equilibrium
correlation length evaluated at the freeze-out time,

ξ (t̂ ) = ξ0

(
τQ

τ0

) ν
1+zν

. (2)

The density of topological defects resulting from the quench
is thus given by

〈n〉 ∼ 1

ξ̂D
∼ 1

ξD
0

(
τ0

τQ

) Dν
1+zν

. (3)

Here, D = Ddim − d is the effective dimension of the system,
with Ddim the spatial dimension and d is the topological defect
dimension. We shall focus on the case involving one spatial
dimension D = Ddim and pointlike defects d = 0.

B. Phase transition in a homogeneous system leading
to defect formation

As a case study, we use the time-dependent Ginzburg-
Landau model with a one-dimensional real scalar field on
a lattice. Specifically, we consider a one-dimensional chain
exhibiting a structural phase transition between a linear and
a doubly degenerate zigzag phase [10,62]. The latter corre-
sponds to the low-symmetry phase with broken parity, i.e., Z2

symmetry. Each site n is endowed with a transverse degree of
freedom ψn. The total Hamiltonian reads

H ({ψn}, t ) = J

[
L−1∑
n=1

ψnψn+1 + αψ1ψL

]

+ 1

2

L∑
n=1

[
λ(t )ψ2

n + ψ4
n

]
. (4)

The nearest-neighbor coupling J favors ferromagnetic or-
der when J < 0 and antiferromagnetic otherwise. For the
numerical simulations, we employed a fixed value J = 1/2.
The coupling term αψ1ψL mimics the role of the bound-
ary conditions. Our analysis is based on the role of this
quenched finite coupling term between the edges of the chain.
The parameter values α = {−1, 0, 1} favor different boundary
conditions, as will be discussed below.
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The critical dynamics is induced by a linear ramp of λ(t ) =
λ0 + |λ f − λ0|t/τQ, with λ0 = 2, λ f = −1, and the quench
time τQ. The critical point is λc ≈ 2J . A continuous second-
order phase transition separates the high-symmetry phase in
which 〈ψn〉 = 0 from the low-symmetry phase. In the strict
adiabatic regime (τQ → ∞), the final configuration of the
chain is one of the doubly degenerate zigzag configurations.

To describe the time evolution, we consider Langevin dy-
namics [10,11,63–65]

ψ̈n + γ ψ̇n + ∂ψn H ({ψn}, t ) + η(t ) = 0. (5)

The friction term is given by γ > 0, and η = η(t ) is a real
Gaussian process with zero mean, satisfying 〈η(t )η(s)〉 =
σδ(t − s). This system is well described by the Ginzburg-
Landau theory and is characterized by mean-field critical
exponents ν = 1/2 and z = 2 in the overdamped regime
[10,62]. To simulate the overdamped regime, we fixed the nu-
merical parameters as η = 50, σ = 2 × 103, and L = 100. To
understand the role of the boundary conditions in this model,
we depict the typical equilibrium configurations in Fig. 1.
At t = 0, the chain is initialized in the minimum-energy
configuration with all the particles at the equilibrium posi-
tion satisfying 〈ψn〉 = 0. Subsequently, the system is driven
through the critical point. At t = τQ, the system is probed
in the doubly degenerate phase, which supports Z2-kinks as
topological defects.

In Fig. 1, we compare the equilibrium configurations for
even and odd system sizes. We calculated the equilibrium
position satisfying ∂H/∂ψn = 0, when λ 	 λc and λ 
 λc.
Note that in the zigzag phase, the equilibrium configuration
for an even number of sites and PBCs is equivalent to the
configuration for odd system size and APBCs. This model
provides an effective description of Coulomb crystals [66],
used as an experimental platform to explore KZM physics.
The Coulomb system realized by an ion chain trapped in an
axially confining harmonic potential was employed to mea-
sure the scaling of the number of defects, and thus explore the
validity of the KZM predictions [12–14,44,67]. Alternative
realizations involved confined colloids and dusty plasmas.

In the following section, we present a general framework
for the full counting statistics of topological defects, for a
system obeying a specific BC.

III. FULL COUNTING STATISTICS OF TOPOLOGICAL
DEFECTS

The general Hamiltonian for a one-dimensional lattice with
short-range interactions has the form

H =
A1∑

υ=1

L−1∑
n=1

hυ
n,n+1 + α

A1∑
υ=1

hυ
1,L +

A2∑
υ=1

L∑
n=1

hυ
n , (6)

which consists of a number A1 of nearest-neighbor couplings
and A2 one-site terms. The parameter α is dimensionless and
favors different boundary conditions, according to its value.
The cases α = 0 describe the standard open chain configura-
tion with free ends that we refer to as free BCs (FBCs). For
α = 1 one recovers the standard periodic BC (PBC), and the
system is translationally invariant. The case −1 breaks trans-
lational invariance, and mimics antiperiodic BCs (APBCs).

FIG. 1. Example of equilibrium configurations for a finite-size
one-dimensional lattice with different soft boundary conditions. We
represented by light balls and dark balls the equilibrium configura-
tions in the linear (λ 	 λc ) and zigzag phases (λ 
 λc ) for even
and odd system sizes (upper and lower panels), respectively. In every
panel, we illustrated the position of the topological defects as black
bars. When the system size is even, Leven, an extra kink appears at
the final part (purple-bar). It represented the change of the up-down
domain in the boundary.

However, this term is a finite-energy penalty and it is not topo-
logical in nature. As a result, the BCs are soft in the sense that
they can be violated, e.g., by thermal excitations. In spite of
this, we shall use the value of α to label the BC. Schematically,
the configurations with different BCs are shown in Fig. 2. We
consider a scenario of spontaneous symmetry breaking in a
second-order phase transition. Therefore, the Hamiltonian in
Eq. (6) has a critical point at λc. For both classical and quan-
tum systems, the dynamics is generated by the Hamiltonian.
Both in and out of equilibrium, the distribution of topological
defects is influenced by the BC.

The study of the full counting statistics of topologi-
cal defects was initiated in quantum systems in [68]. For
quasi-free-fermion models, the distribution was shown to be
Poisson-binomial, e.g., the distribution associated with bi-
nary random variables that are not identically distributed
[47,48,50]. For classical systems with pointlike defects,
the distribution of spontaneously formed topological defects
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FIG. 2. Schematic diagrams of the one-dimensional lattice with
adjustable boundary conditions. (a) Antiperiodic, (b) free-end, and
(c) periodic BCs. In all the diagrams there appear L elemental
physical unit, e.g., spins. Every physical unit has nearest-neighbor
interactions with strength J .

across the phase transition is instead characterized by a bi-
nomial distribution associated with N iid random variables
with success probability for defect formation p [49,51,52].
The average number of defects is thus N p. The number of
independent Bernoulli trials can be estimated to be

N = V

f ξ̂D
, (7)

where V denotes the volume of the system, and f takes into
account the average number of domains that meet at a point,

according to the geodesic rule [49,51]. For the Hamiltonian
given by Eq. (6), topological defects are kinks and we can in-
troduce an observable N associated with the kink number. We
aim to characterize the kink-number probability distribution
P(n),

P(n) = 〈δ(N − n)〉. (8)

The discrete probability distribution for the number of suc-
cesses (number of topological defects formed) in a sequence
of N independent trials is given by

P(n) = A

(
N
n

)
pn (1 − p)N−n, (9)

where A is the appropriate normalization constant according
to the boundary conditions, i.e.,

A =
{

1 for α = 0 and n = 0, 1, 2, 3, . . . ,
2

1+(1−2p)N for α = ±1 and n = 0, 2, 4, 6, . . . .

(10)
In this way, the distribution of topological defects is well
described by a binomial distribution for FBCs [49,51] and
even-binomial distribution for PBCs [52] as well as for AP-
BCs. To characterize high-order cumulants, it is convenient to
introduce the Fourier transform of Eq. (8),

P(n) = 1

2π

∫ π

−π

dθ P̃(θ ) exp[−iθn], (11)

in terms of the characteristic function P̃(θ ) = E[eiθn]. Using
Eq. (9), we calculate the corresponding cumulant generating
function, i.e., the logarithm of the characteristic function:

ln P̃(θ ) =
{
N ln[(1 + (1 + exp[iθ ])p)] for α = 0,

ln[(1 + [exp(iθ ) − 1]p)N + (1 − [exp(iθ ) + 1]p)N ] for α = ±1.
(12)

According to the de Moivre–Laplace theorem, for large
N with p constant, the distribution becomes asymptotically
normal,

PT(n) = 1√
2πκ2

exp

[
− (n − κ1)2

2κ2

]
, n = 0, 1, 2 . . . , (13)

Peven(n) � 4

1 + erf
(

κ1√
2κ2

)PT(n), n = 0, 2, 4 . . . , (14)

where κ1 and κ2 are the mean and variance, respectively. To
verify these predictions, we perform numerical simulations of
the structural transition of a linear chain with a doubly de-
generated zigzag phase in the low-symmetry phase. For each
quench rate, up to 24 000 trajectories are analyzed. Figure 3
shows the probability distribution of the number of kinks P(n)
generated for three different values of the quench time τQ

in each panel. Different panels correspond to different BCs.
For FBCs, the distribution takes all possible values of the
kink number (even and odd). However, for PBCs/APBCs,
kinks are formed in pairs and the kink number is restricted
to even outcomes. The numerical histograms are in all cases
well reproduced by the corresponding normal approximation,
using Eqs. (13) and (14).

IV. HIGH-ORDER CUMULANTS

To analyze the higher-order moments of the distribution,
we make use of the expansion of the cumulant generating
function,

ln P̃(θ ) =
∞∑

q=1

(iθ )q

q!
κq, (15)

where κq refers to the qth cumulant of the distribution P(n).
In the following subsections, we analyzed the high-order cu-
mulants according to the boundary conditions.

A. High-order cumulants for free boundary conditions

With FBCs (α = 0), the cumulant generating function
reads

ln[P̃(θ )] = N ln (1 + [1 + exp (iθ )]p). (16)

As a result, all cumulants are proportional to the mean number
of defects in the total system N and scale universally with the
quench time,

κq ∝ V

f ξD
0

(
τ0

τQ

) Dν
1+zν

, ∀ q, (17)
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FIG. 3. Characterization of probability distribution of topological defects. We show the probability distribution of the number of kinks
P(n) generated as a function of the quench time τQ for the upper APBC, center FBC, and lower PBC. The numerical histograms are compared
with the normal approximation for FBC (13) and PBC/APBC (14) and the dashed vertical line denotes the mean value 〈n〉. We used a chain
of L = 100 sites, using 24 000 trajectories. We note that for PBCs and APBCs, the distribution is conditioned to even outcomes in the range of
quench rates studies, indicating that the soft BCs hold even in the limit of fast quenches.

in agreement with the KZM scaling for q = 1. For the bi-
nomial distribution, it follows that the cumulants obey a
recursion relation κ1 = N p, and κq+1 = p(1 − p)dκq/d p for
q � 1. In general, we can rewrite Eq. (17) as

κq = αqτ
−βKZM
Q , ∀ q. (18)

with constant coefficients αq. The Kibble-Zurek power-law
exponent is denoted by βKZM = Dν/(1 + zν). Cumulant ra-
tios are thus independent of τQ. We mention in passing that
other quantities defined in terms of the cumulants can depend
on the quench time. For instance, in the binomial distribution,
the skewness and kurtosis are, respectively, given by

κ3

κ
3/2
2

= 1 − 2p√
p(1 − p)

√
(τQ/τ0)βKZM

N0
, (19)

κ4

κ2
2

= 1 − 6p(1 − p)

p(1 − p)

(τQ/τ0)βKZM

N0
, (20)

where N0 = V/( f ξD
0 ).

In Fig. 4(b), we exemplify our theoretical predictions
by evaluating the high-order cumulants. In the overdamped
regime, the Kibble-Zurek exponent predicted for the model is
βKZM = 1/4 for the mean values ν = 1/2 and z = 2 [10,62].
A fit to the mean number of kinks yields κ1 = (29.344 ±
0.392)τ−0.250±0.002

Q with a Pearson correlation coefficient
r = 0.9995, in excellent agreement with the mean-field
Kibble-Zurek exponent. Signatures of universality beyond
the KZM are evident from the scaling of higher-order cu-
mulants. We report a scaling for the second cumulant κ2 =
(16.429 ± 0.257)τ 0.251±0.002

Q with a Pearson correlation coef-
ficient r = 0.9993 and for the third cumulant κ3 = (3.822 ±
0.217)τ 0.250±0.009

Q with a Pearson correlation coefficient r =
0.9893. Power-law exponents are in excellent agreement with
the theoretical prediction in Eq. (18). For slow quenches,
deviations of the scaling law are apparent for the third cu-
mulant, and we attribute them to the onset of adiabatic
dynamics as a result of the finite system size. Fast quench
rates lead to a breakdown of the universal power-law scaling
with the quench rate observed in all cumulants, resulting

FIG. 4. Universal scaling of the cumulants κq of the kink number distribution. We show the universal scaling of the first three cumulants
generated as a function of the inverse quench time τQ for left APBC, center FBC, and right PBC. In every panel, from top to bottom, the
mean kink number of topological defects (q = 1), its variance (q = 2), and the third cumulant (q = 3) are depicted for a chain of L = 100 and
24 000 trajectories. Symbols represent numerical data, while dashed lines describe a fit to Eq. (23), with βKZM = ν/(1 + zν ). Deviations for
slow quenches observed in the third cumulant are characterized with a constant c3 > 0 with the APBC and c3 < 0 with the PBC; see Table II.
The plateau of the cumulants at fast quenches is tied to the finite amplitude of the quench.
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FIG. 5. Ratio between the first three cumulants as a function of the quench rate. The symbol represented the numerical results for the ratios
between the cumulants κβ and κα , where β > α and α, β ∈ {1, 2, 3}. The solid line corresponds to the average of the ratio κβ/κα . Additionally,
for the APBC case, a nontrivial behavior for the ratio between the variance and mean (fitted by the dashed-black line) is shown. Within
numerical uncertainty, cumulant ratios appear to be constant, up to deviations near the onset of adiabaticity in the limit of slow quenches.
However, for the APBC, κ2/κ1 exhibits a power-law scaling with the quench rate below a characteristic quench time τQ.

from the onset of a plateau, a feature that is in itself
universal [69].

In the following subsection, we derive the scaling proper-
ties for the high-order cumulants when dealing with periodic
and antiperiodic boundary conditions.

B. High-order cumulants for periodic and antiperiodic
boundary conditions

For PBCs (α = 1) and APBCs (α = 1), the cumulant
generating function is given in Eq. (12). The corresponding
cumulants can be found by direct evaluation using

κq = i−q dq

dθq
ln P̃(θ )

∣∣∣∣∣
θ=0

. (21)

The first three cumulants read

κ1 = κ̃1

ap
[1 + A(p − 1)],

κ2 = κ̃2

a2
p

[A[L1(2 ℵκ̃2) − Aκ̃2] − 1],

κ3 = κ̃2

a4
p

[
−1+2A

((
Aκ̃3

ap

)2

+ 3

2

Aκ̃3

ap
L1(2 ℵκ̃2)

+ L2(2 ℵκ̃2) − 1

2
L1(−4ℵκ̃2 p2)

− κ̃2[(ℵ + 1)L1(2ℵκ̃1) − 3ℵ − 2]

)
. (22)

In these expressions, A denotes a normalization constant;
see Eq. (9). For compactness, ap = 2p − 1 and ℵ = 1/N − 1.
Further, Ln(x) denote the Laguerre polynomials of nth order.
The tilde on κ̃q denotes the qth cumulant of the binomial
distribution with κ̃1 = N p, and satisfying the recursion re-
lation given by κ̃α+1 = p(1 − p)d κ̃α/d p. From Eq. (22), we
conclude that the universal power-law behavior is conserved
in the KZM limit. However, they are corrections to the scaling
limit, whose significance depends on the quench time regime.

In general, we can write this as

κq = aqτ
−βKZM
Q + bq + cqτ

−2βKZM
Q + · · · , (23)

where bq and cq are constants. As with the BC, we test these
theoretical predictions in a time-dependent Ginzburg-Landau
potential on a lattice. The universal power-law scaling of the
cumulants as a function of the quench time is shown in the
left and right panels in Fig. 4 for APBCs and PBCs, respec-
tively. Power-law exponents are thus found as well in excellent
agreement with the theoretical prediction in Eq. (23), which
accommodates for corrections to the power-law scaling. We
summarized our numerical results in Table I.

According to the binomial model for the full counting
statistics of the topological defects, the ratio between any
two cumulants is independent of the quench time and fixed
by probability p for the kink formation. In particular, higher-
order cumulants of the binomial distribution read

κ2 = (1 − p)κ1,

κ3 = (1 − 2p)(1 − p)κ1,

...

κq+1 = p(1 − p)
dκq

d p
. (24)

TABLE I. Numerical results for the universal scaling of the cu-
mulants κq for PBCs and APBCs. We reported the numerical results
obtained for every cumulant fit using Eq. (23).

PBCs

q aq bq cq βKZM

1 27.89 ± 0.14 0.25 ± 0.01 0 0.2501 ± 0.0007
2 15.43 ± 0.40 0.25 ± 0.01 0 0.2514 ± 0.0036
3 4.84 ± 1.31 0.25 ± 0.01 −10−3 0.2626 ± 0.040

APBCs

q aq bq cq βKZM

1 25.50 ± 0.29 1.01 ± 0.01 0 0.242 ± 0.001
2 17.89 ± 0.46 0.25 ± 0.01 0 0.259 ± 0.003
3 3.90 ± 0.03 0.25 ± 0.02 1.3 × 10−3 0.249 ± 0.002

134302-6



ROLE OF BOUNDARY CONDITIONS IN THE FULL … PHYSICAL REVIEW B 106, 134302 (2022)

TABLE II. Numerical results for the constant ratios of the cumu-
lants κβ/κα for APBCs, FBCs, and PBCs. We reported the numerical
results obtained for the mean value according to Fig. 5.

κβ/κα APBCs FBCs PBCs

β = 2, α = 1 0.533 0.578 0.568
β = 3, α = 1 0.106 0.136 0.112
β = 3, α = 2 0.199 0.236 0.197

As a result, all cumulants follow the same universal power-
law scaling given by the mean. In Fig. 5, we show the ratio
between the first three cumulants as a function of the quench
rate. We note that for FBCs and PBCs, the ratios between
the first three cumulants are independent of the quench time,
up to deviations for slow quenches probing the onset of adi-
abaticity. However, for APBCs, a range of quench times is
found where the ratio between the first two cumulants is not
independent of the quench time (see the left panel in Fig. 5).
We report the numerical results in Table II. We note that
cumulant ratios are indeed constant over a range of quench
rates that spans the plateau of cumulants at fast quenches
and the scaling regime at moderate quenches. However, in
the slow quench limit, deviations specific to the BC appear in
the third cumulant, which no longer scales as a power law of
the quench rate.

V. DISCUSSION AND CONCLUSION

Nonequilibrium phenomena play a prominent role at the
frontiers of physics. The quest for signatures of universal-
ity in this arena is of paramount importance, as it provides
a unified explanation of experimental measurements in dis-
parate systems. The celebrated KZM constitutes one of the
few universal paradigms at hand. Relying solely on knowl-
edge of equilibrium scaling theory, it predicts the formation
of topological defects whose mean number is a universal
monotonically decreasing function of the quench time. It
has inspired steady research over the past three and a half
decades since its conception. Yet, its predictive power has

been restricted to the mean number of excitations. As a feature
beyond the scope of the KZM, it has recently been sug-
gested that the distribution of topological defects is universal
[47–52]. In particular, it has been shown in a variety of scenar-
ios that cumulants of the number distribution of topological
defects are proportional to the mean of the distribution. As a
result, they share the same power-law scaling with the quench
rate predicted by KZM.

In this work, we have reported the role that boundary
conditions play in the resulting distribution of topological
defects. Specifically, we consider soft boundary conditions
induced by an interaction term. Our analysis indicates that the
defect number distribution is described by a binomial distri-
bution conditioned to even outcomes for PBCs/APBCs and
a binomial distribution for FBCs, as we have demonstrated
by simulating the crossing of the linear-to-zigzag structural
phase transition resulting in parity breaking in finite time and
kink formation. At fast quenches, each cumulant saturates to
a plateau value, independent of the quench rate. In the scaling
regime with moderate quenches, all cumulants of the kink
number distribution are proportional to the mean and exhibit
a universal power law with the quench rate, up to a constant
contribution resulting from the boundary conditions. Yet, un-
der periodic and antiperiodic boundary conditions, deviations
leading to the breaking of the universal power-law scaling
arise in the limit of slow quenches, as signaled by the behavior
of the third cumulant.

Our results are experimentally testable in the wide range
of experimental platforms in which the KZM has been stud-
ied and where different BCs arise depending on the setup:
trapped-ion chains, liquid crystals, Bose-Einstein conden-
sates, and colloids, to name just a few instances.
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