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Abstract Genes of unknown function are among the biggest challenges in molecular biology, 
especially in microbial systems, where 40–60% of the predicted genes are unknown. Despite 
previous attempts, systematic approaches to include the unknown fraction into analytical workflows 
are still lacking. Here, we present a conceptual framework, its translation into the computational 
workflow AGNOSTOS and a demonstration on how we can bridge the known-unknown gap in 
genomes and metagenomes. By analyzing 415,971,742 genes predicted from 1749 metagenomes 
and 28,941 bacterial and archaeal genomes, we quantify the extent of the unknown fraction, its 
diversity, and its relevance across multiple organisms and environments. The unknown sequence 
space is exceptionally diverse, phylogenetically more conserved than the known fraction and 
predominantly taxonomically restricted at the species level. From the 71 M genes identified to be of 
unknown function, we compiled a collection of 283,874 lineage-specific genes of unknown function 
for Cand. Patescibacteria (also known as Candidate Phyla Radiation, CPR), which provides a signifi-
cant resource to expand our understanding of their unusual biology. Finally, by identifying a target 
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gene of unknown function for antibiotic resistance, we demonstrate how we can enable the genera-
tion of hypotheses that can be used to augment experimental data.

Editor's evaluation
In this paper, the authors develop a sensitive and specific computational workflow for comprehen-
sively summarizing known and unknown gene content across large collections of genomes and 
metagenomes. In addition to clustering and categorizing genes on a large scale, the authors show 
how to use their approach to both explore lineage-specific genes and generate hypotheses for the 
function of unknown genes.

Introduction
Thousands of isolate, single-cell, and metagenome-assembled genomes are guiding us toward a 
better understanding of life on Earth (Almeida et al., 2019; Cross et al., 2019; Hug et al., 2016; 
Kopf et al., 2015; Pachiadaki et al., 2019; Pasolli et al., 2019; Sunagawa et al., 2015). At the same 
time, the ever-increasing number of genomes and metagenomes, unlocking uncharted regions of 
life’s diversity, (Brown et al., 2015; Eloe-Fadrosh et al., 2016; Hug et al., 2016) are providing new 
perspectives on the evolution of life (Parks et al., 2018; Spang et al., 2015). However, our rapidly 
growing inventories of new genes have a glaring issue: between 40% and 60% cannot be assigned 
to a known function (Almeida et al., 2021; Bernard et al., 2018; Carradec et al., 2018; Price et al., 
2018). Current analytical approaches for genomic and metagenomic data (Chen et al., 2019; Fran-
zosa et al., 2018; Huerta-Cepas et al., 2017; Mitchell et al., 2020; Quince et al., 2017) gener-
ally do not include this uncharacterized fraction in downstream analyses, constraining their results 
to conserved pathways and housekeeping functions (Quince et al., 2017). This inability to handle 
the unknown is an immense impediment to realizing the potential for discovery of microbiology and 
molecular biology at large (Bernard et al., 2018; Hanson et al., 2009). Predicting function from tradi-
tional single sequence similarity appears to have yielded all it can (Arnold, 2018; Arnold, 1998; Bran-
denberg et al., 2017), thus several groups have attempted to resolve gene function by other means. 
Such efforts include combining biochemistry and crystallography Jaroszewski et al., 2009; using envi-
ronmental co-occurrence Buttigieg et al., 2013; by grouping those genes into evolutionarily related 
families (Bateman et al., 2010; Brum et al., 2016; Wyman et al., 2018; Yooseph et al., 2007); using 
remote homologies (Bitard-Feildel and Callebaut, 2017; Lobb et al., 2015); or more recently using 
deep learning approaches (Bileschi et al., 2019; Liu, 2017). In 2018, (Price et al., 2018) developed 
a high-throughput experimental pipeline that provides mutant phenotypes for thousands of bacterial 
genes of unknown function being one of the most promising methods to tackle the unknown. Despite 
their promise, experimental methods are labor-intensive and require novel computational methods 
that could bridge the existing gap between the genes with known and unknown function.

Here, we present a conceptual framework and its translation to a computational workflow that 
closes the gap by connecting genomic and metagenomic data by the exploitation of groups of homol-
ogous genes, and that facilitates the integration of genes of unknown function into ecological, evolu-
tionary, and biotechnological investigations. The conceptual framework is based on the partitioning 
of the known and unknown fractions into four different categories that reflects the level of darkness 
(Figure 1A). The category “Known” (K) contains these sequences predicted to harbor domains of 
known function described by Pfam (Finn et al., 2016). Some sequences without Pfam domains of 
unknown function, like the ones encoding for small and intrinsically disordered proteins, can have 
homology to characterized proteins, hence we classify them as ‘Known without Pfam’ (KWP). Lastly, 
sequences that do not meet either of these criteria are classified as "Genomic Unknown" (GU) if 
they can be found in genomes from reference databases or contain domains of unknown function 
(DUF); and ‘Environmental Unknown’ (EU) when only have been observed in environmental samples. 
By contextualizing the different categories with information from several sources (Figure  1C), we 
hope this will prove an invaluable resource for including genes of unknown function in evolutionary 
and ecological studies (Delmont et al., 2022; Gaïa et al., 2021; Holland-Moritz et al., 2021) as well 
as enhancing the current methods for its experimental characterization.

https://doi.org/10.7554/eLife.67667
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The application of our approach to 415,971,742 genes predicted from 1749 metagenomes and 
28,941 bacterial and archaeal genomes revealed that the unknown fraction (1) is smaller than has been 
previously reported (Salazar et al., 2019; Thomas and Segata, 2019), (2) is exceptionally diverse, 
and (3) is phylogenetically more conserved than the known fraction and predominantly taxonomically 
restricted at the species level. Finally, we show how we can connect all the knowledge produced by 
our approach to augment the results from experimental data and add context to genes of unknown 
function through hypothesis-driven molecular investigations.

Results
AGNOSTOS, a computational workflow to unify the known and the 
unknown sequence space
Driven by the concepts defined in the conceptual framework, we developed AGNOSTOS, a compu-
tational workflow that infers, validates, refines, and classifies groups of homologous genes or gene 
clusters (GCs) in the four proposed categories (Figure  1A; Figure  1B; Appendix  1—figure 1). 
AGNOSTOS produces GCs with a highly conserved intra-homogeneous structure (Figure 1B), both in 
terms of sequence similarity and domain architecture homogeneity; it exhausts any existing homology 
to known genes and provides a proper delimitation of the unknown genes before classifying each GC 
in one of the four categories (Materials and methods). In the last step, we decorate each GC with a 
rich collection of contextual data compiled from different sources or generated by analyzing the GC 
contents in different contexts (Figure 1A). For each GC, we also offer several products that can be 
used for analytical purposes like improved representative sequences, consensus sequences, sequence 
profiles for MMseqs2 (Steinegger and Söding, 2017) and HHblits (Steinegger et al., 2019a), or the 
GC members as a sequence similarity network (Methods). To complement the collection, we also 
provide a subset of what we define as high-quality GCs. The defining criteria are (1) the representative 
is a complete gene and (2) more than one-third of genes within a GC are complete genes.

First, we used AGNOSTOS in a metagenomic context to show its ability to process complex and 
noisy datasets. We explored the unknown sequence space of 1,749 human and marine metagenomes. 
In total, we predicted 322,248,552 genes from the environmental dataset and assigned Pfam anno-
tations to 44% of them (Appendix 1—figure 2A). Next, AGNOSTOS clustered the predicted genes 
in 32,465,074 GCs and flagged those gene clusters that contain less than ten genes (Skewes-Cox 
et al., 2014). Flagged gene clusters are not processed through the validation workflow because they 

eLife digest It is estimated that scientists do not know what half of microbial genes actually do. 
When these genes are discovered in microorganisms grown in the lab or found in environmental 
samples, it is not possible to identify what their roles are. Many of these genes are excluded from 
further analyses for these reasons, meaning that the study of microbial genes tends to be limited to 
genes that have already been described.

These limitations hinder research into microbiology, because information from newly discovered 
genes cannot be integrated to better understand how these organisms work. Experiments to under-
stand what role these genes have in the microorganisms are labor-intensive, so new analytical strate-
gies are needed.

To do this, Vanni et al. developed a new framework to categorize genes with unknown roles, and a 
computational workflow to integrate them into traditional analyses. When this approach was applied 
to over 400 million microbial genes (both with known and unknown roles), it showed that the share of 
genes with unknown functions is only about 30 per cent, smaller than previously thought. The analysis 
also showed that these genes are very diverse, revealing a huge space for future research and poten-
tial applications. Combining their approach with experimental data, Vanni et al. were able to identify 
a gene with a previously unknown purpose that could be involved in antibiotic resistance.

This system could be useful for other scientists studying microorganisms to get a more complete 
view of microbial systems. In future, it may also be used to analyze the genetics of other organisms, 
such as plants and animals.

https://doi.org/10.7554/eLife.67667


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Microbiology and Infectious Disease

Vanni et al. eLife 2022;11:e67667. DOI: https://doi.org/10.7554/eLife.67667 � 4 of 60

Figure 1. Conceptual framework to unify the known and unknown sequence space and integration of the 
framework in the current analytical workflows. (A) Link between the conceptual framework and the computational 
workflow to partition the sequence space in the four conceptual categories. AGNOSTOS infers, validates and 
refines the GCs and combines them in gene cluster communities (GCCs). Then, it classifies them in one of the 
four conceptual categories based on their level of ‘darkness’. Finally, we add context to each GC based on several 
sources of information, providing a robust framework for generating hypotheses that can be used to augment 
experimental data. (B) The computational workflow provides two mechanisms to structure sequence space 
using GCs, de novo creation of the GCs (DB creation), or integrating the dataset in an existing GC database (DB 
update). The structured sequence space can then be plugged into traditional analytical workflows to annotate 
the genes within each GC of the known fraction. With AGNOSTOS, we provide the opportunity to integrate the 
unknown fraction into microbiome analyses easily. (C) The versatility of the GCs enables analyses at different scales 
depending on the scope of our experiments. We can group GCs in gene cluster communities based on their 
shared homologies to perform coarse-grained analyses. On the other hand, we can design fine-grained analyses 
using the relationships between the genes in a GC, that is detecting network modules in the GC inner sequence 
similarity network. Additionally, given that GCs are conserved across environments, organisms and experimental 
conditions give us access to an unprecedented amount of information to design and interpret experimental data.

https://doi.org/10.7554/eLife.67667
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don’t have enough sequences to provide reliable results. We flagged 29,461,177 gene clusters, with 
19,911,324 singletons (Appendix 1—figure 2A; Appendix 2). A total of 3,003,897 GCs (83% of the 
original genes) will go through the validation steps. The validation process selected 2,940,257 good-
quality clusters (Figure  1B; Appendix  1—table 1; Appendix 3), of which 43% were identified as 
unknowns after the classification and remote homology refinement steps (Appendix 1—figure 2A, 
Appendix 4).

Lastly, we demonstrate how AGNOSTOS can integrate a new dataset into the already existing 
metagenomic database by integrating 28,941 genomes from the GTDB_r86 (Appendix 1—figure 
2A). With this integration we can build links between the environmental and genomic sequence space 
by expanding the final collection of GCs with the genes predicted from GTDB_r86. Surprisingly, the 
integration showed that the environmental GCs (human and marine) not only included a large propor-
tion of the genes predicted from GTDB_r86 (72%) but also that most of these genes (90%) are part of 
the known sequence space (Appendix 1—figure 2A; Appendix 5). Only 22% of the GTDB_r86 genes 
created new GCs (2,400,037), with most of these genes (84%) classified as unknowns by AGNOSTOS 
(Appendix 1—figure 2A; Appendix 5). Finally, only a small proportion of the genes from GTDB_r86 
(6%) resulted in singletons (Appendix 1—figure 2A; Appendix 5).

The final dataset after being validated and categorized resulted in 5,287,759 GCs (Appendix 1—
figure 2A), with both datasets sharing only 922,599 GCs (Appendix 1—figure 2B). The integration of 
GTDB_r86 into the metagenomic database increased the proportion of GCs in the unknown sequence 
space from 43% to the 54%.

Additionally, AGNOSTOS identified a subset of 203,217 high-quality GCs (Appendix 1—table 2). 
In these high-quality GCs, we identified 12,313 clusters potentially encoding for small proteins ( ≤ 50 
amino acids). Most of these GCs are unknown (66%), which agrees with recent findings on novel small 
proteins from metagenomes (Sberro et al., 2019). We also observed that the KWP category contains 
the largest proportion of incomplete genes (Appendix  1—table 3), disrupting the detection and 
assignment of Pfam domains. But it also incorporates sequences with an unusual amino acid compo-
sition that have homology to proteins with high levels of disorder in the DPD database (Perdigão 
et al., 2017) and has characteristic functions of intrinsically disordered proteins (Habchi et al., 2014) 
like cellular processes and signaling as predicted by eggNOG annotations (Appendix 1—table 4).

As part of the workflow, each GC is complemented with a rich set of information, as shown in 
Figure 1A (Supplementary file 2A; Appendix 6).

Beyond the twilight zone with AGNOSTOS, communities of gene 
clusters
To find relationships between gene clusters, we implemented in AGNOSTOS a method to group them 
in gene cluster communities (GCCs) (Figure 2A) using remote homologies. As we are dealing with the 
unknown, we identified GCCs independently in each category. AGNOSTOS uses the gene clusters 
from category K as a reference to automatically identify the best parameters for the clustering of the 
gene cluster homology network (Materials and methods; Figure 2B; Appendix 7) and applies the 
learnt parameters to the other categories. The grouping reduced the final collection of GCs by 87%, 
producing 673,601 GCCs (Materials and methods; Figure 2B; Appendix 7).

We validated our approach to capture remote homologies between related GCs using two well-
known gene families present in our environmental datasets, proteorhodopsins (Béjà et al., 2000; Béjà 
et al., 2001) and bacterial ribosomal proteins (Méheust et al., 2019). Theoretically, we would expect 
to have one or a very low number of GCCs for each of these gene families.

We identified 64 GCs (12,184 genes) and 3 GCCs (Appendix 7) containing genes classified as 
proteorhodopsin (PR). One community from the category K contained 99% of the PR annotated genes 
(Figure 2C), except 85 genes taxonomically annotated as viral and assigned to the PR Supercluster I 
(Boeuf et al., 2015) within two GU communities (five GU gene clusters; Appendix 7).

For the ribosomal proteins, the results were not so satisfactory. We identified 1843 GCs (781,579 
genes) and 98 GCCs. The number of GCCs is larger than the expected number of ribosomal protein 
families (16) used for validation. When we used high-quality GCs (Appendix 7), we got closer to 
the expected number of GCCs (Figure 2D). With this subset, we identified 26 GCCs and 145 GCs 
(1687 genes). The cross-validation of our method against the approach used in Méheust et al., 2019 
(Appendix 7) confirms the intrinsic complexity of analyzing metagenomic data. Both approaches 

https://doi.org/10.7554/eLife.67667
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showed a high agreement in the GCCs identified (Appendix 7—table 2). Still, our method inferred 
fewer GCCs for each of the ribosomal protein families (Appendix 7—figure 4), coping better with the 
complexities of a metagenomic setup, such as incomplete genes (Appendix 1—table 5).

AGNOSTOS uncovers a smaller yet highly diverse unknown sequence 
space
Among our primary design goals in developing AGNOSTOS is to unearth ecological and evolutionary 
information while unifying the known and unknown sequence space of genomes and metagenomes. 
One can use AGNOSTOS GCs and GCCs as analogs to operational protein families (Schloss and 
Handelsman, 2008) with the benefits of using high-quality gene clusters and remote homology 
searches.

Our exhaustive analysis of the AGNOSTOS inferred GCs and GCCs described in the following 
sections, revealed that the unknown sequence space is smaller than what has been reported so far 
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https://doi.org/10.7554/eLife.67667


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Microbiology and Infectious Disease

Vanni et al. eLife 2022;11:e67667. DOI: https://doi.org/10.7554/eLife.67667 � 7 of 60

through traditional genomic and metagenomic analysis approaches, where the unknown fraction can 
reach up to 60% in marine metagenomes (Salazar et  al., 2019) or up to 40% in human metage-
nomes (Thomas and Segata, 2019, Figure 3A). Our workflow recruited as much as 71% of genes in 
human-related metagenomic samples and 65% of the genes in marine metagenomes into the known 
sequence space. In both human and marine microbiomes, the genomic unknown fraction showed a 
similar proportion of genes (21%, Figure 3A). The number of genes corresponding to EU gene clus-
ters is higher in marine metagenomes; 12% of the genes are part of this GC category. We obtained 
a comparable result when we evaluated the genes from the GTDB_r86, 75% of bacterial and 64% of 
archaeal genes were part of the known sequence space. Archaeal genomes contained more unknowns 
than those from Bacteria, where 30% of the genes are classified as genomic unknowns in Archaea, and 
only 20% in Bacteria (Figure 3A; Supplementary file 1B).
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To further evaluate the differences between the known and unknown sequence space, we calcu-
lated the accumulation rates of GCs and GCCs combining the categories K and KWP as knowns, and 
GU and EU as unknowns to get a general overview of both fractions. For the metagenomic dataset we 
used 1264 metagenomes (18,566,675 GCs and 282,580 GCCs) and for the genomic dataset 28,941 
genomes (9,586,109 GCs and 496,930 GCCs). The rate of accumulation of unknown GCs was three 
times higher than the known (2 X for the genomic), and in both cases the curves were far from reaching 
a plateau (Figure 3B). This is not the case for the GCC accumulation curves (Appendix 1—figure 4B), 
which reached a plateau.

The accumulation rate is largely determined by the number of singletons, especially singletons 
from EUs (Appendix 8 and Appendix  1—figure 5). While the accumulation rate of known GCs 
between marine and human metagenomes is almost identical, there are striking differences for the 
unknown GCs (Figure 3C). These differences are maintained even when we remove the virus-enriched 
samples from the marine metagenomes (Appendix  1—figure 4A). Although the marine metage-
nomes include a large variety of environments, from coastal to the deep sea, the known space remains 
quite constrained.

Next, we wanted to know how much of the sequence space we integrated with AGNOSTOS was 
found in other databases (Appendix 9). Despite only including marine and human metagenomes in 
our database, we already cover, in average, 76% of the sequence space of seven datasets spanning 
different databases and environments (Appendix 9—figure 1). By screening MGnify (Mitchell et al., 
2020) (release 2018_09; 11 biomes; 843,535,6116 proteins) we identified freshwater, soil and human 
non-digestive as the biomes less covered by our data (Appendix  1—figure 6). Two of the seven 
analyzed datasets are designed to study genes of unknown function (Appendix  9—table 1). On 
Wyman et al., 2018, where they defined Function Unknown Families of homologous proteins (Funk-
Fams), we identified 20% of their FunkFams to be members of the known sequence space. On Price 
et al., 2018, we classified as known, 44% of the genes of unknown function used in their experimental 
conditions.

One indirect consequence of our approach is that we can provide a detailed view of the sequence 
space at the amino acid level. We estimated the number of amino acids belonging to the known (K 
and KWP combined) or unknown (GU and EU combined) sequence space, and how many of these 
amino acids are contained in a Pfam domain. From the 90,128,659,316 amino acids analyzed, most 
of the amino acids in metagenomes (74%) and genomes (80%) are in the known sequence space 
(Figure 3D; Supplementary file 1B) while only 22% in metagenomes and 15% in genomes are part 
of the unknowns. In both cases, approximately 40% of the amino acids in the known sequence space 
were part of a Pfam domain (Figure 3D; Supplementary file 1B). While this result is expected based 
on the large number of genes present in the known space (Figure 3A), what is surprising is the low 
proportion of amino acids (2%) corresponding to DUF Pfam domains in genomes and metagenomes 
(Figure 3D). If we use as reference the proportions of amino acids observed in the known sequence 
space, we can hypothesize that there are still many DUFs to be unearthed. With AGNOSTOS and its 
thorough validation and characterization of the genomic and environmental unknowns, we provide 
the basic building blocks (gene clusters’ multiple sequence alignments) to identify conserved regions 
that might become new potential DUFs.

The unknown sequence space has a limited ecological distribution in 
human and marine environments
Although the role of the unknown fraction in the environment is still a mystery, the large number of 
gene counts and abundance observed underlines its inherent ecological relevance (Figure 4A). In 
some metagenomes, the genomic unknown fraction can account for more than 40% of the total gene 
abundance observed (Figure  4A). The environmental unknown fraction is also relevant in several 
samples, where singleton GCs are the majority (Figure 4A). We identified two metagenomes with an 
unusual composition in terms of environmental unknown singletons. The marine metagenome corre-
sponds to a sample from Lake Faro (OSD42), a meromictic saline with a unique extreme environment 
where Archaea plays an important role (La Cono et al., 2013). The HMP metagenome (SRS143565) 
that corresponds to a human sample from the right cubital fossa from a healthy female subject. To 
understand this unusual composition, we should perform further analyses to discard potential tech-
nical artifacts like sample contamination.

https://doi.org/10.7554/eLife.67667
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The ratio between the unknown and known GCs is useful to reveal which metagenomes are 
enriched in GCs of unknown function (upper left quadrant in Figure 4B–C) and it can be used as a 
proxy to assess the sequence contained in a metagenome. In human metagenomes, this ratio can 
distinguish between body sites, with the gastrointestinal tract, an ecologically complex environment 
(Qin et al., 2010), significantly enriched with genomic unknowns. Furthermore, it is not surprising that 
the human and marine metagenomes with the largest ratio of unknowns are those samples enriched 
with viral sequences. Specifically, in the HMP metagenomes are those samples identified to contain 
crAssphages (Dubinkina et  al., 2016; Edwards et  al., 2019) and HPV viruses (Ma et  al., 2014, 
Supplementary file 1C; Appendix 1—figure 7). In marine metagenomes (Figure 4C), the highest 
ratio in genomic and environmental unknowns correspond to the ones enriched with viruses and giant 
viruses.

We performed a large-scale analysis to investigate the occurrence patterns of the GCs in the 
environment by analyzing their abundance and distribution breadth. The narrow distribution of the 
unknown fraction (Figure 4D) suggests that these GCs might provide a selective advantage and 
be necessary to adapt to specific environmental conditions. But the pool of broadly distributed 
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environmental unknowns is the most exciting result. We identified traces of potential ubiquitous 
organisms left uncharacterized by traditional approaches, as more than 80% of these GCs cannot 
be associated with a metagenome-assembled genome (MAG) (Appendix 1—table 6, Appendix 
10).

The genomic unknown sequence space is lineage-specific
With the inclusion of the genomes from GTDB_r86, we have access to a phylogenomic framework 
that can be used to assess how taxonomically restricted is a GC within a lineage, hereafter referred to 
as lineage-specific genes (Johnson, 2018; Mendler et al., 2019) and how conserved (phylogenetic 
conservation) a GC is across the different clades in the GTDB_r86 phylogenomic tree (Martiny et al., 
2013). We identified 781,814 lineage-specific GCs and 464,923 phylogenetically conserved (p < 0.05) 
GCs in Bacteria (Supplementary file 1D; Appendix 11 for Archaea). The number of lineage-specific 
GCs increases with the Relative Evolutionary Distance (Parks et al., 2018, Figure 5A) and differences 
between the known and the unknown fraction start to be evident at the family level resulting in 4 X 
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more unknown lineage-specific GCs at the species level. In general terms, the unknown GCs are more 
phylogenetically conserved (GCs shared among members of deep clades) than the known (Figure 5B, 
p < 0.0001), revealing the importance of the genome’s uncharacterized fraction. However, the lineage-
specific unknown GCs are less phylogenetically conserved (Figure 5B) than the known, agreeing with 
the large number of lineage-specific GCs observed at genus and species level (Figure 5A).

One potential confounding factor that might contribute to inflate the number of lineage-specific 
GCs in the unknown fraction, is the presence of prophages owing to their potential host specificity 
(Ross et al., 2016). To discard the possibility that the lineage-specific GCs of unknown function have a 
viral origin, we screened all GTDB_r86 genomes for prophages. We only found 37,163 lineage-specific 
GCs (86% of unknown function) in prophage genomic regions.

After unveiling the potential relevance of the GCs of unknown function in bacterial genomes, 
we identified phyla in GTDB_r86 enriched with these types of clusters. A clear pattern emerged 
when we partitioned the phyla based on the ratio of known to unknown GCs and vice versa 
(Figure 5D), the phyla with a larger number of MAGs are enriched in GCs of unknown function 
(Figure 5D). Phyla with a high proportion of non-classified GCs (those discarded during the vali-
dation steps) contain a small number of genomes and are primarily composed of MAGs. These 
groups of phyla highly enriched in unknowns and represented mainly by MAGs include newly 
described phyla such as Cand. Riflebacteria and Cand. Patescibacteria (Anantharaman et  al., 
2018; Brown et al., 2015; Rinke et al., 2013), both with the largest unknown to known ratio. We 
performed an in-depth exploration of the Cand. Patescibacteria phylum, and we provide a collec-
tion of 54,343 lineage-specific GCs (283,874 genes) of unknown function at different taxonomic 
level resolutions (Appendix 1—table 7; Appendix 12).

One of the strengths of AGNOSTOS is the possibility of bridging genomic and metagenomic 
data and simultaneously unifying the known and unknown sequence space. We further demon-
strated this by integrating the new Ocean Microbial Reference Gene Catalog (Salazar et  al., 
2019, OM-RGC v2) into our database. We assigned 26,170,875 genes to known GCs, 11,422,975 
to genomic unknowns, 8,661,221 to environmental unknown and 520,083 were discarded. From 
the 11,422,975 genes classified as genomic unknowns, we could associate 3,261,741 to a GTDB_
r86 genome and we identified 113,175 as lineage-specific. The alluvial plot in Figure 5E depicts 
the new organization of the OM-RGC v2 after being integrated into our framework and how we 
can provide context to the two original types of unknowns in the OM-RGC (those annotated 
as category S in eggNOG [Huerta-Cepas et  al., 2019] and those without known homologs in 
the eggNOG database [Salazar et al., 2019]) that can lead to potential experimental targets at 
the organism level to complement the metatranscriptomic approach proposed by Salazar et al., 
2019.

A structured sequence space augments the interpretation of 
experimental data
We selected one of the experimental conditions tested in Price et  al., 2018 to demonstrate the 
potential of our approach to augment experimental data. We compared the fitness values in plain rich 
medium with added Spectinomycin dihydrochloride pentahydrate to the fitness in plain rich medium 
(LB) in Pseudomonas fluorescens FW300-N2C3 (Figure 6A). This antibiotic inhibits protein synthesis 
and elongation by binding to the bacterial 30 S ribosomal subunit and interferes with the peptidyl tRNA 
translocation. We identified the gene with locus id AO356_08590 that presents a strong phenotype 
(fitness = –3.1; t = –9.1) and has no known function. This gene belongs to the genomic unknown GC 
GU_19737823. We can track this GC into the environment and explore the occurrence in the different 
samples we have in our database. As expected, the GC is mostly found in non-human metagenomes 
(Figure  6B) as Pseudomonas are common inhabitants of soil and water environments (Heffernan 
et al., 2009). However, finding this GC also in human-related samples is very interesting due to the 
potential association of P. fluorescens and human disease where Crohn’s disease patients develop 
serum antibodies to this microbe (Scales et al., 2014). We can add another layer of information to 
the selected GC by looking at the associated remote homologs in the GCC GU_c_21103 (Figure 6C). 
We identified all the genes in the GTDB_r86 genomes that belong to the GCC GU_c_21103 (Supple-
mentary file 1E) and explored their genomic neighborhoods. All members from GU_c_21103 are 
constrained to the class Gammaproteobacteria, and interestingly GU_19737823 is mostly exclusive to 

https://doi.org/10.7554/eLife.67667
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the order Pseudomonadales. The gene order in the different genomes analyzed is highly conserved, 
finding GU_19737823 after the rpsF::rpsR operon and before rpll. rpsF and rpsR encode for 30 S ribo-
somal proteins, the prime target of spectinomycin. The combination of the experimental evidence and 
the associated data inferred by our approach provides strong support to generate the hypothesis that 
the gene AO356_08590 might be involved in the resistance to Spectinomycin.

Discussion
We describe a new conceptual framework and how it has been implemented in AGNOSTOS, a 
computational workflow for unifying the known and unknown sequence space. We used this newly 
developed framework to perform an in-depth exploration of the microbial unknown sequence space, 
demonstrating that we can link the unknown fraction of metagenomic studies to specific genomes 
and provide a powerful new approach for hypothesis generation. The framework introduces a subtle 
change of paradigm compared to traditional approaches where our objective is to provide the best 
representation of the unknown space. We gear all our efforts toward finding sequences without any 
evidence of known homologies by pushing the search space beyond the twilight zone of sequence 
similarity (Rost, 1999). With this objective in mind, we use gene clusters instead of genes as the funda-
mental unit to compartmentalize the sequence space owing to their unique properties (Figure 1B). 
Gene clusters (1) provide a structured sequence space that helps to reduce its complexity, (2) are 
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independent of the known and unknown fraction, (3) are conserved across environments and organ-
isms, and (4) can be used to aggregate information from different sources (Figure 1A). Moreover, GCs 
provide a good compromise in terms of resolution for analytical purposes, and owing to their unique 
properties, one can perform analyses at different scales. For fine-grained analyses, we can exploit 
the gene associations within each GC; and for coarse-grained analyses, we can create groups of GCs 
based on their shared homologies (Figure 1B).

AGNOSTOS integrates transparently into the standard operating procedure for analyzing 
metagenomes (Quince et  al., 2017) adopted by the microbiome community. It can briefly be 
summarized into (1) assembly, (2) gene prediction, (3) gene catalog inference, (4) binning, and 
(5) characterization. AGNOSTOS exploits recent computational developments (Steinegger and 
Söding, 2018; Steinegger and Söding, 2017) to maximize the information used when analyzing 
genomic and metagenomic data. In addition, we provide a mechanism to reconcile top-down and 
bottom-up approaches, thanks to the well-structured sequence space proposed by our frame-
work. AGNOSTOS can create environmental- and organism-specific variations of a seed database 
based on gene clusters. Then, it integrates the predicted genes from new genomes and metag-
enomes and dynamically creates and classifies new GCs with those genes not integrated during 
the initial step (Figure 1B). Afterward, the potential functions of the known GCs can be carefully 
characterized by incorporating them into the traditional standard operating procedure described 
previously.

One of the most appealing characteristics of our approach is that the GCs provide unified 
groups of homologous genes across environments and organisms independently if they belong 
to the known or unknown sequence space, and we can contextualize the unknown fraction using 
this genomic and environmental information. Our combination of partitioning and contextualiza-
tion features a smaller unknown sequence space than previously reported (Salazar et al., 2019; 
Thomas and Segata, 2019). On average, only 30% of the genes fall in the unknown fraction for 
our genomic and metagenomic data. One hypothesis to reconcile this surprising finding is that the 
methodologies to identify remotely homologous sequences in large datasets were computation-
ally prohibitive until recently. New methods (Steinegger et al., 2019a; Steinegger and Söding, 
2017), like the ones used in AGNOSTOS, enable large-scale remote homology searches. Still, one 
must apply conservative measures to control the trade-off between specificity and sensitivity to 
avoid overclassification.

We found that most of the sequence space at the gene and amino acid level is known, both 
in genomes and metagenomes. However, the GC accumulation curves showed that the unknown 
fraction is far more diverse than the known. When we combine the high diversity and its narrow 
ecological distribution, we can unveil the magnitude of the untapped unknown functional fraction 
and its potential importance for niche adaptation. In a genomic context and after ruling out the 
effect of prophages, the unknown fraction is predominantly species’ lineage-specific and phyloge-
netically more conserved than the known fraction, supporting the signal observed in the environ-
mental data emphasizing that we should not ignore the unknown fraction. It is worth noting that 
the high diversity observed in the unknowns only represents the 20% of the amino acids in the 
sequence space we analyzed, and only 10% of this unknown amino acid space is part of a Pfam 
domain (DUF and others). This contrasts with the numbers observed in the known sequence space, 
where Pfam domains include 50% of the amino acids. All this evidence combined strengthens 
the hypothesis that the genes of unknown function, especially the lineage-specific ones, might 
be associated with the mechanisms of microbial diversification and niche adaptation due to the 
constant diversification of gene families and the survival of new gene lineages (Francino, 2012; 
Muller, 2019).

Metagenome-assembled genomes are not only unveiling new regions of the microbial universe 
(42% of the genomes in GTDB_r86), but they are also enriching the tree of life with genes of unknown 
function (Overmann et al., 2017). One excellent example is Cand. Patescibacteria, more commonly 
known as Candidate Phyla Radiation (CPR), a phylum that has raised considerable interest due to 
its unusual biology (Brown et al., 2015) and for which we provide an extensive catalog of 283,874 
linegage-specific genes of unknown function at different taxonomic level resolutions, which will 
provide a valuable resource for further research on CPR.

https://doi.org/10.7554/eLife.67667
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One of the ultimate goals of our approach is to provide a mechanism to unlock the large pool of likely 
relevant data that remains untapped to analysis and discovery and boost insights from model organism 
experiments. We demonstrated the value of our approach by identifying a potential target gene of unknown 
function for antibiotic resistance. Furthermore, the advent of new methods for protein structure prediction, 
such as AlphaFold2 (Jumper et al., 2021), and fast and sensitive comparisons of large sets of structures (van 
Kempen et al., 2022) will make it possible to use our GCCs as starting points for revealing connections 
between the known and unknown at even deeper levels than those presented here.

But severe challenges remain, such as the dependence on the quality of the assemblies and their gene 
predictions (Salzberg, 2019), as shown by the analysis of the ribosomal protein GCCs where many of the 
recovered genes are incomplete. While sequence assembly has been an active area of research (Roumpeka 
et al., 2017), this has not been the case for gene prediction methods (Roumpeka et al., 2017; Sommer 
and Salzberg, 2021), which are becoming outdated (Ivanova et al., 2014) and cannot cope with the current 
amount of data. Alternatives like protein-level assembly (Steinegger et al., 2019b) combined with exploring 
the assembly graphs’ neighborhoods (Brown et al., 2020) become very attractive for our purposes. In any 
case, we still face the challenge of discriminating between genuine and artifactual singletons (Höps et al., 
2018). There are currently no methods that both provide a plausible solution and are scalable. We devise 
a potential solution in the recent developments in unsupervised deep learning methods where they use 
large corpora of proteins to define a language model embedding for protein sequences (Heinzinger et al., 
2019). These models could be applied to predict embeddings in singletons, which could be clustered or 
used to determine their coding potential. Another concern in our approach is that we may artificially inflate 
the number of GCs. We follow a conservative approach to avoid mixing multi-domain proteins in GCs owing 
to the fragmented nature of the metagenome assemblies that could result in the split of a GC. However, 
not only splitting GCs, but also lumping unrelated genes or GCs owing to the use of remote homologies 
can be problematic. Although we use very sensitive methods to compare profile HMMs to infer GCCs, low 
sequence diversity in GCs can limit the method effectiveness. Moreover, our approach is affected by the 
presence and propagation of contamination in reference databases, a significant problem in ‘omics (Breit-
wieser et al., 2019; Steinegger and Salzberg, 2020). In our case, we only use Pfam (Finn et al., 2016) as 
a source for annotation owing to its high-quality and manual curation process. The categorization process 
of our GCs depends on the information from other databases, and to minimize the potential impact of 
contamination, we apply methods that weight the annotations of the identified homologs to discriminate if 
a GC belongs to the known or unknown sequence space.

The results presented here prove that the integration and the analysis of the unknown fraction are possible. 
We are unveiling a brighter future, not only for microbiome analyses but also for boosting eukaryotic-related 
studies, thanks to the increasing number of projects, including metatranscriptomic data (Delmont et al., 
2022; Vorobev et al., 2020). Furthermore, our work lays the foundations for further developments of clear 
guidelines and protocols to define the different levels of unknown (Thomas and Segata, 2019) and should 
encourage the scientific community for a collaborative effort to tackle this challenge.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm Snakemake Snakemake RRID: SCR_003475 Workflow manager

Software, algorithm Prodigal Prodigal RRID: SCR_021246 Gene prediction

Software, algorithm MMseqs2 MMseqs2 RRID: SCR_010277 Sequence clustering and search

Software, algorithm HHMER HMMER RRID: SCR_005305 Sequence-Profile search

Software, algorithm HHblits HHblits RRID: SCR_010277 Profile-Profile search

Software, algorithm PARASAIL PARASAIL RRID:SCR_021805 Sequence alignment

Software, algorithm FAMSA FAMSA RRID:SCR_021804 Sequence alignment

Software, algorithm LEON-BIS LEON-BIS RRID:SCR_021803 Sequence alignment evaluation

Software, algorithm OD-SEQ OD-SEQ Sequence alignment http://www.bioinf.ucd.ie/download/od-seq.tar.gz

https://doi.org/10.7554/eLife.67667
https://identifiers.org/RRID/RRID:SCR_003475
https://identifiers.org/RRID/RRID:SCR_021246
https://identifiers.org/RRID/RRID:SCR_010277
https://identifiers.org/RRID/RRID:SCR_005305
https://identifiers.org/RRID/RRID:SCR_010277
https://identifiers.org/RRID/RRID:SCR_021805
https://identifiers.org/RRID/RRID:SCR_021804
https://identifiers.org/RRID/RRID:SCR_021803
http://www.bioinf.ucd.ie/download/od-seq.tar.gz
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm SEQKIT SEQKIT RRID: SCR_018926 Fasta file manipulation

Software, algorithm R R RRID: SCR_002394

Software, algorithm HH-SUITE HH-SUITE RRID: SCR_016133

Software, algorithm RAXML RAXML RRID: SCR_006086 Phylogeny

Software, algorithm PPLACER PPLACER RRID: SCR_004737 Phylogeny

Software, algorithm PAPARA PAPARA
Sequence alignment https://cme.hits.org/exelixis/resource/download/​
software/papara_nt-2.5-static_x86_64.tar.gz

Software, algorithm Anvi’o Anvi’o RRID:SCR_021802 Omics analysis and visualization https://merenlab.org/software/anvio

Software, algorithm BWA mapper BWA mapper RRID: SCR_010910 Sequence alignment

Software, algorithm BEDTOOLS BEDTOOLS RRID: SCR_006646

Software, algorithm PhageBoost PhageBoost https://github.com/ku-cbd/PhageBoost

Software, algorithm EGGNOG-mapper EGGNOG-mapper RRID: SCR_021165

 Continued

Genomic and metagenomic dataset
We used a set of 583 marine metagenomes from four of the major metagenomic surveys of the ocean micro-
biome: Tara Oceans expedition (TARA) (Sunagawa et al., 2015), Malaspina expedition (Duarte, 2015), 
Ocean Sampling Day (OSD) (Kopf et al., 2015), and Global Ocean Sampling Expedition (GOS) (Rusch 
et al., 2007). We complemented this set with 1246 metagenomes obtained from the Human Microbiome 
Project (HMP) phase I and II (Lloyd-Price et al., 2017). We used the assemblies provided by TARA, Mala-
spina, OSD and HMP projects and the long Sanger reads from GOS (Sanger et al., 1977). A total of 156 M 
(156,422,969) contigs and 12.8 M long-reads were collected (Appendix 1—table 5).

For the genomic dataset, we used the 28,941 prokaryotic genomes (27,372 bacterial and 1569 
archaeal) from the Genome Taxonomy Database (Parks et al., 2018) (GTDB) Release 03-RS86 (19th 
August 2018).

Computational workflow development
We implemented a computation workflow based on Snakemake (Köster, 2018) for the easy processing 
of large datasets in a reproducible manner. The workflow provides three different strategies to analyze 
the data. The module DB-creation creates the gene cluster database, validates and partitions the 
gene clusters (GCs) in the main functional categories. The module DB-update allows the integration 
of new sequences (either at the contig or predicted gene level) in the existing gene cluster database. 
In addition, the workflow has a profile-search function to quickly screen samples using the gene cluster 
PSSM profiles in the database.

Metagenomic and genomic gene prediction
We used Prodigal (v2.6.3) (Hyatt et al., 2010) in metagenomic mode to predict the genes from 
the metagenomic dataset. For the genomic dataset, we used the gene predictions provided by 
Annotree (Mendler et al., 2019), since they were obtained, consistently, with Prodigal v2.6.3. We 
identified potential spurious genes using the AntiFam database (Eberhardt et al., 2012). Further-
more, we screened for ‘shadow’ genes using the procedure described in Yooseph et al., 2008.

PFAM annotation
We annotated the predicted genes using the hmmsearch program from the HMMER package 
(version: 3.1b2) (Finn et al., 2011) in combination with the Pfam database v31 (Finn et al., 2016). 
We kept the matches exceeding the internal gathering threshold and presenting an independent 
e-value <1e-5 and coverage >0.4. In addition, we considered multi-domain annotations, and we 
removed overlapping annotations when the overlap is larger than 50%, keeping the ones with the 
smaller e-value.

https://doi.org/10.7554/eLife.67667
https://identifiers.org/RRID/RRID:SCR_018926
https://identifiers.org/RRID/RRID:SCR_002394
https://identifiers.org/RRID/RRID:SCR_016133
https://identifiers.org/RRID/RRID:SCR_006086
https://identifiers.org/RRID/RRID:SCR_004737
https://cme.hits.org/exelixis/resource/download/software/papara_nt-2.5-static_x86_64.tar.gz
https://cme.hits.org/exelixis/resource/download/software/papara_nt-2.5-static_x86_64.tar.gz
https://identifiers.org/RRID/RRID:SCR_021802
https://merenlab.org/software/anvio
https://identifiers.org/RRID/RRID:SCR_010910
https://identifiers.org/RRID/RRID:SCR_006646
https://github.com/ku-cbd/PhageBoost
https://identifiers.org/RRID/RRID:SCR_021165
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Determination of the gene clusters
We clustered the metagenomic predicted genes using the cascaded-clustering workflow of the 
MMseqs2 software (Steinegger and Söding, 2018) (“--cov-mode 0  c 0.8 --min-seq-id 0.3”). We 
discarded from downstream analyses the singletons and clusters with a size below a threshold iden-
tified after applying a modification of the broken-stick model (Macarthur, 1957). We randomly split 
the number of gene clusters into p subsets, where p is defined by the proportion of outlier genes per 
gene cluster. The subsets are then sorted by decreasing size. We iterated over all subsets averaging 
the results over all iterations. The broken stick model generates the outlier gene proportions, which 
would occur by chance alone, that is, the distribution of outlier gene proportions if there were no 
structure in the data.

We integrated the genomic data into the metagenomic cluster database using the “DB-update” 
module of the workflow. This module uses the clusterupdate module of MMseqs2 (Steinegger and 
Söding, 2017), with the same parameters used for the metagenomic clustering.

Quality-screening of gene clusters
We examined the GCs to ensure their high intra-cluster homogeneity. We applied two methodologies 
to validate their cluster sequence composition and functional annotation homogeneity. We identified 
non-homologous sequences inside each cluster combining the identification of a new cluster repre-
sentative sequence via a sequence similarity network (SSN) analysis, and the investigation of intra-
cluster multiple sequence alignments (MSAs), given the new representative. Initially, we generated 
an SSN for each cluster, using the semi-global alignment methods implemented in PARASAIL (Daily, 
2016) (version 2.1.5). We trimmed the SSN using a filtering algorithm (Chafee et al., 2018; Žure 
et al., 2017) that removes edges while maintaining the network structural integrity and obtaining the 
smallest connected graph formed by a single component. Finally, the new cluster representative was 
identified as the most central node of the trimmed SSN by the eigenvector centrality algorithm, as 
implemented in igraph (Csardi and Nepusz, 2006). After this step, we built a multiple sequence align-
ment for each cluster using FAMSA (Deorowicz et al., 2016) (version 1.1). Then, we screened each 
cluster-MSA for non-homologous sequences to the new cluster representative. Owing to computa-
tional limitations, we used two different approaches to evaluate the cluster-MSAs. We used LEON-BIS 
(Vanhoutreve et al., 2016) for the clusters with a size ranging from 10 to 1000 genes and OD-SEQ 
(Jehl et al., 2015) for the clusters with more than 1000 genes. In the end, we applied a broken-stick 
model (Macarthur, 1957) to determine the threshold to discard a cluster.

The predicted genes can have multi-domain annotations in different orders, therefore to validate 
the consistency of intra-cluster Pfam annotations, we applied a combination of w-shingling (Broder, 
1997) and Jaccard similarity. We used w-shingling (k-shingle = 2) to group consecutive domain annota-
tions as a single object. We measured the homogeneity of the shingle sets (sets of domains) between 
genes using the Jaccard similarity and reported the median similarity value for each cluster. Moreover, 
we took into consideration the Clan membership of the Pfam domains and that a gene might contain 
N-, C-, and M-terminal domains for the functional homogeneity validation. We discarded clusters with 
a median similarity <1.

After the validation, we refined the gene cluster database removing the clusters identified to be 
discarded and the clusters containing ≥30% shadow genes. Lastly, we removed the single shadow, 
spurious and non-homologous genes from the remaining clusters (Appendix 3).

Remote homology classification of gene clusters
To partition the validated GCs into the four main categories, we processed the set of GCs containing 
Pfam annotated genes and the set of not annotated GCs separately. For the annotated GCs, we 
inferred a consensus protein domain architecture (DA) (an ordered combination of protein domains) 
for each annotated gene cluster. To identify each gene cluster consensus DA, we created directed 
acyclic graphs connecting the Pfam domains based on their topological order on the genes using 
igraph (Csardi and Nepusz, 2006). We collapsed the repetitions of the same domain. Then we used 
the gene completeness as a positive-weighting value for the selection of the cluster consensus DA. 
Within this step, we divided the GCs into ‘Knowns’ (Known) if annotated to at least one Pfam domains 
of known function (DKFs) and ‘Genomic unknowns’ (GU) if annotated entirely to Pfam domains of 
unknown function (DUFs).

https://doi.org/10.7554/eLife.67667
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We aligned the sequences of the non-annotated GCs with FAMSA (Deorowicz et al., 2016) and 
obtained cluster consensus sequences with the hhconsensus program from HH-SUITE (Steinegger 
et  al., 2019a). We used the cluster consensus sequences to perform a nested search against the 
UniRef90 database (release 2017_11) (The UniProt Consortium, 2017) and NCBI nr database (release 
2017_12) (NCBI Resource Coordinators, 2018) to retrieve non-Pfam annotations with MMSeqs2 
(Steinegger and Söding, 2017) (“-e 1e-05 --cov-mode 2 -c 0.6”). We kept the hits within 60% of 
the Log(best-e-value) and searched the annotations for any of the terms commonly used to define 
proteins of unknown function (Supplementary file 1G). We used a quorum majority voting approach 
to decide if a gene cluster would be classified as Genomic Unknown or Known without Pfams based 
on the annotations retrieved. We searched the consensus sequences without any homologs in the 
UniRef90 database against NCBI nr. We applied the same approach and criteria described for the first 
search. Ultimately, we classified as Environmental Unknown those GCs whose consensus sequences 
did not align with any of the NCBI nr entries.

In addition, we developed some conservative measures to control the trade-off between specificity 
and sensitivity for the remote homology searches such as (1) a modification of the algorithm described 
in Hingamp et al., 2013 to get a confident group of homologs to determine if a query protein is 
known or unknown by a quorum majority voting approach (Appendix 4); (2) strict parameters in terms 
of iterations, bidirectional coverage and probability thresholds for the HHblits alignments to mini-
mize the inclusion of non-homologous sequences; and (3) avoid providing annotations for our gene 
clusters, as we believe that annotation should be a careful process done on a smaller scale and with 
experimental context.

Gene cluster remote homology refinement
We refined the Environmental Unknown GCs to ensure the lack of any characterization by searching 
for remote homologies in the Uniclust database (release 30_2017_10) using the HMM/HMM align-
ment method HHblits (Remmert et  al., 2011). We created the HMM profiles with the hhmake 
program from the HH-SUITE (Steinegger et al., 2019a). We only accepted those hits with an HHblits-
probability ≥90% and we re-classified them following the same majority vote approach as previously 
described. The clusters with no hits remained as the refined set of EUs. We applied a similar refinement 
approach to the KWP clusters to identify GCs with remote homologies to Pfam protein domains. The 
KWP HMM profiles were searched against the Pfam HH-SUITE database (version 31), using HHblits. 
We accepted hits with a probability ≥90% and a target coverage >60% and removed overlapping 
domains as described earlier. We moved the KWP with remote homologies to known Pfams to the 
Known set, and those showing remote homologies to Pfam DUFs to the GUs. The clusters with no hits 
remained as the refined set of KWP.

Gene cluster characterization
We used the MMseqs2 taxonomy module (commit: b43de8b7559a3b45c8e5e9e02cb3023dd339231a) 
in combination with the UniProtKB (release of January 2018) (The UniProt Consortium, 2018) to 
retrieve the taxonomic ids of all genes in a gene cluster. The taxonomy module implements the 2bLCA 
(Hingamp et al., 2013) to compute the lowest common ancestor of query sequence. We used the 
following parameters “-e 1e-05 –cov-mode 0 c 0.6” for the search. To retrieve the taxonomic lineages, 
we used the R package CHNOSZ (Dick, 2008).

We used eggNOG-mapper (Huerta-Cepas et  al., 2017) and the EggNog5 database (Huerta-
Cepas et al., 2019) to provide functional annotations for each gene in a gene cluster. We refined 
the functional annotations by selecting the orthologous group within the lowest taxonomic level 
predicted by EggNog-mapper.

We measured the intra-cluster taxonomic and functional admixture by applying the entropy.empir-
ical() function from the entropy R package (Hausser and Strimmer, 2008). This function estimates the 
Shannon entropy based on the different taxonomic and functional annotation frequencies. For each 
cluster, we also retrieved the cluster consensus taxonomic and functional annotation using a quorum 
majority voting approach.

In addition to the taxonomic and functional annotations, we evaluated the clusters’ level of dark-
ness and disorder using the Dark Proteome Database (DPD) (Perdigão et al., 2017) as reference. We 
searched the cluster genes against the DPD, applying the MMseqs2 search program (Steinegger and 

https://doi.org/10.7554/eLife.67667
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Söding, 2017) with “-e 1e-20 --cov-mode 0 -c 0.6”. For each cluster, we then retrieved the mean and 
the median level of darkness, based on the gene DPD annotations.

High-quality clusters
We defined a subset of high-quality clusters based on the completeness of the cluster genes and their 
representatives. We identified the minimum required percentage of complete genes per cluster by a 
broken-stick model (Macarthur, 1957) applied to the percentage distribution. Then, we selected the 
GCs found above the threshold and with a complete representative.

A set of non-redundant domain architectures
We estimated the number of potential domain architectures present in the Known GCs consid-
ering the large proportion of fragmented genes in the metagenomic dataset and that could inflate 
the number of potential domain architectures. To identify fragments of larger domain architecture, 
we considered their topological order in the genes. To reduce the number of comparisons, we 
calculated the pairwise string cosine distance (q-gram = 3) between domain architectures and 
discarded the pairs that were too divergent (cosine distance ≥0.9). We collapsed a fragmented 
domain architecture to the larger one when it contained less than 75% of complete genes.

Inference of gene cluster communities
We aggregated distant homologous GCs into GCCs. The community inference approach combined 
an all-vs-all HMM gene cluster comparison with Markov Cluster Algorithm (MCL) (van Dongen and 
Abreu-Goodger, 2012) community identification. We started performing the inference on the Known 
GCs to use the Pfam DAs as constraints. We aligned the gene cluster HMMs using HHblits (Remmert 
et al., 2011) (-n 2 -Z 10000000 -B 10000000 -e 1) and we built a homology graph using the cluster 
pairs with probability ≥50% and bidirectional coverage >60%. We used the ratio between HHblits-
bitscore and aligned-columns as the edge weights (Appendix 7). We used MCL (van Dongen and 
Abreu-Goodger, 2012) (v. 12–068) to identify the communities present in the graph. We developed 
an iterative method to determine the optimal MCL inflation parameter that tries to maximize the 
relationship of five intra-/inter-community properties: (1) the proportion of MCL communities with 
one single DA, based on the consensus DAs of the cluster members; (2) the ratio of MCL communi-
ties with more than one cluster; (3) the proportion of MCL communities with a PFAM clan entropy 
equal to 0; (4) the intra-community HHblits-score/Aligned-columns score (normalized by the maximum 
value); and (5) the number of MCL communities, which should, in the end, reflect the number of non-
redundant DAs. We iterated through values ranging from 1.2 to 3.0, with incremental steps of 0.1. 
During the inference process, some of the GCs became orphans in the graph. We applied a three-step 
approach to assigning a community membership to these GCs. First, we used less stringent conditions 
(probability ≥50% and coverage ≥ 40%) to find homologs in the already existing GCCs. Then, we ran 
a second iteration to find secondary relationships between the newly assigned GCs and the missing 
ones. Lastly, we created new communities with the remaining GCs. We repeated the whole process 
with the other categories (KWP, GU and EU), applying the optimal inflation value found for the Known 
(2.2 for metagenomic and 2.5 for genomic data).

Validation of gene cluster communities
We tested the biological significance of the GCCs using the phylogeny of proteorhodopsin (Boeuf 
et al., 2015) (PR). We used the proteorhodopsin HMM profiles (Olson et al., 2018) to screen the 
marine metagenomic datasets using hmmsearch (version 3.1b2) (Finn et al., 2011). We kept the 
hits with a coverage >0.4 and e-value ≤ 1e-5. We removed identical duplicates from the sequences 
assigned to PR with CD-HIT (Li and Godzik, 2006) (v4.6) and cleaned from sequences with less 
than 100 amino acids. To place the identified PR sequences into the MicRhode (Boeuf et  al., 
2015) PR tree first, we optimized the initial tree parameters and branch lengths with RAxML 
(v8.2.12) (Stamatakis, 2014). We used PaPaRA (v2.5) (Berger and Stamatakis, 2012) to incre-
mentally align the query PR sequences against the MicRhode PR reference alignment and pplacer 
(Matsen et al., 2010) (v1.1.alpha19-0-g807f6f3) to place the sequences into the tree. Finally, we 
assigned the query PR sequences to the MicRhode PR Superclusters based on the phylogenetic 
placement. We further investigated the GCs annotated as viral (196 genes, 14 GC) comparing 

https://doi.org/10.7554/eLife.67667
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them to the six newly discovered viral PRs (Needham et al., 2019) using Parasail (Daily, 2016) (-a 
sg_stats_scan_sse2_128_16 t 8 c 1 x). As an additional evaluation, we investigated the distribu-
tions of standard GCCs and HQ GCCs within ribosomal protein families. We obtained the ribo-
somal proteins used for the analysis combining the set of 16 ribosomal proteins from Méheust 
et al., 2019 and those contained in the collection of bacterial single-copy genes of anvi’o (Eren 
et al., 2021). Also, for the ribosomal proteins, we compared the outcome of our method to the 
one proposed by Méheust et al., 2019 (Appendix 7).

Metagenomic sample selection for downstream analyses
For the subsequent ecological analyses, we selected those metagenomes with a number of genes 
larger or equal to the first quartile of the distribution of all the metagenomic gene counts. (Supple-
mentary file 1F).

Gene cluster abundance profiles in genomes and metagenomes
We estimated abundance profiles for the metagenomic cluster categories using the read coverage 
to each predicted gene as a proxy for abundance. We calculated the coverage by mapping the reads 
against the assembly contigs using the bwa-mem algorithm from BWA mapper (Li and Durbin, 2010). 
Then, we used BEDTOOLS (Quinlan and Hall, 2010), to find the intersection of the gene coordinates 
to the assemblies, and normalize the per-base coverage by the length of the gene. We calculated 
the cluster abundance in a sample as the sum of the cluster gene abundances in that sample, and 
the cluster category abundance in a sample as the sum of the cluster abundances. We obtained the 
proportions of the different gene cluster categories applying a total-sum-scaling normalization. For 
the genomic abundance profiles, we used the number of genes in the genomes and normalized by 
the total gene counts per genome.

Rate of genomic and metagenomic gene clusters accumulation
We calculated the cumulative number of known and unknown GCs as a function of the number 
of metagenomes and genomes. For each metagenome count, we generated 1000 random sets, 
and we calculated the number of GCs and GCCs recovered. For this analysis, we used 1246 
HMP metagenomes and 358 marine metagenomes (242 from TARA and 116 from Malaspina). 
We repeated the same procedure for the genomic dataset. We removed the singletons from the 
metagenomic dataset with an abundance smaller than the mode abundance of the singletons that 
got reclassified as good-quality clusters after integrating the GTDB data to minimize the impact of 
potential spurious singletons. To complement those analyses, we evaluated the coverage of our 
dataset by searching seven different state-of-the-art databases against our set of metagenomic 
GC HMM profiles (Appendix 9).

Occurrence of gene clusters in the environment
We used 1264 metagenomes from the TARA Oceans, MALASPINA Expedition, OSD2014 and HMP-I/
II to explore the properties of the unknown sequence space in the environment. We applied the Levins 
Niche Breadth (NB) index (Levins, 1966) to investigate the GCs and GCCs environmental distributions. 
We removed the GCs and cluster communities with a mean relative abundance <1e-5. We followed a 
divide-and-conquer strategy to avoid the computational burden of generating the null-models to test 
the significance of the distributions owing to the large number of metagenomes and GCs. First, we 
grouped similar samples based on the gene cluster content using the Bray-Curtis dissimilarity (Bray 
and Curtis, 1957) in combination with the Dynamic Tree Cut (Langfelder et al., 2008) R package. 
We created 100 random datasets picking up one random sample from each group. For each of the 
100 random datasets, we created 100 random abundance matrices using the nullmodel function of 
the quasiswap count method (Miklós and Podani, 2004). Then we calculated the observed NB and 
obtained the 2.5% and 97.5% quantiles based on the randomized sets. We compared the observed 
and quantile values for each gene cluster and defined it to have a Narrow distribution when the 
observed was smaller than the 2.5% quantile and to have a Broad distribution when it was larger 
than the 97.5% quantile. Otherwise, we classified the cluster as Non-significant (Salazar et al., 2015). 
We used a majority voting approach to get a consensus distribution classification based on the ten 
random datasets.

https://doi.org/10.7554/eLife.67667
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Identification of prophages in genomic sequences
We used PhageBoost (Sirén et al., 2021) to find gene regions in the microbial genomes that result 
in high viral signals against the overall genome signal. We set the following thresholds to consider 
a region prophage: minimum of 10 genes, maximum 5 gaps, single-gene probability threshold 0.9. 
We further smoothed the predictions using Parzen rolling windows of 20 periods and looked at the 
smoothed probability distribution across the genome. We disregarded regions that had a summed 
smoothed probability less than 0.5, and those regions that did differ from the overall population of 
the genes in a genome by using Kruskal–Wallis rank test (p-value 0.001).

Lineage-specific gene clusters
We used the F1-score developed for AnnoTree (Mendler et al., 2019) to identify the lineage-specific 
GCs and to which rank they are specific. Following similar criteria to the ones used in Mendler et al., 
2019, we considered a gene cluster to be lineage-specific if it is present in less than half of all genomes 
and at least 2 with F1-score > 0.95.

Phylogenetic conservation of gene clusters
We calculated the phylogenetic conservation (τD) of each gene cluster using the consenTRAIT 
(Martiny et al., 2013) function implemented in the R package castor (Martiny et al., 2013). We used 
a paired Wilcoxon rank-sum test to compare the average τD values for lineage-specific and non-
specific GCs.

Evaluation of the OM-RGC V2 uncharacterized fraction
We integrated the 46,775,154 genes from the second version of the TARA Ocean Microbial Reference 
Gene Catalog (OM-RGC v2) (Salazar et al., 2019) into our cluster database using the same procedure 
as for the genomic data. We evaluated the uncharacterized fraction and the genes classified into the 
eggNOG (Huerta-Cepas et al., 2019) category S within the context of our database.

Augmenting RB-TnSeq experimental Data
We searched the 129,477 bacterial genes associated with mutant phenotypes from Price et al., 2018 
against our gene cluster profiles. We kept the hits with e-value ≤1e-20 and a query coverage >60%. 
Then we filtered the results to keep the hits within 90% of the Log(best-e-value), and we used a 
majority vote function to retrieve the consensus category for each hit. Lastly, we selected the best-hits 
based on the smallest e-value and the largest query and target coverage values. We used the fitness 
values from the RB-TnSeq experiments from Price et al. to identify genes of unknown function that are 
important for fitness under certain experimental conditions.
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Data availability
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for the analyses in the manuscript is available at https://github.com/functional-dark-side/function-
al-dark-side.github.io/tree/master/scripts, (copy archived at swh:1:rev:86968509e38902580b-
04a25786c5a58ba2777b21). A list with the program versions can be found in https://github.com/​
functional-dark-side/functional-dark-side.github.io/blob/master/programs_and_versions.txt. The 
code to create the figures is available at https://github.com/functional-dark-side/vanni_et_al-figures, 
(copy archived at swh:1:rev:4c8f60e761bcac0dd02f17d2fdbb65dcaf75707a), and the data for the 
figure can be downloaded from https://doi.org/10.6084/m9.figshare.12738476.v2. A reproducible 
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Pascale FD, Schiavon 
R, Santos A, Villar E, 
Pesant S, Cataletto B, 
Malfatti F, Edirisinghe 
R

2015 Ocean Sampling Day https://​github.​com/​
MicroB3-​IS/​osd-​
analysis/​wiki/​Guide-​
to-​OSD-​2014-​data

OSD, ERS667653

Sunagawa A 2015 TARA Oceans https://www.​ebi.​ac.​
uk/​ena/​browser/​view/​
PRJEB402

EBI European Nucleotide 
Archive, PRJEB402
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Author(s) Year Dataset title Dataset URL Database and Identifier

Rusch DB, Halpern 
AL, Sutton G, 
Heidelberg KB, 
Williamson S, 
Yooseph S, Wu D, 
Eisen JA, Hoffman 
JM, Remington K, 
Beeson K, Tran B, 
Smith H, Baden-
Tillson H, Stewart C, 
Thorpe J, Freeman J, 
Andrews-Pfannkoch 
C, Venter JE, Li K, 
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E, Gallardo V, 
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G, Ferrari MR, 
Strausberg RL, 
Nealson K, Friedman 
R, Frazier M, Venter 
JC

2007 Global Ocean Sampling https://www.​ncbi.​nlm.​
nih.​gov/​bioproject?​
cmd=​PRJNA13694

NCBI BioProject, 
PRJNA13694

Mendler K, Chen HP, 
Arks DH, Lobb B, Hug 
LA, Doxey AC

2019 Annotree-GTDB_r86 https://​data.​ace.​uq.​
edu.​au/​public/​misc_​
downloads/​annotree/​
r86/

Annotree-Genome 
Taxonomy Database, 
GTDB_r86

Lloyd-Price J, 
Mahurkar A, 
Rahnavard G, 
Crabtree J, Orvis 
J, Hall AB, Brady 
A, Creasy HH, 
McCracken C, Giglio 
MG, McDonald 
D, Franzosa EA, 
Knight R, White O, 
Huttenhower C

2017 HMP (phase I and II) http://​hmpdacc.​org Human Microbiome 
Project, HMP
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Appendix 1—figure 1. Overview of the workflow to partition the genomic and metagenomic sequence space 
between known and unknown. The workflow performs gene prediction, gene clustering, gene clustering 
validation and refinement, GCC inference, and partitions the sequence space in the different known and unknown 
categories.

https://doi.org/10.7554/eLife.67667
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Appendix 1—figure 2. The diagram shows a schematic description of the number of genes and GCs that have 
been kept or discarded. (A) We analyzed a dataset of 1749 metagenomes from marine and human environments 
and 28,941 genomes from the GTDB_r86 summing up to 415,971,742 genes. The composition of the genomic box 
‘Other’ is described in Appendix Note 5. (B) GC overlap between the environmental and genomic datasets.

Appendix 1—figure 3. Proportion of complete genes per cluster. Distribution of observed values compared with 
those generated by the Broken-stick model. The cut-off was determined at 34% complete genes per cluster.

https://doi.org/10.7554/eLife.67667
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Appendix 1—figure 4. Collector curves for the known and unknown sequence space. (A) Collector curves at the 
gene cluster level, for the TARA metagenomes, including the viral fraction (left) and excluding it (right) from the 
analysis. (B) Collector curves at gene cluster community level for the metagenomes from TARA, MALASPINA, and 
HMP-I/II projects (left) and the 28,941 GTDB genomes (right).

Appendix 1—figure 5. Collector curves for the known and unknown sequence space at the gene cluster level 
for (A) the metagenomes from TARA, MALASPINA and HMP-I/II projects, and for (B) the 28,941 GTDB genomes. 
Singletons were excluded from the calculations.

https://doi.org/10.7554/eLife.67667
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Appendix 1—figure 6. Proportion of gene cluster categories per biome. On the y-axis are reported the 11 main 
biome categories indicated by MGnify and in parenthesis the total number of genes in each biome. The gray 
fraction represents the pool of genes from MGnify that were not found in our dataset.

Appendix 1—figure 7. HMP outlier samples enriched in (A) crAssphages, and (B) papillomaviruses (HPV).

https://doi.org/10.7554/eLife.67667
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Appendix 1—figure 8. EggNOG annotations entropy within the GCs (A) and the GCCs (B). The entropy was 
calculated using the function entropy.empirical() from the R package ‘entropy’, which estimates the Shannon 
entropy values based on the value empirical frequencies.

Appendix 1—table 1. Number of metagenomic clusters and genes after the validation and 
refinement steps.

Good-quality Bad-quality Total

Clusters 2,940,257 63,640 32,465,074

Genes 260,142,354 8,325,409 322,248,552

Appendix 1—table 2. MG +GTDB high-quality (HQ) subset of gene clusters (GCs).

Category HQ GCs HQ genes pHQ GCs pHQ genes

K 76,718 40,710,936 0.0145 0.120

KWP 16,922 1,733,599 0.00320 0.005132

GU 95,370 9,908,630 0.0180 0.0293

EU 14,207 477,625 0.00269 0.00141

Total 203,217 52,830,790 0.0384 0.1562

Appendix 1—table 3. Mean proportion of complete genes per cluster in the four functional 
categories.

K KWP GU EU

Mean percentage of 
complete genes

0.50 0.22 0.68 0.70

Appendix 1—table 4. KWP high-quality gene clusters (GCs) distribution in the COG groups.
(Full table in Supplementary file 1A).

COG group
Number 
of GCs

Proportion 
of GCs

CELLULAR PROCESSES AND 
SIGNALING

2292 0.135

INFORMATION STORAGE 
AND PROCESSING

1582 0.0935

METABOLISM 1679 0.0992

POORLY CHARACTERIZED 2899 0.171

NC 8470 0.501

https://doi.org/10.7554/eLife.67667
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Appendix 1—table 5. Environmental (metagenomic) dataset description.

(A) Number of samples and sites per metagenomic project.

Dataset Reference Samples Sites Contigs

TARA Sunagawa et al., 2015 242 141 62,404,654

Malaspina Duarte, 2015 116 30 9,330,293

OSD Kopf et al., 2015 145 139 4,127,095

HMP Lloyd-Price et al., 2017 1,246 18 80,560,927

Dataset Reference Samples Sites Reads

GOS Rusch et al., 2007 80 70 12,672,518

(B) Number of predicted genes per completeness category.

Total "00" "10" "01" "11"

322,248,552 118,717,690 106,031,163 102,966,482 75,694,123

Note: "00" = complete, both start and stop codon identified. "01" = right boundary incomplete. "10" = left 
boundary incomplete. "11" = both left and right edges incomplete.

Appendix 1—table 6. Summary of the number of EU clusters based on their presence in MAGs and 
their environmental distribution, obtained with the Levin’s Niche Breadth index.

Total clusters Broad Narrow Non-significant

Total EU 204,031 471 8421 195,079

EU in MAGs 55,520 88 316 55,116

EU not in MAGs 148,511 (73%) 383 (81%) 8105 (96%) 140,023 (72%)

Appendix 1—table 7. Number of lineage-specific gene clusters of unknown function at different 
taxonomic levels within the Cand.
Patescibacteria phylum.

Taxonomic level Number of clusters

Phylum 2

Class 6

Order 104

Family 1456

Genus 6987

Species 45,788

Appendix 1—table 8. Shannon entropy values for the eggNOG annotations within the gene 
clusters.

Min. 1st qu. Median Mean 3rd qu. Max.

Entropy per GC 0.000 0.000 0.000 0.105 0.000 3.729

Appendix 1—table 9. Shannon entropy values for the eggNOG annotations within the gene 
clusters communities.

Min. 1st qu. Median Mean 3rd qu. Max.

Entropy per GCC 0.000 0.000 0.000 0.285 0.400 3.721

https://doi.org/10.7554/eLife.67667
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Appendix 2
Metagenomic singletons and small gene clusters
Analysis of metagenomic singletons and gene clusters with less than ten genes.

The singletons represent 60% of the gene clusters (GCs) and 6% of the total genes. The GCs with 
less than ten genes, here referred to as small GCs for simplicity, represent 29% of the GCs and 10.5% 
of the gene dataset (Appendix 1—figure 2A). Although we discarded these two sets from the main 
study, we investigated them to obtain a complete analysis of the initial dataset. Both sets were first 
searched against the Pfam database of protein domain families (Finn et al., 2016), and subsequently 
classified following the steps described in Appendix Note 3. For the small GCs classification, we 
used the cluster consensus sequence, which we extracted using the hhconsensus program of the 
HH-SUITE (Steinegger et al., 2019a), from the GC multiple sequence alignments (MSAs), generated 
with FAMSA (Deorowicz et al., 2016).

We could not find any homologous in the Pfam database for the large majority of both singletons 
and small GCs, 95%, and 89%, respectively (Appendix  2—table 1). After the classification, the 
large majority of the singletons remained completely uncharacterized, (64% was identified as EU) 
(Appendix 2—table 2). Similarly, the small GCs were also found dominated by GCs of unknowns, 
with 38% of the clusters classified as EU and 29% as GU (Appendix 2—table 2).

Appendix 2—table 1. Singletons and small GCs Pfam annotations.

Total Annotated
Not 
annotated

Singletons 19,911,324 934,548 18,976,776

Small GCs 9,549,853 1,028,076 8,521,777

Appendix 2—table 2. Number of singletons and small GCs per functional category.

K KWP GU EU

Singletons 852,413 3,505,161 2,763,476 12,790,274

Small GCs 946,112 2,213,654 2,744,262 3,645,825

https://doi.org/10.7554/eLife.67667
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Appendix 3
Metagenomic gene cluster validation and refinement
To obtain a set of gene clusters characterized by a high intra-cluster homogeneity, we identified spurious, 
shadow and outlier genes, and we removed them from the clusters.

Identification of spurious genes
We identified spurious genes by screening our gene data set against the AntiFam database 
(Eberhardt et al., 2012).

Identification of shadow genes
We identified shadow genes using the procedure described in Yooseph et al., 2008. (1) Two genes 
on the same strand are considered overlapping if their intervals overlap by at least 60 bps; (2) genes 
that are on the opposite strands are considered overlapping if their intervals overlap by at least 50 
bps, and their 3' ends are within each other’s intervals, or if their intervals overlap by at least 120 bps 
and the 5' end of one is in the interval of the other.

Identification of outlier genes
Outlier genes are sequences inside a cluster non-homologous to the other cluster genes and were 
identified during the cluster validation step (see Methods - Gene cluster validation).

The number of spurious, shadow and outlier genes identified in the data set is reported in 
Appendix 3—table 1.

Appendix 3—table 1. Number of spurious, shadow and outlier genes in the metagenomic clusters.

Gene 
category

Clusters ≥ 
10 genes

Clusters < 
10 genes Singletons

Spurious 44,205 6784 2,335

Shadow 289,258 144,571 177,126

Outliers 3,118,850 - -

Cluster refinement
After the validation, we proceeded with the retrieval of the subset of "good" clusters. Clusters 
with ≥30% shadow genes were identified as shadow-clusters, as proposed in Yooseph et al., 2008. 
During the cluster validation, we identified a minimum of 10% outlier genes as the threshold to 
classify a cluster as "bad-quality" (Appendix 3—figure 1; Appendix 3—table 2A). We combined this 
threshold with a Jaccard similarity index <1, indicating a low intra-cluster Pfam domain architecture 
(DA) homogeneity, for the Pfam annotated clusters (Appendix 3—table 2B). We performed the 
cluster refinement in three consecutive steps:

I.	 Discard the "bad" clusters ( ≥ 10% outliers & Jaccard similarity index <1)
II.	 Discard the "shadow" clusters ( ≥ 30% shadow genes)
III.	 Remove the single shadow, spurious and outlier genes from the remaining clusters.

Appendix 3—table 2. Metagenomic gene cluster validation results.

(A) Evaluation of cluster sequence composition.

 �  Pre-Compos. validation good quality bad quality

Clusters 3,003,897 2,958,266 45,631

Genes 268,467,763 266,268,638 2,199,125

(B) Evaluation of cluster Pfam functional annotations.

 �  Pre-Funct. validation Funct. good Funct. bad

Clusters 1,015,924 1,004,166 11,758

Genes 181,433,541 178,167,583 3,246,002

https://doi.org/10.7554/eLife.67667


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Microbiology and Infectious Disease

Vanni et al. eLife 2022;11:e67667. DOI: https://doi.org/10.7554/eLife.67667 � 39 of 60

The results for each step are shown in Appendix 3—table 2 and Appendix 3—table 3. From the 
initial set of ~3 M clusters with more than ten genes, we identified 57,052 GCs as "bad" and 6,261 as 
"shadow". From the remaining set of 2,940,593 clusters, we removed a total of 2,708,994 shadow, 
spurious and outlier genes. During this last step, we discarded 336 more clusters: 244 resulted being 
composed only of spurious and outlier genes (one in the Pfam annotated set of clusters and 243 
in the non-annotated set), and 92 clusters were discarded since they were left as singletons after 
refinement. Besides, we moved 1,190 Pfam annotated clusters to the non-annotated set since they 
were left without any annotated gene. In summary, we removed 63,640 GCs and a total of 8,325,409 
genes, respectively, 2% and 3% of the initial data set. The refined set contains 2,940,592 GCs and 
260,142,354 genes (Appendix 3—table 3).

Appendix 3—figure 1. Proportion of outlier genes detected within each cluster MSA. Distribution of observed 
values compared with those generated by the Broken-stick model. The cut-off was determined at 10% outlier 
genes per cluster.

Appendix 3—table 3. Steps: Step I - Removing of the "bad clusters".
Step II - Removing of the "shadow clusters". Step III - Removing single spurious, shadow or outlier 
genes.

(A) Number of clusters in each step of the cluster refinement.

 �  Step I Step II Step III Refined

Clusters 3,003,897 2,946,845 2,940,593 2,940,257

Removed –57,052 –6,252 –336

(B) Number of genes in each step of the cluster refinement.

 �  Step I Step II Step III Refined

Genes 268,467,763 263,022,636 262,851,348 260,142,354

Removed –5,445,127 –171,288 –2,708,994

https://doi.org/10.7554/eLife.67667
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Appendix 4
Metagenomic gene cluster classification and remote homology 
refinement
Classification of the refined subset of gene clusters and remote homology refinement.

Methods
We searched the gene clusters (GCs) without any Pfam annotated gene against two functional 
databases, the UniRef90, from UniProt (The UniProt Consortium, 2017), and the NCBI nr database 
(NCBI Resource Coordinators, 2018). We screened the two databases using the cluster consensus 
sequences, obtained by applying the hhconsensus program of the HH-SUITE (Steinegger et al., 
2019a) on the clusters multiple sequence alignments (MSAs) generated with the FAMSA program 
(Deorowicz et al., 2016). We performed two nested searches using the MMSeqs2 (Steinegger and 
Söding, 2017) program and following a similar workflow as the ''2bLCA'' described in Hinghamp 
et al. (Hingamp et al., 2013). The search-workflow consisted of five steps: First, we searched the 
consensus sequences against the functional database, with -e 1e-05 --cov-mode 2 c 0.6. Second, 
we extracted the high scoring pairs (HSP) of the best hits and we searched them again using the 
same parameters. Third, we merged the top hits from the first with the second search results. Fourth, 
we filtered out the second search hits with a bigger e-value than the first search top hits. And fifth, 
we selected the hits that were found in 60% of the log10(best-e-value). We first applied this search-
workflow to screen the UniRef90 database (release 2017_11) (The UniProt Consortium, 2017). We 
classified the GCs as GU if their consensus sequences were found annotated to proteins labeled 
with any of the terms commonly used to define proteins of unknown function in public databases 
(Supplementary file 1G). We classified, instead, as KWP, the clusters with consensus annotated to 
functionally characterized proteins. Secondly, we applied the same search-workflow to search the 
consensus sequences with no homologs in the UniRef90 database, against the NCBI nr database 
(release 2017_12) (NCBI Resource Coordinators, 2018). We used the same criteria to classify a GC 
as GU or KWP. Ultimately, we classified as EU the GCs whose consensus sequences did not align with 
any of the NCBI nr entries.

We processed the Pfam annotated GCs to retrieve a GC consensus domain architecture (DA). We 
classified as GU the GCs with a consensus DA composed only of Pfam domain of unknown function 
(DUFs) and as K the rest. The methods for this step are described in Methods - Remote homology 
classification of gene clusters.

We refined the classified GCs to account for remote homologies. A detailed description of this 
process can be found in Methods - Gene cluster remote homology refinement.

Results
From the 1,946,737 non-annotated clusters, 1,581,115 were found homologous to UniRef90 entries. 
Of these hits, more than 50% were found homologous to "hypothetical" proteins and classified as 
GU, and the other hits were labeled as KWP. The remaining 365,622 clusters, with no homologs 
to UniRef90, were screened against the NCBI nr database. We found 20,277 clusters in the NCBI 
nr, of them, 15,998 clusters were homologous to "hypothetical" proteins, and 4,279 clusters to 
characterized proteins and were classified respectively as GU and KWP. The remaining 345,345 
clusters were not found in the NCBI nr database and therefore identified as EU. After the cascaded 
profile search against UniRef90 and NCBI nr, and the analysis of the GC consensus DAs, we classified 
the GCs into 912,551 K, 753,718 KWP, 928,643 GU, and 345,345 EU. Detailed results for each search 
are reported in Appendix 4—table 1.

Appendix 4—table 1. Metagenomic gene clusters classification steps.

(A) Results from the search against the UniRef90 database

Search vs UniRef90 Hits No-hits

Initial clusters:1,946,737 1,581,115 365,622

 �  Characterized Hypothetical

 �  749,439 831,676

https://doi.org/10.7554/eLife.67667
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(B) Results from the search against the and the NCBI nr databases

Search vs NCBI nr Hits No-hits

Initial clusters: 365,622 20,277 345,345

 �  Characterized Hypothetical

 �  4,279 15,998

(C) Classification of the Pfam annotated GCs based on the consensus DAs.

Consensus DA analysis Annotated to DKF DAs Annotated to DUF DAs

Initial clusters: 993,520 912,551 80,969

Appendix 4—table 2. Metagenomic GC remote homology refinement steps.

K KWP GU EU

Initial GCs 912,551 753,718 928,643 345,345

EU refinement - + 38,333 + 171,183 –209,516

Post-EU refinement 912,551 792,051 1,099,826 135,829

KWP refinement + 137,615 –159,598 + 21,983 -

Refined GCs 1,050,166 632,453 1,121,809 135,829

https://doi.org/10.7554/eLife.67667
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Appendix 5
GTDB genomes integration
Results from the integration of the Genome Taxonomy Database (Parks et  al., 2018) into the 
metagenomic dataset.

We integrated the metagenomic GCs with the 93,723,190 genes from the archaeal and bacterial 
GTDB genomes (release 86) (Parks et al., 2018).

The integration strategy provides comparable results to a single-step clustering strategy 
(Appendix 5—figure 2 and Appendix 5—table 9), reducing the computational time and resources 
needed. Additionally, this approach is scalable (Vanni et al., 2021), which is crucial considering the 
ever-increasing amount of sequence data generated.

A total of 67,446,376 genomic genes, 72% of the whole dataset, were found in the metagenomic 
GCs. The remaining 26,276,814 (28% of the initial dataset) genes were then clustered separately 
into 7,958,475 genomic GCs (Appendix 5—table 1). This set of GCs was processed through our 
workflow steps to be validated, classified and refined.

Appendix 5—table 1. GTDB integration in the metagenomic dataset.

Metagenomic Shared Genomic Total

GCs 30,301,693 2,163,381 7,958,475 40,423,549

Genes 199,693,614 190,001,314 26,276,814 415,971,742

Appendix 5—figure 1. Proportion of outlier genomic genes identified within each cluster MSA. Distribution of 
observed values compared with those of the Broken-stick model.

https://doi.org/10.7554/eLife.67667
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Appendix 5—figure 2. Comparison of the clustering results obtained with the one-step and two-step approach in 
terms of cluster composition.

Within the set of genomic GCs, we identified 5,558,438 singletons and 2,400,037 GCs with more 
than one gene. We were able to annotate to Pfam protein domain families 41% of the genomic genes. 
The annotation led to 556,834 annotated GCs and 1,843,203 non-annotated GCs. The validation 
step determined the minimum proportion of outlier genes per cluster at 11% (Appendix 5—figure 
1). The majority of the genomic GCs showed high intra-cluster homogeneity, both in terms of 
sequence composition and functional annotations (Appendix 5—table 2).

Appendix 5—table 2. Genomic GC validation results.

(A) Evaluation of cluster sequence composition.

 �  Pre-Compos. validation good quality bad quality

GCs 2,400,037 2,361,585 38,452

Genes 20,718,376 20,364,454 353,922

(B) Evaluation of Pfam functional annotations.

 �  Pre-Funct. validation good quality bad quality

GCs 556,834 542,410 14,424

Genes 10,091,203 9,865,550 225,653

(C) Combined cluster validation results.

Pre-validation good quality bad quality

GCs 2,400,037 2,347,502 52,535

Genes 20,718,376 20,141,636 576,740

https://doi.org/10.7554/eLife.67667
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After the validation, we refined the GCs removing the GCs identified as "bad" and the detected 
outliers’ genes (see Appendix 5—table 3). We classified the refined subset of 2,347,502 GCs into the 
four functional categories via the same protocol applied for the metagenomic data set. The results of 
the GC classification are reported in Appendix 5—table 4. After the classification steps, we refined 
the EU and KWP GCs searching their HMMs profiles for remote homologies in the Uniclust (release 
30_2017_10) (Mirdita et al., 2017) and the Pfam (v. 31.0) (Finn et al., 2016) databases, respectively, 
using HHblits (Remmert et  al., 2011). An overview of the results step-by-step can be found in 
Appendix 5—table 5A. In the end, we obtained 617,344 GCs classified as Known, 136,406 as KWP, 
1,525,550 as GU and 68,202 as EU (Appendix 5—table 5B). The genomic dataset appeared highly 
dominated by the GU, which accounts for 65% of the GCs. In the end, we retrieved a subset of 
genomic "High Quality" (mostly complete) GCs (Appendix 5—table 6). The numbers of genes and 
GCs for the integrated (MG + GTDB) dataset are reported in Appendix 5—table 7.

Appendix 5—table 3. Spurious, shadow, and outlier genes in the genomic GCs.

Gene category GCs ≥ 2 genes Singletons

Spurious 3,252 1,312

Shadow 223,535 125,262

Outliers 449,080 -

Appendix 5—table 4. Non-annotated genomic GC classification.

(A) Results from the search against the UniRef90 database.

Search vs UniRef90 Hits No-hits

Initial GCs: 1,816,999 1,570,094 246,905

 �  Characterized Hypothetical

 �  304,004 1,266,090

(B) Results from the search against the NCBI nr database.

Search vs NCBI nr Hits No-hits

Initial GCs: 246,905 28,704 218,201

 �  Characterized Hypothetical

 �  1,280 27,424

(C) Classification of the Pfam annotated GCs based on the consensus DAs.

Consensus DA analysis DKF DAs DUF DAs

Initial GCs: 993,520 912,551 65,688

Appendix 5—table 5. Genomic GC remote homology refinement and final genomic GC dataset.

(A) Remote-homology refinement steps.

 �  K KWP GU EU

Initial GCs 464,815 305,284 1,359,202 218,201

EU refinement - + 5,704 + 144,295 –149,999

Post-EU refinement 464,815 310,988 1,503,497 68,202

KWP refinement + 152,529 –174,582 + 22,053 -

Refined GCs 617,344 136,406 1,525,550 68,202

https://doi.org/10.7554/eLife.67667
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(B) Genomic GC refined dataset.

 �  K KWP GU EU Total

Genes 9,997,529 663,107 9,305,621 175,379 20,141,636

GCs 617,344 136,406 1,525,550 68,202 2,347,502

Appendix 5—table 6. Genomic high quality (HQ) GCs.

Category HQ GCs HQ genes pHQ GCs
pHQ 
genes

K 12,202 25,105,156 0.0198 0.0096

KWP 4,019 1,349,165 0.0295 0.0214

GU 12,699 8,403,393 0.0083 0.0062

EU 438 471,820 0.0064 0.0074

Appendix 5—table 7. MG +GTDB seed database.
Integrated number of genes and GCs per category.

K KWP GU EU Total

Genes 230,641,76 32,754,365 68,509,335 3,534,207 335,439,673

GCs 1,667,510 768,859 2,647,359 204,031 5,287,759

Summary of the post-genomic integration dataset
In-detail description of the integrated metagenomic-genomic dataset.

The integration of 93,723,190 genomic genes into the metagenomic dataset (322,248,552 genes, 
32,465,074 GCs) resulted into a dataset of 415,971,742 genes and 40,423,549 GCs (Appendix 1—
figure 2A and Appendix 5—table 1). As shown in Appendix 5—figure 2A, the integrated dataset 
is divided into: (1) “kept” GCs and (2) “discarded” GCs.

1. The “kept” GCs.
The “kept” GC dataset contains the 2,940,257 metagenomic “kept” GCs with 260,142,354 
genes (Appendix  1—figure 2A), the genomic “kept” 2,347,502 GCs with 20,141,636 genes 
(Appendix 5—table 5B), plus 55,155,683 genomic genes found in the metagenomic set of “kept” 
GCs (Appendix 5—table 8), for a total of 5,287,759 GCs and 335,439,673 genes. A description 
of the integrated “kept” dataset numbers of GCs and genes, and their distribution in the different 
categories can be found in Appendix 1—figure 2A and Appendix 5—table 7.

2. The “discarded” GCs.
The metagenomic “discarded” set includes 8,325,409 genes and 63,640 GCs classified as “bad” 
during the validation and refinement processes (Appendix 3), 19,911,324 singletons and 33,869,465 
genes in 9,549,853 small GCs, that is clusters with less than 10 genes (Appendix 2), for a total of 
62,106,198 genes and 29,524,817 GCs.

The genomic “discarded” dataset consists of 576,740 genes and 52,535 GCs classified as “bad”, 
5,558,438 singletons and 12,290,693 genomic genes found in 1,223,730 metagenomic discarded 
clusters. This last set of genes, labeled as “Other” in Appendix 1—figure 2A, includes 1,578,862 
genomic genes found in the set of metagenomic “bad” clusters, 7,010,987 genomic genes found in 
the metagenomic small GCs and 3,700,844 genomic genes homologous to metagenomic singletons 
(Appendix 5—table 8).

The integration of the metagenomic and genomic “discarded” sets resulted in 80,532,069 genes 
and 35,135,790 GCs.

As described above, with the integration of genomic data we enriched metagenomic singletons 
and small GCs. This addition resulted in a set of 52,758 metagenomic singletons and 187,953 
metagenomic small GCs becoming GCs with more than ten genes. We validated and classified the 
240,711 GCs in this set. We obtained 223,229 good-quality GCs, divided into 17,383 K, 89,205 KWP, 
109,636 GU and 7,005 EU.

https://doi.org/10.7554/eLife.67667
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Appendix 5—table 8. Overview of genomic genes found homologous to metagenomic genes.

Total In MG good-quality GCs In MG small GCs In MG singletons
In MG bad-quality 
GCs

Genes 67,446,376 55,155,683 7,010,987 3,700,844 1,578,862

Evaluation of the integration strategy
Comparison of the results obtained with a one-step clustering approach against those from the 
integration approach.

We evaluated whether the integration of genomes into the metagenomic dataset would produce 
comparable results to the clustering at once of these two datasets. For the evaluation we randomly 
selected 20 M genes from the integrated dataset presented in the manuscript and we divided them 
based on their origin obtaining 17,049,704 metagenomic and 2,950,296 genomic genes. Next, 
we ran a one-step clustering of the metagenomic and genomic genes together as described in 
Methods - Determination of the gene clusters. Using the same test-datasets we then performed 
a two-steps clustering approach using the clusterupdate module of MMseqs2, as described in 
Methods - Determination of the gene clusters, which allows to integrate the genomic genes into the 
metagenomic clustering results.

The integration approach returned 0.57% more clusters than the one-step clustering and led to a 
reduction of 0.25% in the number of singletons (Appendix 5—table 9).

Appendix 5—table 9. Comparison of one-step and two-step clustering results in numbers.

Approach
Total number of 
gene clusters

Of which 
singletons

One-step 5,430,780 3,770,230

Two-step 5,462,006 3,779,961

We compared the clustering results using a custom R script. We evaluated the agreement 
applying the Adjusted Mutual Information (Romano et al., 2015),, which accounts for the higher 
number of small clusters found in the one-step clustering results. Overall, we obtained a high level 
of agreement (Appendix 5—figure 2) with an AMI of 0.96 (where 1 is the maximum).

The observed differences are due to new sequences not being included in the existing clusters 
but forming a new one. However, these gene clusters will later be aggregated during the gene 
cluster community inference.

https://doi.org/10.7554/eLife.67667
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Appendix 6
Gene cluster additional information
Additional information on the metagenomic and genomic (MG +GTDB) gene cluster dataset.

We retrieved a set of statistics for the MG  +GTDB  GC dataset, including the proportion of 
complete genes per cluster, the average gene length, the cluster level of darkness and disorder, 
and a cluster consensus taxonomic affiliation. The methods we applied to obtain these statistics are 
described in the Methods-Gene cluster characterization paragraph. Overall, the K category has the 
largest average GC size, 139.6 genes (and a max of 168,822 genes). The average GC size is then 
decreasing from the known to the unknown categories, with the EU presenting the smallest average 
size, with 17.36 genes per GC. Similarly, the K GCs have, on average, the longest genes (258.55 
aa), followed by the GU (177.16 aa), the KWP (133.22 aa) and the EU (130.65 aa). The unknown 
categories (GU and EU) have the highest level of completion, that is the proportion of complete 
genes per GC. The KWP GCs contain the smallest percentage of complete genes. We evaluated 
the levels of darkness and disorder of the GCs using the information on the DPD (Perdigão et al., 
2017) annotations (Appendix 6—table 1). The categories K, KWP and GU showed a degree of 
darkness inversely proportional to their functional characterization. Interestingly the KWP presented 
the highest level of disorder (Supplementary file 2B), while the proper characterization of these 
proteins is beyond the scope of this paper, our preliminary analyses suggest that KWP are enriched 
in intrinsically disordered proteins (Habchi et  al., 2014, Appendix  6—table 1). These proteins, 
usually involved in signaling and regulatory functions, don't have a well-defined 3-D structure and 
they can adopt many different conformations.

Appendix 6—table 1. Number of MG +GTDB GCs annotated to the DPD per functional category.

K KWP GU EU

374,555 8,874 22,135 0

We used the taxonomy of 214,392,608 genes to evaluate the taxonomic variation within a GC 
and generated consensus taxonomic annotations for 2,630,338 GCs. The GCs taxonomic variation is 
low at higher taxonomic levels and it steadily increases towards Genus and Species (Supplementary 
file 2C).

A general overview of the MG +GTDB main properties for the whole GCs dataset can be found 
in Supplementary file 2B.

https://doi.org/10.7554/eLife.67667
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Appendix 7
Gene cluster communities
Metagenomic and genomic gene cluster community inference detailed results.

We aggregated the gene clusters (GCs) into gene cluster communities (GCCs) based on their 
shared distant homologies, which couldn’t be detected with the sequence similarity approach. The 
GCC inference, described in the Methods-Cluster communities inference section, was implemented 
and tuned on the known sequence space, which is constrained by the domain architectures (DAs). 
Then, we used the information retrieved for the known sequence space to aggregate the unknown 
GCs. Since the number of DAs in the known GCs may be inflated due to the fragmented nature of 
metagenomic genes, a key step for the inference process was the retrieval of a set of non-redundant 
DAs (Methods - A set of non-redundant domain architectures section).

We reduced the complete set of 29,341 Pfam DAs found in the metagenomic dataset, to 23,681 
non-redundant DAs, and the 38,765 Pfam DAs found in the genomic dataset to 38,060 non-
redundant DAs.

To find how the different clusters aggregate at the DA level, we then applied a combination of 
HMM-HMM searches and community identification using the Markov Cluster Algorithm (MCL) (van 
Dongen and Abreu-Goodger, 2012) (see Materials and methods - Cluster communities inference). 
MCL is very sensitive to the inflation value, which determines the granularity of the partitioning. 
The results of our iterative approach are summarized in the radar plots of Appendix 7—figure 7–1. 
We determined the best inflation value at 2.2 for the metagenomic dataset, value corresponding 
to the radar plot with the largest area (Appendix 7—figure 1A). This value is in agreement with 
the value empirically determined to be the optimal (van Dongen and Abreu-Goodger, 2012). The 
inference led to a set of 283,314 metagenomic GCCs out of ~2.9 M GCs, with a reduction rate of 
90% (Appendix 7—table 1A).
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Appendix 7—figure 1. Radar plots used to determine the best MCL inflation value for the partitioning of the 
K into cluster components. The plots were built using a combination of five variables: 1 = proportion of clusters 
with one component and 2 = proportion of clusters with more than one member, 3 = clan entropy (proportion of 
clusters with entropy = 0), 4 = intra HHblits-Score/Aligned-columns (normalized by the maximum value), and 5 = 
number of clusters (related to the non-redundant set of DAs). (A) Metagenomic dataset. (B) Genomic dataset.

https://doi.org/10.7554/eLife.67667
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Appendix 7—table 1. Number of gene clusters, cluster communities, and reduction rate shown by 
functional category.

(A) Metagenomic dataset (MG)

 �  K KWP GU EU Total

Clusters 1,050,166 632,453 1,121,809 135,829 2,940,257

Communities 24,181 64,938 146,100 48,095 283,314

Reduction (%) 97.7 89.73 86.98 64.59 90.36

(B) Genomic dataset (GTDB)

 �  K KWP GU EU Total

Clusters 617,344 136,406 1,525,550 68,202 2,347,502

Communities 52,360 47,203 339,468 57,899 496,930

Reduction (%) 91.52 65.39 77.75 15.11 79.30

For the genomic dataset, we first identified the GCs with remote homologies to the metagenomic 
GCCs. To do this, we searched the genomic GC HMM profiles against the metagenomic ones, using 
HHblits (Remmert et al., 2011) (-n 2 -Z 10000000 -B 10000000 -e 1). We assigned the genomic 
GCs sharing a HHblits probability  ≥50%  and a bidirectional coverage  >60%  to the respective 
metagenomic GCCs. We processed the remaining genomic GCs through the GCC inference 
workflow. We determined the best inflation value at 2.5 (Appendix 7—figure 1B), which led to the 
inference of a total of 496,930 GCCs, with a reduction rate of 79% (Appendix 7—table 1B). The 
numbers of identified cluster GCCs for each category are shown in Appendix 7—table 1.

Gene cluster community validation
The biological significance of the gene cluster communities (GCC) was tested by exploring their 
distribution within the phylogeny of proteorhodopsin and a set of ribosomal protein families.

Methods
Analysis of the GCC distribution within the proteorhodopsin phylogeny.

We searched the proteorhodopsin (PR) HMM profiles from Olson et al., 2018 against the K and 
KWP cluster consensus sequences, using the hmmsearch program of the HMMER software (version 
3.1b2) (Finn et al., 2011). We filtered the results for alignment coverage >0.4 and e-value ≥1e-5. 
The filtered results were placed in the MicRhoDE PR tree (Boeuf et al., 2015) using pplacer (Matsen 
et al., 2010). Then we placed the query PR sequences into the MicRhode (Boeuf et al., 2015) PR 
tree. We de-duplicated the placed queries with CD-HIT (v4.6) (Li and Godzik, 2006) and we cleaned 
them from sequences with less than 100 amino acids using SEQKIT (v0.10.1) (Shen et al., 2016). 
Next, we calculated the best substitution model using the EPA-NG modeltest-ng (v0.3.5) (Barbera 
et al., 2019) and we optimized the MicRhoDE PR tree initial parameters and branch lengths using 
RAxML (v8.2.12) (Stamatakis, 2014). Afterward, we incrementally aligned the query PR sequences 
against the PR tree reference alignment using the PaPaRA (v2.5) software (Berger and Stamatakis, 
2012). We divided the query alignment and the reference alignment using EPA-NG –split v0.3.5. We 
combined the PR tree with the related contextual data and the tree alignment, into a phylogenetic 
reference package using Taxtastic (v0.8.9), and we placed the PR query sequences in the tree using 
pplacer (v1.1.alpha19-0-g807f6f3) (Matsen et al., 2010) with the option -p (–keep-at-most) set to 
20. We grafted the PR tree with the query sequences using Guppy, a tool part of pplacer. 3. As 
the last step, we assigned the PR Supercluster affiliation to the query sequence, transferring the 
annotation of its closest relative in the MicRhoDE tree (Boeuf et al., 2015) the R packages APE v5.3 
and phanghorn v2.5.3 (Schliep, 2011).

Furthermore, we aligned the query sequences annotated as viral to the six viral PRs from Needham 
et al., 2019, using Parasail (Daily, 2016) (-a sg_stats_scan_sse2_128_16 t 8 c 1 x). We then built a 
sequence similarity network (SSN) using the sequence similarity values to weight the graph edges.

Analysis of standard and high-quality GCCs distribution within ribosomal protein families.
As an additional evaluation, the distributions of standard GCCs and HQ GCCs within ribosomal 

protein families were investigated and compared. The ribosomal proteins used for the analysis were 

https://doi.org/10.7554/eLife.67667
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obtained combining the set of 16 ribosomal proteins from Méheust et al., 2019 and those contained 
in the collection of bacterial single-copy genes of anvi'o (Eren et al., 2021), that can be downloaded 
from (https://github.com/merenlab/anvio/blob/master/anvio/data/hmm/Bacteria_71/genes.txt).

Results
The results of both distribution analyses are shown in Figure 2D and C, respectively, and described 
in the main text.

We found 63 of the viral genes placed in the PR tree showing an average similarity of 50% with 
the viral PR of Needham et al., 2019 (Supplementary file 1H). Additionally, we found two genes 
(from two TARA samples: TARA_093_SRF_0.22–3 and TARA_145_SRF_0.22–3) sharing a similarity of 
100% with one of the Needham et al. PRs (ChoanoV2_VirRyml_1). These genes, however, were not 
placed in the PR tree.

HMM-HMM homology network weighting metrics
Validation of the edge weight metrics used for the gene cluster homology network community 
inference.

Methods
A critical step in the gene cluster community (GCC) inference relies on the determination of the edge 
weights for the GC HMM-HMM network. We tested two possible metrics to weight the GC homology 
network resulting from the all-vs-all HMM GC comparison with HHblits (Remmert et al., 2011): (1) 
the ratio between the HHblits score and the number of aligned columns (HHblits-Score/Aligned-
columns), metric chosen in this paper; (2) the maximum(HHblits-probability x coverage), weight used 
in Méheust et al., 2019. In addition, we tested the two different metrics using the ribosomal protein 
families as reference. For this second test, we filtered the GCCs for those annotated to the 16 
ribosomal proteins used in Méheust et al., 2019, and those contained in the collection of bacterial 
single-copy genes of Anvi'o (Eren et al., 2021), which can be downloaded from https://github.com/​
merenlab/anvio/blob/master/anvio/data/hmm/Bacteria_71/genes.txt. To then compare the two 
metrics, we used the functions of the R package aricode (https://github.com/jchiquet/aricode) (Vinh 
et al., 2009), which allow comparisons between clustering methods.

Results
The results of the test of the different HHblits metrics used to weight the GC homology network 
are shown separately in Appendix 7—figure 2 and the comparison in Appendix 7—figure 3. Both 
metrics present a very different behavior (Appendix 7—figure 2), the metric used in Méheust et al. 
is rescaling the HHblits-probability (Appendix 7—figure 3). While the HHblits-probability is useful 
for deciding if two HMMs are reliable homologs, it is not suitable for measuring similarities due to 
its dependence on the length of the alignment. On top of this, we can see how the HHblits-Score/
Aligned-columns values present a similar and more homogenous distribution in all four categories, 
being more suitable for the MCL clustering.

https://doi.org/10.7554/eLife.67667
https://github.com/merenlab/anvio/blob/master/anvio/data/hmm/Bacteria_71/genes.txt
https://github.com/merenlab/anvio/blob/master/anvio/data/hmm/Bacteria_71/genes.txt
https://github.com/merenlab/anvio/blob/master/anvio/data/hmm/Bacteria_71/genes.txt
https://github.com/jchiquet/aricode
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Appendix 7—figure 2. Cluster pairs distribution based on the metrics used to weight the gene cluster HMM-
HMM homology network. (A) HHblits-Score/Aligned-columns (Vanni et al., 2021). (B) maximum(HHblits-
probability x coverage) (Méheust et al.).
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Appendix 7—figure 3. Determination of the edge-weight metrics for the GC HMM-HMM homology network. We 
tested the metrics used in Méheust et al. and this paper (Vanni et al.). The correlations between metrics are shown 
per functional category. The metric used by Méheust et al. corresponds to the maximum(HHblits-probability x 
coverage). The metric applied in this manuscript is HHblits-Score/Aligned-columns. (A) Comparison between the 
metric of Méheust et al. and the HHblits-Probability. (B) Comparison between the metric used in this manuscript 
and the HHblits-Probability. (C) Comparison between the metric used in this manuscript and the metric of Méheust 
et al.

Overall, our approach generated fewer GCCs, as can be observed in Appendix 7—figure 4. Our 
clustering was found closer to the "ground truth" represented by the ribosomal protein families 
compared to the partitioning proposed by Méheust et al. The results from the comparison between 
the two clustering approaches and the ribosomal protein reference are reported in Appendix 7—
table 2.

https://doi.org/10.7554/eLife.67667
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Appendix 7—figure 4. Agreement between the number of communities within ribosomal protein families 
between our approach and the one described in Méheust et al.

Appendix 7—table 2. Measures of similarity between the community inference approach proposed 
in this paper, the one used in Méheust et al and the "ground truth" represented by the ribosomal 
protein families.

Vanni et al. 
vs meheust 
et al.

Vanni et al. 
vs ribosomal 
families

Meheust 
et al. vs 
ribosomal 
families

ARI 0.915 0.944 0.906

AMI 0.928 0.916 0.878

NVI 0.101 0.0858 0.124

NID 0.0717 0.0841 0.122

NMI 0.928 0.916 0.878

Note: ARI = Adjusted Rand Index; AMI = Adjusted 
Mutual Information; NVI = Normalized Variation 
Information; NID = Normalized Information Distance; 
NMI = Normalized Mutual Information.

https://doi.org/10.7554/eLife.67667
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Appendix 8
Singletons effect on the sequence space diversity
Insights into the metagenomic and genomic singletons and their influence on the gene cluster rate 
of accumulation.

Singletons represent a significant fraction in both the metagenomic (60%) and genomic (55%) 
datasets. Although we discarded them from the primary analyses presented in this paper, we 
analyzed their composition in terms of functional categories. The analysis steps are described for 
the metagenomic singletons in Appendix 2, and, after the integration, we applied the same steps 
to the genomic singletons (Appendix 8—table 1). As shown in Appendix Note 1, the metagenomic 
singletons are highly represented by EU genes, while in the genomes we observed the majority of 
the singletons shared between GU and EU. In general, the singletons are characterized by a high 
percentage of genes of unknown function.

Appendix 8—table 1. Number of genomic singletons per functional category.

K KWP GU EU

Genes 473,460 896,127 2,528,370 1,660,481

We tested the singletons role in the rate of accumulation of GCs and GCCs as a function of 
the number of genomes and metagenomes, as shown in Figure 3C and D (to be compared with 
Appendix  1—figure 5A and B). For the metagenomic collector curves, we included only the 
singletons with a sample abundance of 8.36. This value corresponds to the mode sample abundance 
of the set of metagenomic singletons that became clusters with more than ten genes after the 
integration of the genomic data.

We observed that, excluding the 19,911,324 singletons from the metagenomic dataset, the 
accumulation curves of the GCs flatten and approach a plateau. The same effect is observed, 
excluding the set of 5,558,438 singletons from the genomic dataset (Appendix  1—figure 5B; 
Appendix 8—table 2).

Appendix 8—table 2. Minimum slope values for the collector curves.

(A )Excluding singletons. In parenthesis, the number of genomes or metagenomes for the 
first occurrence of slope <1

 �  Gene Clusters Gene cluster Communities

 �  metaG GTDB metaG GTDB

Known 209.235 6.556 0.1344 (440) 0.07 (15,120)

Unknown 374.5147 5.851 0.1375 (600) 0.621 (27,690)

(B) Including singletons (with a mode abundance in the samples of 8.36).

 �  Gene Clusters

 �  metaG GTDB

Known 1329.489 66.063

Unknown 4843.570 158.891

https://doi.org/10.7554/eLife.67667
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Appendix 9

Coverage of external databases
Analysis of the coverage, by our metagenomic dataset, of seven external microbial gene and gene 
cluster datasets.

Methods
We searched seven different state-of-the-art databases against our dataset of cluster HMM 

profiles. The different profile searches were all performed using the MMSeqs2 (version 8.fac81) 
search program (Steinegger and Söding, 2017), setting an e-value threshold of 1e-20 and a query 
coverage threshold of 60% (-e 1e-20 --cov-mode 2 -c 0.6). We kept the hits within 90% of the 
log10(best-e-value). Then we applied a majority vote function to retrieve the consensus functional 
category (K, KWP, GU or EU) for each search hit. In the end, the results were sorted by the lowest 
e-value and the largest query and target coverage to keep only the best hits.

We applied the described method to the following datasets: the Families of Unknown Functions 
(FUnkFams) (61,970 genes) (Wyman et  al., 2018), the Pacific Ocean Virome (POV) (4,238,638 
genes) (Hurwitz and Sullivan, 2013) and the Tara Ocean Virome (TOV) (6,642,187 genes) (Brum 
et al., 2016). The Genome Taxonomy Database (GTDB) (93,723,190 archaeal and bacterial genes) 
(Parks et al., 2018). The MGnify proteins from the EBI metagenomics database (release 2018_09)
(Mitchell et  al., 2020) (843,535,611 genes). The manually curated collection of 957 MAGs from 
TARA metagenomes (Delmont et al., 2022) (TARA MAGs) (2,288,202 genes), and the one made of 
92 MAGs, from the fecal microbiota transplantation study (FMT MAGs) of Lee et al., 2017 (188,983 
genes). And also, the collection of unannotated genes with mutant phenotypes identified in Price 
et al., 2018 (37,684 mutant genes).

Results
We found our metagenomic GCs in all the main biomes defined by EBI metagenomics (Appendix 1—
figure 6), with an overall coverage of 74% of the MGnify peptides (Appendix 9—figure 1). Our GCs 
also covered 62% of the FUnkFam genes of Wyman et al., 2018; 70% of the GTDB genes; and 85% 
of the genes tested for mutant phenotypes in Price et al., 2018. We also covered 50% of the Pacific 
Ocean Virome proteins, and 77% of the TARA Ocean Virome proteins, for overall coverage of 70% 
of the selected viral proteins. The majority of genes from both the FMT MAGs of Lee et al., 2017 
and the TARA MAGs of Delmont et al., 2022, were found homologous to genes in our dataset (91% 
and 77% respectively). With the only exception of the FUnkFams, and the mutant genes, for which 
we did not find any homology to EU GCs, the other datasets reported homologies to clusters from 
all four functional categories. Moreover, we found that 20% of the Wyman et al FUnkFams and 44% 
of the unknowns included in the RB-TnSeq experiments by Price et al., 2018 belong to the known 
sequence space (Appendix 9—table 1).
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Appendix 9—figure 1. Coverage of external datasets. The bar plot is showing the proportion of covered genes in 
each of the seven datasets that were screened against the metagenomic set of clusters’ HMM profiles.

https://doi.org/10.7554/eLife.67667
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Appendix 9—table 1. Re-classification of the unknowns identified in Wyman et al and Price et al.

Study Original unknown set Covered fraction Found as known
Found as 
unknown

Wyman et al. 61,970 38,174 12,366 25,808

Price et al. 49,736 33,016 21,967 11,049

https://doi.org/10.7554/eLife.67667
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Appendix 10

EU gene cluster in metagenome-assembled genomes
Metagenome-assembled genomes (MAGs) as a resource to contextualize the environmental 
unknown gene clusters and cluster communities.

Overall, the MG + GTDB integrated cluster dataset contains 204,031 EU gene clusters (GCs) 
(grouped in 103,195 cluster communities (GCCs)). The EUs are divided into 127,032 metagenomic, 
70,470 genomic, and 9,024, both metagenomic and genomic GCs. The last two subsets contain 
52,231 (26%) EU found in GTDB metagenome-assembled genomes (MAGs). To test whether we 
could also place the subset of metagenomic EU in the context of MAGs, we searched the GCs of this 
set against the manually curated TARA Ocean MAG collection from Delmont et al., 2022.

In addition, we deepened the investigation of the metagenomic EU subset, focusing on the GCCs 
found broadly distributed in metagenomes according to the results of Levin’s niche breadth analysis 
(Figure 4). The details of the metagenomic EU analysis are described below.

Methods
We searched the metagenomic EU GCs HMM profiles, obtained from the cluster MSA using the 
hhmake program of the HH-SUITE (Steinegger et al., 2019a), against the set of 957 high-quality 
MAGs binned from the TARA Ocean prokaryotic dataset (Delmont et al., 2022). We performed the 
sequence-profile search using the MMSeqs2 search program (Steinegger and Söding, 2017), using 
-e 1e-20 --cov-mode 2 -c 0.6 . We filtered the results to keep the hits within 90% of the 
log10(best-e-value). We applied a majority vote function to retrieve the consensus category for each 
hit. Then, we sorted the results by the smallest e-value and the largest query and target coverage to 
keep only the best hits. We then filtered the search results focusing on the broadly distributed EU 
GCs and GCCs. We retrieved MAG contigs containing the EU GCs and GCCs from the Anvi’o MAG 
profiles using the program anvi-export-gene-calls from Anvi’o v4 (Eren et al., 2015). We functionally 
annotated the contigs searching their genes against the Pfam database (v. 31.0) (Finn et al., 2016), 
using the hmmsearch program from the HMMER package (version: 3.1b2) (Finn et al., 2011), and 
complementing the search using Prokka (Seemann, 2014) in metagenomic mode. We then selected 
the contig with the lowest percentage of hypothetical proteins, and we extracted a region of 1 kb 
surrounding the genes mapping to the EU GCCs.

Results
We found a total of 5,420 EU clusters homologous to 7,661 genes in the 691 TARA MAGs. These 
EU clusters belong to 4,365 GCCs. We kept only the 71 EU GCCs that showed a broad distribution 
in TARA samples. These GCCs contained 3,119 clusters and were found in 83 different TARA MAGs. 
Next, we examined the genomic neighborhood of the broad distributed EU on the MAG contigs. 
Investigating the genomic neighborhood can lead to the inference of a possible function of the 
EU. We selected the MAG most enriched with broadly distributed EU, which resulted in being 
the Atlantic North-West MAG "TARA_ANW_MAG_00076" (Appendix 10—figure 1A). This MAG 
contains 23 EU (0.3%) of its genes. It belongs to the bacterial order of Flavobacteriales. Of its 1,283 
contigs, 317 include at least one EU. We functionally annotated these contigs with Prokka (and 
Pfam). Then, we sorted the contigs based on the proportion of genes annotated to hypothetical 
or characterized proteins, as shown in Appendix 10—figure 1B. The presence of genes of known 
function around the EU contributes to prove that these unknown genes are part of a real contig, and 
possibly an operon. Therefore, we selected for exploration, the contigs with the highest proportion 
of characterized genes, "TARA_ANW_MAG_00076_000000000672", with 7 characterized genes out 
of a total of 13 annotated genes. The contig with the second least number of hypothetical proteins 
was "TARA_ANW_MAG_00076_000000001247", which contained nine characterized genes out 
of 20. The contig "TARA_ANW_MAG_00076_000000000672" is shown in Appendix  10—figure 
1C and highlighted in red are the two predicted genes with significant homology to the EU GCs, 
members of the broadly distributed EU GCCs eu_com_769 and eu_com_5081. Within their genomic 
neighborhood, we observe genes relating to nucleotide metabolism, DNA repair and phosphate 
regulation/sensing, including dUTPase, phoH and protein RecA. Gene placement in prokaryotic 
genomes is not random. Genes are grouped to increase transcriptional efficiency to respond to 
stimuli in the environment. Therefore, we can hypothesize that these EU have functions related to 
their neighboring genes.

https://doi.org/10.7554/eLife.67667
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Appendix 10—figure 1. Broadly distributed EU mapping on TARA MAGs results. (A) . Histogram of TARA MAG 
percent completeness (checkM). The red line represents the number of EU found in the MAGs. (B) Contigs from 
TARA MAGs TARA_ANW_MAG_00076 in descending order of highest proportion of non-hypothetical gene 
content. (C) EU communities in the context of a MAG contig. Contig genomic neighborhood around two potential 
EU communities.

https://doi.org/10.7554/eLife.67667
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Appendix 11
Archaea gene cluster phylogenomic analysis
Gene clusters phylogenetic analysis - results for the archaeal genomes.

In the main text are shown the results for the gene clusters (GCs) phylogenetic analyses (clusters 
phylogenetic conservation and specificity) for the GTDB bacterial genomes. The same methods/
analyses were applied for the archaeal genomes, and the results are presented here.

Out of the 230,340 GCs found in GTDB archaeal genomes, we identified 48,518 lineage-
specific GCs (precision and sensitivity both ≥95%, Mendler et al., 2019). As seen for the Bacteria 
in Figure 5A, the number of known and unknown archaea lineage-specific GCs increases with the 
Relative Evolutionary Distance (Parks et al., 2018), with the differences between the known and the 
unknown fraction starting to be evident at the Family level (Appendix 11—figure 1A). The number 
of unknown lineage-specific GCs for Family, Genus and Species are 2,937, 12,966 and 21,002 
respectively (Supplementary file 1I). A total of 34,893 GCs were phylogenetically conserved (P < 
0.05), where 19,693 were known GCs and 15,200 were unknown GCs. Overall, the unknown GCs 
are more phylogenetically conserved than the known GCs (Appendix 11—figure 1B, P < 0.0001). 
However, considering only the lineage-specific clusters, we observe the opposite, the unknown GCs 
result in less phylogenetically conserved (Appendix 11—figure 1B). The GTDB archaeal genomes 
were also screened for prophages. In total, we identified 2,082 lineage-specific GCs in prophage 
genomic regions, and 86% of them resulted in clusters of unknown function (Appendix 11—figure 
1C). To identify archaeal phyla enriched in unknown GCs, we partitioned the phyla based on the ratio 
of known to unknown GCs and vice versa (Appendix 11—figure 1D). We observed the same pattern 
found for bacterial phyla in Figure 5D, where the archaeal phyla with a larger number of MAGs are 
enriched in GCs of unknown function (Appendix 11—figure 1D).

Appendix 11—figure 1. Phylogenomic exploration of the unknown sequence space in Archaea. (A) Distribution 
of the lineage-specific gene clusters by taxonomic level. Lineage-specific unknown gene clusters are more 
abundant at the lower taxonomic levels (genus, species). (B) Phylogenetic conservation of the known and unknown 
sequence space in 1,569 archaeal genomes from GTDB. We calculated the mean trait depth (add symbol D) with 
the consenTRAIT algorithm and the lineage specificity using the F1-score approach from Mendler et al., 2019. 
We observe differences in the conservation between the known and the unknown sequence space for lineage- and 
non-lineage-specific gene clusters (paired Wilcoxon rank-sum test; all P-values <  0.0001). (C) The majority of the 
lineage-specific clusters are part of the unknown sequence space, being a small proportion found in prophages 
present in the GTDB genomes. (D) Known and unknown sequence space of the 1,569 GTDB archaeal genomes 
grouped by archaeal phyla. Phyla are partitioned based on the ratio of known to unknown gene clusters and 
vice versa from the set of genomes. Phyla enriched in Metagenomic assembled genomes (MAGs) have a higher 
proportion in gene clusters of unknown function.

https://doi.org/10.7554/eLife.67667
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Appendix 12

Cand. Patescibacteria lineage-specific gene clusters analysis
The investigation of the lineage-specific clusters was deepened, focusing on those specific to the 
Cand. Patescibacteria phylum (former Candidate Phyla Radiation-CPR) and analyzing their cluster 
distribution in both the Human and marine (TARA and Malaspina) metagenomes.

We found two GU clusters phylum-specific, and a total of 54,343 clusters of unknown function, 
lineage-specific within the Cand. Patescibacteria phylum (Appendix 12—table 1). The majority of this 
phylum members are particularly poorly understood microorganisms, mostly due to undersampling 
and the incompleteness of the available genomes. Therefore, we decided to investigate the 
distribution in the human and marine (TARA and Malaspina) metagenomes of all the clusters lineage-
specific inside the Cand. Patescibacteria phylum (Appendix 12—figure 1A).
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Appendix 12—figure 1. Cand Patescibacteria metagenomic lineage-specific clusters. (A) Phylogenetic tree 
of Cand. Patescibacteria genera, colored by classes. The heatmaps around the tree show the proportion of 
lineage-specific gene clusters of knowns and unknowns in the metagenomes from TARA, Malaspina and the HMP. 
(B) Metagenomic lineage-specific clusters in the class of Gracilibacteria.

Appendix 12—table 1. Number of lineage-specific clusters within the Cand.
Patescibacteria phylum, at different taxonomic levels, subdivided by cluster categories.

Taxonomic level K KWP GU EU

Phylum 1 0 2 0

Class 11 0 6 0

Order 41 1 104 0

Family 452 9 1,443 13

Genus 625 98 6,649 338

Species 4,116 818 42,710 3,078

We chose to have a closer look at the class of Gracilibacteria, which shows to be present in both 
human and marine environments. The first genome for this class was retrieved in a hydrothermal 

https://doi.org/10.7554/eLife.67667
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vent environment in the deep sea (Rinke et al., 2013). The same organisms were then also identified 
in an oil-degrading community (Rinke et al., 2013; Sieber et al., 2019) and as a part of the oral 
microbiome (Espinoza et al., 2018). As shown in Appendix 12—figure 1B, we found both known 
and unknown clusters lineage-specific to this class, distributed in human and marine metagenomes. 
Among these clusters, we observed cases of environment specificity. For instance, three clusters of 
unknowns were found exclusive to HMP samples. These clusters could be proposed as novel targets 
for human-health study since Gracilibacteria was found enriched in healthy individuals (Espinoza 
et al., 2018). We also observed lineage-specific clusters of known and unknown functions specific 
to the marine environment.

https://doi.org/10.7554/eLife.67667
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