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Abstract

A vast amount of geospatial information exists in natural language texts, such as
tweets and news. Extracting geospatial information from texts is called Geopars-
ing, which includes two subtasks: toponym recognition and toponym disambigua-
tion, i.e., to identify the geospatial representations of toponyms. This paper focuses
on toponym disambiguation, which is approached by toponym resolution and en-
tity linking. Recently, many novel approaches have been proposed, especially deep
learning-based, such as CamCoder, GENRE, and BLINK. In this paper, a spa-
tial clustering-based voting approach combining several individual approaches is
proposed to improve SOTA performance regarding robustness and generalizabil-
ity. Experiments are conducted to compare a voting ensemble with 20 latest and
commonly-used approaches based on 12 public datasets, including several highly
challenging datasets (e.g., WikToR). They are in six types: tweets, historical docu-
ments, news, web pages, scientific articles, and Wikipedia articles, containing 98,300
places across the world. Experimental results show that the voting ensemble per-
forms the best on all the datasets, achieving an average Accuracy@161km of 0.86,
proving its generalizability and robustness. Besides, it drastically improves the per-
formance of resolving fine-grained places, i.e., POIs, natural features, and traffic
ways.

KEYWORDS
Toponym disambiguation; Toponym resolution; Geocoding; Geoparsing; Entity
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1. Introduction

Huge and ever-increasing amounts of semi- and unstructured text data, like news
articles, historical archives, and social media posts are available online and offline.
These documents often refer to geographic regions or specific places on earth, and
therefore contain valuable but hidden geospatial information in the form of toponyms
or location references. The information is useful not only for scientific studies, such
as spatial humanities (Gregory et al. 2015), but can also contribute to many practical
applications, such as geographical information retrieval (Purves et al. 2018), disaster



management (Shook and Turner 2016), disease surveillance (Scott et al. 2019), and
traffic management (Milusheva et al. 2021). Extracting geospatial information from
texts is called geoparsing, which includes two subtasks: toponym recognition, i.e.,
to recognize toponyms from texts, and toponym disambiguation, i.e., to handle the
situation in which one toponym can refer to more than one geographical location,
as shown in Figure 1. Toponym recognition has been extensively studied (Hu et al.
2022b; Wang, Hu, and Joseph 2020; Hu et al. 2021) and the recognition performance is
already very high due to the advancement of deep learning techniques, seeing Hu et al.
(2022a) for an overview. Therefore, this paper will focus on toponym disambiguation,
which is still challenging.

Toponym disambiguation can be approached by entity linking and toponym resolu-
tion. Entity linking aims to link an entity (e.g., person, location) mentioned in texts to
an entry of Knowledge Bases (KBs), such as Wikipedia (Wikipedia 2004) and DBpedia
(Auer et al. 2007). Recently, many deep learning-based entity linkers (ELs) emerged,
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Figure 1. Example of toponym disambiguation. ‘Disneyland’ can refer to multi-
ple different locations, such as the park in Paris (France), California (US), Orlando
(Canada), and other places named with ‘Disneyland’ .

such as GENRE (De Cao et al. 2021) and BLINK (Wu et al. 2020), pushing the state-
of-the-art performance (Sevgili et al. 2022). Toponym resolution aims to determine
the coordinates of toponyms, focusing only on location entities. Quite a few toponym
resolution approaches have also been proposed, such as Edinburgh Geoparser (Grover
et al. 2010), CamCoder (Gritta, Pilehvar, and Collier 2018), and CHF (Kamalloo and
Rafiei 2018). Despite the impressive advancement of ELs, many toponyms mentioned
in texts cannot be linked to KBs since the current KBs contain only a small proportion
of location entries, lacking many small, unpopular, or fine-grained places (e.g., roads
and shops). For instance, the largest KB, Wikipedia contains about one million places,
while over 23 million and 12 million places have been recorded in OpenStreetMap ! and
GeoNames 2, respectively (Hu et al. 2022a). Toponym resolution approaches normally
link toponyms to gazetteers, such as GeoNames. However, according to the compar-
ison study (Wang and Hu 2019), the performance of toponym resolution approaches
varies by datasets and no one can always perform the best.

In this paper, we propose a spatial clustering-based voting approach that combines
seven individual approaches to overcome the shortcomings of existing toponym dis-
ambiguation approaches and further push state-of-the-art performance. The principle
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of the proposed voting mechanism is that the minority is subordinate to the majority.
We then compare the voting ensemble with 20 latest and commonly-used toponym
disambiguation approaches based on 12 public datasets.

Our contributions are twofold. First, we propose a more general and robust voting-
based approach at the cost of moderate increased computational costs. Second, it is
the first time that many competing approaches (especially deep learning-based ELs)
are compared based on numerous datasets.

2. Related works

There are two main ways to disambiguate toponyms: entity linking and toponym res-
olution. Recently, surveys (Sevgili et al. 2022; Moller, Lehmann, and Usbeck 2022) on
entity linking have been conducted. Therefore, we will review only toponym resolution
approaches by dividing them into three groups: (1) Rules, (2) Learning and ranking,
and (3) Learning and classification.

2.1. Rules

Given a toponym, rule-based approaches first search gazetteers to find all the candi-
dates that match or partially match the toponym, and then rank or score the can-
didates by manually defined IF-THEN rules, using heuristics like string similarity,
the candidate’s population and admin levels, spatial proximity, and one-sense-per-
referent. Representative rule-based approaches include Edinburgh Geoparser (Grover
et al. 2010), CLAVIN 3, GeoTxt (Karimzadeh et al. 2019), TAGGS (de Bruijn et al.
2018), and CHF, CBH, and SHS (Kamalloo and Rafiei 2018). Qi et al. (2019) rules
that if a toponym appears in training examples, the candidate with the highest fre-
quency in the training examples is selected. Otherwise, the candidate with the highest
population is selected. Karimzadeh et al. (2019) accumulates the score of a candidate
based on nine optional heuristics, such as population, the number of alternate names,
GeoNames feature codes, hierarchical relationship, and proximity relationship between
two toponyms in the same tweet.

Rule-based approaches are easy to implement and computational-efficiency. How-
ever, manually defined rules are often fragile and ineffective, considering the variability
of describing or mentioning toponyms in unstructured texts.

2.2. Learning and ranking

The workflow of learning and ranking-based approaches (Lieberman and Samet 2012;
Santos, Anastacio, and Martins 2015; Ardanuy and Sporleder 2017; Wang et al. 2019)
is similar to the rule-based approaches. The only difference lies in the rules, which are
not explicitly defined but learned from annotated examples. For example, Lieberman
and Samet (2012) train a random forest model using context-free features (e.g., popu-
lation and the distance of a candidate to a news’s local location) and adaptive context
features, such as sibling and proximate relationships between the candidates of the
toponyms in a certain context window. The input of the classifiers are the features
related to the pair of (toponym, candidate). The output is 1 or 0, indicating if the
toponym refers to the candidate or not. Classification confidence is regarded as the

Shttps://github.com/Novetta/CLAVIN
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score of the candidate. Wang et al. (2019) train a Light GBM (Ke et al. 2017) model
using features like name string similarity, candidate attributes, neighboring toponyms,
and context features. Context features refer to the contextual similarity between the
toponym and the candidate, while the context of the candidate is obtained from its
Wikipage. Apart from fully supervised approaches, weakly-supervised and unsuper-
vised approaches (Speriosu and Baldridge 2013; Ardanuy and Sporleder 2017; Fize,
Moncla, and Martins 2021) have also been proposed to reduce the amount of annotated
data required. For example, Ardanuy and Sporleder (2017) define a model to score and
rank candidates, using features like the context similarity between a toponym and a
candidate, geographic closeness to the base location of a collection, and geographic
closeness of toponyms. The parameters of the model are learned from a small training
set.

Learning and ranking-based approaches can automatically disambiguate toponyms
without requiring as much expert knowledge as rule-based approaches do. However,
the trained models are often not general enough due to the paucity of sufficient and
accurate training data although unsupervised or weakly supervised techniques have
been adopted.

2.3. Learning and classification

Learning and classification-based approaches Gritta, Pilehvar, and Collier (2018);
Kulkarni et al. (2020); Yan et al. (2021); Cardoso, Martins, and Estima (2021); De-
Lozier, Baldridge, and London (2015) divide the earth’s surface into multiple cells and
then locate a toponym to a certain cell (class). For example, Gritta, Pilehvar, and
Collier (2018) proposed a CNN-based model, named CamCoder, using features like
the target toponym, the other toponyms in the text, and the context removing the
toponyms, and the prior probability of the candidate of the target toponym based on
the its population.

1.4M training examples are generated from over 1M geographically annotated
Wikipages. Different from CamCoder that uses only local context features (e.g., co-
occurrence of words and toponyms in texts), Yan et al. (2021) uses also global context
features, including topic and location embedding. Some studies also leverage language
models, i.e., the spatial distribution of the words in texts(Speriosu and Baldridge 2013;
Wing and Baldridge 2011; DeLozier, Baldridge, and London 2015), based on the as-
sumption that apart from toponyms, common language words, such as ‘howdy’ and
‘phillies’ can often be geographically indicative. For example, DeLozier, Baldridge,
and London (2015) proposed TopoCluster, a gazetteer-independent approach using
geographic word profiles.The per-word spatial distribution is first learned based on
700,000 geographically annotated Wikipages. Disambiguation is then performed by
merging the shared geographic preferences (cells) of a toponym and all words in the
context of the toponym.

Learning and classification-based approaches are normally trained on geographically
annotated Wikipages, which contain around 1 million places. However, there are still
many places, which are not presented on Wikipedia.

3. Proposed approach

In this section, we introduce the voting approach, summarize 20 individual approaches
used to form or to be compare with a voting ensemble, and illustrate the voting



approach with four examples.

3.1. Voting approach

The idea of this study is inspired by Won, Murrieta-Flores, and Martins (2018); Hoang
and Mothe (2018), which combine multiple existing toponym recognition approaches as
a voting ensemble, achieving promising recognition performance. Each approach has
its own limitations while combining multiple approaches can overcome these short-
comings. Different approaches normally return (or vote for) different locations (candi-
dates) for a toponym in texts. We count the votes for them and choose the one with
the most votes. Since some approaches outperform the other approaches, the superior
approaches’ votes should have a higher weight. That is, we set a higher weight to
superiors approaches by copying the coordinate estimation of the approaches multiple
times. To realize the voting approach, we adopt DBSCAN (Khan et al. 2014), which
groups together points that are close to each other based on a distance measurement
(denoted by eps) and a minimum number of points required to form a group (denoted
by minPts). The workflow of the voting approach is as follows:

(1) Group the coordinate estimation of the individual approaches of a voting ensem-
ble with DBSCAN.

(2) If clusters are formed, select the largest cluster or randomly select one when mul-
tiple clusters of same size exist. Treat the centroid of the coordinate estimations
in the selected cluster as the voting result.

(3) If no clusters are formed, traverse the individual approaches of the ensemble and
treat the first valid estimation as the voting result.

Invalid estimation refers to the situation where an approach fails to estimate the
coordinates of a toponym, such as the one not appearing in gazetteers. The maximum
possible error distance (half of the earth’s circumference) is assigned to an invalid
estimation, which equals 20,039 km (Gritta, Pilehvar, and Collier 2020).

3.2. Indwvidual approaches

Table 1 lists representative approaches, covering all types as discussed in Section 2. By
default, we would modify their implementation to input gold toponyms to their entity
(toponym) disambiguation step. We obtain the coordinates of DBpedia and Wikipedia
entities if they are geographically annotated. Otherwise, the coordinates of (0,0) are
returned, denoting an invalid estimation. Details of the 20 approaches are as follows:

e DBpedia Spotlight is a popular EL. We use the provided HTTPS API ° to
annotate and link entities in texts.

e Entity-Fishing is an EL based on Random Forest and Gradient Tree Boosting.
We use its spaCy wrapper 6.

e MulRel-NEL is a neural entity-linker. We use the provided API 7 of Radboud
Entity Linker (REL) (van Hulst et al. 2020), which uses mulrel-nel for entity
disambiguation.

Shttps://wuw.dbpedia-spotlight.org/api
Shttps://github.com/Lucaterre/spacyfishing
"https://github.com/informagi/REL
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Table 1. 20 representative approaches for toponym disambiguation. ML and DL denote
traditional machine learning algorithms based on feature engineering and deep learning
algorithms, respectively.

Name Method Type
DBpedia Spotlight (Mendes et al. 2011) EL
Entity-Fishing (ent 2016-2022) EL
MulRel-NEL (Le and Titov 2018) EL

DCA (Yang et al. 2019) EL
BLINK (Wu et al. 2020) EL
Bootleg (Orr et al. 2020) EL
GENRE (De Cao et al. 2021) EL
ExtEnD (Barba, Procopio, and Navigli 2022) EL
LUKE (Yamada et al. 2022) EL
Nominatim * Geocoder
Adaptive learning (Lieberman and Samet 2012) ML (Ranking)
Edinburgh Geoparser (Grover et al. 2010) Rule
Population-Heuristics (Speriosu and Baldridge 2013) Rule
CLAVIN Rule
TopoCluster (DeLozier, Baldridge, and London 2015) ML (Classification)
Mordecai (Halterman 2017) Rule
CBH, SHS, CHF (Kamalloo and Rafiei 2018) Rule
CamCoder (Gritta, Pilehvar, and Collier 2018) DL (Classification)

e DCA is a neural entity-linker. We retrain the model & based on the public and
widely used AIDA CoNLL-YAGo dataset (Hoffart et al. 2011).

e Bootleg adopts a transformer architecture. We use the provided model  which
is trained on weakly-labeled training data.

e BLINK is an EL based on fine-tuned BERT (Devlin et al. 2018). We use the
provided model '° that was pre-trained on nearly 9M unique triples document-
mention-entity from Wikipedia.

¢ GENRE uses a transformer-based architecture. We use the provided mode
that was first pre-trained on nearly 9M unique triples document-mention-entity
from Wikipedia and then fine-tuned with the AIDA dataset.

e LUKE is a entity disambiguation model based on BERT, using both local (word-
based) and global (entity-based) contextual information. We use the provided
model 2 that was trained on a large entity-annotated corpus generated from
Wikipedia.

¢ ExtEnD adopts Transformer-based architectures, which was first pretrained on
the same Wikipedia dataset as BLINK and then fine-tuned on the AIDA dataset.
We use the fine-tuned model '3 directly.

e Nominatim is a geocoder, built on OpenStreetMap , which is used as a baseline
system. We input a toponym to it and keep the first result it returns.

e Population-Heuristics uses the heuristic of the largest population, which is
used as a baseline system. We implement the approach based on GeoNames.

¢ Edinburgh Geoparser ' is a geoparsing tool developed by the Language Tech-
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8https://github.com/YoungXiyuan/DCA

9https://github.com/HazyResearch/bootleg
Ohttps://github.com/facebookresearch/BLINK
Hhttps://github.com/facebookresearch/GENRE
2https://github.com/studio-ousia/luke/tree/master/examples/entity_disambiguation
Bhttps://github.com/SapienzalLP/extend
Mhttps://wuw.ltg.ed.ac.uk/software/geoparser/
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nology Group (LTG) at the Edinburgh University. We use its online API to
annotate and disambiguate toponyms.

e CLAVIN applies several heuristics and fuzzy search for toponym resolution. We
use its implementation directly.

e Adaptive Learning is a random forest-based toponym resolution approach.
We use its implementation ! to retrain a model based on one dataset, i.e., LGL
(Lieberman, Samet, and Sankaranarayanan 2010).

e Mordecai is a geoparsing tool, using word2vec for inferring the correct country
for a set of toponyms in texts. We use its implementation ¢ directly.

e CBH,SHS,CHF are three rule-based approaches proposed by Kamalloo and
Rafiei (2018). We use their implementation 7 directly.

e TopoCluster is a language model-based geoparsing tool. We use its implemen-
tation 8 directly.

e CamCoder is a CNN-based geoparsing tool.We use the trained model ¥ di-
rectly.

3.3. FExamples
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Figure 2. An example to show how the voting approach works. The target toponym
is ‘SA’, whose true location is in the largest cluster (purple circle). The context of the
toponym is: ‘Kgosi (chief) Nyalala Pilane of the Bakgatla-ba-Kgafela community —
perhaps even more than any other chief in SA — has been the subject of a litany of
maladministration and corruption allegations’.

We use four examples to illustrate the principle of the voting approach. We assume
that the voting ensemble combines seven individual approaches with each having one
vote: GENRE, BLINK, LUKE, CamCoder, Edinburgh Geoparser, SHS, and
CBH. Figures 2, 3, 4, and 5 show the estimated location of ‘SA’, ‘False River’, ‘Vic-
toria Park’, and ‘Mount Sheridan’ by the seven individual approaches and formed
clusters, respectively. In GeoNames we can find 58 records of ‘SA’, 23 records of ‘False
River’, 589 records of ‘Victoria Park’, and 25 records of ‘Mount Sheridan’, which actu-
ally refer to the country of South Africa, a county in Louisiana, US, a park in London,

5https://github.com/ehsk/CHF-TopoResolver
16nttps://github. com/openeventdata/mordecai
1Thttps://github.com/ehsk/CHF-TopoResolver
8https://github.com/grantdelozier/TopoCluster
https://github.com/milangritta/Geocoding-with-Map-Vector
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Figure 3. An example to show how the voting approach works. The target toponym is
‘False River’, whose true location is in the largest cluster (purple circle). The context
of the toponym is: ‘The enemy have now left Waterloo, and that is of no importance,
but the Rosedale country is of to visit, with the cavalry, and so also is the False River
country. The cavalry must go to Rosedale and return by False River’.
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Figure 4. An example to show how the voting approach works. The target toponym is
‘Victoria Park’, whose true location is in the largest cluster (purple circle). The context
of the toponym is: ‘The Clash - White Riot (Live 1978 Victoria Park, London): via
@YouTube Let’s start our shift!’.
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Figure 5. An example to show how the voting approach works. The target toponym is
‘Mount Sheridan’, whose true location is in the largest cluster (purple circle). The con-
text of the toponym is: ‘Nine cases of the mosquito-borne illness have been confirmed
in the Cairns suburbs of Edmonton, Mount Sheridan, Bentley Park, and Trinity
Beach.’.



UK, and a suburb of Cairns in the Cairns Region, Queensland, Australia, respectively.
Their true location are all in the largest cluster, denoted by the purple circle. Note
that, Edinburgh Geoparser cannot recognize ‘Victoria Park’, which thus cannot vote.
From the four examples, we can observe that no one individual approach can correctly
resolve the toponym in all the examples except the voting ensemble.

4. Experiments
In this section, we first introduce the used test datasets and evaluation metrics. We
then propose a voting ensemble and compare the voting ensemble with the 20 ap-

proaches regarding correctness and computational efficiency. Finally, we conduct a
sensitivity analysis of the voting approach.

4.1. Test datasets

TR-News
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TUD-Loc-2013
SemEval-2019 —
® NCEN

Figure 6. Spatial distribution of the 98,300 toponyms in the 12 datasets.

To thoroughly evaluate the voting ensemble and compare it with the 20 approaches,
we used 12 public datasets, as shown in Table 2 and Figure 6. Note that, ELs nor-
mally use Wikipedia as the target KB, while the toponyms in most of the datasets
are linked to GeoNames except WikToR, NEEL, GeoVirus, and NCEN. However, the
coordinates of some coarse-grained places (e.g., country) in Wikipedia and GeoNames
are inconsistent. For instance, ‘United States’ is geocoded to (40,-100) and (39.76,
-98.5) and ‘China’ is geocoded to (35, 103) and (35, 105) in Wikipedia and GeoN-
ames, respectively. Such places appear frequently in the datasets, which can cause
incorrect evaluation. From the datasets, we found 3,147 records of 29 frequent and
misaligned places, including [‘China’, 'Chinese’, ‘Russia’, 'Russian’, 'Russians’, ‘Aus-
tralia’, ‘Canada’,’Canadians’,’Canadian’, ‘United States’, ’American’,’USA’, "Amer-
ica’, "U.S.°, "U.S’, "United States of America’,” Americans’, 'North America’, ‘South
America’, ‘India’, ‘Algeria’, ‘Europe’,’European’, ’Western Europe’, ‘Asia’, ‘Africa’,



"West Africa’, 'North Africa’, ’Middle East’], and will be ignored during the evalua-

tion.

Table 2. Summary of test datasets.

Dataset Text Count Toponym Count Type KB/Gazetteer
LGL 588 5,088 News GeoNames
NEEL 2,135 481 Tweet DBpedia
TR-News 118 1,319 News GeoNames
GeoWebNews 200 5,121 News GeoNames
GeoCorpora 6,648 3,100 Tweet GeoNames
GeoVirus 230 2,170 News Wikipedia
WikToR 5,000 31,500 Wikipedia article Wikipedia
WOTR 1,643 11,795 History GeoNames
CLDW 62 3,814 History GeoNames
TUD-Loc-2013 152 3,850 Web page GeoNames
SemEval-2019 90 8,360 Scientific article GeoNames
NCEN 455 3,364 History Wikipedia

Details of the 12 test datasets are as follows:

LGL 2° (Local-Global Lexicon) corpus was created by Lieberman, Samet, and
Sankaranarayanan (2010), containing 588 human-annotated news articles pub-
lished by 78 local newspapers.

NEEL 2! is the gold dataset of 2016 Named Entity rEcognition and Linking
challenge, including 2,135 tweets covering multiple noteworthy events from 2011
to 2013, such as the Westgate Shopping Mall shootout.

TR-News 22 was created by Kamalloo and Rafiei (2018) through annotating
and linking Toponyms to entries in GeoNames from news articles of various news
sources.

GeoWebNews 23 was shared by Gritta, Pilehvar, and Collier (2018), comprising
human-annotated news articles from 200 globally distributed news sites collected
from April 1st to 8th in 2018.

GeoCorpora ?* was created by Wallgriin et al. (2018), containing 6,648 tweets
related to multiple noteworthy events (e.g., ebola, flood, and rebel) that hap-
pened across the world in 2014 and 2015.

GeoVirus ?° was created by Gritta, Pilehvar, and Collier (2018), containing
230 news articles related to disease outbreaks and epidemics, such as Ebola and
Swine Flu.

WikToR 26 was created by Gritta et al. (2018) in an automatic manner, con-
taining 5,000 Wikipedia articles with many ambiguous toponyms, such as (Santa
Maria, California), (Santa Maria, Bulacan), (Santa Maria, Ilocos Sur), and
(Santa Maria, Romblon).

2Onttps://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/
Corpora/lgl.xml

2lhttp://microposts2016.seas.upenn.edu/challenge.html

2?https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/
Corpora/TR-News.xml

23https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/tree/master/data
24nttps://github. com/geovista/GeoCorpora

25https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/
Corpora/GeoVirus.xml

26nttps://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/
Corpora/WikToR.xml
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e WOTR. 27 was created by DeLozier et al. (2016) based on a set of American
Civil War archives, known as Offical Records of the War of the Rebellion.

e CLDW 28 (The Corpus of Lake District Writing) was created by Rayson et al.
(2017) based on 80 texts which are writing samples about the English Lake Dis-
trict between the early seventeenth and the beginning of the twentieth century.

e TUD-Loc-2013 ?° was first utilized in (Katz and Schill 2013), containing 152
texts from web pages.

e SemEval-2019-12 3 is the gold dataset of the Task 12 (Toponym Resolution
in Scientific Papers) of the 13th International Workshop on Semantic Evaluation
(SemEval) (Weissenbacher et al. 2019).

e NCEN 3! (The Nineteenth-Century English Newspapers) was created by Ar-
danuy et al. (2022), containing 343 newspaper articles published between 1780
and 1870 in four different locations of England (i.e., Manchester, Ashton-under-
Lyne, Poole, and Dorchester).

4.2. Fvaluation metrics

To fairly evaluate toponym disambiguation approaches, we assume that all the to-
ponyms in the datasets can be correctly recognized at the toponym recognition step.
However, DBpedia Spotlight and Edinburgh Geoparser provide only an online API
and deploy the toponym recognition module on servers. Therefore, when evaluating
the correctness of the two approaches, we will compare them with the other approaches
on the correctly recognized toponyms (a subset of gold toponyms) by them, respec-
tively.

From the standard metrics defined in (Gritta, Pilehvar, and Collier 2020), we adopt
the three most important metrics. They are: (1) Accuracy@161km, which is the per-
centage of geocoding errors that are smaller than 100 miles (161 km); (2) Mean Error
(ME), which is the mean distance error of toponyms; (3) Area Under the Curve (AUC),
which is the total area under the curve of the normalized log error distance. AUC is
calculated using Equation 1, where z; denotes the distance error of the i-th toponym,
N denotes the count of toponyms, and 20039 is the maximum possible error in km on
earth.

NoIn(z; + 1)
AUC = [ IBET 1
ve /izl 1n(20039) % (1)

4.3. Voting ensemble

We propose a voting ensemble that combines seven individual approaches and manu-
ally assign a weight (count of votes) to each approach, denoted by the number in the
brackets. We decide the combination manner and weights according to numerous ex-
perimental results. For the voting algorithm, we set the DBSCAN parameters minPts
and eps to 2 and 10 (km), respectively.

e Voting: GENRE (3), BLINK (2), LUKE (2), CamCoder (1), SHS (1), CBH (1),

2"https://github.com/barbarainacioc/toponym-resolution/tree/master/corpora/WOTR
28nttps://github. com/UCREL/LakeDistrictCorpus
29nttps://bitbucket.org/palladian_pk/tud-loc-2013/src/master/
3Ohttps://github.com/TharinduDR/SemEval-2019-Task-12-Toponym-Resolution-in-Scientific-Papers
3lnttps://bl.iro.bl.uk/concern/datasets/f3686eb9-4227-45cb-9acb-0453d35e6a03
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Edinburgh Geoparser (1).

4.4. Results

We average each metric of the approaches on the 12 datasets. Figure 7 shows the
result of the 18 approaches (excluding Edinburgh Geoparser and DBpedia Spotlight)
and the voting ensemble on the gold toponyms of the test datasets. The voting en-
semble achieves an Accuracy@161km at 0.86, improving the best individual approach,
GENRE, by 5%. Similarly, the ensemble achieves the best ME and AUC, improving
the best individual approach, GENRE, by 57% and 13%, respectively. Figures 8 and 9
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Figure 7. Average Accuracy@161km (1), AUC ({), and ME (|) of approaches on gold
toponyms.

shows the average Accuracy@161km, Mean Error, and AUC of the approaches on the
subset of gold toponyms, which are correctly recognized by DBpedia Spotlight and by
Edinburgh Geoparser, respectively, and the voting ensemble still performs the best.
Among individual approaches, the state-of-the-art ELs, GENRE and BLINK, achieve
promising results, outperforming the other ELs and toponym resolution approaches.
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DCA- o5 DCA- [ ode DCA-
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Figure 8. Average Accuracy@161km (1), AUC (|), and ME () on the subset of gold
toponyms, which are correctly recognized by DBpedia Spotlight.

We provide the raw result of each dataset in the supplement materials, from which
we can see that on the gold toponyms, the voting ensemble achieves the best result on
35/36 (3 metrics evaluated for 12 datasets) indicators. Besides, GENRE and BLINK
are especially effective on highly ambiguous datasets,including WikToR, WOTR, and
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Figure 9. Average Accuracy@161km (1), AUC ({), and ME () on the subset of gold
toponyms, which are correctly recognized by Edinburgh Geoparser.

LDC, performing much better than the other individual approaches. These datasets
contain many less-common or low-frequency places, such as ‘Paris, Missouri’ and
‘Lima, Oklahoma’, on which the two baseline systems, Nominatim and Population-
Heuristics adopting simple heuristics (i.e., popularity) thus perform poorly. Regardless
of whether highly ambiguous or general datasets, the voting ensemble that combines
several individual approaches can always achieve state-of-the-art performance, proving
its generalizability and robustness.

4.5. Place category

We investigate the disambiguation performance of the approaches on four different
types of places: admin units (e.g., country, state, and county), POIs (e.g., park, church,
and hospital), traffic ways (e.g., street, highway, and bridge), natural features (e.g.,
river, beach, and hill). In the datasets of GeoCorpora, LGL, TR-News, GeoWebNews,
CLDW, and Semeval-2019, the GeoNames ID of places have been provided, through
which we determine in total 13,878 admin units (e.g., ‘EU’, ‘Berlin’, and ‘Boone
County’), 820 POIs (e.g., ‘Lambert-St. Louis International Airport’, ‘Sam Houston
High School’, and ‘westboro baptist church’), 1,605 natural features (e.g., ‘Pine Island
Bayou’, ‘Skiddaw Mountain’, and ‘Little Pine Creek’), and 336 traffic ways (e.g., ‘High
Street’, ‘Lynchburg Railroad bridge’, and ‘Highway 49’).

We then calculate Accuracy@161km of the approaches on each place type, ruling out
Edinburgh Geoparser and DBpedia Spotlight since their toponym recognition modules
can only correctly recognize a small proportion of toponyms. For example, they can
only recognize 21/336 and 13/336 traffic ways, respectively. Figure 10 shows that
most of the approaches perform well in resolving coarse-grained places (i.e., admin
units), with fifteen can correctly resolving over 70% of the admin units. However,
they are incapable of resolving fine-grained places, with only four, three, and one of
them correctly resolving over 60% of the POIs, natural features, and traffic ways,
respectively. The voting ensemble performs the best, on average improving the best
individual approach, GENRE, by 11% in resolving fine-grained places. However, there
is still space for improving the performance of resolving fine-grained places.
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Figure 10. Accuracy@161km of the approaches on four categories with 13,878 admin
units, 820 POls, 1605 natural features, and 336 traffic ways.

4.6. Computational efficiency

We further investigate the computational efficiency of different approaches. We run
each approach on the total datasets and record the consumed time without counting
the training phase, as shown in Figure 11. Note that, we do not include Edinburgh
Geoparser, Nominatim, DBpedia Spotlight, and Entity-Fishing in the comparison since
they are online services and it is impossible to count the amount of time of processing
done on the server. We run the toponym resolution approaches on a Dell laptop with
an Intel Core i7-8650U CPU (1.90 GHz 8-Core) and a RAM of 16 GB, while we run
the ELs on an NVIDIA Tesla V100 GPU of a cluster node since they require a GPU

execution environment.

Adaptive
Population
CLAVIN
TopoCluster
Mordecai

CamCoder
Voting

0 25 50 75 100 125 150 175 200
time (h)

Figure 11. Time consumption of the approaches running on the total test datasets.
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Generally, ELs take more time (from 3 hours to 40 hours) than toponym resolution
approaches (from 2 minutes to 2.5 hours) except TopoCluster and Mordecai since the
former was normally built on large language model, such as BERT and deals with more
complex issues (disambiguating not only toponyms but also other types of entities)
than the latter. TopoCluster is the slowest, taking nearly 191 hours while CLAVIN
is the fastest, taking only 2 minutes. The time consumption for a voting ensemble
equals the sum of the time of every individual approach that it combines. Therefore,
the voting ensemble takes 72 hours for resolving 98,300 toponyms, which means on
average resolving a toponym takes 2.6 seconds. There is a trade-off between correctness
and speed.

4.7. Sensitivity analysis

4.7.1.  Configuration

We first investigate how the removal of an individual approach would affect the perfor-
mance of voting ensembles. A basic voting ensemble is first proposed, including all the
20 individual approaches with each approach having one vote. A degraded ensemble
is then constructed by removing one approach from the basic ensemble. We then sub-
tract the average MFE, Accuracy@161km, and AUC achieved by the degraded ensemble
from that of the basic ensemble. The result is shown in Figure 12. Regarding Accu-
racy@161km, GENRE, BLINK, and SHS make the largest positive contribution, while
CLAVIN and DBpedia Spotlight make the largest negative contribution. Regarding
ME, GENRE and BLINK make the largest positive contribution, while CLAVIN and
Population-Heuristics make the largest negative contribution. Regarding AUC, Cam-
Coder, SHS, and Adaptive Learning make the largest positive contribution, while DCA
and MulRel make the largest negative contribution. Generally, the disambiguation
ability of each single approach determines their contribution to the voting ensemble,
such as GENRE (with high disambiguation ability) and Population-Heuristics (with
low disambiguation ability), which contribute positively and negatively, respectively.
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BLINK BLINK BLINK
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GENRE GENRE GENRE
ExtEnD EXtEnD ExtEnD
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Figure 12. Change of Accuracy@161km, AUC, and ME when adding an approach to
a voting ensemble.

4.7.2.  Parameters

In the first experiment, the DBSCAN parameter eps was defined as eps € 1, ...,800
and a step size of 30. Figure 13 shows the performance of the voting ensemble as the
change of eps. The red line denotes the performance of the best individual approach,
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Figure 13. Impact of eps on the performance of the voting ensemble.

GENRE. We can see that eps has distinct impact on ME, Accuracy@161km, and AUC.
The best Accuracy@161km is achieved when eps is set to 350 km, while as the increase
of eps, ME decreases slightly from 470 km to 450 km, and AUC' increases rapidly from
0.21 to 0.27.

In the second experiment, the DBSCAN parameter minPts was defined as
minPts € 1,...,11 and a step size of 1. Figure 14 shows the result of the voting
ensemble as the change of minPts. We can see minPts has a large impact on the
performance of the voting ensemble. When minPts is set to 1 and 2, the best perfor-
mance is reached. The higher the minPts, the worse the voting ensemble performs.
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Figure 14. Impact of minPts on the performance of the voting ensemble.

5. Conclusion

In this paper, we investigate how voting ensembles that combine several individual
approaches can push state-of-the-art performance of toponym disambiguation. Ex-
perimental results on 12 public datasets of six types prove the generalizability and
robustness of the voting approach. The deep learning-based ELs (i.e., GENRE and
BLINK) that are pretrained on nearly 10 million Wikipedia entities show impressive
disambiguation performance, performing much better than toponym resolutions ap-
proaches. However, there is a trade-off between correctness and speed since the voting
approach and the two ELs take much more time than most of the others. Moreover,
there is still space for improving the performance of resolving fine-grained places, such
as POls, natural features, and traffic ways. This will be one of our future research
tasks. Furthermore, the idea of voting approaches can be extended to the more general
issue, such as entity linking since combining several ELs can improve the disambigua-
tion performance for toponyms, and might also for other entities, such as person, and
organization.
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6. Data and code availability

The code and data that support the findings of this study is available in GitHub with
the link https://github.com/uhuohuy/toponym-disambiguation-voting.
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