SUPPORTING INFORMATION

for

C7 Epimerization of Benzylidene-Protected β-D-Idopyranosides Brings Structural Insights into Idose Conformational Flexibility

Maude Cloutier,^a Serge Lavoie,^b and Charles Gauthier^{a,b*}

^aUnité Mixte de Recherche INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 555, boulevard de l'Université, Chicoutimi (Québec), Canada, G7H 2B1

^bLaboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi (Québec), Canada, G7H 2B1

*Corresponding author; email: charles.gauthier@inrs.ca; phone: +1 450 687-5010 ext. 8886

Table of content

1.	X-ray Diffraction.	S4
	Table S1. Crystal Data and Structure Refinement for Compound 20a.	S4
	Table S2. Atomic Coordinates and Ueq [Å ²] for Compound 20a	S5
	Table S3. Bond Lengths and Angles for Compound 20a.	S7
	Table S4. Torsion Angles for Compound 20a	S9
	Table S5. Hydrogen Bonds for Compound 20a.	S10
	Figure S1. Thermal atomic displacement ellipsoid plot for compound 20a with the atomic numbering scheme	ng S10
2.	Molecular Modeling.	S11
	Table S6. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of 22aA-22aD.	S11
	Table S7. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of 22aA-22aD (continued	d). S12
	Table S8. Energy and Abundance of Conformers 22aA-22aD.	S13
	Table S9. Comparison Between Experimental (20a) and Calculated (22aA-22aD) NMR ³ J Couplin Constants.	g S13
	Table S10. Comparison Between Experimental (20a) and Calculated (22aA-22aD) NMR ¹ H and ¹³ Chemical Shifts.	C S13
	Table S11. Comparison Between Experimental (20a) and Calculated (22aA-22aD) H-H Distances Quantitative NOESY NMR.	by S14
	Table S12. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of (S)-22bA-(S)-22bF	S15
	Table S13. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of (<i>S</i>)-22bA-(<i>S</i>)-22bF (continued).	S16
	Table S14. Energy and Abundance of Conformers (S)-22bA-(S)-22bF.	S17
	Table S15. Comparison Between Experimental (20b) and Calculated [(<i>S</i>)-22bA-(<i>S</i>)-22bF] NMR ³ J Coupling Constants.	S17
	Table S16. Comparison Between Experimental (20b) and Calculated [(<i>S</i>)-22bA-(<i>S</i>)-22bF] NMR ¹ H ¹³ C Chemical Shifts.	I and S17
	Table S17. Comparison between Experimental (20b) and Calculated [(<i>S</i>)-22bA-(<i>S</i>)-22bF] H-H Distances by Quantitative NOESY NMR.	S18
	Table S18. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of (R)-22bA-(R)-22bE	S19
	Table S19. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of (R)-22bA-(R)-22bE.	S20
	Table S20. Energy and Abundance of Conformers (<i>R</i>)-22bA-(<i>R</i>)-22bE.	S21
	Table S21. Comparison Between Experimental (20b) and Calculated [(<i>R</i>)-22bA-(<i>R</i>)-22bE] NMR ³ . Coupling Constants.	J S21
	Table S22. Comparison Between Experimental (20b) and Calculated [(<i>R</i>)-22bA-(<i>R</i>)-22bE] NMR ¹] and ¹³ C Chemical Shifts.	H S21

4.	Supplementary references	5251
3.	NMR Spectra of New Compounds.	.S25
ļ	Table S27. Comparison Between Experimental (20c) and Calculated (22cA-22cC) NMR ¹ H and ¹³ C Chemical Shifts.	.S24
,	Table S26. Comparison between experimental (20c) and calculated (22cA-22cC) NMR ³ J coupling constants	.824
,	Table S25. Energy and Abundance of Conformers 22cA-22cC.	.S24
,	Table S24. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of 22cA-22cC	.S23
]	Table S23. Comparison Between Experimental (20b) and Calculated [(R)-22bA-(R)-22bE] H-H Distances by Quantitative NOESY NMR.	.S22

1. X-ray Diffraction.

The data for **20a**, crystallised from CHCl₃/hexanes, were collected from a shock-cooled single crystal at 150 K on a Bruker Venture Metaljet k-geometry diffractometer with a Metal Jet using Helios MX Mirror Optics as monochromator and a Bruker CMOS Photon III detector. The diffractometer was equipped with an Oxford Cryostream 700 low temperature device and used Ga K_{α} radiation ($\lambda = 1.34139$ Å). All data were integrated with *SAINT* (2020) and a multi-scan absorption correction using *SADABS* 2016/2 was applied.¹ The structure was solved by dual methods with *XT* and refined by full-matrix least-squares methods against F^2 using *XL*.²⁻³ Structure solution and refinement cycles were performed within the graphical user interface of *OLEX2*.⁴ All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their U_{iso} values constrained to 1.5 times the U_{eq} of their pivot atoms for terminal sp³ carbon atoms and oxygen atoms, and 1.2 times for all other carbon atoms. This report and the CIF file were generated using FinalCif.

Parameter	Data	Parameter	Data
Empirical formula	$C_{23}H_{30}O_{6}$	Crystal size [mm ³]	0.03×0.04×0.19
Formula weight	402.47	Crystal colour	clear light colourless
Temperature [K]	150	Crystal shape	needle
Crystal system	orthorhombic	Radiation	Ga K_{α} (λ =1.34139 Å)
Space group (number)	$P2_{1}2_{1}2_{1}(19)$	20 range [°]	8.20 to 121.22 (0.77 Å)
<i>a</i> [Å]	10.6168(4)	Index ranges	$-13 \le h \le 11$
			$-14 \le k \le 14$
			$-21 \le l \le 20$
<i>b</i> [Å]	11.4428(4)	Reflections collected	41569
<i>c</i> [Å]	16.4108(6)	Independent reflections	4567
			$R_{\rm int} = 0.0696$
			$R_{\rm sigma} = 0.0447$
α [°]	90	Completeness to	100.0 %
		$\theta = 53.594^{\circ}$	
β [°]	90	Data / Restraints /	4567 / 0 / 266
		Parameters	
γ [°]	90	Goodness-of-fit on F^2	1.053
Volume [Å ³]	1993.68(13)	Final R indexes	$R_1 = 0.0440$
		[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.0705$
Ζ	4	Final R indexes	$R_1 = 0.0658$
		[all data]	$wR_2 = 0.0752$
$\rho_{\rm calc} [{ m gcm}^{-3}]$	1.341	Largest peak/hole	0.20/-0.21
-		[eÅ ⁻³]	
μ [mm ⁻¹]	0.500	Extinction coefficient	0.00127(19)
<i>F</i> (000)	864	Flack X parameter	0.0(3)

Table S1. Crystal Data and Structure Refinement for Compound 20a.

Atom	x	У	Z	$U_{ m eq}$
01	0.67251(13)	0.30565(13)	0.57814(9)	0.0230(3)
02	0.59438(14)	0.08841(14)	0.50669(10)	0.0301(4)
H2	0.595538	0.143107	0.472561	0.045
O3	0.92042(15)	0.10810(18)	0.56885(10)	0.0426(5)
H3	0.988920	0.098564	0.544113	0.064
O4	0.58084(14)	0.18093(13)	0.66940(9)	0.0241(4)
O5	0.68079(15)	0.44042(14)	0.42991(9)	0.0293(4)
O6	0.73368(13)	0.24487(15)	0.40923(9)	0.0270(4)
C1	0.6865(2)	0.19653(19)	0.62063(13)	0.0232(5)
H1	0.763418	0.199646	0.655709	0.028
C2	0.6999(2)	0.0984(2)	0.55923(14)	0.0257(5)
H2A	0.709424	0.023283	0.589705	0.031
C3	0.8213(2)	0.1206(2)	0.51135(14)	0.0284(5)
НЗА	0.830482	0.061215	0.467037	0.034
C4	0.8237(2)	0.2431(2)	0.47543(13)	0.0261(5)
H4	0.909741	0.260036	0.453675	0.031
C5	0.7876(2)	0.3364(2)	0.53800(14)	0.0246(5)
H5	0.856366	0.343999	0.579305	0.030
C6	0.7674(2)	0.4523(2)	0.49688(15)	0.0292(5)
H6A	0.733533	0.509098	0.536748	0.035
H6B	0.848939	0.482492	0.476575	0.035
C7	0.7285(2)	0.3575(2)	0.37359(14)	0.0292(6)
H7	0.815588	0.381264	0.357414	0.035
C8	0.6467(2)	0.3548(2)	0.29850(15)	0.0326(6)
C9	0.5984(2)	0.4584(3)	0.26765(16)	0.0409(7)
Н9	0.610721	0.529478	0.296418	0.049
C10	0.5318(3)	0.4582(3)	0.19460(17)	0.0520(8)
H10	0.498342	0.529232	0.173816	0.062
C11	0.5142(3)	0.3558(4)	0.15242(17)	0.0542(9)
H11	0.469298	0.356258	0.102342	0.065
C12	0.5614(3)	0.2525(3)	0.18257(16)	0.0500(8)
H12	0.548844	0.181714	0.153431	0.060
C13	0.6280(2)	0.2517(3)	0.25621(15)	0.0401(7)
H13	0.660374	0.180362	0.277121	0.048
C14	0.5823(2)	0.2522(2)	0.74250(13)	0.0257(5)
H14	0.599318	0.335337	0.727242	0.031
C15	0.6810(2)	0.2118(2)	0.80391(14)	0.0308(6)
H15	0.766583	0.216578	0.778697	0.037
C16	0.6547(2)	0.0862(2)	0.83017(15)	0.0305(6)
H16A	0.719745	0.060429	0.869482	0.037
H16B	0.658185	0.033957	0.782155	0.037
C17	0.5239(2)	0.0788(2)	0.86986(14)	0.0257(5)
H17	0.506658	-0.003413	0.887162	0.031
C18	0.5184(2)	0.1598(2)	0.94396(14)	0.0340(6)
		· · · · · · · · · · · · · · · · · · ·		

Table S2. Atomic Coordinates and Ueq [Å²] for Compound 20a.

H18A	0.582439	0.135674	0.984427	0.041
H18B	0.434384	0.154354	0.969900	0.041
C19	0.5432(3)	0.2863(2)	0.91695(16)	0.0409(7)
H19	0.539215	0.339176	0.965369	0.049
C20	0.4449(3)	0.3238(2)	0.85461(16)	0.0390(7)
H20A	0.460595	0.405568	0.837800	0.047
H20B	0.359838	0.319588	0.879171	0.047
C21	0.4516(2)	0.2432(2)	0.78004(14)	0.0281(5)
H21	0.386937	0.267780	0.739143	0.034
C22	0.4257(2)	0.11731(19)	0.80705(14)	0.0251(5)
H22A	0.340383	0.112120	0.831186	0.030
H22B	0.428808	0.064706	0.759204	0.030
C24	0.6747(3)	0.2938(2)	0.87821(16)	0.0432(7)
H24A	0.739363	0.270802	0.918595	0.052
H24B	0.691861	0.375122	0.860970	0.052

 $U_{\rm eq}$ is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom–Atom Length [Å]		Atom-Atom-	Angle [°]	Atom-Atom-	Angle [°]
		Atom		Atom	
01–C1	1.438(3)	C5O1C1	110.42(16)	С9-С10-Н10	119.9
O1–C5	1.432(3)	С2О2Н2	109.5	С11-С10-С9	120.3(3)
O2–H2	0.8400	С3О3Н3	109.5	С11-С10-Н10	119.9
O2–C2	1.419(3)	C1O4C14	113.29(16)	С10-С11-Н11	119.9
O3–H3	0.8400	С7–О5–С6	109.43(17)	C10-C11-C12	120.1(3)
O3–C3	1.420(3)	C7–O6–C4	110.42(17)	С12-С11-Н11	119.9
O4C1	1.389(3)	01C1H1	109.4	С11-С12-Н12	120.0
O4C14	1.451(3)	O1C1C2	109.30(17)	C11-C12-C13	120.0(3)
O5–C6	1.439(3)	04C1O1	107.92(17)	С13-С12-Н12	120.0
O5–C7	1.418(3)	O4C1H1	109.4	C8-C13-C12	120.0(3)
O6C4	1.447(3)	O4C1C2	111.35(18)	С8-С13-Н13	120.0
O6–C7	1.416(3)	C2C1H1	109.4	С12С13Н13	120.0
C1-H1	1.0000	O2C2C1	112.95(18)	O4C14H14	109.3
C1–C2	1.515(3)	O2–C2–H2A	108.3	O4-C14-C15	112.56(18)
C2–H2A	1.0000	O2–C2–C3	111.50(18)	O4-C14-C21	106.66(18)
C2–C3	1.531(3)	C1–C2–H2A	108.3	C15-C14-H14	109.3
С3–НЗА	1.0000	C1–C2–C3	107.34(18)	C21-C14-H14	109.3
C3–C4	1.520(3)	С3-С2-Н2А	108.3	C21-C14-C15	109.78(18)
C4–H4	1.0000	O3–C3–C2	105.43(18)	С14С15Н15	109.5
C4–C5	1.531(3)	O3–C3–H3A	110.0	C14-C15-C16	110.27(19)
С5-Н5	1.0000	O3–C3–C4	109.76(19)	C14C15C24	108.0(2)
C5–C6	1.503(3)	С2-С3-НЗА	110.0	С16-С15-Н15	109.5
С6-Н6А	0.9900	C4–C3–C2	111.44(18)	C16-C15-C24	110.0(2)
C6–H6B	0.9900	С4–С3–НЗА	110.0	С24С15Н15	109.5
С7–Н7	1.0000	O6C4C3	107.06(17)	C15-C16-H16A	109.7
С7–С8	1.508(3)	O6C4H4	109.4	C15-C16-H16B	109.7
C8–C9	1.387(4)	O6-C4-C5	109.17(17)	C15-C16-C17	109.7(2)
C8-C13	1.383(4)	С3-С4-Н4	109.4	H16A-C16-H16B	108.2
С9-Н9	0.9500	C3–C4–C5	112.29(18)	C17-C16-H16A	109.7
C9–C10	1.392(4)	С5-С4-Н4	109.4	C17-C16-H16B	109.7
C10-H10	0.9500	01C5C4	110.51(17)	С16-С17-Н17	109.7
C10-C11	1.374(5)	O1C5H5	109.4	C18-C17-C16	109.76(19)
C11-H11	0.9500	O1C5C6	107.57(18)	С18-С17-Н17	109.7
C11–C12	1.376(4)	С4С5Н5	109.4	C18-C17-C22	109.58(19)
С12-Н12	0.9500	C6C5C4	110.51(18)	C22-C17-C16	108.33(18)
C12–C13	1.400(4)	С6С5Н5	109.4	С22-С17-Н17	109.7
С13-Н13	0.9500	O5-C6-C5	110.54(18)	C17-C18-H18A	109.8
C14–H14	1.0000	O5–C6–H6A	109.5	C17-C18-H18B	109.8
C14–C15	1.525(3)	O5-C6-H6B	109.5	C17–C18–C19	109.54(19)
C14–C21	1.522(3)	С5-С6-Н6А	109.5	H18A-C18-H18B	108.2
C15–H15	1.0000	С5-С6-Н6В	109.5	C19-C18-H18A	109.8
C15-C16	1.526(3)	H6A-C6-H6B	108.1	C19-C18-H18B	109.8
C15–C24	1.540(3)	О5-С7-Н7	108.7	С18-С19-Н19	109.5
C16–H16A	0.9900	O5–C7–C8	109.92(19)	C20-C19-C18	110.0(2)
C16–H16B	0.9900	O6–C7–O5	110.71(18)	С20-С19-Н19	109.5

Table S3. Bond Lengths and Angles for Compound 20a.

C16–C17	1.537(3)	С3-С4-Н4	109.4	C20-C19-C24	109.2(2)
C17–H17	1.0000	C3–C4–C5	112.29(18)	C24–C19–C18	109.2(2)
C17–C18	1.530(3)	С5-С4-Н4	109.4	С24-С19-Н19	109.5
C17–C22	1.531(3)	O1–C5–C4	110.51(17)	С19-С20-Н20А	109.8
C18–H18A	0.9900	O1-C5-H5	109.4	С19-С20-Н20В	109.8
C18–H18B	0.9900	O1–C5–C6	107.57(18)	C19–C20–C21	109.6(2)
C18–C19	1.536(4)	С4-С5-Н5	109.4	H20A-C20-H20B	108.2
С19-Н19	1.0000	C6C5C4	110.51(18)	С21-С20-Н20А	109.8
C19–C20	1.523(4)	С6С5Н5	109.4	С21-С20-Н20В	109.8
C19–C24	1.536(4)	O5–C6–C5	110.54(18)	C14-C21-C20	108.9(2)
C20–H20A	0.9900	О5-С6-Н6А	109.5	С14-С21-Н21	109.6
C20–H20B	0.9900	O5–C6–H6B	109.5	C14–C21–C22	110.13(19)
C20–C21	1.533(3)	С5-С6-Н6А	109.5	С20-С21-Н21	109.6
C21–H21	1.0000	С5-С6-Н6В	109.5	C22–C21–C20	109.02(19)
C21–C22	1.532(3)	H6A–C6–H6B	108.1	С22-С21-Н21	109.6
C22–H22A	0.9900	О5-С7-Н7	108.7	C17–C22–C21	110.06(19)
C22–H22B	0.9900	О5-С7-С8	109.92(19)	С17-С22-Н22А	109.6
C24–H24A	0.9900	O6–C7–O5	110.71(18)	С17-С22-Н22В	109.6
C24–H24B	0.9900	О6-С7-Н7	108.7	C21–C22–H22A	109.6
		O6–C7–C8	110.0(2)	С21-С22-Н22В	109.6
		С8-С7-Н7	108.7	H22A-C22-H22B	108.2
		С9–С8–С7	119.6(2)	С15-С24-Н24А	109.8
		С13-С8-С7	120.7(2)	С15-С24-Н24В	109.8
		C13–C8–C9	119.5(2)	C19–C24–C15	109.5(2)
		С8–С9–Н9	120.0	C19–C24–H24A	109.8
		C8–C9–C10	120.1(3)	C19–C24–H24B	109.8
		С10-С9-Н9	120.0	H24A-C24-H24B	108.2

Atom-Atom-Atom-Atom	Torsion Angle [°]	Atom-Atom-Atom-Atom	Torsion Angle [°]
01	-60.0(2)	C7O6C4C3	178.75(17)
O1-C1-C2-C3	63.3(2)	C7–O6–C4–C5	57.0(2)
01-C5-C6-O5	-68.8(2)	C7–C8–C9–C10	174.5(2)
02–C2–C3–O3	-169.98(18)	C7–C8–C13–C12	-174.2(2)
02C2C3C4	71.0(2)	C8-C9-C10-C11	-0.4(4)
03C3C406	171.63(16)	C9–C8–C13–C12	0.4(4)
O3–C3–C4–C5	-68.6(2)	C9-C10-C11-C12	0.6(4)
04	59.2(2)	C10-C11-C12-C13	-0.3(4)
04	-177.53(17)	С11-С12-С13-С8	-0.2(4)
O4-C14-C15-C16	-60.2(2)	С13-С8-С9-С10	-0.1(4)
O4-C14-C15-C24	179.62(18)	C14-O4-C1-O1	-76.2(2)
O4-C14-C21-C20	-176.19(18)	C14-O4-C1-C2	163.80(17)
O4–C14–C21–C22	64.3(2)	C14-C15-C16-C17	-60.1(2)
05–C7–C8–C9	39.1(3)	C14-C15-C24-C19	60.9(3)
O5-C7-C8-C13	-146.3(2)	C14-C21-C22-C17	59.5(2)
06C4C501	68.1(2)	C15-C14-C21-C20	61.6(2)
O6-C4-C5-C6	-50.8(2)	C15-C14-C21-C22	-57.9(2)
06–C7–C8–C9	161.3(2)	C15-C16-C17-C18	-59.3(2)
O6–C7–C8–C13	-24.2(3)	C15-C16-C17-C22	60.3(2)
C1-O1-C5-C4	60.7(2)	C16-C15-C24-C19	-59.5(3)
C1-O1-C5-C6	-178.54(17)	C16-C17-C18-C19	60.1(3)
C1O4C14C15	-70.3(2)	C16-C17-C22-C21	-60.1(2)
C1O4C14C21	169.28(17)	C17-C18-C19-C20	59.4(3)
С1-С2-С3-О3	65.8(2)	C17-C18-C19-C24	-60.4(3)
C1C2C3C4	-53.2(2)	C18-C17-C22-C21	59.6(2)
C2–C3–C4–O6	-72.0(2)	C18-C19-C20-C21	-60.1(3)
C2C3C4C5	47.8(2)	C18-C19-C24-C15	59.9(3)
C3-C4-C5-O1	-50.4(2)	C19-C20-C21-C14	-60.2(2)
C3–C4–C5–C6	-169.38(18)	C19-C20-C21-C22	60.0(3)
C4-O6-C7-O5	-65.2(2)	C20-C19-C24-C15	-60.4(3)
C4–O6–C7–C8	173.11(17)	C20-C21-C22-C17	-59.9(2)
C4–C5–C6–O5	51.9(2)	C21-C14-C15-C16	58.5(2)
C501C104	169.92(16)	C21-C14-C15-C24	-61.7(2)
C501C1C2	-68.8(2)	C22-C17-C18-C19	-58.8(3)
С605С7О6	65.0(2)	C24-C15-C16-C17	58.9(3)
С6-О5-С7-С8	-173.27(18)	C24-C19-C20-C21	59.7(3)
C705C6C5	-58.2(2)		

Table S4. Torsion Angles for Compound 20a.

 Table S5. Hydrogen Bonds for Compound 20a.

D–H···A [Å]	d(D–H) [Å]	d(H···A) [Å]	d(D···A) [Å]	<(DHA) [°]
O2–H2···O6	0.84	2.14	2.820(2)	137.6
O3–H3····O5 ^{#1}	0.84	2.13	2.820(2)	139.4

Symmetry transformations used to generate equivalent atoms:

#1: 0.5+X, 0.5-Y, 1-Z.

Figure S1. Thermal atomic displacement ellipsoid plot for compound 20a with the atomic numbering scheme. Ellipsoids are drawn at the 50% probability level and hydrogen atoms are shown as sphere of arbitrary size.

2. Molecular Modeling.

Table S6 3D Coordinates	of B3LVP/6-31+G(d n)	Ontimized	Geometries (of 229A-229D
Table 50. 5D Coordinates	// DSL/11/0-51 / O(u,p)	opunnizeu [·]	Grounding	n 22aa-22aD.

		22aA			22aB		22aC			
		coordinates			coordinates		coordinates		5	
ID	atom	X	Y	Z	X	Y	Z	X	Y	Z
1	C	1.3784	-0.8246	-1.2160	-1.3058	-0.8651	1.1874	-1.3085	-0.8651	1.1862
2	C	2.8360	0.4922	0.1446	-2.9193	0.4065	-0.0010	-2.9193	0.4087	-0.0055
3	C	1.6705	-1.4358	1.2474	-1.6471	-1.3638	-1.2984	-1.6543	-1.3632	-1.3015
4	C	2.2167	-0.0038	1.4590	-2.4257	-0.0354	-1.3856	-2.4265	-0.0366	-1.3895
5	C	0.7548	-1.4999	0.0171	-0.6946	-1.4510	-0.0964	-0.6962	-1.4506	-0.0974
6	0	1.8483	0.4891	-0.8946	-1.8580	0.4336	0.9504	-1.8592	0.4337	0.9479
7	0	1.1957	0.8593	1.9455	-1.5873	0.9469	-1.9808	-1.5829	0.9428	-1.9829
8	0	2.7248	-2.3679	1.0010	-2.5601	-2.4544	-1.1333	-2.6553	-2.3810	-1.1925
9	0	-0.4687	-0.8260	0.3695	0.5213	-0.7730	-0.4359	0.5210	-0.7746	-0.4358
10	C	0.3275	-0.6933	-2.3117	-0.2345	-0.7429	2.2645	-0.2379	-0.7431	2.2639
11	0	-0.8780	-0.0959	-1.8140	0.9520	-0.1152	1.7629	0.9493	-0.1158	1.7632
12	C	-1.4071	-0.8060	-0.7143	1.4638	-0.7989	0.6288	1.4630	-0.7990	0.6301
13	Н	2.2096	-1.4426	-1.5857	-2.0952	-1.5423	1.5475	-2.0987	-1.5418	1.5452
14	Н	1.0888	-1.7246	2.1312	-1.0567	-1.4809	-2.2153	-1.0699	-1.4826	-2.2219
15	Н	2.9991	-0.0225	2.2250	-3.3134	-0.2012	-2.0146	-3.3096	-0.2116	-2.0191
16	Н	0.5420	-2.5533	-0.2115	-0.4787	-2.5161	0.0745	-0.4720	-2.5145	0.0824
17	Н	0.4050	0.7193	1.3964	-2.0057	1.8088	-1.8310	-1.9999	1.8053	-1.8332
18	Н	3.2369	-2.4864	1.8130	-3.1105	-2.5285	-1.9254	-2.2402	-3.2481	-1.3000
19	Н	0.6853	-0.0449	-3.1132	-0.5899	-0.1247	3.0909	-0.5935	-0.1244	3.0899
20	Н	0.1074	-1.6874	-2.7262	0.0084	-1.7448	2.6472	0.0044	-1.7449	2.6472
21	Н	-1.5976	-1.8506	-1.0101	1.6546	-1.8501	0.9051	1.6547	-1.8501	0.9063
22	C	-2.6719	-0.1380	-0.2404	2.7339	-0.1250	0.1771	2.7327	-0.1238	0.1793
23	C	-5.0209	1.0832	0.6812	5.1051	1.1207	-0.6528	5.1030	1.1237	-0.6500
24	C	-2.7000	1.2428	0.0022	3.9414	-0.8316	0.1824	3.9393	-0.8320	0.1771
25	C	-3.8240	-0.9012	-0.0209	2.7174	1.2118	-0.2463	2.7166	1.2154	-0.2365
26	C	-4.9967	-0.2931	0.4392	3.8983	1.8313	-0.6596	3.8971	1.8358	-0.6494
27	C	-3.8706	1.8502	0.4609	5.1255	-0.2114	-0.2312	5.1230	-0.2108	-0.2362
28	Н	-1.8105	1.8388	-0.1751	3.9588	-1.8679	0.5096	3.9564	-1.8701	0.4986
29	Н	-3.8073	-1.9712	-0.2105	1.7818	1.7618	-0.2524	1.7816	1.7665	-0.2367
30	Н	-5.8867	-0.8927	0.6054	3.8790	2.8667	-0.9871	3.8782	2.8731	-0.9708
31	Н	-3.8866	2.9203	0.6457	6.0580	-0.7680	-0.2238	6.0549	-0.7685	-0.2346
32	Н	-5.9308	1.5574	1.0373	6.0228	1.6042	-0.9748	6.0205	1.6080	-0.9717
33	Н	3.6549	-0.1862	-0.1499	-3.6994	-0.2878	0.3559	-3.7026	-0.2820	0.3513
34	0	3.3086	1.7886	0.3041	-3.4277	1.6971	-0.1358	-3.4228	1.7010	-0.1421
35	C	4.1481	2.2469	-0.7635	-4.1469	2.1900	1.0035	-4.1435	2.1965	0.9950
36	H	5.0024	1.5716	-0.9009	-4.9744	1.5151	1.2544	-4.9744	1.5247	1.2432
37	H	4.5089	3.2337	-0.4701	-4.5445	3.1644	0.7172	-4.5365	3.1725	0.7079
38	H	3.5888	2.3248	-1.7008	-3.4856	2.3001	1.8675	-3.4845	2.3039	1.8611

Table S7. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of 22aA-22aD (continued).

		22aD				
			coordinates			
ID	atom	Χ	Y	Z		
1	С	-1.3784	-0.8246	1.2160		
2	C	-2.8360	0.4922	-0.1446		
3	C	-1.6705	-1.4358	-1.2474		
4	C	-2.2167	-0.0038	-1.4590		
5	C	-0.7548	-1.4999	-0.0171		
6	0	-1.8484	0.4891	0.8946		
7	0	-1.1957	0.8593	-1.9455		
8	0	-2.7248	-2.3679	-1.0010		
9	0	0.4687	-0.8260	-0.3695		
10	C	-0.3275	-0.6933	2.3117		
11	0	0.8780	-0.0959	1.8140		
12	C	1.4071	-0.8060	0.7143		
13	Н	-2.2096	-1.4426	1.5857		
14	Н	-1.0888	-1.7247	-2.1312		
15	Н	-2.9991	-0.0226	-2.2250		
16	Н	-0.5420	-2.5533	0.2115		
17	Н	-0.4050	0.7193	-1.3964		
18	Н	-3.2369	-2.4864	-1.8130		
19	Н	-0.6853	-0.0448	3.1132		
20	Н	-0.1074	-1.6874	2.7262		
21	Н	1.5976	-1.8506	1.0102		
22	C	2.6719	-0.1380	0.2404		
23	C	5.0209	1.0832	-0.6812		
24	C	2.7000	1.2428	-0.0022		
25	C	3.8240	-0.9012	0.0209		
26	C	4.9967	-0.2931	-0.4392		
27	C	3.8706	1.8502	-0.4609		
28	Н	1.8105	1.8388	0.1751		
29	Н	3.8073	-1.9712	0.2105		
30	Н	5.8867	-0.8927	-0.6054		
31	Н	3.8866	2.9203	-0.6457		
32	Н	5.9308	1.5574	-1.0373		
33	Н	-3.6549	-0.1862	0.1498		
34	0	-3.3086	1.7886	-0.3041		
35	C	-4.1481	2.2469	0.7635		
36	Н	-5.0024	1.5716	0.9009		
37	Н	-4.5090	3.2337	0.4700		
38	Н	-3.5888	2.3248	1.7008		

		B3LYP/6-	31+G(d,p)		B3LYP/6-311++G(2d,2p)				
conformer	ΔE (Ha)	ΔG (Ha)	abundance (%)	imaginary frequencies	ΔE (Ha)	ΔG (Ha)	abundance (%)	imaginary frequencies	
22aA	-995.70163	-995.43434	45.0	0	-995.95748	-995.68914	44.4	0	
22aB	-995.69900	-995.43242	5.91	0	-995.95503	-995.68731	6.40	0	
22aC	-995.69876	-995.43211	4.25	0	-995.95480	-995.68705	4.85	0	
22aD	-995.70163	-995.43434	44.9	0	-995.95748	-995.68914	44.3	0	

Table S8. Energy and Abundance of Conformers 22aA-22aD.

Table S9. Comparison Between Experimental (20a) and Calculated (22aA-22aD) NMR ³J Coupling Constants.

	experimental ³ J	B3LYP/6-31+G(6	l,p)	B3LYP/6-311++G(2d,2p)		
protons	(Hz)	calculated ${}^{3}J(\mathrm{Hz})$	Δ	calculated ³ J (Hz)	Δ	
1-2	N/A	1.05	N/A	1.05	N/A	
2-3	2.50	2.84	+0.34	2.83	+0.23	
3-4	2.50	2.59	+0.09	2.58	-0.02	
4-5	N/A	1.27	N/A	1.27	N/A	
5-6 a	1.10	1.55	+0.45	1.55	+0.45	
5-6b	1.90	1.87	-0.03	1.87	-0.03	
6a-6b	12.45	11.82	-0.63	11.82	-0.63	
		Rmsd : 0.32		Rmsd : 0.32		

Table S10. Comparison Between E	Experimental (20a) an	d Calculated	(22aA-22aD)	NMR ¹ H
and ¹³ C Chemical Shifts.				

	experimental	B3LYP/6-31+G	(d,p)	B3LYP/6-311++G	(2d,2p)	
atom	δ (ppm)	calculated δ (ppm)	Δ	calculated ð (ppm)	Δ	
H-1	4.94	4.84	-0.10	4.84	-0.10	
H-2	3.62	3.48	-0.14	3.48	-0.14	
Н-3	4.21	4.18	-0.03	4.18	-0.03	
H-4	3.93	4.09	+0.16	4.09	+0.16	
H-5	3.75	3.78	+0.03	3.78	+0.03	
H-6a	4.37	4.35	-0.02	4.35	-0.02	
H-6b	4.06	4.16	+0.10	4.16	+0.10	
		Rmsd : 0.10)	Rmsd : 0.10		
C-1	95.9	97.3	+1.4	97.3	+1.4	
C-2	70.4	70.7	+0.3	70.7	+0.3	
C-3	70.4	71.2	+0.8	71.2	+0.8	
C-4	75.6	74.7	-0.9	74.7	-0.9	
C-5	66.6	67.1	+0.5	67.1	+0.5	
C-6	70.0	69.1	-0.9	69.1	-0.9	
C-7	101.5	100.4	-1.1	100.4	-1.1	
		Rmsd : 0.93	3	Rmsd: 0.93		

Table S11. Comparison Between Experimental (20a) and Calculated (22aA-22aD) H-H Distances by Quantitative NOESY NMR.

	ownowimontal	B3LYP/6-3	1+G(d,p)	B3LYP/6-311++G(2d,2p)		
protons	distance (Å)	calculated distance (Å)	Δ	calculated distance (Å)	Δ	
6ax-7"	2.337	2.422	+0.085	2.422	+0.085	
5-1	2.253	2.390	+0.137	2.390	+0.137	
4-7"	2.254	2.388	+0.134	2.388	+0.134	
2-1	2.430	2.462	+0.032	2.461	+0.031	
2-3	2.431	2.563	+0.132	2.563	+0.132	
4-3	2.547	2.569	+0.022	2.569	+0.022	
5-6eq	2.691	2.572	-0.119	2.572	-0.119	
5-6ax	2.453	2.402	-0.051	2.412	-0.041	
		Rmsd : 0.30		Rmsd :	0.30	

Table S12. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of (S)-22bA-(S)-22bF.

		(<i>S</i>)-22bA				(<i>S</i>)-22bB			(S)-22bC	
			coordinates	5		coordinates	5		coordinates	5
ID	atom	X	Y	Z	X	Y	Z	X	Y	Z
1	C	-1.3796	-1.3512	-0.9595	-1.4400	-1.2841	-1.0029	-1.4400	1.2841	1.0029
2	C	-2.7831	0.1122	0.4285	-2.7768	0.2460	0.3839	-2.7769	-0.2460	-0.3839
3	C	-0.7837	1.1195	-0.7605	-0.6777	1.1250	-0.7001	-0.6777	-1.1250	0.7001
4	C	-2.2297	1.3443	-0.2953	-2.1227	1.4449	-0.3119	-2.1226	-1.4448	0.3120
5	C	-0.7323	-0.1297	-1.6434	-0.6921	-0.0948	-1.6326	-0.6921	0.0949	1.6326
6	0	-2.6565	-1.0540	-0.3700	-2.7160	-0.9027	-0.4617	-2.7160	0.9027	0.4617
7	0	-2.3231	2.5114	0.5182	-2.2047	2.5839	0.5329	-2.2047	-2.5839	-0.5328
8	0	-0.3419	2.2346	-1.5327	-0.1720	2.2900	-1.3580	-0.1719	-2.2900	1.3581
9	0	0.5843	-0.4721	-2.1189	0.6087	-0.5119	-2.0905	0.6087	0.5120	2.0905
10	C	-0.4001	-2.0016	0.0219	-0.5377	-2.0001	0.0079	-0.5377	2.0001	-0.0079
11	0	0.7804	-2.3582	-0.7145	0.6667	-2.3993	-0.6705	0.6667	2.3993	0.6704
12	C	1.4441	-1.2446	-1.2819	1.4037	-1.3319	-1.2297	1.4037	1.3319	1.2297
13	H	-1.6058	-2.0889	-1.7339	-1.6827	-1.9952	-1.7972	-1.6827	1.9953	1.7972
14	Н	-0.1405	1.0005	0.1196	-0.0978	0.9339	0.2080	-0.0978	-0.9339	-0.2080
15	Н	-2.8554	1.5362	-1.1726	-2.6948	1.6245	-1.2341	-2.6947	-1.6245	1.2342
16	Н	-1.2854	0.1028	-2.5593	-1.2037	0.2094	-2.5512	-1.2037	-0.2093	2.5512
17	Н	-2.0062	2.2684	1.4037	-1.6856	3.2834	0.1071	-1.6856	-3.2834	-0.1070
18	Н	-0.5064	3.0293	-1.0025	0.7948	2.2587	-1.3452	0.7948	-2.2587	1.3452
19	H	-0.1558	-1.3404	0.8589	-0.3125	-1.3673	0.8701	-0.3125	1.3673	-0.8702
20	H	-0.8114	-2.9333	0.4153	-1.0056	-2.9216	0.3595	-1.0056	2.9216	-0.3596
21	Н	2.1592	-1.6813	-1.9861	2.1082	-1.8131	-1.9148	2.1082	1.8132	1.9147
22	C	2.2210	-0.4194	-0.2515	2.2005	-0.5199	-0.2050	2.2005	0.5199	0.2050
23	C	3.8475	1.0196	1.5361	3.8151	0.9385	1.5790	3.8151	-0.9386	-1.5790
24	C	2.6723	-1.0136	0.9355	2.4219	-0.9876	1.0960	2.4219	0.9876	-1.0961
25	C	2.6076	0.8957	-0.5442	2.8264	0.6678	-0.6156	2.8264	-0.6678	0.6156
26	C	3.4131	1.6119	0.3457	3.6241	1.3958	0.2705	3.6241	-1.3958	-0.2705
27	C	3.4748	-0.2960	1.8279	3.2173	-0.2572	1.9858	3.2173	0.2571	-1.9859
28	Н	2.3941	-2.0381	1.1608	1.9767	-1.9243	1.4143	1.9767	1.9242	-1.4144
29	Н	2.2613	1.3623	-1.4596	2.7056	1.0104	-1.6400	2.7056	-1.0103	1.6400
30	H	3.7000	2.6326	0.1089	4.0998	2.3138	-0.0621	4.0998	-2.3138	0.0622
31	Н	3.8095	-0.7665	2.7480	3.3708	-0.6269	2.9955	3.3708	0.6268	-2.9956
32	Н	4.4728	1.5769	2.2277	4.4328	1.5040	2.2704	4.4328	-1.5041	-2.2703
33	Н	-3.8627	0.2100	0.5934	-3.8518	0.4209	0.5138	-3.8518	-0.4210	-0.5137
34	0	-2.1139	0.0292	1.6662	-2.1653	0.0457	1.6288	-2.1653	-0.0458	-1.6288
35	C	-2.7531	-0.8070	2.6402	-2.9033	-0.7982	2.5204	-2.9033	0.7981	-2.5205
36	H	-3.7768	-0.4616	2.8295	-3.9062	-0.3889	2.6957	-3.9062	0.3887	-2.6958
37	H	-2.1648	-0.7249	3.5548	-2.3496	-0.8169	3.4601	-2.3496	0.8168	-3.4601
38	H	-2.7734	-1.8503	2.3098	-2.9895	-1.8164	2.1268	-2.9897	1.8163	-2.1269

			(<i>S</i>)-22bD			(<i>S</i>)-22bE			(<i>S</i>)-22bF	
			coordinates			coordinates			coordinates	
ID	atom	X	Y	Χ	Х	Х	Z	X	Y	Ζ
1	C	-1.4118	-1.1721	-1.2117	-1.4225	-1.4094	-0.8480	1.3795	1.2336	-1.0933
2	C	-3.1857	-0.0163	0.0510	-2.7973	0.2723	0.2904	2.7486	-0.0077	0.5262
3	C	-1.0068	1.2021	-0.3618	-0.6832	1.0419	-0.8650	0.8281	-1.2119	-0.5963
4	C	-2.5291	1.3372	-0.2418	-2.1239	1.4121	-0.4945	2.2677	-1.3302	-0.0900
5	C	-0.6793	0.1703	-1.4455	-0.6925	-0.2990	-1.6177	0.7641	-0.0781	-1.6240
6	0	-2.8092	-0.9930	-0.9078	-2.7078	-0.9771	-0.3754	2.6453	1.0357	-0.4427
7	0	-2.8783	2.3080	0.7428	-2.2104	2.6265	0.2393	2.3007	-2.4202	0.8293
8	0	-0.4312	2.4528	-0.7441	-0.1675	2.0790	-1.6976	0.4340	-2.4214	-1.2420
9	0	0.7268	-0.0444	-1.6202	0.6240	-0.7416	-2.0090	-0.5519	0.1681	-2.1569
10	C	-0.6533	-2.0329	-0.1706	-0.5211	-1.9753	0.2522	0.3668	1.9949	-0.2320
11	0	0.5070	-1.3459	0.3238	0.6870	-2.4471	-0.3704	-0.7998	2.2290	-1.0371
12	C	1.3655	-0.9769	-0.7345	1.4210	-1.4527	-1.0532	-1.4374	1.0358	-1.4511
13	H	-1.4342	-1.7066	-2.1639	-1.6473	-2.2210	-1.5453	1.6143	1.8649	-1.9547
14	H	-0.5929	0.8816	0.6009	-0.0858	0.9715	0.0517	0.1674	-1.0131	0.2552
15	H	-2.9259	1.7129	-1.1902	-2.6897	1.5733	-1.4177	2.9210	-1.5426	-0.9458
16	H	-1.0080	0.5903	-2.4014	-1.2024	-0.1270	-2.5712	1.3357	-0.4119	-2.4962
17	H	-2.7776	1.8821	1.6101	-1.9473	2.4257	1.1520	3.1934	-2.7900	0.8594
18	H	-0.7770	3.1209	-0.1325	0.7481	1.8544	-1.9172	0.6455	-3.1442	-0.6312
19	H	-1.2789	-2.2340	0.6964	-0.3042	-1.2319	1.0239	0.1090	1.4486	0.6798
20	H	-0.3405	-2.9858	-0.6178	-0.9803	-2.8476	0.7213	0.7559	2.9779	0.0406
21	H	1.6034	-1.8758	-1.3262	2.1262	-2.0102	-1.6770	-2.1471	1.3563	-2.2204
22	C	2.6332	-0.3852	-0.1586	2.2167	-0.5260	-0.1299	-2.2189	0.3507	-0.3257
23	C	4.9784	0.6372	0.9903	3.8309	1.1261	1.4771	-3.8530	-0.8493	1.6240
24	C	3.7234	-1.2280	0.0925	2.4224	-0.8318	1.2212	-2.7211	1.1052	0.7440
25	C	2.7243	0.9760	0.1599	2.8593	0.5954	-0.6769	-2.5577	-1.0060	-0.4202
26	C	3.8938	1.4832	0.7337	3.6560	1.4201	0.1205	-3.3671	-1.6031	0.5506
27	C	4.8922	-0.7209	0.6674	3.2174	-0.0049	2.0223	-3.5275	0.5073	1.7173
28	H	3.6594	-2.2827	-0.1636	1.9659	-1.7183	1.6482	-2.4786	2.1606	0.8150
29	H	1.8882	1.6337	-0.0556	2.7530	0.8120	-1.7365	-2.1711	-1.5965	-1.2436
30	H	3.9601	2.5399	0.9766	4.1433	2.2859	-0.3181	-3.6162	-2.6573	0.4686
31	H	5.7331	-1.3818	0.8566	3.3587	-0.2492	3.0711	-3.9019	1.1024	2.5454
32	H	5.8871	1.0351	1.4327	4.4484	1.7669	2.0996	-4.4809	-1.3140	2.3786
33	H	-4.2755	0.0521	-0.0492	-3.8748	0.4563	0.3741	3.8228	-0.0523	0.7479
34	0	-2.8480	-0.3566	1.3776	-2.2111	0.2652	1.5734	2.0235	0.2482	1.6975
35		-3.6997	-1.3392	1.9807	-2.9645	-0.4315	2.5748	2.5970	1.2550	2.5396
36		-4.7428	-1.0007	1.9727	-3.9707	-0.0043	2.6641	3.6226	0.9833	2.8202
37		-3.3609	-1.4551	3.0109	-2.4275	-0.3011	3.5150	1.9759	1.3025	3.4351
38	H	-3.6244	-2.3000	1.4604	-3.0387	-1.4981	2.3400	2.6021	2.2326	2.0464

Table S13. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of (S)-22bA-(S)-22bF (continued).

		B3LYP/6-	31+G(d,p)		B3LYP/6-311++G(2d,2p)				
conformer	ΔE (Ha)	ΔG (Ha)	abundance (%)	imaginary frequencies	ΔE (Ha)	ΔG (Ha)	abundance (%)	imaginary frequencies	
(S)-22bA	-995.69310	-995.42434	32.9	0	-995.94854	-995.67915	45.7	0	
(<i>S</i>)-22bB	-995.69053	-995.42188	2.43	0	-995.94598	-995.67689	4.14	0	
(<i>S</i>)-22bC	-995.69053	-995.42188	2.43	0	-995.94598	-995.67689	4.16	0	
(<i>S</i>)-22bD	-995.69161	-995.42486	57.0	0	-995.94724	-995.67896	37.2	0	
(<i>S</i>)-22bE	-995.69105	-995.42248	4.60	0	-995.94661	-995.67750	7.90	0	
(<i>S</i>)-22bF	-995.68894	-995.42052	0.58	0	-995.94462	-995.67552	0.98	0	

Table S14. Energy and Abundance of Conformers (S)-22bA-(S)-22bF.

Table S15. Comparison Between Experimental (20b) and Calculated [(S)-22bA-(S)-22bF] NMR ³J Coupling Constants.

	experimental ³ J	B3LYP/6-31+G(1,p)	B3LYP/6-311++G	(2d,2p)
protons	(Hz)	calculated ³ J (Hz)	Δ	calculated ³ J (Hz)	Δ
1-2	4.30	3.97	-0.33	3.94	-0.36
2-3	8.60	9.44	+0.84	9.42	+0.82
3-4	8.70	9.86	+1.16	9.92	+1.22
4-5	5.20	7.11	+1.91	6.89	+1.69
5-6a	9.90	7.33	-2.57	8.82	-1.08
5-6b	5.20	6.98	+1.78	6.33	+1.13
6a-6b	11.10	11.14	+0.05	10.88	-0.22
		Rmsd : 1.49		Rmsd : 1.04	!

Table S16. Comparison Between Experimental (20b) and Calculated [(S)-22bA-(S)-22bF] NMR ¹H and ¹³C Chemical Shifts.

	experimental	B3LYP/6-31+G	(d,p)	B3LYP/6-311++G	(2d,2p)	
atom	δ (ppm)	calculated ð (ppm)	Δ	calculated δ (ppm)	Δ	
H-1	4.96	4.78	-0.18	4.73	-0.23	
H-2	3.57	3.53	-0.04	3.63	+0.06	
H-3	4.55	4.22	-0.33	4.09	-0.46	
H-4	4.06	4.20	+0.14	4.25	+0.19	
H-5	4.20	4.48	+0.28	4.48	+0.28	
H-6a	4.30	4.36	+0.06	4.40	+0.10	
H-6b	4.06	4.12	+0.06	4.12	+0.06	
		Rmsd : 0.19)	Rmsd : 0.24		
C-1	96.1	96.7	+0.6	96.9	+0.8	
C-2	72.4	71.8	-0.6	72.2	-0.2	
C-3	65.7	69.2	+3.5	69.1	+3.4	
C-4	74.4	72.1	-2.3	73.2	-1.2	
C-5	66.9	68.4	+1.5	68.8	+1.9	
C-6	67.2	65.1	-2.1	63.9	-3.3	
C-7	95.6	95.0	-0.6	94.3	-1.3	
		Rmsd : 1.91	1	Rmsd : 2.06		

Table S17. Comparison between Experimental (20b) and Calculated [(S)-22bA-(S)-22bF] H-H Distances by Quantitative NOESY NMR.

	annanimantal	B3LYP/6-3	1+G(d,p)	B3LYP/6-311	++G(2d,2p)
protons	distance (Å)	calculated distance (Å)	Δ	calculated distance (Å)	Δ
3-7"	2.244	4.056	+1.812	4.075	+1.831
6a-7"	2.362	3.599	+1.237	3.630	+1.268
6a-3	2.656	2.706	+0.050	2.591	-0.065
5-7"	3.552	3.339	-0.213	3.456	-0.096
5-1	2.807	3.963	+1.156	3.968	+1.161
4-7"	3.516	3.817	+0.310	3.852	+0.336
2-1	2.319	2.425	+0.106	2.425	+0.106
2-4	2.392	2.528	+0.136	2.528	+0.136
2-3	2.894	3.055	+0.161	3.054	+0.160
		Rmsd : 0.76		Rmsd :	0.76

Table S18. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of (*R*)-22bA-(*R*)-22bE.

		(<i>R</i>)-22bA				(<i>R</i>)-22bB			(<i>R</i>)-22bC		
			coordinates	5		coordinates	7		coordinates	1	
ID	atom	X	Y	Z	X	Y	Z	X	Y	Z	
1	C	-1.4356	1.3552	-0.0109	1.3991	1.3464	-0.1394	-1.4104	1.3691	-0.0528	
2	C	-3.3299	-0.2812	-0.2561	3.3321	-0.2299	0.3216	-3.3254	-0.2537	-0.3159	
3	C	-1.1226	-0.9222	-1.1369	1.1221	-0.7752	1.2480	-1.1107	-0.9514	-1.1117	
4	0	-2.5555	-1.0277	-1.1955	2.5547	-0.8822	1.3126	-2.5419	-1.0494	-1.1911	
5	C	-0.6534	0.5447	-1.0498	0.6392	0.6717	1.0048	-0.6435	0.5134	-1.0707	
6	C	-2.9276	1.1981	-0.2953	2.9050	1.2318	0.1378	-2.9113	1.2301	-0.3222	
7	Н	-0.8064	1.0277	-2.0199	0.8116	1.2666	1.9071	-0.7961	0.9663	-2.0557	
8	Н	-4.3609	-0.4022	-0.6104	4.3586	-0.2882	0.7029	-4.3474	-0.3607	-0.6982	
9	Н	-0.7816	-1.3271	-2.0936	0.7830	-1.0741	2.2433	-0.7556	-1.3936	-2.0464	
10	0	-3.2097	-0.7551	1.0569	3.2589	-0.8373	-0.9495	-3.2691	-0.6810	1.0279	
11	C	-3.8916	-1.9897	1.3034	3.9749	-2.0739	-1.0655	-3.9990	-1.8827	1.3064	
12	Н	-3.7705	-2.2049	2.3659	3.8878	-2.3876	-2.1064	-3.9149	-2.0564	2.3799	
13	Н	-3.4641	-2.8074	0.7134	3.5438	-2.8405	-0.4138	-3.5775	-2.7344	0.7630	
14	Н	-4.9596	-1.8922	1.0705	5.0324	-1.9300	-0.8124	-5.0551	-1.7617	1.0358	
15	0	0.7693	0.6170	-0.8373	-0.7887	0.6780	0.8435	0.7807	0.5870	-0.8608	
16	C	-0.4908	-1.7733	-0.0259	0.4965	-1.7469	0.2350	-0.5000	-1.7599	0.0413	
17	Н	-0.8721	-1.5019	0.9648	0.8753	-1.5776	-0.7798	-0.8906	-1.4453	1.0159	
18	Н	-0.6786	-2.8346	-0.2002	0.7019	-2.7803	0.5213	-0.6926	-2.8265	-0.0901	
19	0	0.9328	-1.5884	-0.0733	-0.9277	-1.5823	0.2649	0.9252	-1.5856	0.0000	
20	C	1.2782	-0.2395	0.1870	-1.2889	-0.2635	-0.0961	1.2816	-0.2294	0.2014	
21	Н	0.8475	0.0521	1.1574	-0.8536	-0.0486	-1.0869	0.8526	0.1087	1.1572	
22	C	2.7795	-0.1032	0.2153	-2.7971	-0.1378	-0.1518	2.7838	-0.1039	0.2251	
23	C	5.5716	0.1368	0.2868	-5.5860	0.1245	-0.3539	5.5771	0.1215	0.2878	
24	C	3.5417	-0.3995	-0.9236	-3.5989	-1.2650	-0.3732	3.5451	-0.4646	-0.8956	
25	C	3.4219	0.3124	1.3863	-3.3995	1.1230	-0.0391	3.4275	0.3689	1.3734	
26	C	4.8153	0.4328	1.4236	-4.7874	1.2522	-0.1382	4.8216	0.4820	1.4063	
27	C	4.9319	-0.2799	-0.8871	-4.9876	-1.1334	-0.4710	4.9360	-0.3525	-0.8634	
28	Н	3.0448	-0.7211	-1.8332	-3.1366	-2.2417	-0.4613	3.0474	-0.8303	-1.7880	
29	Н	2.8350	0.5420	2.2719	-2.7824	1.9981	0.1336	2.8412	0.6492	2.2447	
30	Н	5.3053	0.7565	2.3370	-5.2436	2.2336	-0.0449	5.3128	0.8506	2.3019	
31	Н	5.5171	-0.5109	-1.7724	-5.6001	-2.0149	-0.6371	5.5206	-0.6335	-1.7346	
32	Н	6.6534	0.2297	0.3131	-6.6648	0.2255	-0.4298	6.6595	0.2087	0.3106	
33	Н	-1.2303	1.0107	1.0098	1.1828	0.8588	-1.0994	-1.2058	1.0360	0.9736	
34	H	-3.1197	1.5509	-1.3190	3.1324	1.7753	1.0603	-3.1262	1.6432	-1.3128	
35	0	-3.7314	1.9245	0.6235	3.6594	1.8679	-0.8903	-3.7119	1.9641	0.5934	
36	H	-3.4184	2.8413	0.6144	3.6990	1.2501	-1.6388	-3.7239	1.4640	1.4252	
37	0	-1.1402	2.7503	-0.1148	1.0077	2.7151	-0.2011	-1.0459	2.7408	-0.1910	
38	H	-0.1954	2.8774	0.0536	1.6161	3.1568	-0.8133	-0.0784	2.7884	-0.1651	

Table S19. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of (*R*)-22bA-(*R*)-22bE.

			(<i>R</i>)-22bD			(<i>R</i>)-22bE	
			coordinates			coordinates	
ID	atom	X	Y	Ζ	X	Y	Z
1	C	-1.2323	1.7858	-0.2841	-1.4275	1.3720	-0.0025
2	C	-2.9992	0.0033	-0.2802	-3.3219	-0.2676	-0.2584
3	C	-0.7920	-0.6506	-0.9068	-1.1260	-0.9208	-1.1372
4	0	-1.9793	-0.9996	-0.1886	-2.5576	-1.0159	-1.2039
5	C	-0.1919	0.6603	-0.3749	-0.6605	0.5430	-1.0438
6	C	-2.5285	1.2951	0.4041	-2.9212	1.2241	-0.2736
7	Н	0.6200	0.9834	-1.0382	-0.8151	1.0274	-2.0133
8	Н	-3.1919	0.2073	-1.3480	-4.3548	-0.3825	-0.6129
9	Н	-1.0197	-0.5336	-1.9767	-0.7810	-1.3227	-2.0939
10	0	-4.1468	-0.4691	0.3419	-3.2040	-0.7555	1.0499
11	C	-4.8155	-1.5160	-0.3709	-3.8840	-1.9933	1.2829
12	Н	-5.7289	-1.7327	0.1849	-3.7651	-2.2189	2.3436
13	Н	-4.1960	-2.4164	-0.4241	-3.4544	-2.8049	0.6860
14	Н	-5.0752	-1.1887	-1.3864	-4.9518	-1.8958	1.0484
15	0	0.3067	0.4572	0.9617	0.7631	0.6178	-0.8334
16	C	0.2198	-1.7748	-0.7322	-0.4969	-1.7756	-0.0274
17	Н	-0.2456	-2.7441	-0.9196	-0.8778	-1.5060	0.9638
18	Н	1.0443	-1.6309	-1.4425	-0.6837	-2.8366	-0.2043
19	0	0.7147	-1.8307	0.6133	0.9270	-1.5896	-0.0751
20	C	1.2480	-0.6097	1.0841	1.2730	-0.2418	0.1893
21	Н	1.3579	-0.7487	2.1633	0.8425	0.0482	1.1600
22	C	2.6055	-0.2624	0.4696	2.7742	-0.1054	0.2165
23	C	5.1752	0.3525	-0.4910	5.5663	0.1348	0.2866
24	C	3.4622	-1.2810	0.0303	3.5353	-0.3955	-0.9247
25	C	3.0528	1.0657	0.4371	3.4176	0.3043	1.3891
26	C	4.3291	1.3720	-0.0437	4.8110	0.4247	1.4256
27	C	4.7386	-0.9751	-0.4508	4.9255	-0.2759	-0.8889
28	Н	3.1282	-2.3131	0.0667	3.0376	-0.7123	-1.8356
29	Н	2.4012	1.8593	0.7888	2.8314	0.5296	2.2763
30	Н	4.6614	2.4058	-0.0672	5.3018	0.7439	2.3402
31	Н	5.3906	-1.7741	-0.7918	5.5099	-0.5019	-1.7761
32	Н	6.1671	0.5903	-0.8642	6.6481	0.2279	0.3123
33	Н	-0.8096	2.6057	0.3095	-1.2214	1.0245	1.0179
34	Н	-3.3103	2.0531	0.2861	-3.1256	1.6039	-1.2833
35	0	-2.3299	1.1364	1.8022	-3.6484	1.9746	0.6899
36	Н	-1.5147	0.6210	1.9267	-4.5210	2.1873	0.3331
37	0	-1.4776	2.2006	-1.6297	-1.0686	2.7476	-0.1228
38	Н	-2.0119	3.0068	-1.6181	-0.1009	2.7955	-0.1012

		B3LYP/6-	31+G(d,p)		B3LYP/6-311++G(2d,2p)			
conformer	ΔE (Ha)	ΔG (Ha)	abundance (%)	imaginary frequencies	ΔE (Ha)	ΔG (Ha)	abundance (%)	imaginary frequencies
(<i>R</i>)-22bA	-995.70054	-995.43419	27.0	0	-995.95595	-995.68804	19.6	0
(<i>R</i>)-22bB	-995.70163	-995.43448	36.5	0	-995.95715	-995.68853	33.0	0
(<i>R</i>)-22bC	-995.70175	-995.43433	31.1	0	-995.95721	-995.68870	39.4	0
(<i>R</i>)-22bD	-995.70023	-995.43230	3.62	0	-995.95575	-995.68701	6.57	0
(<i>R</i>)-22bE	-995.69773	-995.43160	1.73	0	-995.95344	-995.68551	1.35	0

 Table S20. Energy and Abundance of Conformers (R)-22bA-(R)-22bE.

Table S21. Comparison Between Experimental (20b) and Calculated [(*R*)-22bA-(*R*)-22bE] NMR ³*J* Coupling Constants.

	experimental ³ J	B3LYP/6-31+G(d,p)	B3LYP/6-311++G(2d,2p)		
protons	(Hz)	calculated ³ J (Hz)	Δ	calculated ³ J (Hz)	Δ	
1-2	4.30	3.76	-0.54	3.70	-0.60	
2-3	8.60	9.04	+0.44	8.85	+0.25	
3-4	8.70	9.71	+1.01	9.49	+0.79	
4-5	5.20	6.35	+1.15	6.18	+0.98	
5-6 a	9.90	11.15	+1.25	10.85	+0.95	
5-6b	5.20	5.41	+0.21	5.30	+0.10	
6a-6b	11.10	10.44	+0.66	10.48	+0.62	
		<i>Rmsd</i> : 0.83		Rmsd : 0.69		

Table S22. Comparison Between	Experimental (20b) and	nd Calculated [(R)-22bA- (R) -22bE]
NMR ¹ H and ¹³ C Chemical Shifts	5.		

	experimental	B3LYP/6-31+G	(d,p)	B3LYP/6-311++G(2d,2p)		
atom	δ (ppm)	calculated δ (ppm)	Δ	calculated ð (ppm)	Δ	
H-1	4.96	4.79	-0.17	4.80	-0.16	
H-2	3.57	3.49	-0.08	3.47	-0.10	
Н-3	4.55	4.61	+0.06	4.59	+0.04	
H-4	4.06	4.10	+0.04	4.08	+0.02	
Н-5	4.20	4.31	+0.11	4.28	+0.08	
H-6a	4.30	4.35	+0.05	4.33	+0.03	
H-6b	4.06	4.04	-0.02	4.04	-0.02	
		Rmsd : 0.09)	<i>Rmsd</i> : 0.08		
C-1	96.1	97.6	+1.5	97.6	+1.5	
C-2	72.4	72.2	+0.2	72.1	-0.3	
C-3	65.7	65.2	-0.5	65.5	-0.2	
C-4	74.4	75.5	+1.1	75.3	+0.9	
C-5	66.9	67.6	+0.7	67.6	+0.7	
C-6	67.2	66.7	-0.5	66.6	-0.6	
C-7	95.6	93.7	-2.1	93.5	-2.1	
		Rmsd : 1.15	5	Rmsd : 1.10		

Table S23. Comparison Between Experimental (20b) and Calculated [(*R*)-22bA-(*R*)-22bE] H-H Distances by Quantitative NOESY NMR.

	avnavimantal	B3LYP/6-3	1+G(d,p)	B3LYP/6-311++G(2d,2p)	
protons	distance (Å)	calculated distance (Å)	Δ	calculated distance (Å)	Δ
3-7"	2.244	2.272	+0.028	2.282	+0.038
6a-7"	2.362	2.345	-0.017	2.358	-0.004
6a-3	2.656	2.518	-0.138	2.529	-0.127
5-7"	3.552	3.890	+0.338	3.905	+0.353
5-1	2.807	3.621	+0.814	3.445	+0.638
4-7"	3.516	3.696	+0.180	3.698	+0.182
2-1	2.319	2.426	+0.107	2.428	+0.109
2-4	2.392	2.527	+0.135	2.545	+0.153
2-3	2.894	3.015	+0.121	2.991	+0.097
		Rmsd :	0.46	Rmsd :	0.43

Table S24. 3D Coordinates of B3LYP/6-31+G(d,p) Optimized Geometries of 22cA-22cC.

			22cA		22cB			22cC		
			coordinates	7		coordinates	5		coordinates	7
ID	atom	X	Y	Ζ	X	Y	Z	X	Y	Z
1	C	-1.4076	1.1978	0.2835	-1.1849	0.6928	0.9913	1.1957	-0.7806	0.9004
2	C	-2.6235	-0.4714	-0.9691	-2.9108	0.3705	-0.6337	2.9285	-0.3379	-0.6881
3	C	-1.6863	-1.1399	1.2836	-1.4829	-1.6152	-0.0074	1.4982	1.5962	0.0792
4	C	-2.0373	-1.6276	-0.1372	-2.9079	-1.0654	-0.0793	2.9234	1.0527	-0.0282
5	C	-0.8178	0.1305	1.2165	-0.5915	-0.7232	0.8653	0.6035	0.6423	0.8800
6	0	-1.7532	0.6471	-1.0016	-1.7399	1.0948	-0.2707	1.7548	-1.0855	-0.3867
7	0	-3.8836	-0.1564	-0.4046	-4.0853	0.9839	-0.1588	4.0995	-0.9863	-0.2529
8	0	-0.9042	-2.1817	-0.7971	-3.6496	-1.9458	-0.9234	3.6683	1.9939	-0.8006
9	0	-2.8542	-0.9006	2.0663	-1.4724	-2.9396	0.5208	1.4863	2.8774	0.7052
10	0	0.4826	-0.2712	0.7367	0.7054	-0.6990	0.2440	-0.6909	0.6645	0.2545
11	C	-0.3822	2.2992	0.0446	-0.1286	1.7003	1.4289	0.1377	-1.8195	1.2558
12	0	0.8896	1.7610	-0.3421	1.1051	1.5428	0.7200	-1.0937	-1.6043	0.5594
13	C	1.3820	0.8382	0.6056	1.6033	0.2204	0.8507	-1.5811	-0.2988	0.7937
14	C	-4.6701	0.7744	-1.1634	-4.4134	2.2169	-0.8107	4.4278	-2.1711	-0.9886
15	Н	-2.2969	1.6393	0.7510	-1.9739	0.6888	1.7551	1.9822	-0.8355	1.6648
16	Н	-2.7339	-0.7674	-2.0185	-2.9110	0.3529	-1.7312	2.9351	-0.2390	-1.7812
17	Н	-1.1149	-1.9206	1.7944	-1.0628	-1.6153	-1.0226	1.0817	1.6724	-0.9346
18	Н	-2.7860	-2.4217	-0.0711	-3.3488	-1.0598	0.9257	3.3600	0.9714	0.9755
19	Н	-0.7213	0.5487	2.2279	-0.5066	-1.1680	1.8673	0.5156	1.0111	1.9122
20	Н	-0.1460	-1.5948	-0.6274	-4.5943	-1.8175	-0.7614	4.6124	1.8552	-0.6435
21	Н	-3.5249	-0.4924	1.4898	-2.1003	-3.4601	-0.0034	2.1188	3.4341	0.2254
22	Н	-0.7017	2.9527	-0.7690	-0.4745	2.7181	1.2394	0.4832	-2.8186	0.9849
23	Н	-0.2717	2.8961	0.9611	0.0502	1.5813	2.5074	-0.0430	-1.7874	2.3400
24	Н	-4.8285	0.3942	-2.1794	-4.5273	2.0643	-1.8915	4.5452	-1.9433	-2.0558
25	Н	-5.6283	0.8600	-0.6501	-5.3630	2.5489	-0.3886	5.3757	-2.5333	-0.5882
26	Н	-4.1860	1.7545	-1.2100	-3.6464	2.9762	-0.6278	3.6590	-2.9399	-0.8616
27	H	1.4531	1.3268	1.5907	1.6962	-0.0212	1.9228	-1.6448	-0.1417	1.8863
28	C	2.7250	0.3189	0.1623	2.9408	0.1222	0.1632	-2.9424	-0.1292	0.1534
29	C	5.2199	-0.6842	-0.6296	5.4353	-0.0595	-1.1045	-5.5082	0.2164	-0.9361
30	C	2.9148	-0.1439	-1.1476	3.0573	0.3973	-1.2070	-3.7454	-1.2412	-0.1304
31	C	3.7890	0.2778	1.0703	4.0777	-0.2433	0.8921	-3.4344	1.1578	-0.1061
32	C	5.0343	-0.2229	0.6766	5.3231	-0.3345	0.2610	-4.7103	1.3291	-0.6495
33	C	4.1582	-0.6428	-1.5412	4.2996	0.3068	-1.8375	-5.0221	-1.0679	-0.6748
34	H	2.0940	-0.1050	-1.8567	2.1769	0.6811	-1.7748	-3.3701	-2.2382	0.0710
35	H	3.6466	0.6384	2.0857	3.9921	-0.4572	1.9543	-2.8166	2.0224	0.1124
36	H	5.8550	-0.2495	1.3872	6.2000	-0.6190	0.8350	-5.0797	2.3308	-0.8492
37	H	4.2998	-0.9981	-2.5576	4.3835	0.5213	-2.8989	-5.6345	-1.9376	-0.8948
38	H	6.1865	-1.0719	-0.9378	6.4010	-0.1295	-1.5965	-6.4999	0.3498	-1.3586

		B3LYP/6-	31+G(d,p)		B3LYP/6-311++G(2d,2p)			
conformer	ΔE (Ha)	ΔG (Ha)	abundance (%)	imaginary frequencies	ΔE (Ha)	ΔG (Ha)	abundance (%)	imaginary frequencies
22cA	-995.70793	-995.43926	97.1	0	-995.96321	-995.69375	97.5	0
22cB	-995.70123	-995.43569	2.22	0	-995.95704	-995.68997	1.77	0
22cC	-995.70046	-995.43456	0.67	0	-995.95639	-995.68908	0.69	0

 Table S25. Energy and Abundance of Conformers 22cA-22cC.

Table S26. Comparison between experimental (20c) and calculated (22cA-22cC) NMR ³J coupling constants

	experimental ³ J	B3LYP/6-31+G(d	l,p)	B3LYP/6-311++G(2d,2p)	
protons	(Hz)	calculated ${}^{3}J$ (Hz)	Δ	calculated ³ J (Hz)	Δ
1-2	N/A	1.70	N/A	1.68	N/A
2-3	1.20	2.98	-1.78	2.95	-1.75
3-4	2.70	3.12	-0.42	3.11	-0.41
4-5	N/A	1.38	N/A	1.38	N/A
5-6a	1.30	1.56	-0.26	1.56	+0.26
5-6b	1.70	1.90	+0.20	1.90	+0.20
6a-6b	12.60	11.92	-0.68	11.92	-0.68
		<i>Rmsd</i> : 0.75		Rmsd : 0.74	

Table S27. Comparison Between Experimental (20c) and Calculated (22cA-22cC) NMR ¹H and ¹³C Chemical Shifts.

	experimental	B3LYP/6-31+G	(d,p)	B3LYP/6-311++G(2d,2p)		
atom	δ (ppm)	calculated δ (ppm)	Δ	calculated δ (ppm)	Δ	
H-1	5.20	5.12	-0.08	5.12	-0.08	
H-2	3.71	3.66	-0.05	3.66	-0.05	
Н-3	4.00	3.91	-0.09	3.91	-0.09	
H-4	4.14	4.24	+0.10	4.24	+0.10	
Н-5	4.00	3.97	-0.03	3.97	-0.03	
H-6a	4.36	4.42	+0.06	4.42	+0.06	
H-6b	4.13	4.22	+0.09	4.22	+0.09	
		Rmsd : 0.08	3	Rmsd : 0.08		
C-1	99.2	100.6	+1.4	100.6	+1.4	
C-2	67.2	67.3	+0.1	67.2	+0.0	
C-3	68.0	68.4	+0.4	68.4	+0.4	
C-4	76.0	75.7	-0.3	75.7	-0.3	
C-5	59.5	60.4	+0.9	60.4	+0.9	
C-6	70.2	68.9	-1.3	68.9	-1.3	
C-7	101.6	100.5	-1.1	100.5	-1.1	
		Rmsd : 0.93	3	Rmsd : 0.93		

3. NMR Spectra of New Compounds.

Figure S2. ¹H NMR spectrum (CDCl₃, 600 MHz) of **1,2,3,4,6-penta-**O-acetyl α -D-idopyranose (2)

Figure S3. ¹H NMR spectrum (CDCl₃, 600 MHz) of ethyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-idopyranoside (3a)

Figure S4. COSY NMR spectrum (CDCl₃, 600 MHz) of ethyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-idopyranoside (3a)

Figure S5. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of ethyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-idopyranoside (3a)

Figure S6. HSQC NMR spectrum (CDCl₃, 600 MHz) of ethyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-idopyranoside (3a)

Figure S7. ¹H NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-idopyranoside (3b)

Figure S8. COSY NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 2,3,4,6-tetra-*O*-acetyl-1-thio-*a*-D-idopyranoside (3b)

Figure S9. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *para*-methylphenyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-idopyranoside (3b)

Figure S10. HSQC NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-idopyranoside (3b)

Figure S11. ¹H NMR spectrum (CDCl₃, 600 MHz) of **ethyl 4,6-***O***-benzylidene-1-thio-α-D-idopyranoside (4a)**

Figure S12. COSY NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-*O*-benzylidene-1-thio-α-D-idopyranoside (4a)

Figure S13. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of ethyl 4,6-*O*-benzylidene-1-thio-α-D-idopyranoside (4a)

Figure S14. HSQC NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-*O*-benzylidene-1-thio-α-D-idopyranoside (4a)

Figure S15. ¹H NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-1-thio-*a*-D-idopyranoside (4b)

Figure S16. COSY NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-1-thio-α-D-idopyranoside (4b)

Figure S17. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-1-thio-*a*-D-idopyranoside (4b)

Figure S18. HSQC NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-1-thio-α-D-idopyranoside (4b)

Figure S19. ¹H NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-1-thio-*a*-D-idopyranoside (5a)

Figure S20. COSY NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-1-thio-a-D-idopyranoside (5a)

Figure S21. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of ethyl 4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-1-thio-α-D-idopyranoside (5a)

Figure S23. ¹H NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-*O*-benzylidene-3-*O-tert*-butyldimethylsilyl-1-thio-*a*-D-idopyranoside (10)

Figure S24. COSY NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-1-thio-a-D-idopyranoside (10)

Figure S25. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of ethyl 4,6-*O*-benzylidene-3-*O*-tert-butyldimethylsilyl-1-thio-α-D-idopyranoside (10)

Figure S26. HSQC NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-1-thio-a-D-idopyranoside (10)

Figure S27. ¹H NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-1-thio-*a*-D-idopyranoside (5b)

Figure S29. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-1-thio-α-D-idopyranoside (5b)

Figure S31. ¹H NMR spectrum (CDCl₃, 600 MHz) of ethyl 3-*O*-acetyl-4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-1-thio-*a*-D-idopyranoside (6a)

Figure S33. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of **ethyl 3-***O***-acetyl-4**,6-*O***-benzylidene-2**-*O***-tert**-**butyldimethylsilyl-1-thio**-*α*-**D**-idopyranoside (6a)

Figure S35. ¹H NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 3-*O*-acetyl-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-1-thio-α-D-idopyranoside (6b)

Figure S36. COSY NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl **3-***O*-acetyl-**4**,**6**-*O*-benzylidene-**2**-*O*-tert-butyldimethylsilyl-1-thioα-D-idopyranoside (6b)

S60

CG_MC534v2_C3 CG_MC534v2_C3 -169.39 137.91 132.59 155.59 15 -25.81 -21.25 -18.12 -18.12 -89.62 77.37 77.16 76.95 70.61 69.82 68.66 C422 C483 Ph Ó 0 **OTBS** Ο AcO **S**Tol 100 f1 (ppm) 140 110 90 80 70 60 50 40 30 20 10 0 10 200 190 180 170 160 150 130 120 -1

Figure S37. ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz) of *para*-methylphenyl 3-*O*-acetyl-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-1-thio-*a*-D-idopyranoside (6b)

Figure S38. HSQC NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl **3**-*O*-acetyl-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-1-thioα-D-idopyranoside (6b)

Figure S39. ¹H NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl-1-thio-α-D-idopyranoside (7)

Figure S40. COSY NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl-1-thio-α-D-idopyranoside (7)

Figure S41. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl-1-thio-α-D-idopyranoside (7)

Figure S42. HSQC NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl-1-thio-α-D-idopyranoside (7)

Figure S43. ¹H NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 3-*O*-(2-azidomethyl)benzoyl-4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-1-thio-*a*-D-idopyranoside (8)

Figure S44. COSY NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 3-*O*-(2-azidomethyl)benzoyl-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-1-thio-α-D-idopyranoside (8)

Figure S45. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *para*-methylphenyl 3-*O*-(2-azidomethyl)benzoyl-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-1-thio-α-D-idopyranoside (8)

Figure S46. HSQC NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 3-*O*-(2-azidomethyl)benzoyl-4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-1-thio-α-D-idopyranoside (8)

Figure S47. ¹H NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-tert-butycarbonyl-1-thio-α-D-idopyranoside (9)

Figure S48. COSY NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-tert-butoxycarbonyl-1-thio-*a*-D-idopyranoside (9)

Figure S49. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-tert-butycarbonyl-1-thio-α-D-idopyranoside (9)

Figure S50. HSQC NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-tert-butoxycarbonyl-1-thio-*a*-D-idopyranoside (9)

Figure S51. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-β-D-idopyranoside (14a)

Figure S52. COSY NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (14a)

Figure S53. ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (14a)

Figure S55. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl-β-D-idopyranoside (14a)

Figure S56. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-acetyl-(*R*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-β-D-idopyranoside (14b)

Figure S58. ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-O-acetyl-(*R*)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (14b)

Figure S59. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(*R*)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (14b)

Figure S60. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(*R*)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl-β-D-idopyranoside (14b)

Figure S61. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-α-D-idopyranoside (14c)

Figure S63. ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-*a*-D-idopyranoside (14c)

Figure S66. ¹H NMR spectrum (CDCl₃, 600 MHz) of (1-adamantyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-β-D-idopyranoside (15a)

Figure S68. ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz) of (1-adamantyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-β-D-idopyranoside (15a)

Figure S71. ¹H NMR spectrum (CDCl₃, 600 MHz) of (1-adamantyl) 3-*O*-acetyl-(*R*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-β-D-idopyranoside (15b)

Figure S73. ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz) of (1-adamantyl) 3-O-acetyl-(*R*)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (15b)

Figure S74. HSQC NMR spectrum (CDCl₃, 600 MHz) of (1-adamantyl) 3-O-acetyl-(*R*)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (15b)

Figure S75. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (1-adamantyl) 3-*O*-acetyl-(*R*)-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-β-D-idopyranoside (15b)

S99

Figure S76. ¹H NMR spectrum (CDCl₃, 600 MHz) of (1-adamantyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-α-D-idopyranoside (15c)

Figure S77. COSY NMR spectrum (CDCl₃, 600 MHz) of (1-adamantyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-α-D-idopyranoside (15c)

Figure S80. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (1-adamantyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-α-D-idopyranoside (15c)

Figure S81. ¹H NMR spectrum (CDCl₃, 600 MHz) of (3-stigmastanyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-β-D-idopyranoside (16a)

Figure S85. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (**3-stigmastanyl**) **3-O-acetyl-(S)-4,6-O-benzylidene-2-***O-tert*-**butyldimethylsilyl-β-D-idopyranoside (16a)**

Figure S86. ¹H NMR spectrum (CDCl₃, 600 MHz) of (3-stigmastanyl) 3-O-acetyl-(*R*)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (16b)

Figure S88. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (**3-stigmastanyl**) **3-***O*-acetyl-(*R*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-β-D-idopyranoside (16b)

Figure S89. HSQC NMR spectrum (CDCl₃, 600 MHz) of (**3-stigmastanyl**) **3-***O***-acetyl-**(*R*)**-4**,**6**-*O***-benzylidene-2**-*O***-tert**-butyldimethylsilyl-β-D-idopyranoside (16b)

Figure S90. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (3-stigmastanyl) 3-O-acetyl-(*R*)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl-β-D-idopyranoside (16b)

Figure S91. ¹H NMR spectrum (CDCl₃, 600 MHz) of (3-stigmastanyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-α-D-idopyranoside (16c)

Figure S92. COSY NMR spectrum (CDCl₃, 600 MHz) of (**3-stigmastanyl**) **3-***O***-acetyl-(***S***)-4**,**6**-*O***-benzylidene-2**-*O***-tert**-butyldimethylsilyl-α-D-idopyranoside (16c)

Figure S93. ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz) of (3-stigmastanyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-*a*-D-idopyranoside (16c)

Figure S94. HSQC NMR spectrum (CDCl₃, 600 MHz) of (**3-stigmastanyl**) **3-***O***-acetyl-(***S***)-4**,**6**-*O***-benzylidene-2**-*O***-tert**-butyldimethylsilyl-α-D-idopyranoside (16c)

Figure S95. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (**3-stigmastanyl**) **3-***O***-acetyl-(***S***)-4**,**6-***O***-benzylidene-2-***O***-tert-butyldimethylsilyl-***a***-D-idopyranoside (16c)**

Figure S96. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-3-O-dichloroacetyl-β-D-idopyranoside (17a)

Figure S98. ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-3-O-dichloroacetyl- β -D-idopyranoside (17a)

Figure S99. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-3-O-dichloroacetylβ-D-idopyranoside (17a)

Figure S100. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-3-O-dichloroacetyl- β -D-idopyranoside (17a)

Figure S101. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) (*R*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl-β-D-idopyranoside (17b) and (2-adamantyl) (*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl-α-D-idopyranoside (17c)

Figure S102. COSY NMR spectrum (CDCl₃, 600 MHz) of (**2-adamantyl**) (*R*)-**4**,6-*O***-benzylidene-2-***O***-tert-butyldimethylsilyl-3-***O*-dichloroacetyl-β-D-idopyranoside (17b) and (**2-adamantyl**) (*S*)-**4**,6-*O***-benzylidene-2-***O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl-α-D-idopyranoside (17c)

Figure S103. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (**2-adamantyl**) (*R*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl- β -D-idopyranoside (17b) and (**2-adamantyl**) (*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl- α -D-idopyranoside (17c)

Figure S104. HSQC NMR spectrum (CDCl₃, 600 MHz) of (**2-adamantyl**) (*R*)-**4**,6-*O***-benzylidene-2-***O***-tert-butyldimethylsilyl-3-***O*-dichloroacetyl-β-D-idopyranoside (17b) and (**2-adamantyl**) (*S*)-**4**,6-*O***-benzylidene-2-***O*-tert-butyldimethylsilyl-3-*O*-dichloroacetyl-α-D-idopyranoside (17c)

Figure S105. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (**2-adamantyl**) (*R*)-**4**,6-*O***-benzylidene-2-***O***-tert-butyldimethylsilyl-3-***O*-dichloroacetyl-β-D-idopyranoside (17b) and (**2-adamantyl**) (*S*)-**4**,6-*O***-benzylidene-2-***O***-tert**-butyldimethylsilyl-3-*O*-dichloroacetyl-α-D-idopyranoside (17c)

Figure S107. COSY NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-(2-azidomethyl)benzoyl-(S)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl-β-D-idopyranoside (18a)

Figure S108. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-O-(2-azidomethyl)benzoyl-(S)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl-β-D-idopyranoside (18a)

Figure S109. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-(2-azidomethyl)benzoyl-(S)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl-β-D-idopyranoside (18a)

Figure S111. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-(2-azidomethyl)benzoyl-(*R*)-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-β-D-idopyranoside (18b) and (2-adamantyl) 3-*O*-(2-azidomethyl)benzoyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-α-D-idopyranoside (18c)

Figure S112. COSY NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-(2-azidomethyl)benzoyl-(*R*)-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-β-D-idopyranoside (18b) and (2-adamantyl) 3-*O*-(2-azidomethyl)benzoyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-α-D-idopyranoside (18c)

S136

Figure S113. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-O-(2-azidomethyl)benzoyl-(*R*)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl-β-D-idopyranoside (18b) and (2-adamantyl) 3-O-(2-azidomethyl)benzoyl-(*S*)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl-α-D-idopyranoside (18c)

Figure S114. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-(2-azidomethyl)benzoyl-(*R*)-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-β-D-idopyranoside (18b) and (2-adamantyl) 3-*O*-(2-azidomethyl)benzoyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-α-D-idopyranoside (18c)

Figure S115. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-(2-azidomethyl)benzoyl-(*R*)-4,6-O-benzylidene-2-Otert-butyldimethylsilyl-β-D-idopyranoside (18b) and (2-adamantyl) 3-O-(2-azidomethyl)benzoyl-(*S*)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl-α-D-idopyranoside (18c)

S139

Figure S116. ¹H NMR spectrum (CDCl₃, 600 MHz) of **(2-adamantyl) (S)-4,6-O-benzylidene-2-***O-tert*-butyldimethylsilyl-3-*O-tert*-butycarbonyl-β-D-idopyranoside (19a)

Figure S117. COSY NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-3-O-tertbutoxycarbonyl-β-D-idopyranoside (19a)

Figure S119. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-3-O-tertbutoxycarbonyl-β-D-idopyranoside (19a)

Figure S120. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-3-O-tertbutoxycarbonyl-β-D-idopyranoside (19a)
Figure S121. ¹H NMR spectrum (CDCl₃, 600 MHz) of (**2-adamantyl**) (*R*)-4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-3-*O-tert*-butycarbonyl-β-D-idopyranoside (19b) and (**2-adamantyl**) (*S*)-4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-3-*O-tert*-butoxycarbonyl-α-D-idopyranoside (19c)

Figure S122. COSY NMR spectrum (CDCl₃, 600 MHz) of (**2-adamantyl**) (*R*)-**4**,6-*O***-benzylidene-2-***O***-tert-butyldimethylsilyl-3-***O***-tert**-butycarbonyl-β-D-idopyranoside (19b) and (**2-adamantyl**) (*S*)-**4**,6-*O***-benzylidene-2-***O***-tert**-butyldimethylsilyl-3-*O***-tert**-butoxycarbonyl-α-D-idopyranoside (19c)

Figure S123. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (**2-adamantyl**) (*R*)-4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-3-*O-tert*-butycarbonyl-β-D-idopyranoside (19b) and (**2-adamantyl**) (*S*)-4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-3-*O-tert*-butoxycarbonyl-α-D-idopyranoside (19c)

Figure S124. HSQC NMR spectrum (CDCl₃, 600 MHz) of (**2-adamantyl**) (*R*)-**4**,6-*O***-benzylidene-2-***O***-tert-butyldimethylsilyl-3-***O***-tert-butyldimethyl**

Figure S125. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (**2-adamantyl**) (*R*)-4,6-*O*-benzylidene-2-*O-tert*-butyldimethylsilyl-3-*D-tert*-butyldimethylsilyl-3-*O-tert*-butyldimeth

Figure S126. ¹H NMR spectrum (CDCl₃, 500 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-β-D-idopyranoside (20a)

Figure S127. COSY NMR spectrum (CDCl₃, 500 MHz) of (2-adamantyl) (S)-4,6-*O*-benzylidene-β-D-idopyranoside (20a)

Figure S128. ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz) of (2-adamantyl) (S)-4,6-*O*-benzylidene-β-D-idopyranoside (20a)

Figure S129. HSQC NMR spectrum (CDCl₃, 500 MHz) of (2-adamantyl) (S)-4,6-*O*-benzylidene-β-D-idopyranoside (20a)

Figure S130. ¹H NMR spectrum (CDCl₃, 500 MHz) of (2-adamantyl) (*R*)-4,6-*O*-benzylidene-β-D-idopyranoside (20b)

Figure S131. COSY NMR spectrum (CDCl₃, 500 MHz) of (2-adamantyl) (*R*)-4,6-*O*-benzylidene-β-D-idopyranoside (20b)

Figure S132. ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz) of (2-adamantyl) (R)-4,6-O-benzylidene- β -D-idopyranoside (20b)

Figure S133. HSQC NMR spectrum (CDCl₃, 500 MHz) of (2-adamantyl) (*R*)-4,6-*O*-benzylidene-β-D-idopyranoside (20b)

Figure S134. ¹H NMR spectrum (CDCl₃, 500 MHz) of (2-adamantyl) (*S*)-4,6-*O*-benzylidene-α-D-idopyranoside (20c)

Figure S135. COSY NMR spectrum (CDCl₃, 500 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-α-D-idopyranoside (20c)

Figure S136. ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-α-D-idopyranoside (20c)

Figure S137. HSQC NMR spectrum (CDCl₃, 500 MHz) of (2-adamantyl) (S)-4,6-O-benzylidene-α-D-idopyranoside (20c)

Figure S138. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (21)

Figure S139. COSY NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-acetyl-2-*O-tert*-butyldimethylsilyl-β-D-idopyranoside (21)

Figure S140. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-O-acetyl-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (21)

Figure S141. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-acetyl-2-*O-tert*-butyldimethylsilyl-β-D-idopyranoside (21)

Figure S142. ¹H NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 3-O-benzyl-4,6-O-benzylidene-1-thio-*a*-D-idopyranoside (23)

Figure S144. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *para*-methylphenyl 3-*O*-benzyl-4,6-*O*-benzylidene-1-thio-α-D-idopyranoside (23)

Figure S145. HSQC NMR spectrum (CDCl₃, 600 MHz) of *para*-methylphenyl 3-*O*-benzyl-4,6-*O*-benzylidene-1-thio-α-D-idopyranoside (23)

Figure S148. ¹³C {¹H} NMR spectrum (CDCl₃, 150 MHz) of *para*-methylphenyl **3**-*O*-benzyl-**4**,**6**-*O*-benzylidene-**2**-*O*-tert-butyldimethylsilyl-**1**-thio-*a*-D-idopyranoside (**24**)

Figure S150. ¹H NMR spectrum (CDCl₃, 600 MHz) of **1,2,3,4,6-penta-***O***-acetyl** *α***-D-talopyranose (26)**

Figure S151. ¹H NMR spectrum (CDCl₃, 600 MHz) of ethyl 2,3,4,6-tetra-*O*-acetyl-1-thio-*a*-D-talopyranoside

Figure S152. COSY NMR spectrum (CDCl₃, 600 MHz) of ethyl 2,3,4,6-tetra-O-acetyl-1-thio-a-D-talopyranoside

Figure S153. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of ethyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-talopyranoside

Figure S154. HSQC NMR spectrum (CDCl₃, 600 MHz) of ethyl 2,3,4,6-tetra-*O*-acetyl-1-thio-*a*-D-talopyranoside

Figure S155. ¹H NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-*O*-benzylidene-1-thio-α-D-talopyranoside (27)

Figure S156. COSY NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-*O*-benzylidene-1-thio-α-D-talopyranoside (27)

Figure S157. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of ethyl 4,6-*O*-benzylidene-1-thio-*a*-D-talopyranoside (27)

Figure S158. HSQC NMR spectrum (CDCl₃, 600 MHz) of ethyl 4,6-*O*-benzylidene-1-thio-*a*-D-talopyranoside (27)

Figure S159. ¹H NMR spectrum (CDCl₃, 600 MHz) of ethyl 3-*O*-acetyl-4,6-*O*-benzylidene-1-thio-*a*-D-talopyranoside

Figure S160. COSY NMR spectrum (CDCl₃, 600 MHz) of ethyl 3-*O*-acetyl-4,6-*O*-benzylidene-1-thio-α-D-talopyranoside

Figure S161. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of ethyl 3-*O*-acetyl-4,6-*O*-benzylidene-1-thio-*a*-D-talopyranoside

Figure S162. HSQC NMR spectrum (CDCl₃, 600 MHz) of ethyl **3-***O*-acetyl-**4**,**6**-*O*-benzylidene-**1**-thio-*a*-D-talopyranoside

Figure S163. ¹H NMR spectrum (CDCl₃, 600 MHz) of **ethyl 3-***O***-acetyl-4,6-***O***-benzylidene-2-***O***-tert**-**butyldimethylsilyl-1-thio**-*α***-D-talopyranoside (28)**

4.0 3.5 f2 (ppm) 3.0

2.5

2.0

1.5

1.0

0.5

7.5

7.0

6.5

6.0

5.5

5.0

4.5

Figure S164. COSY NMR spectrum (CDCl₃, 600 MHz) of ethyl 3-*O*-acetyl-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-1-thio-α-D-talopyranoside (28)

-8

0.0

Figure S165. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of ethyl **3-***O*-acetyl-**4**,**6**-*O*-benzylidene-**2**-*O*-tert-butyldimethylsilyl-**1**-thio-*a*-D-talopyranoside (**28**)

Figure S166. HSQC NMR spectrum (CDCl₃, 600 MHz) of ethyl 3-*O*-acetyl-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-1-thio-α-D-talopyranoside (28)

Figure S167. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-benzyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (29)

Figure S168. COSY NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-β-D-idopyranoside (29)

Figure S169. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-O-benzyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-β-D-idopyranoside (29)

Figure S170. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-β-D-idopyranoside (29)

Figure S171. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tertbutyldimethylsilyl-β-D-idopyranoside (29)

Figure S172. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-β-D-idopyranoside (31)

Figure S173. COSY NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-β-D-idopyranoside (31)

Figure S174. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-O-benzyl-(S)-4,6-O-benzylidene-β-D-idopyranoside (31)

Figure S175. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-β-D-idopyranoside (31)

Figure S176. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-benzyl-(S)-4,6-O-benzylidene-β-D-idopyranoside (31)

Figure S177. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-α-D-talopyranoside (30α)

Figure S178. COSY NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-*a*-D-talopyranoside (30*a*)

Figure S179. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl- α -D-talopyranoside (30 α)

Figure S180. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-*a*-D-talopyranoside (30*a*)

Figure S181. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl- α -D-talopyranoside (30 α)

Figure S182. ¹H NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl- β -D-talopyranoside (30 β) and (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene- α -D-talopyranoside (32)

Figure S183. COSY NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl- β -D-talopyranoside (30 β) and (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene- α -D-talopyranoside (32)

Figure S184. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of (2-adamantyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- β -D-talopyranoside (30 β) and (2-adamantyl) 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene- α -D-talopyranoside (32)

Figure S185. HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl- β -D-talopyranoside (30 β) and (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene- α -D-talopyranoside (32)

Figure S186. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene-2-O-tertbutyldimethylsilyl- β -D-talopyranoside (30 β) and (2-adamantyl) 3-O-acetyl-(S)-4,6-O-benzylidene- α -D-talopyranoside (32)

Figure S187. ¹H NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-2-*O*-acetyl-3,6-di-*O*-para-methoxybenzyl- α -D-glucopyranoside (37 α)

Figure S188. COSY NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-2-*O*-acetyl-3,6-di-*O*-para-methoxybenzyl- α -D-glucopyranoside (37 α)

Figure S189. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-2-*O*-acetyl-3,6-di-*O*-para-methoxybenzyl- α -D-glucopyranoside (37 α)

Figure S190. HSQC NMR spectrum (CDCl₃, 600 MHz) of allyl **3-***O*-acetyl-(*S*)-**4**,6-*O*-benzylidene-**2**-*O*-tert-butyldimethylsilyl-α-D-idopyranosyl-(1→4)-2-*O*-acetyl-3,6-di-*O*-para-methoxybenzyl-α-D-glucopyranoside (37α)

Figure S191. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-2-*O*-acetyl-3,6-di-*O*-para-methoxybenzyl- α -D-glucopyranoside (37 α)

Figure S192. ¹H NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- β -D-idopyranosyl-(1 \rightarrow 4)-2-*O*-acetyl-3,6-di-*O*-para-methoxybenzyl- α -D-glucopyranoside (37 β)

Figure S194. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- β -D-idopyranosyl-(1 \rightarrow 4)-2-*O*-acetyl-3,6-di-*O*-para-methoxybenzyl- α -D-glucopyranoside (37 β)

Figure S195. HSQC NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- β -D-idopyranosyl-(1 \rightarrow 4)-2-*O*-acetyl-3,6-di-*O*-para-methoxybenzyl- α -D-glucopyranoside (37 β)

Figure S196. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- β -D-idopyranosyl-(1 \rightarrow 4)-2-*O*-acetyl-3,6-di-*O*-para-methoxybenzyl- α -D-glucopyranoside (37 β)

Figure S197. ¹H NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-α-D-idopyranosyl-(1→2)-3-*O*-para-methoxybenzyl-4,6-*O*-para-methoxybenzylidene-α-D-glucopyranoside (38)

Figure S198. COSY NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-α-D-idopyranosyl-(1→2)-3-*O*-para-methoxybenzyl-4,6-*O*-para-methoxybenzylidene-α-D-glucopyranoside (38)

Figure S199. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-α-D-idopyranosyl-(1→2)-3-*O*-para-methoxybenzyl-4,6-*O*-para-methoxybenzylidene-α-D-glucopyranoside (38)

Figure S201. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-α-D-idopyranosyl-(1→2)-3-*O*-para-methoxybenzylidene-α-D-glucopyranoside (38)

Figure S202. ¹H NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-3-*O*-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (39a)

Figure S204. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-3-*O*-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (39a)

Figure S205. HSQC NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-3-*O*-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (39a)

Figure S206. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-3-*O*-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (39a)

Figure S207. ¹H NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 3)-3-*O*-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (39b)

Figure S208. COSY NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 3)-3-*O*-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (39b)

Figure S209. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 3)-3-*O*-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (39b)

Figure S210. HSQC NMR spectrum (CDCl₃, 600 MHz) of allyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 3)-3-*O*-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (39b)

Figure S212. ¹H NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-α-D-idopyranosyl-(1→4)-3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido-β-D-glucopyranoside (40)

Figure S213. COSY NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (40)

Figure S214. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *tert*-butyldimethylsilyl 3-*O*-acetyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (40)

Figure S215. HSQC NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl **3**-*O*-acetyl-(*S*)-**4**,6-*O*-benzylidene-**2**-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-**3**,6-di-*O*-benzyl-**2**-deoxy-**2**-trichloroacetamido- β -D-glucopyranoside (40)

Figure S216. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl **3**-*O*-acetyl-(*S*)-**4**,**6**-*O*-benzylidene-**2**-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-**3**,**6**-di-*O*-benzyl-**2**-deoxy-**2**-trichloroacetamido- β -D-glucopyranoside (40)

Figure S217. ¹H NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl-α-D-idopyranosyl-(1→4)-3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido-β-D-glucopyranoside (41α)

Figure S218. COSY NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (41 α)

Figure S219. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *tert*-butyldimethylsilyl 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (41 α)

Figure S220. HSQC NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl **3**-*O*-benzyl-(*S*)-**4**,**6**-*O*-benzylidene-**2**-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-**3**,**6**-di-*O*-benzyl-**2**-deoxy-**2**-trichloroacetamido- β -D-glucopyranoside (41 α)

Figure S221. Coupled HSQC NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl 3-*O*-benzyl-(S)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- α -D-idopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (41 α)

Figure S222. ¹H NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- β -D-idopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (41 β)

Figure S223. COSY NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl 3-*O*-benzyl-(*S*)-4,6-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- β -D-idopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (41 β)

Figure S224. ¹³C{¹H} NMR spectrum (CDCl₃, 150 MHz) of *tert*-butyldimethylsilyl **3**-*O*-benzyl-(*S*)-**4**,**6**-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- β -D-idopyranosyl-(1 \rightarrow 4)-**3**,**6**-di-*O*-benzyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (41 β)

Figure S225. HSQC NMR spectrum (CDCl₃, 600 MHz) of *tert*-butyldimethylsilyl **3**-*O*-benzyl-(*S*)-**4**,**6**-*O*-benzylidene-2-*O*-tert-butyldimethylsilyl- β -D-idopyranosyl-(1 \rightarrow 4)-**3**,**6**-di-*O*-benzyl-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (41 β)

4. Supplementary references

- S1. Bruker, S., L. Krause, R. Herbst-Irmer, GM Sheldrick, D. Stalke. Comparison of silver and molybdenum microfocus x-ray sources for single-crystal structure determination. J. Appl. Crystallogr 2015, 48, 3-10.
- Scheldrick, G., SHELXT-Integrated space-group and crystals-structure determination. *Acta Crystallogr., Sect. A: Found. Adv* 2015, 71 (3).
- S3. Sheldrick, G. M., SHELXL-97, Program for structure refinement. University of Göttingen, *Germany* 1997.
- S4. Sheldrick, G., SHELXS-97: Program for Crystal Structure Resolution; University of Göttingen: Göttingen, Germany, 1997.