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Abstract: Tree development is affected by different factors including topographic features. The effect
could be even more complex in harsh environments such as in the northwest of Sweden. In this
study, we analyzed the effect of aspect-slope on the development up to the age of 34 years of five
species: black spruce, lodgepole pine, Norway spruce, Siberian larch and Scots pine. The species
were planted in a field experiment on the southwest slope, mountaintop, and northeast slope in
a randomized complete block design in the northwest of Sweden (latitude 67◦) with 2 m × 2 m
spacing. No re-measurement data were available and, as such, retrospective diameters and heights
were derived from sample discs and measurement of length to every branch whorl, respectively.
Variations in tree survival rate, height and diameter were analyzed using a linear mixed-effect model.
The results showed that there were significant (p < 0.05) differences between species in survival rate,
diameter and height growth; in some cases, differences were found between contrasting aspect-slope.
Black spruce and Siberian larch had the best survival rate under this harsh boreal climate. However,
Siberian larch had the best growth and developed well on the mountaintop and northeast slope.
Lodgepole pine developed well on the southwest slope. Scots pine also grew well on the southwest
slope and mountaintop. Norway spruce had the slowest growth. Based on this study, Siberian larch
and lodgepole pine can serve as alternatives to the two traditional conifer species, Norway spruce
and Scots pine, used in Sweden. Siberian larch is particularly suitable because it is able to withstand
the harshness of the boreal environment.

Keywords: Siberian larch; lodgepole pine; Scots pine; Norway spruce; black spruce; diameter and
height growth; survival; harsh boreal climate

1. Introduction

Early seedling survival following planting strongly depends on the quality of the
seedling microsite [1–3], which is determined by the interaction between biotic and abiotic
factors [4,5]. Factors such as climate (precipitation, temperature, sunlight, etc.), competition
(influence of other trees and ground vegetation) and topographic features (aspect, elevation
and slope, etc.) affect seedling survival, regeneration and, to a large extent, the forest diver-
sity [6,7]. Adverse environmental conditions reduce the chances of tree development [8].
The combination of high latitude, altitude and a north-facing slope have been reported to
reduce growth and increase mortality [9].

Furthermore, topographic heterogeneity of a landscape can further condition the
recruitment, survival and development of species [10], because two opposing aspects,
e.g., north-facing and south-facing, may experience variations in sunlight, humidity, and
temperature, and have different growing periods, even within a similar elevation [6]. For
example, a significant difference in biomass between north-facing and south-facing slopes
has been observed in northwest China [11]. In Africa, terrain slope has been reported to

Forests 2022, 13, 301. https://doi.org/10.3390/f13020301 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f13020301
https://doi.org/10.3390/f13020301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-8388-204X
https://orcid.org/0000-0003-2025-1942
https://doi.org/10.3390/f13020301
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f13020301?type=check_update&version=2


Forests 2022, 13, 301 2 of 12

have a negative impact on the survival rate of Afzelia Africana [4]. Furthermore, studies
have also shown that Mediterranean pine species have a high survival rate on north-facing
compared to south-facing slopes because of lower radiation, which enhances cooler and
mesic conditions [10,12]. A prolonged winter period often increases seedling mortality and
reduces tree growth [13,14], which makes forest regeneration difficult, especially in regions
close to the ‘treeline’, such as the north-western part of Sweden. In the northernmost part
of Sweden, as well as in the country, about 90% of the clear-felled area is planted and a
very small proportion (<5%) is regenerated by seedlings. The remaining area is naturally
regenerated [15].

Sweden has three broad forest vegetation zones: the nemoral (in the south), hemiboreal
(transition zone) and the boreal (south-central to northernmost) zones [16]. The Swedish
forests are predominantly made up of two coniferous species—Scots pine (Pinus sylvestris)
and Norway spruce (Picea abies), both in monoculture and mixed stands, with few broadleaved
trees. This pair accounts for approximately 80% of the standing timber volume [16]. Lodgepole
pine is non-native pine species planted in boreal Swedish from around 1970. Boreal forests are
generally adapted to perturbations such as snow, flooding, windthrow, fungus infestations,
and activities of beavers and defoliating insects [17,18]. Plantations in the northern boreal zone
risk severe mortality and growth reduction due to the combination of harsh climate and biotic
disturbances, e.g., Scots pine saplings are at risk of being damaged by Phacidium infestans
under the snow and by ungulate browsing above the snow [19]. During winters with high
snowpack, Gremmeniella abietina has caused damage to lodgepole pine in the region [20].
Norway spruce has repeatedly been proven to perform less well in terms of seedling growth
during the first years of establishment [21,22]. At the northern boreal zone, for example, in
the Gällivare region (latitude 67◦29′ N and longitude 20◦30′ E), the mean annual temperature
is 0.1 ◦C and mean annual precipitation is around 600 mm [23]. It snows almost half of the
year. The summer is short and there is ‘midnight sun’ for a substantial period in summer.
This makes the region one of the harshest in Sweden that carries forests. The duration of the
growing season is about 120 days [23]. Nonetheless, around 5–6 million cubic meters of the
country’s timber is obtained from Norrbottens county, which includes Gällivare [24].

Studies on the effect of aspect-slope (i.e., the slope’s direction with reference to the
sun) on the development of trees under harsh conditions from long-term experiments
are not well documented in Sweden. A previous study on the influence of aspect on the
initial growth of conifers’ seedlings reported no significant variation in the survival rate of
the species between contrasting slopes in northern Sweden, and only slight variation in
dominant height [13]. Only a short observation period (3–4 years from planting) was used in
the study. However, the author recommended at least 10 years of monitoring be undertaken
before appropriate assessment of species’ regeneration response to aspect-slopes under
harsh conditions is possible because of protracted seedling mortality and other reasons [13].
Understanding how aspect-slope affects tree survival and development under prevailing
harsh conditions will help in promoting its regeneration and establishment in a multifaceted
landscape. Thus, this study seeks to provide answers to the following questions: In these
harsh conditions, do aspect-slope effects on tree survival and development differ between
species? Do we have any alternatives to the traditional two species Norway spruce and
Scots pine? To answer these questions, we used five conifer species (Norway spruce,
Scots pine, Siberian larch, lodgepole pine and black spruce) planted in a field experiment.
We hypothesized that tree survival and growth are lower on the north-facing slope and
mountaintop than on the south-facing slope, and that the effects vary between species.

2. Materials and Methods
2.1. Study Area and Experimental Design

The study was conducted at Gällivare in Sweden, about 100 km north of the Arctic
Circle (Figure 1). The experiment was established in 1987 to study “whether survival
and growth differ between seedlings planted on differently facing slopes, aspects of a
mountain with harsh boreal climate”. Three aspect-slopes (hereafter called A-S) were used
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in the experiment: the southwest slope (hereafter called SW), northeast slope (hereafter
called NE), and the crest of the mountain Peltovaara (hereafter called Top). The mountain
Peltovaara is situated at latitude 67◦05′ N and longitude 20◦22′ E, with an altitude between
476 and 478 m above sea level (a.s.l). SW and NE range from 444 to 456 m a.s.l. [13]. The
degree of slope at SW and NE ranged from 5 to 10%, and was 0% at the Top [13]. The
region has a cold climate because of its relatively high latitude. The mean daily temperature
ranges from −13.1 ◦C in January to 14.7 ◦C in July; and in summer, the temperature can
occasionally rise above 30 ◦C [23].
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Figure 1. The Peltovaara experimental site (2405) with the distribution of the blocks (90 seedlings per block).

The same soil preparation (patch mounding) was undertaken for the three A-S (SW,
Top and NE), with each mound around 0.2–0.3 m and containing 20–40 dm3 of mineral
soil [13]. At the commencement of the experiment in June 1987, the three sites were planted
with one-year-old seedlings of Scots pine (Pinus sylvestris L., 3 provenances), SP; lodgepole
pine (Pinus contorta Dougl. Ex Loudon), LP; and Siberian larch (Larix sibirica Ledeb.),
SL. In addition, in June 1988, two-year-old seedlings of Norway spruce (Picea abies (L.)
Karst., 3 provenances), NS; and black spruce (Picea mariana (Mill.) B.S.P.), BS, were planted.
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Within each site, 10 blocks of 20 m × 18 m size were initially established, and each block
consisted of nine rows. The seedlings (9 species × provenance combinations) were planted
in mounds randomly on different rows with 2 m × 2 m spacing (10 seedlings per row) [13];
2700 seedlings in total were used for the experiment.

2.2. Field Measurements

A complete enumeration of the trees on the three A-S was carried out in the summer
of 2020 (32/33 years after establishment). Information on diameter, tree species and status
(alive or dead) was documented. However, only a few sample trees were measured for
height. The information on species status was used to determine the tree survival rate as of
the year 2020. Three sample blocks were selected from each A-S based on the density and
species representation.

Three trees per species per block in each experimental site were randomly selected
from the tree list (in total 135 trees). Before the selection of the sample trees, we carried
out a preliminary analysis to check whether variation existed in the height curve at the
provenance level (for Norway spruce and Scots pine). A variation, however non-significant,
was found only for the Norway spruce provenances. We, therefore, decided not to use
different height curves for Norway spruce and Scots pine at the provenance level.

The selected sample trees represent the range of the diameter distribution per species
in each site for trees with dbh ≥4.5 cm. Sample trees were located, marked at 1.3 m
breast height and felled from the base. Once on the ground, a measuring tape was used
to measure the length to every branch whorl from the top to the base of the tree. Then, a
2 cm cross-sectional disc was obtained at breast height (the marked point) with a chain saw.
The discs were labelled according to the tree number, species, plot and site, and taken to
the dendrochronology laboratory for dendrochronological analysis. To avoid a rupture in
the discs, the samples were oven-dried at a constant temperature of 60 ◦C for two days.
Thereafter, they were sanded to fine grit and scanned to a resolution of 1200 dpi (2400 for
smaller discs) with Epson Perfection V330 Photo. Tree rings were measured in CooRecorder
integrated with the CDendro 9.6 program [25].

2.3. Tree Growth Reconstruction

The main purpose of reconstruction in this study was to obtain a database of tree
species, site, year, dbh and height. For the sampled trees, we derived the retrospective
diameter from the 2 cm disc at breast height. This information was used to fit a diameter
growth function, from which the previous diameters of the remaining standing trees were
derived. Separate functions were fitted for BS, LP, NS, SL and SP for each of the three A-S.
The power function (Equation (1)) was used in this study. The choice of the number of
sample trees is important for model parameterization, and a minimum of five trees has
been previously suggested [26].

dbhi = b0dbhb1
2020 (1)

where dbhi represents the diameter at breast height at year i in cm; dbh2020 is the diameter
at breast height at the last inventory 2020; b0 and b1 are model parameters to be estimated.
A similar function has been recently used for mixed stands [26]. The regression model was
based on the assumption of a constant bark thickness over time.

In the case of retrospective height, the measured length between successive whorls
per sampled tree was used to measure annual heights. Thus, with the information on the
retrospective diameter and height growths, a database of A-S, tree species, diameter- and
height-development was generated for all sample trees. To obtain the heights of all trees,
the Näslund function [27] (Equation (2)) was fitted to the height and diameter data from the
sampled trees per species per year for the individual A-S (SW, Top and NE), expressed as:

hi = 1.3 +
(

dbhi
b0dbhi + b1

)3
(2)
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where hi and dbhi are the individual tree height and diameter at year i, respectively; b0
and b1 are model parameters to be estimated. It was necessary to fit the model to the
individual tree species and years because the parameters b0 and b1 vary with species and
age of stand development [26,28]. A similar model specification has been used in Scots
pine and Norway spruce in central Sweden [29,30]. The reconstructed tree growth data
were used to study tree development from 2003 to the inventory in summer 2020. This
information would increase the understanding if one species has become dominant over
another species.

2.4. Data Analysis

Differences in survival rate and diameter and height of the species on the different A-S
as of 2020 were analyzed using a linear mixed model (Equation (3)). The factors A-S (SW,
Top and NE) and species, and the interactions, were regarded as the fixed effect, and block
as the random effect. Data on survival rate (in %) were transformed with arcsine before
the analysis was performed to fulfil the assumption of normality. The results are, however,
presented without the arcsine transformation. The additive model is expressed as:

Yij = µ + A− Si + Speciesj + (A− S× Species)ij + εij (3)

where Yij represents the response or dependent variables (survival rate, diameter and
height); µ is the population mean; aspect-slope (A-S) and species (categorical variables) are
the fixed effect, together with their interactions, representing the independent variables;
εij is random error. Only the diameter and height of the dominant trees (3 trees) of each
species per block were analyzed. A 5% level of significance was used as the threshold for
the analysis, and where significances were observed for a variable, a post hoc test using
Tukey (HSD) was conducted to ascertain which factors differed. The fitting of the model
was performed using the lmerTest package implemented in R [31].

3. Results

At tree age 35, SW presented better survival rates for all species except NS (Table 1).
The lowest survival rates were observed on Top for most of the species, except for NS with
a significantly high survival rate. The survival rate of LP on SW (72%) was significantly
higher than on NE and Top. Generally, BS and SL had the best survival rates across the
three A-S, and the worst was observed in SP.

Table 1. Survival rate (%) of black spruce (BS), lodgepole pine (LP), Norway spruce (NS), Siberian
larch (SL) and Scots pine (SP) on the three A-S: SW, Top and NE.

Species SW Top NE

BS 89 ± 3.8 a 84 ± 3.7 ab 86 ± 3.1 ab

LP 72 ± 5.1 a 41 ± 5.0 b 43 ± 2.6 b

NS 38 ± 3.7 a 51 ± 3.4 b 40 ± 3.8 a

SL 84 ± 2.7 a 71 ± 3.8 a 77 ± 5.2 a

SP 36 ± 3.2 a 30 ± 3.5 a 22 ± 2.9 a

The values are mean ± standard error (n = 10). Values with the same superscript in the same row are not
significantly different.

The results from the analysis of the tree growth characteristics showed that little
differences in diameter were observed between the three A – S (SW, Top and NE) for
the dominant trees. Only SL had a significantly higher diameter on Top, and SP had
significantly lower diameter values on the NE site. Overall, SL presented higher diameter
values and NS the lowest ones (less than half that of SL). In the case of tree height, significant
differences were observed among SW, Top and NE (Figure 2B). Both BS and LP were
significantly higher on SW. NS, SL and SP were significantly higher on Top. All species
except BS had significantly lower height values on the NE. Generally, LP had greater height
values and NS had the lowest of all species on all aspect-slopes in the experiment.
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Figure 2. Comparison of the mean diameter (A, upper panel) and height (B, lower panel) of the
dominant trees of black spruce (BS), lodgepole pine (LP), Norway spruce (NS), Siberian larch (SL)
and Scots pine (SP) on the southwest slope (SW) mountaintop (Top) and northeast slope (NE). Means
with the same letter are not significantly different (p < 0.05).

The diameter development of the species showed that BS and even more of NS
developed poorly on SW, Top and NE (Figure 3A). SP was intermediate, and LP and SL
performed similarly on the slopes. SL had the best diameter development on Top.

Similarly, for the height development, BS and NS grew poorly on all sites, particularly
NS on NE (Figure 3B). SL and SP had the same development pattern on SW and NE. SL
grew tallest on Top in a large part of the study period but grew equally well with SP
towards the later stage. LP had the best height development on the contrasting slopes. BS
started poorly at the early stage on Top but had a significant growth between 2005 and
2006, and thereafter had a consistent increment, with its position slightly below NS.

The shift in the height–diameter curves of the species in the last decade varied, es-
pecially on NE (Figure 4). NS had little difference between the years for SW and Top,
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whereas other species had little difference in NE but larger differences in Top and SW. SL
had different height curves in all three aspects.
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4. Discussion

This research evaluated the effect of aspect-slope on the survival and development of
conifer species in harsh boreal climates. The survival rate, diameter and height growths of
the species varied across the aspect-slopes. Our hypothesis of lower survival and growth
on the northeast slope and mountaintop was true for some of the tree species.

The survival rate of black spruce, Siberian larch, lodgepole pine and Scots pine was
higher on the southwest slope than on the northeast slope. The southwest slope also seems
to favor the survival of most of those species compared to the mountaintop. One reason
for this variability may be the high soil temperature on the southwest slope, and high
snow and wind pressure on the northeast slope. Low soil temperature often limits root
development [13,32,33]. A high snowpack in the northeast slope may be responsible for
the low survival rate in some of the species, especially Scots pine, because the saplings
are susceptible to Phacidium infestans attack under the snow [19]. The survival rate of
Norway spruce was significantly higher on the mountaintop relative to the southwest,
which implies that there may be other inherent factors influencing the survival of this
species. Tree species, such as black spruce and Siberian larch, with high survival rates that
were not significantly different on the southwest slope, mountaintop and northeast slope,
could be raised at this latitude (67◦ N) irrespective of the aspect-slope. A comparison of
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the initial survival rates of these species (3 years after establishment) [13] and the current
survival rate (33 years after establishment) (Table 1), showed that only a few trees of black
spruce and Siberian larch had died, especially on the southwest slope in the last 30 years
(33-3). About 50% of lodgepole pine died on the northeast slope and mountaintop during
this period, in many cases probably due to damage by Gremmeniella abietina [20].

Height in 2020 was significantly greater at SW compared to NE for all tree species
except Siberian larch. The diameter of Scots pine on the southwest slope was significantly
larger than on the northeast slope, whereas diameter was not significantly different between
A-S for other tree species. Height is a better measurement of growing condition than
diameter, which is more greatly affected by competition. However, the mountaintop seems
to favor the diameter and height growth of Siberian larch, Scots pine and Norway spruce
compared to the opposite slopes. A similar observation has been reported at the early stage
of the stand development [13]. Moreover, a significant effect of aspect and slope on tree
height development has been observed in Aleppo pine [34].

The results from the opposite slopes may be due to the difference in solar radiation
and soil temperature [13,35]. Southwest slope receives higher solar radiation, which makes
it warmer [6,13] and, as such, more able to support tree growth under this harsh condition
than the northeast slope. Conversely, the northeast slope is colder than the contrasting
slope. Moreover, since Gällivare is considered to be an extremely harsh environment where
there is snow cover for almost half of the year, it is most likely that snow is lying longer
on the northeast slope than on the southwest slope. This increases mortality and reduces
growth [14]. Other studies [10,12,36] have reported greater growth and species diversity
on north-facing slopes than south-facing slopes. This is expected in areas where moisture
is a limiting factor because the increase in solar radiation increases evapotranspiration,
which may induce drought and stress, and reduce tree growth [37–40]. However, for a
region such as northern Sweden, moisture is not a limiting factor. South-facing slopes are
generally richer in nutrients than north-facing slopes [41,42].

There was no explanation of why some of the species performed better on the moun-
taintop site than on the southwest slope. A previous study on the climatic variations of
the three aspect-slopes indicated that the southwest slope was warmer than the moun-
taintop [13,43]. Tree growth is influenced by different factors, including neighborhood
competitors [28,44–46] and climate [44,47,48]. However, by using the same region, block
size and shape, number of species, planting pattern (random), density and age, we tried to
eliminate any possible source of variation other than those being investigated, i.e., aspect-
slope and species. Moreover, if two contrasting slopes receive a varying amount of sunlight
or radiation, then it is the topography that influences this variation [6]. Other site factors,
such as soil type, may be responsible for this variation.

The diameter growth of Siberian larch and lodgepole pine dominated that of Scots
pine, black spruce and Norway spruce on the contrasting slopes and mountaintop. The
Siberian larch outgrew lodgepole pine on the northeast slope and had a superior growth on
the mountaintop. Siberian larch is a frost-hardy species characterized by extremely thick
and rough bark, which helps to reduce snow pressure on the stem compared to the other
species. In addition, it is the only conifer among those investigated that sheds its needles in
autumn and, as such, may not be susceptible to winter burn [49]. Norway spruce had poor
diameter growth on all sites, which invariably will result in low volume production. Its
average diameter was < 10 cm after 33 years of establishment. This further confirms that
Norway spruce is not the most efficient species for wood production in the northernmost
part of Sweden, where the weather condition is regarded as harsh [50].

In terms of height development, lodgepole pine had the best height growth on the
slopes, especially the southwest slope, whereas Siberian larch had better development on
the mountaintop. Scots pine had a consistent growth pattern on all sites. Generally, height
development on the northeast slope was low. Damaged leading shoots were previously
reported to be more frequent on the northeast slope [13] and, as a result, the author projected
that future tree development on this site would be lower relative to other sites. This is true
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at least for lodgepole pine, for which evidence of broken tops was noticed on the northeast
slope during disc extraction. Generally, snow damage to trees has been reported to be
dependent on the interaction of topography and species [51].

5. Conclusions

This study showed that, under a harsh boreal climate, aspect-slope affects tree species’
survival and development. Southwest slopes favor the survival and height growth of most
of the species. Combined with survival, diameter and height growths of each species, it is
valid to say that alternatives exist to the traditional two species—Norway spruce and Scots
pine—in northern Sweden. Siberian larch and lodgepole pine are good alternatives when
considering wood production. In this experiment, Siberian larch demonstrated that it is
a species able to withstand the harshness of the boreal environment more than the other
species examined.
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