

SFERA III: On site Training for Indusry

Le Bourget-du-Lac, June, 8th – 10th 2022

Standardized tests for reflectors

Florian Wiesinger, DLR

Knowledge for Tomorrow

Contents

Fundamentals of reflectance

Measurement of reflectance parameters

Typical reflector types

Standardized test methods

Summary

PAC

Reflectance – Crucial Parameter for CSP - Introduction

Slide

 α = absorptance

Examples for **diffuse** reflecting surfaces (room temperature)

<u>High ρ [%]:</u>

- Titaniumdioxid 99
- Magnesiumoxid 96 (vapor deposited)
- Gypsum 80
- White Paper 70

<u>Low ρ [%]:</u>

- Black platinum 0.1
- Carbon black 0.8
- 1 1.5Black varnish ٠

5

Black paper ٠

Examples for **specular** reflecting surfaces

<u>High ρ [%]:</u>

- Aluminum (polished) 87-92
- Silver (polished) 98-80 (λ -range 0.37-1 μ m)
- Steel(polished) 93
- Stainless Steel 89

$\rightarrow \rho$ is highly depending on λ

Handbook of Chemistry and Physics, 75th Edition Manufacturer datasheet: Electro Optical Industries Inc.

Reflectance – Crucial Parameter for CSP - Introduction

Characteristics for metals:

- High ρ in IR, drop at visible and UV
- Position of the edge depending on surface state and temperature.

Characteristics for non-metals:

Two absorption-edges, one in the visible and one in the IR, in between high ρ

\rightarrow How should $\rho(\lambda)$ be modeled?

Reflectance – Crucial Parameter for CSP - Introduction

https://electricala2z.com/wp-content/uploads/2018/03/Solar-Spectrum-at-the-Top-of-the-Atmosphere-and-at-Sea-Level.png

Reflectance – Laboratory Measurements - Overview

Perkin Elmer Lambda 1050 spectrophotometer

Measures hemispherical reflectance, transmittance & absorptance

Measures specular reflectance

15R-RGB

Reflectance – Fundamental Definitions

specular reflectance within acceptance angle ϕ

hemispherical reflectance (acceptance angle is complete hemisphere " ϕ =h")

Reflectance – Fundamental Definitions

- Reflectance is wavelength dependent
- A suitable "mean value" of all relevant solar wavelengths is the solar weighted reflectance

$$\rho_{s,\varphi}([\lambda_a,\lambda_b],\theta_i,\varphi,T_s)$$

$$\mathcal{O}_{s,\varphi}([\lambda_a,\lambda_b],\theta_i,\varphi,T_s) = \frac{\sum_{i=0}^{i_{\max}} \rho_{s,\varphi}(\lambda_i,\theta_i,\varphi,T_s) \cdot G_b(\lambda_i)}{\sum_{i=0}^{i_{\max}} G_b(\lambda_i)}$$

The spectral solar irradiance $G_b(\lambda_i)$ can be obtained in 5 nm steps from a reference spectrum, e.g. ASTM G173 with air mass 1.5 and 1000 W/m²

Every measured reflectance value needs to be declared in the format:

$$\rho_{\lambda,\varphi}(\lambda,\, heta_i,\,arphi,\,T_s)$$

λ	wavelength	[nm]
θι	incidence angle	[⁰]
φ	acceptance angle	[mrad]
Ts	surface temperature of the mirror	[°C]

To indicate solar weighted values use "s" as index and indicate the wavelength range of the weighting instead of λ

To indicate hemispherical reflectance use "h" instead of ϕ

Examples:

 $\rho_{\lambda,\varphi}$ (660 nm, 15°, 12.5 mrad, 25°C) = 95.3% $\rho_{s,h}$ ([280,2500nm], 8°, h, 25°C) = 94.1%

Optical components of CSP

Mirror types – silvered-glass mirrors

Typical reflectance values:

 $\rho_{s,h}([280,2500nm], 8^{\circ}, h, 25^{\circ}C) = 93.0 - 95.0\%$ $\rho_{\lambda,\varphi}(660 nm, 15^{\circ}, 12.5 mrad, 25^{\circ}C) = 95.0 - 96.0\%$

+ cost ~15€/m²

+ good durability: Pb containing paints proofed durability >30

years

Pb free paints need to proof durability still

Optical components of CSP

Mirror types – laminated glass mirrors

Typical reflectance values:

 $\rho_{s,h}([280,2500nm], 8^{\circ}, h, 25^{\circ}C) = 94.5\%$ $\rho_{\lambda,\varphi}(660 nm, 15^{\circ}, 12.5 mrad, 25^{\circ}C) = 95.5\%$

- + Thin front glass increases reflectance
- + Excellent durability
- Cost

Glass 1.6mm
Silver
Copper
polyvinyl butyral (PVB) (adhesive)
Glass 2.3mm

[Guardian]

Optical components of CSP

Mirror types – PVD coated aluminum reflectors

Typical reflectance values:

- + cost
- + flexible
- durability

ρ_{s,h}([280,2500nm], 8^e, h, 25^eC) = 90.0% *ρ*_{λ,φ} (660 nm, 15^e, 12.5 mrad, 25^eC) = 85.5%

ISO 16474-3 (replaces ISO 11507): UV+humidity Test

IEC 62108 10.7a: Damp heat test 85/85

Chamber temperature: $85 \pm 2^{\circ}$ C Humidity: Testing time:

85 \pm 5 % relative humidity 1000 hours

IEC 62108 10.7b: Damp heat test 65/85

Chamber temperature: $65 \pm 2^{\circ}$ C Humidity: Testing time:

85 \pm 5 % relative humidity 2000 hours

ISO 9227: Neutral salt spray test (NSS)

Chamber temperature: $35 \pm 2^{\circ}$ C Humidity:

Sprayed solution:

Condensation rate: Sample position: Testing time: constant 100% relative humidity demineralized water + 50 g/l NaCl (pH 6.5 – 7.2) 1.5 \pm 0.5 ml/h on a surface of 80 cm² 20 \pm 5° respect to vertical 480 – 3500 hours

ISO 9227: Copper accelerated salt spray test (CASS)

Chamber temperature:	$50 \pm 2^{\circ}$ C		
Humidity:	constant 100% relative humidity		
Sprayed solution:	demineralized water + 50 g/l NaCl + 0.26 g/l CuCl ₂		
	(pH 3.1 – 3.3)		
Condensation rate:	$1.5 \pm 0.5 \text{ ml/h on a surface of 80 cm}^2$		
Sample position:	20 \pm 5° respect to vertical		
Testing time:	120 – 480 hours		

CuCl₂

PAC

DIN 50018 / ISO 6988: Kesternich Test

Chamber temperature: Humidity: Initial SO₂ concentration: Cycle time: Testing time: ambient / 40 \pm 3° C ambient / 100% relative humidity 0.33 or 0.67% of volume of testing chamber 24 hours >20 cycles

ISO 61215: Thermal Cycling

Chamber temperature:-40°C to +85°CHumidity:dryCycle duration:min. 2hRecommended cycle number:>100

dry min. 2h 50min, max. 6h >100

Time [h]

PAC

Thermal Cycling with humidity based on ISO 6270-2CH

Chamber temperature:	-40° C to $+85^{\circ}$ C
Humidity:	ambient to 100% relative humidity
Cycle duration:	24 h
Recommended cycle number:	>20

Method A

Step	Duration (h)	Temperatur e (ºC)	Relative Humidity (%)
1	4	85	Not controlled
2	4	-40	Not controlled
3	16	40	97±3

Method B1

Step	Duration (h)	Temperatur e (ºC)	Relative Humidity (%)
1	4	85	Not controlled
2	4	-40	Not controlled
3	16	85	85 ± 3

Method B2

Step	Duration (h)	Temperatur e (ºC)	Relative Humidity (%)
1	4	85	Not controlled
2	4	-40	Not controlled
3	40	65	85±3

PAC

Humidity Freeze Test IEC 62108

Chamber temperature:	-40° C to $+65^{\circ}$ C
Humidity:	ambient to 85% relative humidity
Precycling:	400 cycles
Cycle duration:	24 h
Freeze cycle number:	40
Total testing time:	~2000h

400 precycles -40 to 65° C, dry

80

60

40

20

0

-20

-40

-60

Temperature [°C]

Abrasion testing

Available standards: ISO 11998, DIN ISO 9211-4

Simulation of cleaning cycles

Scratching of coatings with controlled normal force

Sand trickling test DIN 52348

Closed loop sand storm chamber (based on MIL-STD 810G)

Testing programs

Basic program

Test	Standard	Testing conditions	Duration
Neutral Salt Spray (NSS)	ISO 9227	T: 35°C pH: 6.5 to 7.2 at 25°C	480 h
Copper-accelerat ed acetic acid salt spray (CASS)	ISO 9227	T: 50° C pH: 3.1 to 3.3 at 25° C	120 h
Condensation	ISO 6270-2	T: 40° C RH: 100%	480 h
UV and humidity test	ISO 16474-3	4h UV exposure at 60° C; 4h 100% RH at 50° C	1000h on both sides
Combined thermal cycling and condensation test	AENOR draft Method A	4 h 85° C, 4 h -40° C, Method A: 16 h T° : 40° C and 97±3% RH	10 cycles (240 hours)

Advanced program

Test	Test Standard		Duration
Neutral Salt Spray (NSS)	ISO 9227	T: 35°C pH: 6.5 to 7.2 at 25°C	3000 h
Copper-accelerated acetic acid salt spray (CASS)	ISO 9227	T: 50° C pH: 3.1 to 3.3 at 25° C	480 h
Condensation	ISO 6270-2	T: 40° C RH: 100%	1000 h
UV and humidity test	ISO 16474-3	4h UV exposure at 60° C; 4h 100% RH at 50° C	1000h on both sides
Combined thermal cycling and condensation test	AENOR draft	4 h 85° C, 4 h -40° C, Method A: 16 h T: 40° C and 97±3% RH	20 cycles (480 hours)
Thermal cycling	IEC 62108 (Test 10.6 TCA3)	T: 65°C - -40°C	150 cycles (~280 h)
Damp Heat	IEC 62108 (Test 10.7b)	T: 65°C; RH=85%	2000 h
Combined thermal cycling and Damp Heat	IEC 62108 (Test 10.6 TCA3 + Test 10.7b)	1 st step: thermal cycling as above, 2 nd step: Damp Heat test	150 cycles + 2000 h
Combined thermal cycling and NSS	IEC 62108 (Test 10.6 TCA3) + ISO 9227	1 st step: thermal cycling as above, 2 nd step: NSS	150 cycles + 3000 h
Sand erosion test	Test dust ISO 12103-1 A4 coarse	v = 12.5 m/s, $c = 100 \text{ mg/m}^3$	10, 20, 40 and 60 min

Analyzed parameters

Thank you for your attention

PAC