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The aim of this work is direct noise computation (DNC) of high-lift wing using Wall-modeled
LES (WMLES) with Lattice Boltzmann Method (LBM). There are two aspects of this work:
application, where the commercial LB solver ProLB is used as a DNC tool to compute high-
lift noise, and understanding, where an effort is made to gather know-how about the intricate
details/nuances involved with wall-modeling in LBM by implementing it. For the present study,
the Category 6 LEISA2 F16 high-lift configuration from the Benchmark for Airframe Noise
Computations (BANC) workshop has been selected as the high-lift airfoil. The three-element
unswept high-lift wing with deployed slat and flap is resolved on a mesh with different spanwise
resolutions ranging from 5% to 20% clean chord length. Periodic boundary condition is
used along the spanwise direction. The results of WMLES-LBM simulations were validated
for relative accuracy against the extensive experimental BANC database. Results of both
aerodynamic and aeroacoustic comparison with the experiments is discussed in detail. For the
aspect of understanding, a quasi-analytical wall function for flat walls has been introduced into
the academic LB research code Musubi. Turbulent channel flow at 𝑅𝑒𝜏=1000 was chosen as
test-case for the validation. Results of the simulation were compared with the published DNS
results.

I. Introduction

Airframe noise is generated during the take-off and approach phase by the interaction of the complex flow with the
deployed landing gear and high-lift devices (slat and flap). During the approach phase the airframe noise represents

the dominant noise contribution [1]. It becomes imperative to reduce this source of noise in order to meet the future
stringent noise limits. Different approaches to predict this type of noise source have been listed in reference [2].

Flow field that develops around the high lift devices is quite complex and highly unsteady [3]. Complexity of the
flow field is associated with several flow phenomena i.e. generation and interaction of shear layers, impingement of
shear layer vortices, flow re-circulation and separation etc. Accurate prediction of the unsteady flow features is the
aim of scale-resolving flow simulations such as Large-Eddy Simulation (LES). DNC of high-lift device noise aims at
simulating simultaneously the unsteady turbulent flow with the sound generation and propagation process as a part of
one simulation. Particularly, we are interested in the high-lift devices at approach that involve flow Reynolds number
of O(106 − 107). Wall resolved LES (WRLES) requires full resolution of the inner layer physics inside the Turbulent
boundary layer (TBL). Computational expense incurred for WRLES at technical relevant high Reynolds numbers is not
economical even with the current computing power [4].The grid point requirement for the WRLES scales as 𝑅𝑒13/7 and
for WMLES which models the physics of the inner layer, it scales as 𝑅𝑒1 [5]. Since the inner layer is modeled, only the
outer layer of the Turbulent Boundary Layer (TBL) is resolved with LES. This significantly reduces the computational
expense.

In recent years, LBM has gained popularity for subsonic, high Reynolds number aerodynamic flows. It is inherently
an unsteady method with a good computational efficiency [6] for high fidelity LES computation. Cartesian grids with

∗Research scientist
†Senior scientist, AIAA Senior member
‡Head of the department, AIAA Senior member
§Research scientist

1

D
ow

nl
oa

de
d 

by
 M

al
av

 S
on

i o
n 

Ju
ne

 2
7,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

29
18

 

 28th AIAA/CEAS Aeroacoustics 2022 Conference 

 June 14-17, 2022, Southampton, UK 

 10.2514/6.2022-2918 

 Copyright © 2022 by Malav Soni, DLR Braunschweig. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 Aeroacoustics Conferences 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2022-2918&domain=pdf&date_stamp=2022-06-13


LBM enable a quick meshing approach for any complex type of geometry. Because of its low dissipative nature, LBM
facilitates the aeroacoustic application. Considering the isotropic nature of mesh, WRLES on hierarchical Cartesian
meshes become too expensive for industrial applications. Usage of wall models mitigates this issue [7], [8]. In the
present work WMLES in combination with LBM is used to simulate high-lift noise. Studies for high-lift noise with
Very Large-Eddy Simulation (VLES-)/WMLES-LBM have been reported using PowerFLOW software [9]-[11] . In the
present work, ProLB v2.6.3 has been chosen for the simulation of the high-lift noise.

For the application part, DLR/ONERA F16 geometry is used as the high-lift wing for simulation with ProLB,
see figure 3. This geometry has been extensively studied experimentally within the joint ONERA/DLR project
LEISA2 [13]. Several high-lift noise studies with continuum based solvers have been carried out with F16 geometry.
These studies used different approaches like: zonal hybrid Reynolds-averaged Navier-Stokes (RANS)/LES [30], global
hybrid RANS/LES [31], WRLES [32] and perturbation based approaches i.e. Forced Eddy Simulation (FES) [33] and
Overset-LES (OLES) [34]. To the authors knowledge, this is the first high-lift noise study with F16 geometry using
WMLES-LBM. In this study, ProLB is indeed used as a DNC tool by directly resolving the acoustics in the far-field.

For the second part of the study, the academic research LB software Musubi is utilized to simulate a turbulent
channel flow problem at wall shear stress velocity based Reynolds number 𝑅𝑒𝜏 = 1000. The canonical turbulent flow
problem is selected to study aspects of the wall model implementation.

The paper is organized as follows: First, Sec. II describes the LBM theory. Sec. III describes the numerical set-up
details and results of High-lift noise simulation. After that Sec. IV describes the numerical set-up details and results of
the turbulent channel flow (TCF) simulation.

II. Numerical method

A. Lattice Boltzmann scheme
In this study Lattice Boltzmann method has been used for the fluid flow and acoustics simulation. This approach is

based upon the Boltzmann equation which describes the dynamics of fluid on a mesoscopic scale. The fundamental
variable for the Boltzmann equation is the particle distribution function 𝑓 = 𝑓 (𝒙, 𝝃, 𝑡) that represents the particle
density/probability of finding particles with microscopic particle velocity 𝝃 = (b𝑥 , b𝑦 , b𝑧) at a given time 𝑡 and at a
position 𝒙. The force-free Boltzmann equation (dimensional) describes the evolution of 𝑓 in time as a result of advection
and collision:

𝜕 𝑓

𝜕𝑡
+ 𝝃 .

𝜕 𝑓

𝜕𝒙
= Ω( 𝑓 ), (1)

where Ω( 𝑓 ) - is the collision operator which locally redistributes 𝑓 . The macroscopic quantities of interest i.e. density,
momentum are obtained from the moments of 𝑓 over all the particle velocities 𝝃 :

𝜌(𝒙, 𝑡) =
∫

𝑓 𝑑𝝃,

𝜌(𝒙, 𝑡)𝒖(𝒙, 𝑡) =
∫

𝑓 𝝃𝑑𝝃 .

(2)

Analogous to eq. (1) , the lattice Boltzmann equation (LBE) describes the dynamics of the discrete particle distribution
functions 𝑓𝑖 , also referred to as particle populations[15], where 𝑖 in 𝑓𝑖 is associated with the chosen discrete set of
particle velocities {𝝃𝑖 = (b𝑖𝑥 , b𝑖𝑦 , b𝑖𝑧)}. Now, the macroscopic quantities are obtained from the sum of the particle
populations over a discrete set of N particle velocities:

𝜌(𝒙, 𝑡) =
𝑁−1∑︁
𝑖=0

𝑓𝑖 (𝒙, 𝑡), 𝜌(𝒙, 𝑡)𝒖(𝒙, 𝑡) =
𝑁−1∑︁
𝑖=0

𝝃𝑖 𝑓𝑖 (𝒙, 𝑡). (3)

Discretisation of eq. (1) in velocity space is carried out by truncating the Hermite series expansion of 𝑓 on the basis of
the Hermite polynomials in velocity space. Later on, using the Gauß-Hermite quadrature, the integral form of moments
(eq. (2)) can be written as the summation over a specific set of velocities [16]. Choice of the discrete particle velocity set
{𝝃𝑖} determines the lattice. Our studies used a regular D3Q19 (19 velocities in 3 dimensions) lattice that will arrange
the nodes in a cubic fashion and on each node 19 𝑓 ′

𝑖
𝑠 are stored. Figure 1 shows a D3Q19 lattice, where each node is

connected to its neighboring node with a discrete velocity link. Eq.( 1) when discretized in the velocity space, physical
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space and time gives us the Lattice Boltzmann equation (LBE) as shown in eq. (4).

𝑓𝑖 (𝒙 + 𝝃𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖 (𝒙, 𝑡) +Ω𝑖 (𝒙, 𝑡) (4)

where Δ𝑡 is the time step and Ω𝑖 is the collision operator.

Fig. 1 D3Q19 stencil.

In the LB algorithm, the 𝑓 ′
𝑖
𝑠 on the lattice are updated in time via two steps: collision and streaming. The collision step

is local and its role is to instantaneously redistribute the particles/ 𝑓 ′
𝑖
𝑠 among the different particle/discrete velocities as:

𝑓𝑖
𝑐 (𝒙, 𝑡) = 𝑓𝑖 (𝒙, 𝑡) +Ω𝑖 (𝒙, 𝑡), (5)

where 𝑓𝑖
𝑐 represents the post-collision particle population. The streaming step involves the propagation of this 𝑓𝑖

𝑐 to
the neighboring lattice node along its post-collision velocity direction as:

𝑓𝑖 (𝒙 + 𝝃𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖
𝑐 (𝒙, 𝑡). (6)

Flow physics is introduced through modeling of the collision operator. The simple Bhatnagar-Gross-Krook (BGK)
collision operator is used to model Ω𝑖 (𝒙, 𝑡) as:

Ω𝑖 (𝒙, 𝑡) = −Δ𝑡

𝜏
( 𝑓𝑖 (𝒙, 𝑡) − 𝑓𝑖

𝑒𝑞 (𝒙, 𝑡)) (7)

which corresponds to the relaxation of the particle populations towards their respective equilibrium state 𝑓𝑖
𝑒𝑞 with a

prescribed relaxation time 𝜏. The discrete equilibrium distribution function 𝑓𝑖
𝑒𝑞 is given by the truncated Hermite

series expansion, normally at the second order, of the continuous Maxwell-Boltzmann distribution ( 𝑓 𝑒𝑞) as:

𝑓
𝑒𝑞

𝑖
(𝜌, 𝒖) = 𝑤𝑖𝜌

(
1 + b𝑖𝛼𝑢𝛼

𝑎2
0

+
𝑢𝛼𝑢𝛽 (b𝑖𝛼b𝑖𝛽 − 𝑎2

0𝛿𝛼𝛽)
2𝑎4

0

)
+𝑂 (𝑀𝑎3), (8)

where 𝑎0 is the constant speed of sound, 𝑤𝑖 are the weights for each discrete velocity that are specific to a lattice.
The relaxation time is unique for different flow configurations as it is obtained using the kinematic viscosity 𝝂 and 𝑎0
as: 𝜏/Δ𝑡 = 1/2 + a/𝑎2

0Δ𝑡. Reduced description of 𝑓 and 𝑓 𝑒𝑞 is sufficient enough to recover the correct macroscopic
conservation laws [16]. The pressure is computed using the iso-thermal equation of state as: 𝑝 = 𝑎2

0 𝜌. Using the BGK
collision operator, eq. (4) can be rewritten as the LB-BGK equation as:

𝑓𝑖 (𝒙 + 𝒄𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖 (𝒙, 𝑡) −
Δ𝑡

𝜏
( 𝑓𝑖 (𝒙, 𝑡) − 𝑓

𝑒𝑞

𝑖
(𝒙, 𝑡)). (9)

The non-equilibrium population, 𝑓 𝑛𝑒𝑞
𝑖

, is denoted as the deviation from the equilibrium:

𝑓
𝑛𝑒𝑞

𝑖
= 𝑓𝑖 − 𝑓

𝑒𝑞

𝑖
. (10)

The use of the BGK scheme was strictly restricted for explaining the LB scheme. This simple form of approximation for
the collision operator suffers from stability issues at higher Reynolds number. Since we are interested in simulating
highly turbulent flows, details of the key aspects i.e. collision scheme used in ProLB and Musubi will be given in the
subsequent sections.
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B. ProLB: Key ingredients
ProLB [17] is an industrial LB solver that is developed within a scientific consortium including CS GROUP, Renault,

Airbus, Ecole Centrale de Lyon, Aix-Marseille University It is a cell-vertex based solver that deploys a D3Q19 lattice.
ProLB version 2.6.3 was used in this study.

1. Collision scheme
To ensure superior stability at higher Reynolds number a Hybrid Recursive Regularized Bhatnagar-Gross-Krook

(HRR-BGK) [18] collision scheme is used instead of simpler BGK form. The populations 𝑓 ′
𝑖
𝑠 are regularized, refer [18],

before the collision step. The collision operator in this scheme look like:

Ω𝑖 = −Δ𝑡

𝜏
𝑓𝑖
𝑛𝑒𝑞 . (11)

Here the non-equilibrium population is computed in an hybrid fashion as:

𝑓𝑖
𝑛𝑒𝑞 = 𝜎𝐻𝑅𝑅 𝑓𝑖

𝑛𝑒𝑞,𝐿𝐵 + (1 − 𝜎𝐻𝑅𝑅) 𝑓𝑖𝑛𝑒𝑞,𝐹𝐷 (12)

where

𝑓𝑖
𝑛𝑒𝑞,𝐿𝐵 =

𝑄𝑖𝛼𝛽

2𝑎4
0

∑︁
𝛼

b𝑖𝛼b𝑖𝛽 ( 𝑓𝑖 − 𝑓
𝑒𝑞

𝑖
),

𝑓𝑖
𝑛𝑒𝑞,𝐹𝐷 = − 𝜏𝜌𝜔𝑖

2Δ𝑡𝑎2
0
𝑄𝑖𝛼𝛽

(
𝜕𝑢𝛼

𝜕𝑥𝛽
+
𝜕𝑢𝛽

𝜕𝑥𝛼

) (13)

with 𝑄𝑖𝛼𝛽 = b𝑖𝛼b𝑖𝛽 − 𝑎2
0𝛿𝛼𝛽 and 𝜎𝐻𝑅𝑅 = 0.98. To compute the velocity gradients in 𝑓𝑖

𝑛𝑒𝑞,𝐹𝐷 , second order centered
finite differences are used . Non-hydrodynamic contribution which is responsible for generating spurious noise at the
fine to coarse mesh interface is effectively damped by this scheme [19].

2. Turbulence model
In the LB framework, LES is embedded directly by replacing the kinematic viscosity with an effective viscosity. The

effective viscosity is expressed as a sum of kinematic and turbulent viscosity: a𝑒 𝑓 𝑓 = a + a𝑡𝑢𝑟𝑏. Here a𝑡𝑢𝑟𝑏 accounts for
the contribution of the unresolved scales in the bulk flow. Shear Improved Smagorinsky (SISM) [21] model, which is an
improvement over the classical Smagorinsky model, provides the a𝑡𝑢𝑟𝑏 as follows:

a𝑡𝑢𝑟𝑏 = (𝐶𝑠Δ𝑥)2 ( |𝑺 | (𝒙, 𝑡) − 𝑆(𝒙, 𝑡)), (14)

where 𝐶𝑠 = 0.18 is the smagorinsky constant, Δ𝑥 is the lattice spacing, |𝑺 | is the norm of the strain rate tensor and 𝑆 is
the low-pass filtering of rate of strain. Instead of kinematic viscosity, now an effective viscosity enters the relaxation
parameter:

𝜏

Δ𝑡
=

1
2
+
a𝑒 𝑓 𝑓

𝑎2
0Δ𝑡

. (15)

3. Wall model
A logarithmic wall function, eq. (16), is used to model the dynamics of turbulence at the first off-wall cell with extra

correcting terms for the adverse pressure gradient, the curvature correction and near-wall damping [20].

𝑢+ (𝑦+) = ( 1
𝑘

ln
(
𝑦+

)
+ 𝐵 + 𝐹𝑝 (𝑦+) + 𝐹𝑐 (𝑦+)) 𝐹𝑑 (𝑦+) (16)

with
𝑢+ =

𝑢

𝑢𝜏

, 𝑦+ =
𝑦𝑢𝜏

a
, 𝑢𝜏 =

√︂
𝜏𝑤

𝜌
, (17)

where 𝑢𝜏 is the friction velocity, 𝜏𝑤 is the wall shear stress, 𝐹𝑝 (𝑦+), 𝐹𝑐 (𝑦+) and 𝐹𝑑 (𝑦+) - are the adverse pressure, the
curvature correction and near wall damping correcting terms, the von-Karman constant 𝑘 = 0.41 and constant 𝐵 = 5.2.
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C. Musubi: Key ingredients
Musubi [22] is a parallel multi-level LB solver initially developed in Simulation Techniques and Scientific (STS)

Computing Group, University of Siegen. It allows for the simulation of different flow physics i.e. weakly compressible,
multi-component flows etc. The code is now developed further for high Reynolds number and aeroacoustic applications
i.e. utilizing wall models and advanced collision schemes. It is a cell-centered octree based solver. The octree meshes
are created using the mesh generator Seeder from STS.

1. Collison scheme
A multi-relaxation time (MRT), see d’Humières [23], collision scheme is used for high Reynolds number simulations.

In this scheme, first the populations are transformed in to the moment space using a linear transformation. Instead
of populations, these moments are relaxed towards their equilibrium using individual relaxation times. Post-collision
moments are than transformed back to the population space and streamed further. This approach increases stability
since it allows to relax each moment independently, especially the higher order non-hydrodynamic moments [24].

2. Turbulence model
In this work, VREMAN [25] model is used to provide the contribution of the unresolved scales, a𝑡𝑢𝑟𝑏. It uses strain

rate and vorticity rate tensor for the computation of a𝑡𝑢𝑟𝑏 as:

a𝑡𝑢𝑟𝑏 = 𝑐𝑣 (Δ𝑥)2

(√︄
𝐵𝛽

𝛼𝑖 𝑗𝛼𝑖 𝑗

)
, (18)

where
𝐵𝛽 = 𝛽11𝛽22 − 𝛽2

12 + 𝛽11𝛽33 − 𝛽2
13 + 𝛽22𝛽33 − 𝛽2

23, (19)

𝛽𝑖 𝑗 = 𝛼𝑚𝑖𝛼𝑚𝑗 , (20)

𝛼𝑖 𝑗 =
𝜕𝑢 𝑗

𝜕𝑥𝑖
. (21)

𝛼𝑖 𝑗 is the resolved velocity gradient. The model constant 𝑐𝑣 is related to the Smagorinsky constant 𝐶𝑠 by 𝑐a ≈ 2.5𝐶2
𝑠 .

The contribution from a𝑡𝑢𝑟𝑏 enters the relaxation time in the similar fashion as shown in eq. (15).

3. Wall model
Since we use uniform Cartesian meshes, isotropic mesh refinement in the near wall region could easily result in

large number of overall mesh points for the high Reynolds number cases. Such an issue can be avoided by using a wall
model which will predict the velocity and friction velocity in the first off-wall point. As a part of understanding LBM as
a DNC tool, developing and understanding of wall-modeling in the LBM framework, besides the numerics of LBM,
is of prime importance. Recently an algebraic type wall model based on the concept of Malaspinas et al. [26] was
introduced in Musubi. This initial implementation is applicable only for the flat walls which implies that the distance of
the first and second off-wall nodes from the wall is fixed, see figure 2. In this case, the first off-wall node distance is
0.5Δ𝑥 and the second off-wall node distance is 1.5Δ𝑥 away from the wall. Basic idea of this wall model is to replace the
no-slip boundary condition by imposing a tangential velocity component (macroscopic) at the first off-wall node using
analytical/quasi-analytical wall functions. Under the assumption that the second off-wall node lies in the inner TBL, the
velocity information available at the second off-wall node from the bulk flow is utilised to compute the 𝑢𝜏 from the wall
function. Using this 𝑢𝜏 the tangential velocity can be obtained at the first off-wall node. Explicit (Werner & Wengle
[28]) and implicit wall functions (Musker, Reichardt etc. see Ref. [26]) were implemented. The test-case computed
with this wall model used Musker wall function (eq. (22)) to model the inner TBL. The implicit wall functions were
solved iteratively using the fixed point iteration method.

𝑢+ = 5.424 arctan
(
2.0𝑦+ − 8.15

16.7

)
+ log10

(
(𝑦+ + 10.6)9.6

(𝑦+2 − 8.15𝑦+ + 86.0)2

)
− 3.5072790194 (22)

On the contact side with the boundary, the first off-wall nodes have a missing fluid neighbour node. The distribution
functions in the direction of the missing neighboring nodes are unknown. Thus, at the first off-wall nodes a particular
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Fig. 2 Model arrangement (2D) of the nodes for wall model concept. 𝐹𝑂𝑊 , 𝑆𝑂𝑊 - first & second off-wall nodes.

treatment is required to properly account for the distribution functions virtually coming from inside the boundary.
Several ways of treating this issue are reported in literature [26] out of which we chose reconstruction of all distributions
at the first off wall nodes. The distribution functions at the first off-wall nodes are computed as: 𝑓𝑖

𝑒𝑞 + 𝑓𝑖
𝑛𝑒𝑞 . Density 𝜌

and 𝑓𝑖
𝑛𝑒𝑞 at the first off-wall nodes are obtained via the zeroth-order extrapolation from the neighboring fluid node. The

equilibrium part 𝑓𝑖
𝑒𝑞 at first off-wall node is computed using the macroscopic density and imposed velocity from the

wall function.

III. High-lift simulations

A. Configuration
High-lift wing under consideration is the widely utilised DLR/ONERA F16 geometry. Under the joint DLR/ONERA

project LEISA2 [13], extensive experimental studies are carried out with this geometry. The experimental aerodynamic
and aeroacoustic database is co-owned by ONERA and DLR but recently the database is also made public under the
framework of the Benchmark for Airframe Noise Computation (BANC) [14] (category 6). The F16 geometry has
a unswept, three-element configuration with slat and flap deployed at 27.834 and 35.011 deg, respectively. It has a
clean chord length 𝑐 = 0.3 m and spanwise extent 𝐿𝑧 = 0.8 m. Slat chord length is 0.0558 m. Figure 3 shows the
section of the F16 geometry. The axis origin of the F16 geometry is at the leading edge of the slat when the slat is in
retracted position. Free-field flow conditions chosen for this study are: free-stream inflow velocity 𝑈∞ = 61.53 m/s,
free-stream Mach number 𝑀∞ = 0.18 and angle of attack 𝛼 = 6.15 deg. Reynolds number based on the clean chord
and the kinematic viscosity for air, a = 1.49𝑒−05 𝑚2/𝑠, is 𝑅𝑒𝑐 ≃ 1, 230, 000. Measurements were carried out in the
ONERA’s F2 (closed wall) aerodynamic wind tunnel and DLR’s AWB (open-jet) aeroacoustic wind tunnel. Detailed
description of the experimental methodology and the results are discussed in Ref. [13].

Fig. 3 DLR F16 profile.

For the near-field results comparison, the experimental data from F2 tunnel will be used and for the far-field acoustic
propagation results comparison, the data from AWB tunnel will be used.
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B. Numerical setup
Square shaped computational domain as shown in figure 4a) is used for the simulation. F16 geometry is arranged

in the middle of the domain and the domain extends from the axis origin of the geometry by 50c in both streamwise
(X-axis) and wall normal (Y-axis) direction. Green slab in figure 4a) represents the location of velocity inlet boundary
and the other three blue slabs the location of the outlet boundary. Transients resulting from the flow initialisation get
reflected at the boundaries and in order to damp them, sponge zones are placed near the boundaries. The sponge zones
stretch inwards from the boundaries in to the fluid domain by 3c. Wall boundary condition was applied on the surfaces
of all three elements of the F16 geometry. Periodic boundary condition was used in the spanwise direction. Different
spanwise extents were used in this study i.e. 5%c, 10%c and 20%c. Results of different domain extensions will be
discussed in the subsequent sections. Figure 5 shows the comparison of different spanwise extents chosen in this study.

Fig. 4 Computational domain for high-lift simulation of F16 geometry.

a) 5%c b) 10%c c) 20%c

Fig. 5 Spanwise extent comparison.

Instead of rotating the geometry, the inlet flow field was rotated at an angle of 6.15 deg. Iso-thermal LBE was solved
with density 𝜌 = 1.20432 𝑘𝑔/𝑚3 and the physical speed of sound 𝑎0=343.20 m/s.

Cartesian grid with the multiple refinement levels of isotropic, cubic elements is used for this simulation. Since the
flow around the multi-element airfoil is highly unsteady, localised refinements are applied to the important flow regions
i.e. slat cusp, slat and main element trailing edge etc. Figure 6 shows the close-up view of the slat cove and the flap cove
region. The grid size of Δ𝑥 𝑓 = 0.000125 m (finest) is used for the localised refinement region. In order to accurately
capture the recirculating flow in the slat and flap cove, the grid size in there is kept uniform. The grid refinement in
the far-field is adjusted to resolve the acoustic waves up to the frequency f ≈ 11 kHz based on the spatial resolution
requirement of 8 points per wavelength for LBM with HRR [19]. This grid refinement stretched from the axis origin of
the F16 geometry until a distance of ≈ 3c in both horizontal and vertical direction. Grid size, Δ𝑥 = 0.004 m, is kept
uniform in this refinement region to accurately propagate acoustics in to the far-field. Details about the microphone
arrangement in the far-field will be discussed in the later sections.

While using the periodic boundary there is a prerequisite that atleast two elements should be present, along the
spanwise direction, in the coarsest level. Because of this prerequisite, isotropic mesh refinement and uniform mesh size
used to resolve the acoustics in the far-field - direct propagation, the total number of grid nodes is higher. Table 1 gives
the grid details for different spanwise extents.
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a) Slat cove b) Flap cove

Fig. 6 Close-up view of the grid in the slat and flap cove.

≈ 5%c ≈ 10%c ≈ 20%c
Spanwise extent (Δ𝑧) in m 0.016 0.032 0.064

Refinement Levels 7 8 9
No. of grid nodes (in million) 48 75 95

Table 1 Grid details for different spanwise extents.

C. Results
From this point onward the results of the ProLB simulations will be referred to as the WMLES results instead of

WMLES-LBM results.

1. Steady flow
Results of the mean wall static pressure coefficient (𝐶𝑝) for different spanwise extents were compared with the

experimental results of F2 wind tunnel [13]. Spanwise extent of 20%c showed better agreement with the experimental
result. Thus, the 𝐶𝑝 distribution is only shown for the 20%c span. Figure 7a) shows the comparison of the 𝐶𝑝

distribution obtained from the WMLES and the experimental result. Near the leading edge of the main element,
unfortunately no experimental data for 𝐶𝑝 was available as unsteady pressure was measured in that region. This is the
region where the suction peak on the main element is observed i.e. 0.1 ≤ x/c ≤ 0.2, see figure 7a). In comparison with
the experimental result, WMLES result show a higher value of suction peaks on the slat and flap. Apart from that,
WMLES result for all three elements show a convincing agreement with the experimental result.

Figure 7b) shows the 𝐶𝑝 distribution of the WMLES compared with the results of other scale resolving simulations
(SRS). Results of these SRS were obtained from a comparative study conducted in the framework of European ARTEM
project among the consortium partners (ONERA, Technical University of Braunschweig and DLR). FES [33] is based
on the DLR CAA code PIANO [37] and Zonal DES (ZDES) [30], WRLES [32] results reported by ONERA. 𝐶𝑝

distribution for the WMLES lies in between the distribution for the ZDES and WRLES which is an indication of a
fairly good agreement with the other SRS results. Few differences in the 𝐶𝑝 distribution were observed near the trailing
edge of the flap between the experiment and WMLES result. Similar observation was also made by Terracol et al. [32].
Possible reason for the overprediction of the suction peaks can be a small separation occurring on the suction side of the
flap trailing edge, in the experiment, which could affect the overall circulation around the airfoil [32].

Figure 8 shows the comparison of WMLES normalised mean velocity magnitude with the PIV measurements.
Purpose for such a comparison is two-folds: First the flow on the suction side of the flap is massively separated in the
PIV measurement but WMLES did not show any separation. The flow on the suction side of the airfoil appears to be
more accelerated as compared to the PIV results. This observation is consistent with the higher suctions peaks observed
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a) ProLB vs F2 b) ProLB vs F2 & other SRS solvers

Fig. 7 Static pressure coefficient (𝐶𝑝).

in the figure 7.

a) PIV b) ProLB

Fig. 8 Mean velocity magnitude comparison, normalised with 𝑈∞.

The highly unsteady flow around the high-lift airfoil has to be resolved accurately for correct acoustic predictions.
Importantly around the slat, as it has been cited as the main acoustic source of high-lift noise (see Ref.[[2]]). To verify
the quality of the resolved flow, the flow statistics from the numerical simulation were extracted at several locations
identical to the LDV measurement locations. The flow statistics were temporally averaged over 20 characteristic times
i.e. 20𝑐/𝑈∞. Normalized mean velocity magnitude and normalized turbulent kinetic energy (TKE) profiles of numerical
simulations have been extracted from the slat cove at chosen locations as shown in figure 9.

In figure 9a) we see a recirculation bubble in the slat cove region. This bubble is enclosed by an unsteady shear layer
that evolves from the slat cusp till it reattaches with the upper slat cove region near the slat trailing edge (TE). This
unsteadiness in the shear layer develops due to interaction of the slow moving fluid in the recirculation bubble and the
faster moving fluid around the bubble and passing through the slat gap.
The averaged flow statistics for different spanwise extents were compared with each other and also with the experimental
results. Mean velocity and TKE profiles of 20%c showed better agreement with the experimental results and thus
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a) Velocity magnitude, normalised with 𝑈∞ b) 2D TKE, normalised with 𝑈2
∞

Fig. 9 Position of rakes from LDV measurement in the slat cove.

comparative results of only 20%c with the experiment are shown and discussed here. Figure 10a) - d) shows the
comparison of numerical mean velocity magnitude profiles with the experimental results. Looking at the comparison of
the velocity profiles, the thickness of the shear layer appears to be well reproduced at all the rakes. At the rake near the
slat cusp, the position of the shear layer in the numerical profile appears to be slightly shifted along the downstream
direction. It appears that the interaction between the shear layers originating from the top and bottom surfaces of slat
cusp happens at a later point in time when compared to the experiment. Manoha et al. [32] mentioned that the transition
of the shear layer near the slat cusp is expedited because of the residual freestream turbulence present in the wind tunnel.
A much better agreement with the experimental profile, in terms of shear layer position, is observed as we move along
the shear layer. In order to improve the shifted position of the shear layer near the slat cusp, see figure 10a), a finer mesh
is required near the slat cusp. The WMLES profiles showed an overall good agreement with the experimental profiles.

a) 04-02 b) 04-04 c) 04-06 d) 04-08

Fig. 10 Comparison of numerical mean velocity magnitude profiles with the LDV measurement in the slat cove.

Figure 9b) shows the 2D TKE contour in the slat cove. TKE in 2D is computed as: 𝑘2𝐷 = 0.5 (𝑈 ′2
𝑅𝑀𝑆

+ 𝑉 ′2
𝑅𝑀𝑆

)
where𝑈 ′2

𝑅𝑀𝑆
&𝑉 ′2

𝑅𝑀𝑆
are the resolved root mean square velocity fluctuations in the streamwise and wall normal direction.

Figure 11a)-d) shows the comparison of the numerical TKE profiles with the experimental results. Near the slat cusp
(see figure 11a)), the numerical TKE profile is shifted in comparison with the experimental profile. But the agreement,
in terms of the profile position, improves as we move along the downstream rakes. As for the velocity profile, this
initial shift can again be associated with the late interaction of the shear layers from the top and bottom surfaces of the
slat cusp. This late interaction causes a delayed development of unsteadiness and eventually a delayed transition to a
fully turbulent shear layer. Effect of it can be seen in the underprediction of the peak TKE, near the slat cusp, and an
subsequent overprediction of the peak TKE along the downstream locations. The form of the TKE profiles are recovered
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decently but to get a more accurate agreement with the experimental results a finer mesh resolution is necessary near the
slat cusp region.

a) 04-02 b) 04-04 c) 04-06 d) 04-08

Fig. 11 Comparison of numerical 2D TKE and the LDV measurement in the slat cove.

2. Instantaneous flow
A close-up view of the flow inside the slat cove is shown in the figure 12 using the iso-surface of the normalised

Q-criteria. It can be seen that the shear layer originating from the slat cusp breaks up in to 2D structures which gradually
disintegrate further along the shear layer trajectory in to 3D structures until the impingement point, slightly upstream of
the upper slat TE. At the impingement point, a portion of the vortical structures is convected further downstream and the
other portion of the structures get re-ingested in to the recirculation bubble which later on enters into the shear layer. As
a result of the flow acceleration in the slat gap, the structures convected downstream appear elongated along the flow
direction. Besides the flow dynamics, presence of 2D and quasi-2D structures near the slat cusp indicates a slower
development of unsteadiness in the shear layer. This appears to be the reason for the lower peak value in the numerical
TKE profile, see figure 11a). Delayed development of unsteadiness results in a delayed disintegration of the spanwise
vortical structures to 3D structures and this is the possible cause of higher peak values in the numerical TKE profiles, see
figures 11b)-d). Similar observation about the shear layer development can be drawn from the iso-surface of normalised
vorticity magnitude, see figure 13a). Flap cove has flow dynamics similar to that in the slat cove where the recirculation
region is enclosed by a shear layer. From the iso-surface of vorticity magnitude (see figure 13b)) more 2D structures can
be seen in the shear layer. This shear layer re-attaches with the inner part of the flap cove near the main element TE.
Also the elongated streamwise-oriented vortices can be seen getting convected further downstream with the flow.

Fig. 12 Instantaneous slat cove flow(3D) represented with iso-surface of Q-criteria, 𝑄∗ (𝑄𝑐2/𝑈2
∞)=10,000,

coloured with the velocity magnitude.

Impingement of the shear layer on the pressure side of the slat is an important noise source and plays a major
role in the acoustic feedback loop mechanism in the slat cove [30]. WMLES surface pressure spectral density at the
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a) 𝜔∗ ( |𝝎|𝑐/𝑈∞)=250 b) 𝜔∗ ( |𝝎|𝑐/𝑈∞)=125

Fig. 13 Instantaneous flow in slat & flap cove represented with iso-surface of vorticity magnitude, coloured with
the velocity magnitude.

Fig. 14 Comparison of the narrow band spectra amongst different solvers. Measured at the impingement point
in the slat cove.

impingement point is compared with the results from the previous studies with F16 wing geometry using continuum
based solvers, see figure 14. OLES [34] is also based on DLR CAA code PIANO [37]. The WMLES spectra nicely
fits the overall trend from all the other spectra and the agreement in the level can be observed over the entire frequency
range. WMLES result almost overlaps the ZDES result indicating a similar degree of turbulence in that region.

3. Far-field acoustic propagation
Acoustic waves were directly resolved up to a distance of ≈ 1m, from the axis origin, in the far-field. Figure 15 shows

the waves propagating in the far-field. On the suction side of the wing, high frequency pressure fluctuations emanating
from the turbulence in the boundary layer are observed. These pressure fluctuations dissipate within a certain distance
from the wing as the mesh resolution coarsens away from the wing. Also, the pressure fluctuations that represent the
turbulent structures in the slat and flap cove, suction side of the wing and in the wake behind the flap can be seen. Low
frequency waves originating from the slat and the flap cusp can be seen propagating towards the far-field.

To perform the acoustic analysis several microphones were placed in the near-field, inside and around the slat &
flap cove, and in the far-field. Only the results of the microphones placed in the far-field will be shown and discussed.
Figure 16a) shows the arrangement of the microphones in the far-field with respect to the high-lift wing. The microphones
are positioned at locations similar to the AWB-measurements (shear corrected microphone positions, see [13] ). Out of
all the microphones shown in figure 16, we will only show the results for the microphone number 5. Figure 16b) shows
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Fig. 15 Instantaneous sound pressure field, -20 to 20 Pa.

the comparison of the computed pressure spectra, between different spanwise extents, at microphone number 5 (see
figure 16a). Following the Welch’s procedure, the measured pressure signal is segmented in to six blocks with 50%
overlap and Hanning windowed to compute the power spectral density (PSD) at microphone 5. The comparison of the
pressure spectra do not show any major change in the features except the tonal peaks appear amplified with the increase
in the span size. Slight changes in the broadband peaks were also observed. Slope of the spectra for the different span
size agree well with each other besides a 2-3 dB visible shift in the level for the 5%c span. Noticeable are the tonal
peaks at the frequencies f ≈ 850 & 1250 Hz. Initial investigation suggests that these tonal features in the spectra appears
to have a source present in the flap cove. Similar observation was also made by Lockard et al. [36] on a 30P30N high-lift
device. Impingement of the shear layer at the inner part of the flap cove and an interaction of the elongated streamwise
oriented vortical structures with the leading edge portion of the flap, see figure 13b), results in some sort of acoustic
feedback loop phenomenon in the flap cove. This aspect has to be further investigated.
Since we utilise a small domain width, compared to the experiment, with periodic boundaries we have to correct the
spectra for the simplifications used in the computation. To compare the results of the simulation with the results of
experiment, a 3D periodic slice to a 3D unbounded slice sound pressure correction is applied first (see the discussion in
the Appendix A and B):

𝑆𝑃𝐿3𝐷,Δ𝑧
= 𝑆𝑃𝐿3𝐷,𝑠𝑙𝑖𝑐𝑒 + 10 log10

(
Δ2
𝑧 f

𝑎0 𝑟

)
, (23)

where r is the distance to the microphone. Secondly, to account for the sound radiation from the full span of the domain
we apply the correction as specified by Kato et al. [35]:

𝑆𝑃𝐿3𝐷,𝐿𝑧
= 𝑆𝑃𝐿3𝐷,Δ𝑧

+ 10 log10

(
𝐿𝑧

Δ𝑧

)
. (24)

Comparison of the corrected spectra with the experiment for different span size is shown in the figure 17. At
this point it is important to notify that the experimental spectrum is also corrected in dB level as we use the shear
corrected microphone locations, see [13]. Figure 17a) shows the comparison of the corrected computed spectrum with
the corrected experimental spectrum for a span size of 5%c. The experimental spectrum is characterized by the tonal
features which might be a result of an acoustic feedback mechanism in the slat cove [30]. The grey box is representative
of the region where the comparison between experimental and numerical results cannot be done fairly as below 1000 Hz
the experimental measurements have influence of the background noise i.e. reflection from the end-plates, measurement
rig vibration etc. Low-frequency tones (f ≈ 850, 1250 Hz) are not observed in the experimental spectrum. In the
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a) Microphone positions b) Comparison of PSD at microphone 5

Fig. 16 Far-field microphone arrangement and comparison of spectra between different spanwise extents.

a) 5%c b) 10%c c) 20%c

Fig. 17 Comparison of experimental spectrum with computed spectrum (corrected) for different spanwise
extents.

mid-frequency (f = 1000 - 10,000 Hz) region, the slope of the computed spectrum fits perfectly well with the slope
of the experimental spectrum. Spectrum roll-off is observed around f ≈ 12,000 Hz. Focusing on the tonal features
of the measured spectrum, broadband peaks are observed in the computed spectrum located more or less at the same
frequencies. Presence of these broadband peaks indicate an existing potential for the tones to be recovered by fine tuning
the computational setup i.e. finer mesh, longer signal sampling time etc.
Figure 17b) shows the comparison of the experimental vs. numerical spectra for the 10%c span size. As was observed
for the 5%c span, the slope of the computed spectrum for 10%c span fits well with the experimental spectrum. Peak
values for the low-frequency tones look amplified compared to the tonal peaks in 5%c span. The broadband peaks
present in the mid-frequency region also look amplified as compared to broadband peaks in the 5%c span. Also the
comparison with the tones present in the experimental spectrum look better. At f ≈ 10,725 Hz a sharp peak is observed.
This frequency corresponds to an acoustic wave with wavelength exactly equal to the spanwise extent of the periodic
domain (10%c). Periodicity causes a flow behaviour like in a duct i.e. cut-on mode at f1 = 𝑎0/Δ𝑧 = 10,725 Hz. It forces
the waves below this frequency to be two-dimensional (Lockard et al. [36], also see the discussion in Appendix C).

Figure 17c) shows the comparison of the experimental vs. numerical spectra for the 20%c span size. Low-frequency
tones have even higher peak values than the peak values observed for 10%c span. In the mid-frequency region the slope
of the computed spectrum fits well with the experimental spectrum until f = 5,362 Hz. As observed for the 10%c span,
this frequency corresponds to an acoustic wave with wavelength exactly equal to the spanwise extent of the periodic
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a) Spanwise extent 10%c c) Spanwise extent 20%c

Fig. 18 Shifted spectra comparison between different spanwise extents.

domain (20%c) i.e. f1 = 5,362 Hz. From figure 17b) & c), we can observe that the the cut-on mode moves toward the
lower frequencies with the increase in the spanwise extent. In this case, we not only see the cut-on mode but also the
harmonics of it at frequencies f = 10,725 and 16087.5 Hz. Onset of this cut-on mode and its harmonics introduces
additional energy at frequencies higher than the cut-on frequency and thus the level of the spectra have to be corrected
by shifting it according to the jump present at the cut-on frequency. Figure 18 shows the comparison of the shifted
spectra with the experimental results for different span size. In figure 18a), the level of the spectrum is shifted by -6 dB
after the cut-on mode i.e. f1 = 10,725 Hz. In figure 18b), the level of the spectrum is shifted by - 6 dB after f1 = 5,362
Hz until the first harmonic at f = 10,725 Hz. From the first harmonic (f = 10,725) onward the spectrum level is shifted
by - 8 dB until the second harmonic (f = 16087.5 Hz). Resulting slope of the spectra, in figure 18, matches very well
with the experimental results over the entire mid-frequency range.

IV. Turbulent channel flow
Validation of the wall model implemented in Musubi was carried out with a 3D bi-periodic turbulent channel flow

(TCF) test-case. Channel is periodic in the streamwise (X-axis) and spanwise (Z-axis) direction with two parallel walls
along the wall normal direction (Y-axis). The domain size of the channel was chosen as 8𝜋H x 2H x 3𝜋H, which is
similar to the reference DNS results of Moser et al. [39], where H = 1 m is the half channel height. Friction Reynolds
number 𝑅𝑒𝜏 = 1000 was chosen for this study, where 𝑅𝑒𝜏 is defined as:

𝑅𝑒𝜏 =
H𝑢𝜏

a
. (25)

Wall model b.c was used at the boundaries normal to the wall-normal direction (Y-axis) and periodic b.c was used for
the streamwise and spanwise domain direction (X- & Z-axis resp.). Volume forcing was used to drive the flow in the
channel along the streamwise direction. Forcing scheme as mentioned in [29] was used:

𝐹 =
⟨𝑢2

𝜏⟩
H

+ (𝑈𝑏 − ⟨𝑈⟩)𝑈𝑏

H
, (26)

where ⟨·⟩ indicates spatial averaging, 𝑈𝑏 is the bulk velocity obtained from the DNS result [39], 𝑈 is the computed
instantaneous streamwise velocity. The flow was initialised with a power-law profile (see [27]) superimposed with
turbulence fluctuations that were generated by random numbers of amplitude 5% 𝑈𝑏. Fluctuations were introduced to
accelerate the onset of turbulence near the wall.

WMLES simulations are carried out using the Musker wall function with MRT collision operator. Uniform Cartesian
mesh was used for the simulation. Care was taken to ensure that the flow achieves a statistically steady state before any
data was sampled. The variables sampled were first temporally averaged and then averaged over the space. Quantities
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Fig. 19 Instantaneous velocity field.

used in comparing the results are mean streamwise velocity and shear stress. Mean streamwise velocity in viscous units
is defined as: 𝑈+ = 𝑈/𝑢𝜏 . Shear stress is computed as follows:

⟨𝑢′𝑣′⟩ = ⟨𝑈𝑉⟩ − ⟨𝑈⟩⟨𝑉⟩, (27)

where U, V are the streamwise and the wall normal velocity components and 𝑢′, 𝑣′ are the streamwise and wall normal
velocity fluctuations. In this study only the results of grid resolution with 20 points along the channel height i.e. Δ𝑦+ =
50 is shown.

a) Normalized mean velocity b) Normalized shear stress

Fig. 20 Comparison of the time and space velocity and shear stress profiles with the DNS results.

The flow was allowed to develop over 30 channel flow passes i.e. 8𝜋H/𝑈𝑏. Once the steady state was achieved
the data was sampled for over 400 flow passes. This also includes temporal and spatial averaging. Figure 19 shows a
instantaneous, fully developed velocity flow field in the channel. Figure 20 shows the comparison of the mean velocity
and shear stress profiles with the reference DNS results. The computed mean velocity profile has decently recovered the
log-layer profile and is in good agreement with the reference result. Although the peak in the shear stress profile is
slightly shifted towards the right, the shape of the DNS profile is well recovered. Overall the mean velocity profile
shows a good agreement with reference DNS results and so does the shear stress profile.
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V. Summary & Conclusions
This study was aimed at using WMLES-LBM as DNC tool for high-lift wing. Our approach involved two different

aspects: application and understanding. In the application aspect, ProLB was used to simulate a high-lift wing with a
limited spanwise extent. Periodic boundaries were applied along the span. Three different spanwise extents viz. 5%c,
10%c and 20%c were used. 𝐶𝑝 distribution for WMLES showed a very nice agreement with the experimental results
and also with the results of European ARTEM project. Results of the near-field averaged flow statistics were compared
among different spanwise extents and also with the experimental results. In comparison to other spanwise extents,
spanwise extent of 20%c showed better agreement with the experimental results. Thus only a comparison of flow
statistics for 20%c span with the experimental results was shown. The mean velocity profiles showed a nice agreement
with the experimental results except for some deviation near the slat cusp. TKE profiles very well recovered the profile
shape when compared with the experimental results, but showed some deviations near the cusp and also in the peak
TKE values. Looking at the development of the instantaneous flow structures in the slat cove, it was clear that those
deviations can be reduced by improving the mesh near the slat cusp area. Comparison of the computed surface pressure
spectrum, at the impingement point, with the results of European ARTEM project studies showed a very nice agreement
in terms of the broadband content and the overall level of the spectra.
To the authors knowledge, no study (with F16) has been previously reported in the literature that deals with the direct
evaluation of the acoustics from the LES domain with a limited spanwise extent. Pressure spectrum computed from the
microphone located in the far-field was first corrected to account for a full 3D acoustic source (see Appendix A and B)
and then corrected to account for the full spanwise extent 𝐿𝑧 (see Kato [35]). After both the corrections were applied to
the pressure spectrum, the corrected spectrum belonging to each spanwise extent was individually compared with the
experimental spectrum. Interesting observations were made from this comparison. Periodicity introduced a duct like
behaviour at frequency (f1, cut-on mode) that correspond to the acoustic waves with wavelength equal to the spanwise
extent of the periodic domain. At the frequency f1, a jump was observed in the spectra and f1 moved towards the lower
frequency region with the increase in the spanwise extent. For the 20%c span, harmonics of f1 frequency were observed.
The increase in the spectral energy due to periodicity was corrected in the spectra for 10%c and 20%c. After that the
slope of these corrected spectra fits very well with the experimental spectrum. Visually comparing the corrected spectra
(see figure 17a) and figure 18), only the improvement in the low-frequency tones (f ≈ 850, 1250 Hz) was observed as the
the spanwise extent was increased. Broadband content more or less remained the same with the change in the span size.
Also, increase in the spanwise extent did not help to recover the tones that are visible in the experimental spectrum. But
the presence of broadband peaks in the computed spectra presents a potential to recover the tones. This can be achieved
by improving the mesh resolution in the slat cove region.
Finally, looking at the results in the near-field, where a fairly good agreement with the F2 experimental results for the
𝐶𝑝 distribution and averaged flow statistics was observed, and in the far-field, where very nice agreement with the AWB
experimental results was seen for the corrected far-field pressure spectra, ProLB showed its capability to be used as a
DNC tool.

Future work will focus on improving the accuracy of the TKE profiles and recovering the missing tones in pressure
spectrum by using a finer mesh resolution in the slat cove region. On the understanding part, nice results were observed
for TCF with the current implementation. Next steps will involve a hierarchical mesh study for the current and higher
𝑅𝑒𝜏 along with further development of the wall model for the curved boundaries.

Appendix

A. Sound pressure level scaling for sliced LES domain
The simulation utilizes a spanwise slice of limited extension with periodic boundary conditions. The spanwise

extent is envisaged to be large enough to capture the spanwise coherence length scales in the resolved frequency range
of the turbulent sound sources. For low to moderate Mach number problems, the spanwise domain extension is smaller
than the acoustic wave length for most resolved frequencies. Due to the spanwise periodicity in the 𝑧-direction, sound
waves are trapped in the resolved slice and sound propagation will become inherently two dimensional at sufficient
distance to the source (refer also to the discussion in Appendix C).

That is, in the slice center plane at 𝑧 = 0, sound waves from a single source located at coordinates 𝒙𝑠 = (𝑥𝑠 , 𝑦𝑠)𝑇 in
the 2-D plane will exhibit a radial asymptotic decay-law with 1/

√
𝑟 based on a radial coordinate defined by 𝑟 =

√︁
|𝒙 − 𝒙𝑠 |,

𝒙 = (𝑥, 𝑦)𝑇 .
The asymptotic 2-D sound propagation requires a specific 2-D -to- 3-D correction to correct for the sound levels that
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otherwise would obtained for unconfined 3-D sound propagation. Here, we apply the sound pressure level correction as
discussed in Ref. [40] for flat plate trailing edge noise simulated on a 3-D LES slice.

A similar situation arises in the present context if we assume the sound problem to be dominated by edge source
mechanism, e.g. trailing edge noise predominantly generated at or in the vicinity of the trailing edge of the slat.

For the present problem, the dominant edge sound source is located at an edge extending in spanwise 𝑧-direction. The
edge position in the 2-D 𝑥-𝑦-plane is defined by 𝒙𝑠 = (𝑥𝑠 , 𝑦𝑠)𝑇 . The effect of the turbulent flow at the edge is assumed to
be describable by an effectively resulting edge source 𝑞(𝒙𝑠 , 𝑧, 𝜔), refer also to the discussion in Ref. [43]. The average
of the source over a spanwise extend of the slice ranging from −Δ𝑧/2 to Δ𝑧/2 reads 𝑞(𝒙𝑠 , 𝜔) = Δ−1

𝑧

∫ Δ𝑧/2
−Δ𝑧/2

𝑞(𝒙𝑠 , 𝑧, 𝜔)d𝑧.
Since the source is compact over width Δ𝑧 , the 3-D sound pressure level at position defined by 𝒙 and 𝑧 is written as the

product of the sound source and an edge source Green’s function, 𝑝3𝐷 (𝒙, 𝑧, 𝜔) = 𝑞(𝒙𝑠 , 𝜔)Δ𝑧D(\, 𝜑) exp(𝑖𝑘𝑅)/(4𝜋𝑅),
where D(\, 𝜑) denotes the asymptotic directivity with polar angle \ measured in the 𝑥 − 𝑦-plane and 𝜑 given as an
angle defined by the spanwise displacement from 𝑧 = 0, i.e. 𝜑 = arccot(𝑧/𝑟) and 𝑅 =

√
𝑟2 + 𝑧2. Due to symmetry

reasons the directivity peaks at 𝜑 = 𝜋/2. Furthermore, the wave number can be expressed in terms of angular frequency
𝜔 = 2𝜋f and speed of sound 𝑎0, i.e. 𝑘 = 𝜔/𝑎0. For example, an according edge-source Green’s function for flat plate
trailing edge has been proposed by Howe [41].

The asymptotic sound field of a 2-D sound source at position 𝒙𝑠 to an observer at 𝒙 can be computed assuming a
3-D setup with infinitely extended coherent sound source along the 𝑧-direction of strength 𝑞(𝒙𝑠 , 𝜔). Integrating the
source with the 3-D edge-noise Green’s function all along the span for observer positions at 𝑧 = 0 and radial distance 𝑟
to the edge yields a 2-D solution for the 2-D plane at 𝑧 = 0.

Hence, 𝑝2𝐷 =
∫
𝑞(𝒙𝑠 , 𝜔)D(\, 𝜑) exp

(
𝑖𝑘
√
𝑟2 + 𝑧′2

)
/(4𝜋

√
𝑟2 + 𝑧′2)d𝑧′. Assuming large but finite distance 𝑟, a

method of stationary phase argument then provides an asymptotic solution to the integral, which after rearrangement
and substitution part of the resulting expressions by the results for 𝑝3𝐷 (𝒙𝑠 , 𝑧 = 0, 𝜔), eventually reads

𝑝3𝐷 (𝒙𝑠 , 0, 𝜔) = 𝑝2𝐷 (𝒙𝑠 , 𝜔)
1 + 𝑖

2

√︄
𝜔Δ2

𝑧

𝑎0𝜋𝑟
. (28)

The sound pressure fluctuations resulting from the turbulent edge noise sources are assumed to be statistical
stationary and exhibiting a finite integral time scale. Hence, the double sided power spectral density 𝑆𝑝𝑝 (f) infers from
the Fourier transform of fluctuating pressure via [42]

𝑆𝑝𝑝 (f) = lim
𝑇→∞

[𝑝(𝜔)𝑝∗ (𝜔)] , (29)

where the asterisk indicates the conjugate complex and 𝑇 is the time extend of the pressure sample from which the
Fourier transform is derived. Upon identifying the 2-D solution in Eq. (28) with the asymptotic pressure solution
obtained for a 3-D sliced domain and using the previous result, the corrected power spectral density infers as

𝑆𝑝𝑝 (f)3𝐷,Δ𝑧
= 𝑆𝑝𝑝 (f)3𝐷,𝑠𝑙𝑖𝑐𝑒

(
Δ2
𝑧f

𝑎0 𝑟

)
. (30)

The evaluation of e.g. narrow band sound pressure levels eventually yields

𝑆𝑃𝐿3𝐷,Δ𝑧
= 𝑆𝑃𝐿3𝐷,𝑠𝑙𝑖𝑐𝑒 + 10 log10

(
Δ2
𝑧f

𝑎0 𝑟

)
, (31)

where 𝑆𝑃𝐿3𝐷,𝑠𝑙𝑖𝑐𝑒 ≃ 10 log10

(
𝑆𝑝𝑝 (f)Δf𝐵

𝑝2
𝑟𝑒 𝑓

)
, with 𝑝𝑟𝑒 𝑓 = 2 · 10−5Pa and using Δf𝐵 = 1Hz.

B. Further discussion of 3-D slice correction
Note, the 3-D slice correction already incorporates the spanwise coherence length scale as being present in the

effective turbulent edge source. In Ref. [43] a 2-D -to- 3–D correction has been proposed that assumes a setup, where
sound sources are computed with turbulent quantities taken from a 2-D slice (𝑥-𝑦-plane) extracted from the 3-D turbulent
field. These extracted sound sources are used with a 2-D computational aeroacoustics (CAA) propagation method. In
this case information has to be included about the spanwise coherence of the sound sources for sound pressure level
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correction. In Ref. [43] the coherence model Amiet [44] has been adopted. In what follows, the 2-D -to- 3-D correction
as derived in Ref. [43] for such a setup does not exhibit a frequency correction, i.e. only a level correction is applied and
the shape of the uncorrected spectra already coincides with those of the corrected spectra.

In contrast, the 3-D slice correction applied here implicitly incorporates the spanwise coherence length scale as
being simulated as part of the LES and has not to be modeled. In consequence, the correction as given by Eq. (31)
involves a frequency dependence, i.e. the corrected sound spectra exhibit a modified slope with additional 3dB/octave
increase relative to the uncorrected spectrum.

To see that the averaged source as introduced in the previous section already includes the spanwise coherence
information, one can consider the sound field that results at a given observer position (𝑟, 𝑧) from a suitable edge-source
distribution and edge-source Green’s function,

𝑝3𝐷 (𝑟, 𝑧 = 0, 𝜔) =
∫ Δ𝑧/2

−Δ𝑧/2
𝐺3𝐷 (𝑟, 𝑧 − 𝑧′, 𝜔)𝑞(𝑧′, 𝜔)d𝑧′. (32)

Here, 𝑞(𝑧′, 𝜔) denotes the edge source. Assuming the source along the span to be acoustically compact, it is sufficient
to evaluate the Green’s function at one representative position, e.g. 𝑧 = 0. Hence, it can be moved out of the integral,
yielding the product of the spanwise averaged source with the 3-D Green’s function as being used in the previous section,

𝑝3𝐷 (𝑟, 0, 𝜔) = 𝐺3𝐷 (𝑟, 0, 𝜔)𝑞(𝜔)Δ𝑧 , 𝑞(𝜔) :=
1
Δ𝑧

∫ Δ𝑧/2

−Δ𝑧/2
𝑞(𝑧′, 𝜔)d𝑧′. (33)

Consequently, the absolute value of pressure is given by

|𝑝3𝐷 |2 = |𝐺3𝐷 |2 |𝑞 |2 Δ2
𝑧 . (34)

Alternatively, the square of the absolute value of pressure formally also follows from

|𝑝3𝐷 (𝑟, 𝑧, 𝜔) |2 = 𝑝3𝐷 𝑝∗3𝐷 =

∫ Δ𝑧/2

−Δ𝑧/2

∫ Δ𝑧/2

−Δ𝑧/2
𝐺3𝐷 (𝑟, 𝑧 − 𝑧′, 𝜔)𝐺∗

3𝐷 (𝑟, 𝑧 − 𝑧′′, 𝜔) 𝑞(𝑧′, 𝜔)𝑞∗ (𝑧′′, 𝜔)d𝑧′d𝑧′′. (35)

The compactness argument allows to evaluate the Green’s functions at representative position 𝑧, 𝑧 − 𝑧′ → 0 and
𝑧 − 𝑧′′ → 0, so that the Green’s function can be moved out off the integral. The remaining term can be expressed in
terms of the coherence function defined by

𝐶𝑞𝑞 (𝑧′ − 𝑧′′, 𝜔) :=
𝑞(𝑧′, 𝜔)𝑞∗ (𝑧′′, 𝜔)

|𝑞(𝜔) |2
(36)

Due to the homogeneity of the problem in spanwise direction the square of the source strength must not depend on the
spatial coordinate. Due to the symmetry of the problem, spanwise two-point correlations are symmetric relative to 𝑧′,
i.e. the two-point correlations of the edge source is an even function. Therefore the above coherence function becomes a
real function, refer to the discussion in Ref. [43]. Hence,

|𝑝3𝐷 (𝑟, 𝑧, 𝜔) |2 = |𝐺3𝐷 (𝑟, 0, 𝜔) |2 |𝑞(𝜔) |2
∫ Δ𝑧/2

−Δ𝑧/2

∫ Δ𝑧/2

−Δ𝑧/2
𝐶𝑞𝑞 (𝑧′ − 𝑧′′, 𝜔)d𝑧′d𝑧′′. (37)

The integral with respect to 𝑧′′ gives the coherence length scale 𝑙𝑧 (𝜔) =
∫
𝐶𝑞𝑞 (Z, 𝜔)dZ , which due to homogeneity is

not a function of the spanwise coordinate. Hence, second integration with respect to 𝑧′ yields Δ𝑧 and

|𝑝3𝐷 |2 = |𝐺3𝐷 |2 |𝑞(𝜔) |2 𝑙𝑧 (𝜔)Δ𝑧 . (38)

Comparison with Eq. (34) yields the relationship

|𝑞 | = |𝑞(𝜔) |

√︄
𝑙𝑧 (𝜔)
Δ𝑧

. (39)

In other words, the averaged source term incorporates information about the local source strength and the coherence
length scale 𝑙𝑧 (𝜔) along the spanwise direction (normalized with the constant spanwise width) as resolved by the
underlying scale resolving simulation.
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C. Aeroacoustic cut-on effects visible in LES slice solution
A duct of plane walls in the 𝑧- and 𝑦-direction and width 𝑑𝑦 and 𝑑𝑧 as shown in figure 21 has cut-on frequencies

given by [42]

f𝑐 =
𝑎0
2

√︄
𝑚2

𝑑2
𝑦

+ 𝑛2

𝑑2
𝑧

. (40)

For a LES slice of width Δ𝑧 and periodic boundary conditions in the spanwise direction, this result can be adopted by
making the replacements Δ𝑧 → 𝑑𝑧 , 𝑑𝑦 → ∞ and 2𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 = 𝑛, hence

f𝑐 = 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐f1, f1 :=
𝑎0
Δ𝑧

. (41)

The extension in 𝑦-direction much larger than the slice width Δ𝑧 (and an termination of acoustically transparant boundary
conditions) motivates the limit 𝑑𝑦 → ∞. For solid walls, the fundamental duct solution infers by introducing cosine
ansatz functions for the 𝑧-direction solution that furthermore satisfies the solid wall boundary condition at the wall,
𝜕𝑝/𝜕𝑧 |𝑤𝑎𝑙𝑙 = 0. This yields valid ansatz function where the spanwise width corresponds to a multiple of the half wave
length, 𝑛_/2 = Δ𝑧 , 𝑛 ∈ N0. For the present case with periodic boundary condition, valid ansatz functions are potentially
sine- and cosine-functions with wave length being a multiple of the domain width, 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐_ = Δ𝑧 , 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 ∈ N0.
This motivates the last relation 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 = 2𝑛.

Note, waves of mode order 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 = 0 are always cut-on. These represent plane-waves of arbitrary frequency
traveling along the radial 𝑥-𝑦-direction and motivate the 2-D correction discussed in the previous paragraphs. For the
critical frequency f1 further modes become cut-on. Similar to the simulation of wave-propagation in a wave-guide, the
cut-on becomes visible in the resolved spectrum as a distinct saw tooth pattern. With increasing domain width, the first
cut-on frequency shifts to lower frequencies and higher cut-on frequencies become potentially visible in the resolved
frequency regime.

Fig. 21 Plane walls parallel duct from Ref. [42]
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