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Introduction

Computational meshes used in practical aerodynamic appli-

cations may possess various properties. For example, struc-

tured or unstructured ordering may be used to utilize efficient

data structures or simplify mesh generation; high-aspect-ratio

cells may be used to resolve boundary layers of high-Reynolds-

number flows; the cell orientation may align with specific flow

directions to maximize benefits of certain discretization tech-

niques, such as approximated Riemann solvers. The Hyper-

Flex version of the DLR TAU-code provides a suit of com-

putational algorithms and solution techniques that can be

canonically switched depending on mesh characteristics to op-

timize accuracy, efficiency, and robustness of flow solutions.

The current HyperFlex implementation derives from experi-

ences gained during previous efforts concerned with enabling

structured data and algorithms in an unstructured code en-

vironment, developing an hierarchy of preconditioning tech-

niques embedded into a multistage Runge-Kutta method, and

implementing alternative multigrid techniques. The practical

aspects of code design, such as maintainability and expend-

ability, are also taken into account.



Hyperflex formulation of the spatial

discretization
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1 Introduction
This report describes the spatial discretization used in TAU HyperFlex and emphasizes differences
from the baseline TAU discretizations. The report is organized as follows. The differences be-
tween structured and unstructured addressing of mesh components are explained. An extension of
the unstructured edge-based data structure, which enables a canonical switch between structured and
unstructured second order discretizations, is considered. Solutions obtained with structured discretiza-
tions in TAU and FLOWer [4] are compared. Additionally, a modified artificial matrix dissipation which
improves the accuracy and robustness of current dissipation schemes and is suitable for the HyperFlex
preconditioned Runge-Kutta scheme is introduced. Solutions obtained with the new matrix dissipation
are compared with solutions obtained with current dissipation schemes in TAU.

2 Structured and unstructured addressing
In the context of finite volume methods, a mesh is identified as a structured mesh if it contains only
quadrilateral elements in 2D or only hexahedra in 3D, and all mesh points are uniquely identified in
a linear address space by discrete coordinates, denoted as i,j,k coordinates, corresponding to the x,
y, z coordinates of the physical space. The advantage of this discrete computational space is that
it allows to store local information, such as flow variables, in a structured data structure. With this
property, a (structured) finite volume code can efficiently address neighboring points by increasing
and decreasing the i,j,k indices (Fig. 2.1).

Figure 2.1: Identification of surrounding and neighboring points (white circles) from one point (black
circle) in an structured and an unstructured data structure

An unstructured mesh may contain several different polyhedral elements, typically tetrahedra, hexa-
hedra, prisms and pyramids in 3-D. The main advantages of unstructured meshes are nearly automatic
mesh generation and a relatively easy mesh adaptation, i.e., solution dependent refinement and coars-
ening. On the other hand, the points of an unstructured mesh cannot be identified directly by mesh
indices as in structured meshes (Fig. 2.1). Hence unstructured meshes are stored usually by an
edge-based data structure [1].

In general, a structured mesh can be considered as a specific unstructured mesh with an ordering of
the hexahedrons in the discrete computational space. Therefore, on the same mesh, a structured code
differs from the corresponding unstructured code only in algorithms utilizing the specific ordering in
the discrete computational space. Implicit temporal discretizations widely use the discrete computa-
tional space. Discretization of implicit schemes on structured meshes results in well-ordered systems
which can be handled more efficiently by structured techniques rather than purely unstructured tech-
niques. This property can also be exploited in unstructured codes by storing the i,j,k addresses for
the structured parts of a mesh in addition to the edge-based data structure [8]. Generalized implicit
techniques [7], [5] represent more sophisticated alternatives and are used in TAU HyperFlex.

Spatial discretizations in structured and unstructured finite volume codes use different sets of points
(stencils) to compute terms of the discrete equations. For example, a second-order finite volume code
(e.g., FLOWer or TAU) must identify neighbors of neighbors to discretize the convective terms.
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The computational stencils can vary depending on available point ordering and hence the solution
accuracy can vary as well. Again this variability can be overcome if an unstructured code stores the
i,j,k coordinates for the structured parts of a mesh in addition to the edge-based data structure [8].

If only second-order discretizations are needed, there is another way to take advantage of structured
stencils on unstructured meshes. One can enhance the edge-based data structure by so-called face
neighbors in the structured parts of the mesh. Face neighbors are added to an edge, if the edge end
points and their neighbors are located on a smooth line (Fig. 2.2).

Figure 2.2: Identification of edge-points in an edge-based data structure (left) and of edge-faces in
an enhanced edge-based data structure (right)

With this enhanced edge-based data structure, second-order stencils can be identical to those of
structured codes on smooth meshes Fig. 2.3. TAU already switches canonically to this data structure
in structured-mesh regions to use the same stencils as structured codes for the MUSCL reconstruction
of upwind schemes [3]. The following chapter shows that a combination of the enhanced edge-based
data structure and a central scheme with artificial dissipation used for discretizing the convective
terms is capable to reproduce accuracy of a structured code.

Figure 2.3: Identified structured inner stencils (black), structured boundary stencils (green) and un-
structured stencils (blue, red) in a non-smooth (left) and smooth (right) structured mesh

It should be noted that the storage of discrete i,j,k addresses in addition to the common edge-based
data structure in an unstructured code environment implies additional memory resources, computation
and communication time, and efforts to develop and maintain the code. Redundant storage of data
and implementation of schemes and algorithms cannot be avoided. Hence it is recommended to
avoid the application of these extensions unless clear advantages compared to purely unstructured
discretizations cannot be observed.

3 Structured and unstructured spatial discretization
Spatial discretizations determine the accuracy of a finite volume code. A common opinion is that
structured discretizations are more accurate than unstructured discretizations due to availability of
the i,j,k addresses in the discrete computational space. Hence TAU HyperFlex is supposed to switch
to a structured discretization in structured mesh regions to obtain better solution accuracy. In this
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section, accuracy of structured and unstructured spatial discretizations implemented in TAU HyperFlex
is compared. Different structured and unstructured discretization stencils are mainly occurred for two
terms: (1) second-order discretization of the convective fluxes and (2) the discretization of viscous
fluxes. The latter is expected to be less important for accuracy of high Reynolds number flow solutions
and therefore is not considered in this report.

The structured finite volume code FLOWer [4] is used as reference to verify implementation of
the structured discretization in TAU HyperFlex and to compare with the structured and unstructured
TAU solutions. The structured version of the central scheme with artificial dissipation of FLOWer
has already been compared in detail to the unstructured version of TAU [8]. The effects of different
discretizations have been shown. Solutions obtained with a prototype code called TAUijk, which
includes the additional i,j,k addressing in structured mesh regions, have also been compared to FLOWer
solutions. This study indicated that the solution differences become less important for more complex
flows of practical interest. To confirm this observation the structured discretization was directly
implemented in TAU HyperFlex.

The TAU HyperFlex structured discretization is implemented by using the enhanced edge-based
data structure and is identical to the structured discretization of FLOWer. The artificial dissipation of
the central scheme is a combination of the first and third differences of flow variables. Its unstructured
version is defined with respect to an edge (or face) between nodes i and j by

dddi j = φi j
∣∣AAAi j
∣∣{ε

(2)
i j sc(2)

i j (WWW j−WWW i)− ε
(4)
i j sc(4)

i j (L j (WWW )−Li (WWW ))
}

, (3.1)

where WWW is the vector of conservative variables. The third difference of the structured scheme [1] is
approximated using the undivided Laplacian operator

Li (WWW ) = ∑
k∈N(i)

(WWW j−WWW i) , (3.2)

where the set N(i) denotes the neighbors of point i; ε
(2)
i j and ε

(4)
i j are adaptive coefficients designed

to switch between the first and second order dissipation. The coefficients are adapted to the local
flow gradients

ε
(2)
i j = k2max(ψi,ψ j) ,ε

(4)
i j = k4− ε

(2)
i j , (3.3)

where the pressure sensor ψi is defined as

ψi =

∣∣∣∣∣∣∣
∑

j∈N(i)
(p j− pi)

∑
j∈N(i)

(p j + pi)

∣∣∣∣∣∣∣ (3.4)

and k2 and k4 are constants, which can be defined by the user to control the amount of dissipation.
The scaling factors

sc(2)
i j =

3
ni

+
3
n j

,sc(4)
i j =

9
ni (1+n j)

+
9

ni (1+n j)
, (3.5)

where ni denotes the number of neighbors of cell i, are introduced in order to avoid a strong dependency
of the face dissipation on the number of neighbors surrounding the adjacent cells [3]. The cell
stretching coefficient, φi j, is computed as

φi j = 4
rir j

ri + r j
,ri =

0.5 ∑
k∈N(i)

λik−λi j

2λi j


ω

, (3.6)

where ω is typically set to 0.5 and λik is the spectral radius of the matrix AAAi j. The influence of the
cell stretching coefficient is explained in detail in Ref. [2]. The matrix AAAi j [1] denotes Jacobian of the
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convective flux evaluated at the face i j. In this form, the dissipation is called matrix dissipation [1].
If the spectral radius of AAAi j is used instead, the scheme is reduced to the so-called scalar dissipation
scheme [1].

Three terms of the artificial dissipation scheme of FLOWer are discretized differently. The sums of
the first differences in the pressure switch (3.4) are calculated by the directional second differences in
the computational space,

νi, j,k =
pi+1, j,k−2pi, j,k + pi−1, j,k

pi+1, j,k +2pi, j,k + pi−1, j,k
. (3.7)

The cell stretching coefficient is implemented as

φ
I
i, j,k = 1+max

((
λ J

i, j,k

λ I
i, j,k

)ω

,

(
λ K

i, j,k

λ I
i, j,k

)ω)
, (3.8)

where I,J,K denotes the computational direction. Instead of the Laplacian 3.2 the directional second-
difference approximation is used. Additionally, the structured scheme is independent of scaling con-
cerning the number of neighbors (3.5).

The structured discretization of FLOWer is implemented into a developer version of TAU HyperFlex
using the stencils provided by the enhanced edge-based data structure. Additionally, the implementa-
tion uses the cell stretching coefficient suggested in [8] that is equal to (3.8) in 2-D. This version of
HyperFlex TAU is denoted as canonical below, in particular in figures. The implementation is tested
and compared to FLOWer and TAU using several test cases.

Figure 3.1: Comparison of results concerning a subsonic Euler flow based on structured and unstruc-
tured discretizations of the convective terms

A subsonic Euler test case is used to compare the central second-order discretizations of the con-
vective terms with the matrix dissipation. A structured 224x32 element mesh is defined around a
NACA0012 profile. To guaranty that other discretization terms are the same, FLOWer and TAU
solutions are computed on the cell-centered grid metric (cc) and use the average-of-flux formulation
of the central scheme (AoF). Fig 3.1 shows the distribution of pressure coefficient and total pressure
loss of FLOWer, TAU, and TAU HyperFlex (canonical) results.

The comparison shows that the structured solutions of FLOWer and TAU HyperFlex are almost
identical. This close similarity indicates that other discretization components, such as boundary
conditions, are implemented in a similar way as expected. As expected [8], there are some differences
between the structured solutions and the unstructured solution of TAU, but they are small.

A transonic RANS test case is used to verify the combination of first- and second-order dissipation
at shocks and to evaluate the influence of the viscous terms. A 184x40 structured element mesh is
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defined around an RAE2822 profile. The flow conditions are Ma = 0.734, α = 2.79 and Re = 6.5e6.
Fig 3.2 compares the pressure distribution of FLOWer and TAU HyperFlex (canonical) using the cell-
centered grid metric, average of flux discretization of the central difference and a turbulence model.
The solutions are nearly identical.

Figure 3.2: Comparison of results concerning a transonic flow based on structured and unstructured
discretizations of the convective terms of the RANS equations

The cell-vertex grid metric is the default metric of TAU. Fig. 3.2 (right) compares the cell-vertex
solutions obtained with the enhanced edge-based data structure (TAU-CV canonical) and with the
default edge-based data structure (TAU-CV); no significant difference has been observed. These
results indicate that the differences between the structured and the unstructured discretizations of the
convective terms and specifics of the viscous term discretizations have negligible effects on accuracy
and that the combination of first and second-order dissipation terms at shocks using the enhanced
edge-based data structure is implemented correctly and lead to expected results.

Figure 3.3: Influence of the canonical switch (Onera M6, cut plane at section 3)

A 3-D RANS test is used to compare the influence of the canonical switch between structured
and unstructured spatial discretizations. A mixed-element mesh with 265276 points is generated
around an Onera-M6 airfoil; hexahedra are used to resolve the boundary layer, prisms are used at
the wing tip to simplify the mesh generation, and tetrahedral are used in the farfield. The flow
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conditions are Ma = 0.84, α = 3.06 and Re = 11.72e6. This case is known to be very sensitive to
small changes in the artificial dissipation. Fig 3.3 shows two pressure distribution computed with
the cell-vertex formulation of TAU HyperFlex at the surface cut at section 3. The blue distribution
represents the standard TAU discretization using the unstructured central dissipation in each mesh
region. The dashed red distribution is calculated using the canonical switch which uses the structured
discretization based on the enhanced edge-based data structure in mesh regions of hexahedra and
prisms and the unstructured discretization in the rest of the mesh. Again the differences between the
structured and the unstructured solutions are negligible.

It can be concluded that the difference between the structured and unstructured implementations of
the central discretization scheme and the viscous terms has a little influence on discrete solutions on the
same mesh. Taking into account efforts required for code development, maintenance and expansion,
redundant implementation of algorithms, and additional communication in parallel computations,
it is not recommended to implement a canonical switch for the central scheme. It appears that
better accuracy can be obtained by improving unstructured discretizations rather than by switching
to structured discretizations.

4 Improved matrix dissipation
This section presents a modified dissipation scheme developed for TAU HyperFlex. The default
discretization scheme of TAU for the convective terms of the RANS equations is the central scheme
with scalar artificial dissipation [3]. A matrix dissipation scheme can reduce the unnecessary artificial
dissipation and improve solution accuracy. The common matrix dissipation scheme implemented in
TAU has two important shortcomings. (1) It is less robust in particular on meshes with highly stretched
hexahedra and tends to generate large wiggles in a vicinity of a shock. (2) It does not perform well
in combination with the preconditioning techniques of TAU HyperFlex [7], [5]. A modified matrix
dissipation scheme suggested in [7], [5] can be defined as

dddi j =
∣∣AAAi j
∣∣{1

2
ε

(2)
i j (WWW j−WWW i)− ε

(4)
i j (L j (WWW )−Li (WWW ))

}
, (4.1)

where

ε
(2)
i j = min(k2max(ψi,ψ j) ,1) ,ε(4)

i j = k4

(
1− ε

(2)
i j

)
. (4.2)

This formulation becomes nearly a first order Roe scheme near a shock and usually does not exhibit
near-shock oscillations [3]. However, this formulation is known to degrade accuracy in some cases,
specifically in computations performed for the Airbus HyperFlex workshop and the 5th Drag Prediction
Workshop [9]. Fig. 4.1 shows a mesh convergence study for the NASA Common Research Model.
Two results in this figure correspond to the matrix dissipation (4.1). The dark blue curve represents
a parameter combination of the scheme leading to robust but less accurate results. The orange
curve represents a parameter combination of the scheme leading to more accurate results but the
corresponding solutions tend to diverge on finer meshes.

Two modifications are introduced in the matrix-dissipation formulation to combine advantages of
the schemes (4.1) and (3.1) and to enhance the accuracy and robustness of flow solutions. The first
modification is concerned with the cell stretching coefficient. A modification of 3.6,

φi j = 1+2
rir j

ri + r j
,ri =

0.5 ∑
k∈N(i)

λik−λi j

λi j


ω

, (4.3)

is introduced for the second-order dissipation. A previous study [2] recommended a cell stretching
coefficient to balance accuracy and stability within a matrix dissipation scheme. The original TAU
formulation of the cell stretching coefficient (3.6) serves the same goal and is well suited for unstruc-
tured meshes with relatively small aspect ratios in the boundary layer. For high aspect ratio cells
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Figure 4.1: NASA Common Research Model, common grids of 5th Drag Prediction Workshop, mesh
convergence study (left) in detail (right)

that are typical within structured boundary layers, this coefficient tends to zero (Fig. 4.2, red curve).
Because this coefficient scales the whole artificial dissipation, insufficient dissipation introduced for
high-aspect-ratio cells can trigger solution divergence.

Figure 4.2: Versions of cell stretching coefficient

In contrast, the TAU HyperFlex cell stretching coefficient (4.3) tends to one (Fig. 4.2, blue dots)
in the limit of high aspect ratio, similar to the structured version (3.6). It also corresponds to the
structured version of the cell stretching coefficient (Fig. 4.2, green curve) on a 2-D mesh.

The second modification concerns with the scaling factors (3.5). Scaling of the dissipation with the
number of neighbors is introduced again to achieve comparable accuracy levels similar to the standard
TAU version. The HyperFlex cell stretching coefficient and neighbor-dependent scaling are used only
for second-order terms to keep the scheme usable for the preconditioned Runge-Kutta scheme

dddi j =
∣∣AAAi j
∣∣{1

2
ε

(2)
i j (WWW j−WWW i)−φi jsc(4)

i j ε
(4)
i j (L j (WWW )−Li (WWW ))

}
. (4.4)
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The obtained formulation reduces the oscillations in the vicinity of shocks (similarly to the formu-
lation 4.1) and does not lose accuracy. These properties are illustrated by the computations of a
transonic flow around a NACA0012 profile (Fig. 4.3). The new formulations preserves robustness and
improves the accuracy of the standard TAU dissipation scheme (Fig. 4.1).

Figure 4.3: Comparison of results concerning a transonic Euler flow based on the standard and Hy-
perFlex matrix dissipation of TAU

5 Conclusion
The report has demonstrated that implementation of a structured version of the central scheme with
artificial dissipation in an unstructured code does not improve accuracy. Additionally, it has been shown
that unstructured implementations of basic boundary conditions and viscous terms have similar accu-
racy compared to structured implementations. Experience gained in the process of implementing the
enhanced edge-based data-structure and evaluating structured discretizations in TAU indicates that
robustness and code design can suffer from a canonical switch. It has also been shown that improved
accuracy can be obtained with some modifications of the existing unstructured matrix-dissipation
scheme. Overall it is recommended to avoid redundancy associated with structured discretization
segments of the central scheme in TAU. To improve accuracy and robustness, the presented improved
matrix dissipation scheme is recommended for TAU HyperFlex.

The presented central scheme with matrix dissipation is available in the current TAU release 2012.2.0
by using the parameters ’Modified matrix dissipation (0/1): 1’ and ’Version of cell stretching coef-
ficient: HyperFlex’, if matrix dissipation is chosen as central dissipation scheme. This parameter
combination is going to become default for the matrix dissipation with the upcoming release.
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Robust schemes based on improved

preconditioning technqiues



1 Introduction

The development of accurate, reliable and efficient numerical algorithms to approx-
imate a solution of the Navier-Stokes equations is an enduring challenge in the field
of computational fluid dynamics (CFD).
For example, the simulation of an unsteady full high-lift configuration of an airplane
requires a robust and efficient solver. The well-known and established multigrid
techniques for unstructured meshes for solving large-scale high-Reynolds number
viscous flows, which are usually based on agglomeration techniques with explicit
Runge-Kutta methods as smoothers (see [13, 17]), often show a slowdown and sig-
nificant deterioration of the observed convergence rate. Moreover, often the reliabil-
ity of these kinds of flow solvers is a severe problem and substantial user experience
is required to choose an appropriate set of parameters not only to overcome the
start up problem of the algorithm but also to generate a converged solution.
Important reasons for the observed deterioration of the convergence rates and the
poor reliability of a flow solver are (see [20] for a detailed discussion)

a) stiffness introduced by large anisotropic mesh cells required for high-Reynolds
number viscous flows near the solid boundary,

b) stiffness introduced by the flow equations themselves, in particular introduced
by the additional equations arising from the turbulence model.

In general, solution algorithms for the Navier-Stokes equations are based on ap-
proximations to the full Jacobian of the system of equations. For example, the
traditional explicit Runge-Kutta methods can be viewed as a solution algorithm,
where all block off-diagonal terms of the full Jacobian are deleted and the remain-
ing block diagonal terms are approximated by their largest eigenvalue. To improve
the reliability and efficiency of solution algorithms better suited approximations to
the full Jacobian need to be constructed. These approximations are included as
preconditioners into the basic Runge-Kutta scheme. Such a procedure increases the
degree of implicitness of the overall scheme (see e.g. [27, 26, 3]).
However, for a reliable and efficient algorithm an appropriate measure for the sim-
plification of the full Jacobian is required. For example, a full second order Jacobian
requires a significant increase in memory requirements, and it augments substan-
tially the computational effort per iteration to solve the linear system. Instead, one
can consider only terms in the Jacobian which require next neighbor information
(1.st order Jacobian). This reduces the memory requirement significantly. Imple-
menting this technique as a smoother into an agglomerated multigrid, the resulting
large scale linear systems do not need to be solved exactly. Usually only a few
Gauss-Seidel or Krylov subspace iterations are enough for an efficient and reliable
multigrid method (see e.g [27, 26]).

In this article we are going to contribute to a so-called line implicit ansatz (see [16,
6]). This ansatz is guided by the following observations:

1



Stiffness is introduced into the discrete set of equations by anisotropic cells in the
mesh. Therefore, a further simplification of the Jacobian can be considered by
extracting relevant mesh information.
To this end regions characterized by large anisotropies in the mesh need to be
identified in a preprocessing step. This information is given by lines along the
anisotropic cells. In isotropic parts of the mesh a line degenerates canonically into
a point. Then, the 1.st order Jacobian is only constructed along the lines. The
resulting linear systems are small-scale block tridiagonal and can be easily and
efficiently solved by direct solution algorithms such as block LU-decomposition.
When a line degenerates to a point only a small-scale block system needs to be
inverted.
The line implicit ansatz has two advantages when compared with the ansatz based
on the 1.st order Jacobian:

a) The required memory for the line implicit ansatz is significantly less than for
the 1.st order Jacobian.

b) The resulting linear systems can be efficiently and exactly solved.

2



2 Governing equations

To describe turbulent flow effects we consider for an open domain Ω ⊂ R
3 the

Reynolds-averaged Navier-Stokes (RANS) equations fully coupled with a one-equation
Spalart-Allmaras (SA) turbulence model [23] for a three-dimensional flow

u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), (x, t) ∈ Ω × (0,∞)

in conservative variables

W := (ρ, ρu1, ρu2, ρu3, ρE, ρν̃) (1)

written as
d

dt

∫

Ω

W dx +

∫

∂Ω

(fc · n − fv · n) ds(y) =

∫

Ω

Q dx. (2)

Here the convective and viscous terms are given by

fc · n =

















ρV
ρu1V + pn1

ρu2V + pn2

ρu3V + pn3

ρHV
ρV ν̃

















, fv · n =

















0
n1τ11 + n2τ12 + n3τ13
n1τ21 + n2τ22 + n3τ23
n1τ31 + n2τ32 + n3τ33
n1θ1 + n2θ2 + n3θ3

n1τ
Tu
1 + n2τ

Tu
2 + n3τ

Tu
3

















where V = 〈u,n〉 describes the normal velocity and

H(x, t) = E(x, t) + p(x, t)/ρ(x, t) (3)

the total Enthalpy. The pressure is defined by the state equation

p(x, t) = (γ − 1)ρ(x, t)

(

E(x, t) − ‖u‖2
2

2

)

where E is the specific total energy, and γ is the gas dependent ratio of specific
heats, which is given by 1.4 for air. The viscous terms are defined by

τii := 2µeff
∂ui
∂xi

+ λl div u, i = 1, 2, 3, (4a)

τij := µeff

(

∂ui
∂xj

+
∂uj
∂xi

)

, τij := τji, 1 ≤ i < j ≤ 3 (4b)

τTu
i :=

µeff

σ

∂ν̃

∂xi
, i = 1, 2, 3, (4c)

and

θj :=

(

3
∑

k=1

ukτjk

)

+ qj , j = 1, 2, 3,

q := κeff grad T, q = (q1, q2, q3). (5)

3



In formulas (4a) – (4c)

µeff := µl + µt, κeff := κl + κt. (6)

denote the effective viscosity and effective conductivity. Sutherland’s law gives us,

µl := µl,∞

(

T

T∞

)3/2
T∞ + T̄

T + T̄
, κl :=

cpµl
Prl

and cp := ℜ γ

γ − 1
, (7)

whereby T̄ := 110.4K is Sutherland’s constant, ℜ is the universal gas constant and
the laminar Prandtl number is given by Prl := 0.72.

Following [23] the turbulent conductivity κt and the eddy viscosity µt and are
defined by

κt :=
cpµt
Prt

, µt := ρν̃fv1 , fv1 :=
χ3

χ3 + c3v1

, χ :=
ν̃

νl
, νl :=

µl
ρ
. (8)

The turbulent Prandtl number is given by Prt := 0.92. Finally, the missing source
terms occurring on the right hand side of (2) are given by

Q(x, t) := (0, 0, 0, 0, 0,Q6(x, t)),

Q6(x, t) := Pr(x, t) − De(x, t) − Di(x, t),

Pr(x, t) := cb1 (1 − ft2(x, t)) S̃(x, t)ν̃(x, t),

De(x, t) :=
(

cw1fw(x, t) − cb1

κ2
ft2(x, t)

)

(

ν̃(x, t)

d

)2

,

Di(x, t) :=
cb2

σ

3
∑

j=1

(

∂ν̃(x, t)

∂xj

)2

,

where we denote by Pr the production term, by De the destruction term and by Di

the diffusion term. Terms required for transition given in [23] are neglected. Further
terms are given by

S̃(x, t) := ‖curl u(x, t)‖2 +
ν̃(x, t)fv2(x, t)

κ2d2(x)
, ft2(x, t) := ct3 exp

(

−ct4χ(x, t)2
)

fv2(x, t) := 1 − χ(x, t)

1 + χ(x, t)fv1(x, t)
, fw(x, t) := g(x, t)

[

1 + c6w3

(g(x, t))6 + c6w3

]1/6

,

g(x, t) := r(x, t) + cw2

(

(r(x, t))6 − r(x, t)
)

, r(x, t) :=
ν̃(x, t)

κ2d2(x)S̃(x, t)
.

Here d(x) describes the distance to the wall. The constants of the model are

cb1 := 0.1355, cb2 := 0.622, σ :=
2

3
, κ := 0.41,

cw1 :=
cb1

κ
+

1 + cb2

σ
, cw2 := 0.3, cw3 := 2,

ct3 := 1.2, ct4 := 0.5, cv1 := 7.1.
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Figure 1: Example of a dual cell; the solid lines represent the primary grid, the
dashed line the corresponding dual cell

3 Discretization

The CFD solver used is the TAU code developed at the Deutsches Zentrum für Luft-
und Raumfahrt e.V. TAU is based on a finite volume formulation where a median
dual grid forms the control volumes with the unknowns at vertices of the primary
grid. The dual grid is created in a preprocessing step. Figure 1 shows an example
of a dual cell. An agglomeration multigrid algorithm is used to approximate a
steady state solution of the governing equations. The description of the multistage
preconditioned Runge-Kutta scheme, which is used as a multigrid smoother, is topic
of this report.
Throughout this report the set of points in the dual grid where the unknowns are
located is denoted by G := {1, . . . , N} and the unknowns are given by W1, . . . ,WN .
The neighbors of some point i ∈ G are described by N (i), and the corresponding
face between the points i and j is denoted by ij.

3.1 The Inviscid Contribution

For an inner volume Ωi the inviscid part fc · n of (2) is approximated by

∫

∂Ωi

fc · n ds(y) ≈
∑

j∈N (i)

1

2
{(fc · nij) (Wi) + (fc · nij) (Wj)}

−1

2
|Aij|D

(

Wi,Wj,j∈N (i),Wk,k∈N (j)

)

. (9)
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As a basic definition for the dissipative term D we use

DPt,Lz,s(W),ξ
(

Wi,Wj,j∈N (i),Wk,k∈N (j)

)

:=
{

ψ
(t)
ij (Wj − Wi) − ξsij(W)

(

1 − ψ
(t)
ij

)(

L
(z)
j (W) − L

(z)
i (W)

)}

, (10)

where Pt denotes the dependency on some pressure switch to weight first and second
order terms, Lz represents some construction of second order terms and sij and ξ are
some factors. A more detailed construction of these terms is topic of Sections 3.3–
3.5.

3.2 Construction of Roe matrix

Going into the details of the construction of the dissipation we start with the com-
putation of the Roe matrix |Aij| arising in (9). To implement |Aij| for a fully

coupled solver an eigendecomposition of the derivative ∂(fc·n)
∂W

with respect to the
six conservative variables (1) is required. Following line by line the analysis in [10]
the derivative can be assembled as

∂(fc · n)(W)

∂W
= V I + a1(b1)

T + a2(b2)
T (11)

where

a1 := (1, u1, u2, u3, H, ν̃)
T ,

a2 := (0, n1, n2, n3, V, 0)T ,

b1 := (−V, n1, n2, n3, 0, 0)T ,

b2 := (γ − 1)

(‖u‖2
2

2
,−u1,−u2,−u3, 1, 0

)T

.

It can be shown that the vectors

y1 :=

(

1, u1, u2, u3,
‖u‖2

2

2
, 0

)T

,

y2 := (0, 0, n3,−n2, u2n3 − u3n2, 0)T ,

y3 := (0,−n3, 0, n1, u3n1 − u1n3, 0)T ,

y4 := (0, n2,−n1, 0, u1n2 − u2n1, 0)T

satisfy the orthogonality relations bT1 x = bT2 x = 0. However, the vectors y2,y3

and y4 are linear dependent since n1y2 + n2y3 + n3y4 = 0. Therefore, three linear
independent eigenvectors may be obtained as

g1 := n1y1 + ay2,

g2 := n2y1 + ay3,

g3 := n3y1 + ay4,
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where a :=
√

γp/ρ denotes the speed of sound. Obviously, g6 := (0, 0, 0, 0, 0, 1)T

is another eigenvector with corresponding eigenvalue V . To identify the remaining
eigenvectors we use the relations

bT1 a1 = bT2 a2 = 0, bT1 a2 = A2 and bT2 a1 = a2,

where A :=
√

n2
1 + n2

2 + n2
3 denotes the surface area. Then we compute using (11)

∂(fc · n)(W)

∂W
(Aa1 + aa2) = (V + aA)(Aa1 + aa2),

∂(fc · n)(W)

∂W
(Aa1 − aa2) = (V − aA)(Aa1 − aa2).

Hence, we found the two remaining eigenvalues V ± aA with corresponding eigen-
vectors g4/5 := Aa1 ± aa2.

Theorem 3.1 The derivative matrix of the convective flux fc ·n for a one-equation
turbulence model given by (11) has the following set of eigenpairs

{(V, g1) , (V, g2) , (V, g3) , (V + aA, g4) , (V − aA, g5) , (V, g6)} .
Proof: The assertion follows by the computations above.

�

Theorem 3.2 Let G := (g1, g2, g3, g4, g5, g6) denote the matrix corresponding to

the eigenvectors of ∂(fc·n)(W)
∂W

. We define the vectors

p1 :=
γ − 1

a2
(H − ‖u‖2

2, u1, u2, u3,−1, 0)T , (12a)

p2 := (u2n3 − u3n2, 0,−n3, n2, 0, 0)T , (12b)

p3 := (u3n1 − u1n3, n3, 0,−n1, 0, 0)T , (12c)

p4 := (u1n2 − u2n1,−n2, n1, 0, 0, 0)T (12d)

and

q1 :=
1

A2

(

n1p
T
1 − 1

a
pT2

)

(13a)

q2 :=
1

A2

(

n2p
T
1 − 1

a
pT3

)

(13b)

q3 :=
1

A2

(

n3p
T
1 − 1

a
pT4

)

(13c)

q4 :=
1

2a2A

(

bT2 +
a

A
bT1

)

(13d)

q5 :=
1

2a2A

(

bT2 − a

A
bT1

)

(13e)

q6 :=
ν̃(γ − 1)

a2

(

−‖u‖2
2

2
, u1, u2, u3,−1,

a2

ν̃(γ − 1)

)

(13f)

7



Then the inverse of G is given by

J :=

















q1

q2

q3

q4

q5

q6

















, i.e. (G)−1 = J.

Proof: The theorem follows by straightforward computations (see [10, Theorem 3]
for more details.

�

Theorems 3.1 and 3.2 allow a straightforward generalization of the Matrix Dissipa-
tion operator to turbulent flows via

∣

∣

∣

∣

∂(fc · n)(W)

∂W

∣

∣

∣

∣

:=
6
∑

j=1

|αj|gjqj , (14)

where the scalars αj are given by the eigenvalues

α1 = α2 = α3 = α6 = V, α4 = V + aA, α5 = V − aA.

Formula (14) is evaluated on a face kℓ using Roe-averaged variables [21] and some
entropy fix to avoid zero dissipation. The exact proceeding can be found in [10, Sec-
tion 3.4]. Additionally the entropy fix needs to be incorporated into the additional
turbulent equation, which is straightforward.

3.3 General dissipative operators

To derive a dissipative scheme for convective dominated flows we consider for a
domain U ⊂ Ω × [0, T ), T > 0, Ω ⊂ R

m the heat equation

∂

∂t
u(x, t) = ∆u(x, t), t ≥ 0, x ∈ Ω, (15a)

u(x, 0) = f(x), x ∈ ∂Ω. (15b)

Integration of (15a) and the application of Green’s theorem yields
∫

Ω

∂

∂t
u(x, t) dx =

∫

Ω

∆u(x, t) dx =

∫

∂Ω

∂u(x, t)

∂n
ds(y). (16)

Here n denotes the outward facing normalized normal vector on ∂Ω. Considering a
dual grid approach a possible discretization of (16) may read

vol(Ωi)

(

dui(t)

dt

)

=
∑

j∈N (i)

uij(t)vol(Ωij) (17)
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where the term uij(t) is approximated by

∂u(x, t)

∂n
= 〈grad u(x, t), n〉 ≈

〈









(uj(t)−ui(t))n1

d(pj ,pi)
(uj(t)−ui(t))n2

d(pj ,pi)
(uj(t)−ui(t))n3

d(pj ,pi)









, n

〉

=
uj(t) − ui(t)

d(pj,pi)
,

vol(Ωij) denotes the volume of the face connecting the elements around the node pi
and pj and

d(pj ,pi) := ‖pj − pi‖2.

Neglecting boundaries (17) can be written in matrix form

M
du(t)

dt
= Au(t), M := diag(vol(Ωi)). (18)

To understand the shape of the matrix A = (aij) we rearrange

∑

j∈N (i)

uij(t)vol(Ωij) =
∑

j∈N (i)

(

uj(t) − ui(t)

d(pj,pi)

)

vol(Ωij)

=
∑

j∈N (i)

uj(t)

d(pj ,pi)
vol(Ωij) − ui(t)

∑

j∈N (i)

1

d(pj,pi)
vol(Ωij).

From this we conclude that

aii = −
∑

j∈N (i)

vol(Ωij)

d(pj ,pi)
(19a)

aij =
vol(Ωij)

d(pj,pi)
, j ∈ N (i), aij = 0, i 6= j, j /∈ N (i). (19b)

To show that this discretization is stable one needs to show that it satisfies some
energy estimate. The key property for this is that all eigenvalues of A are nonpos-
itive. For further details on this topic we refer to [25, 24]. Here we only prove the
nonpositivity of A.

Theorem 3.3 The matrix A defined through (19a) and (19b) is symmetric and
negative semidefinite, that is

vTAv ≤ 0 for all v ∈ R
N .
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Proof: Since vol(Ωij) = vol(Ωji) and d(pj ,pi) = d(pi,pj) we conclude that aij =
aji for all i, j. Therefore A is symmetric. From (19b) and (19a) it is obvious
that aij > 0, j ∈ N (i) and aii < 0. Moreover, for the off diagonal elements of
the ith row of A we compute

∑

j∈N,j 6=i

aij =
∑

j∈N (i)

aij = −aii.

Hence, the Gerschgorin circles of A are given by

Gi =







z ∈ R : |z − aii| ≤
∑

j∈N (i)

|aij|







= {z ∈ R : |z − aii| ≤ |aii|} ⊂ (−∞, 0],

because aii ≤ 0. From Gerschgorin’s theorem it follows that all eigenvalues λi of A

satisfy λi ≤ 0.
�

Now we incorporate a boundary term into (17). Denoting a possible boundary point
by pb a possible discretization for a boundary point may read

vol(Ωb)

(

dub(t)

dt

)

=
∑

j∈N (b)

ubj(t)vol(Ωbj) + ub,N(t)vol(Ωb). (20)

Here ub,N(t) denotes some so far unknown construction of the normal derivative
for a boundary point b. Before constructing this term we extend the matrix A to
boundary points. To do so we rewrite (20) as

∑

j∈N (b)

ubj(t)vol(Ωbj) + ub,N (t)vol(Ωb)

=
∑

j∈N (b)

uj(t)

d(pj ,pb)
vol(Ωbj) − ub(t)

∑

j∈N (b)

vol(Ωbj)

d(pj,pb)
+ ub,N (t)vol(Ωb)

=
∑

j∈N (b)

abjuj(t) + abbub(t) + ub,N(t)vol(Ωb)

where

abb = −
∑

j∈N (b)

vol(Ωbj)

d(pj,pb)

abj =
vol(Ωbj)

d(pj,pb)
, j ∈ N (b), abj = 0, b 6= j, j /∈ N (b).

Note that the matrix A with this extension is still symmetric and negative semidefi-
nite. Symmetry is a consequence of abj = ajn. As above for a boundary off diagonal
row sum we compute

∑

j∈N,j 6=b

abj =
∑

j∈N (b)

abj = −abb.
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Therefore the additional Gerschgorin circles are given by

Gb = {z ∈ R : |z − abb| ≤ |abb} ⊂ (−∞, 0],

since abb < 0. Hence, all eigenvalues of the extension of A to the boundary point
are nonpositive.

To construct the term ub,N (t) we introduce the following sets:

Definition 3.4 Let pb denote a boundary point. We define

Bb := {pi : i ∈ N (b) ∩B} ,
Mb := N (b) \Bb,

Ib := Mb ∪ {b}
Lbi := N (i) \ Ib.

Lemma 3.5 For a point pb, b ∈ B we have

∑

i∈Ib

∑

j∈N (i)∩Ib

uj(t) − ui(t)

d(pj,pi)
vol(Ωij) = 0. (21)

Proof: By the Definition 3.4 we have negelecting time level t

∑

i∈Ib

∑

j∈N (i)∩Ib

uj − ui

d(pj,pi)
vol(Ωij)

=
∑

i∈Mb

∑

j∈N (i)∩Ib

uj − ui

d(pj,pi)
vol(Ωij) +

∑

i∈{b}

∑

j∈N (i)∩Ib

uj − ui

d(pj,pi)
vol(Ωij)

=
∑

i∈Mb





∑

j∈N (i)∩Mb

uj − ui

d(pj ,pi)
vol(Ωij) +

∑

j∈N (i)∩{b}

uj − ui

d(pj,pi)
vol(Ωij)





+
∑

j∈N (b)∩Mb

uj − ub

d(pj,pb)
vol(Ωbj) +

∑

j∈N (b)∩{b}

uj − ub

d(pj,pb)
vol(Ωbj).

Since N (b) ∩ {b} = ∅ and N (b) ∩Mb = Mb we have

∑

j∈N (b)∩{b}

uj − ub

d(pj,pb)
vol(Ωbj) = 0

∑

j∈N (b)∩Mb

uj − ub

d(pj,pb)
vol(Ωbj) =

∑

j∈Mb

uj − ub

d(pj ,pb)
vol(Ωbj). (22)

Moreover, by N (i) ∩ {b} = {b} for i ∈Mb we conclude

∑

i∈Mb

∑

j∈N (i)∩{b}

uj − ui

d(pj ,pi)
vol(Ωij) =

∑

i∈Mb

ub − ui

d(pb,pi)
vol(Ωib). (23)

11



Note that the sum of (22) cancels the sum of (23). Thus, we have proven so far

∑

i∈Ib

∑

j∈N (i)∩Ib

uj − ui

d(pj,pi)
vol(Ωij) =

∑

i∈Mb

∑

j∈N (i)∩Mb

uj − ui

d(pj,pi)
vol(Ωij).

Using that N (i) ∩Mb = Mb \ {i} for i ∈Mb and extending vol(Ωii)
d(pi,pi)

= 1 we get

∑

i∈Mb

∑

j∈N (i)∩Mb

uj − ui

d(pj ,pi)
vol(Ωij)

=
∑

i∈Mb

∑

j∈Mb\{i}

uj − ui

d(pj,pi)
vol(Ωij)

=
∑

i∈Mb





∑

j∈Mb\{i}

uj − ui

d(pj,pi)
vol(Ωij) +

ui − ui

d(pi,pi)
vol(Ωii)





=
∑

i∈Mb

∑

j∈Mb

uj − ui

d(pj,pi)
vol(Ωij) = 0,

which proves the assertion.
�

So far we have left open the construction of the term ub,N(t) in (20). To close this
gap we define a new dual volume for some boundary point pb by

Ω′
b := Ωb ∪

(

⋃

j∈Mb

Ωj

)

=
⋃

j∈Ib

Ωj . (24)

Using (24) we define

vol (Ω′
b)

(

dub(t)

dt

)

:=
∑

i∈Ib

∑

j∈Lbi

uj(t) − ui(t)

d(pj ,pi)
vol(Ωji) + ub,N (t)vol(Ωb), (25)

which can be rewritten using (20)

vol (Ω′
b)

(

dub(t)

dt

)

−
∑

i∈Ib

∑

j∈Lbi

uj(t) − ui(t)

d(pj ,pi)
vol(Ωji)

= vol (Ωb)

(

dub(t)

dt

)

−
∑

j∈N (b)

uj(t) − ub(t)

d(pj,pb)
vol(Ωjb) (26)

We may now prove the following:

Lemma 3.6 Equation (26) is, at least, a first order approximation of (15a) at some
boundary point pb.
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Proof: Using Lemma 3.5 we subtract (21) from the left side of (26) to obtain

vol (Ω′
b)

(

dub(t)

dt

)

−
∑

i∈Ib

∑

j∈Lbi

uj(t) − ui(t)

d(pj ,pi)
vol(Ωji)

−
∑

i∈Ib

∑

j∈N (i)∩Ib

uj(t) − ui(t)

d(pj ,pi)
vol(Ωij)

= vol (Ωb)

(

dub(t)

dt

)

−
∑

j∈N (b)

uj(t) − ub(t)

d(pj ,pb)
vol(Ωjb). (27)

Since Lbi = N (i) \ Ib = N (i) \ (N (i) ∩ Ib) we have

Lbi ∪ (N (i) ∩ Ib) = N (i). (28)

Putting together (27) and (28) we get for the left hand side of (27)

vol (Ω′
b)

(

dub(t)

dt

)

−
∑

i∈Ib

∑

j∈N (i)

uj(t) − ui(t)

d(pj ,pi)
vol(Ωji)

= vol (Ωb)

(

dub(t)

dt

)

−
∑

j∈N (b)

uj(t) − ub(t)

d(pj ,pb)
vol(Ωjb). (29)

Using Ib \ {b} = Mb

vol (Ωb)

(

dub(t)

dt

)

= vol (Ω′
b)

(

dub(t)

dt

)

−
∑

i∈Ib

∑

j∈N (i)

uj(t) − ui(t)

d(pj,pi)
vol(Ωji)

+
∑

j∈N (b)

uj(t) − ub(t)

d(pj ,pb)
vol(Ωjb)

= vol (Ω′
b)

(

dub(t)

dt

)

−
∑

i∈Mb

∑

j∈N (i)

uj(t) − ui(t)

d(pj,pi)
vol(Ωji).(30)

The sum over Mb is a sum of the approximate Laplacians of interior points, the
boundary point excluded. Solving (30) for dub(t)

dt
using (24) and (17)

dub(t)

dt
=

1
∑

j∈Mb
vol(Ωj)





∑

i∈Mb

∑

j∈N (i)

uj(t) − ui(t)

d(pj ,pi)
vol(Ωji)





=
1

∑

j∈Mb
vol(Ωj)

(

∑

i∈Mb

vol(Ωi)
dui(t)

dt

)

. (31)

Since
dui(t)

dt
=

1

volΩi

∑

j∈N (i)

(

uj(t) − ui(t)

d(pj,pi)

)

vol(Ωij)
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is an approximation of (∆u)i one can show using for example Taylor’s expansion
that

dui(t)

dt
= (∆u)b +O(d(pb,pi)), i ∈ N (b).

Let hb := max{d(pb,pi)}, i ∈Mb, we finally obtain using (31)

dub(t)

dt
=

1
∑

j∈Mb
vol(Ωj)

(

∑

i∈Mb

vol(Ωi)
dub(t)

dt

)

+O(hb),

which represents a first order approximation of the Laplacian at pb.
�

3.4 Construction of dissipative operators for flow problems

Equation (17) serves as a prototype to define a dissipative operator to stabilize a
convective dominated partial differential equation. By constructing a dissipative
operator it is our goal not to influence the properties of the operator proven in
Theorem 3.3. To this end, in a first step we generalize (17) to

vol(Ωi)

(

dui(t)

dt

)

=
∑

j∈N (i)

uj(t) − ui(t)

d(pj,pi)
vol(Ωij)wji, (32)

where wji > 0 denotes some weight satisfying wji = wij. In a further step we scale
the approximate Laplacian with some grid dependent value. For example, to obtain
a classical dissipative operator we scale the right hand side operator of (32) with

some grid size h, which may be locally given by h
(0)
ji = d(pj,pi)/vol(Ωij). Then (32)

becomes

dui(t)

dt
= h

1

vol(Ωi)

∑

j∈N (i)

uj(t) − ui(t)

d(pj ,pi)
vol(Ωij)wji

≈ 1

vol(Ωi)

∑

j∈N (i)

h
(0)
ji

uj(t) − ui(t)

d(pj,pi)
vol(Ωij)wji

=
∑

j∈N (i)

[uj(t) − ui(t)]wji. (33)

However, note that h
(0)
ji is only one possible choice. Another one suggested in [24]

is for example h
(1)
ji = d(pj,pi)

2. Then we obtain

dui(t)

dt
= h

1

vol(Ωi)

∑

j∈N (i)

uj(t) − ui(t)

d(pj,pi)
vol(Ωij)wji

≈ 1

vol(Ωi)

∑

j∈N (i)

[uj(t) − ui(t)] d(pj,pi)vol(Ωij)wji. (34)
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Let us shortly analyze the dissipation operators (33) and (34) on a 2d cartesian
grid. Let h denote the grid spacing and assume that the unknowns are ordered in
a matrix ui,j . Then we have Vi = h2, d(pj,pi) = h and vol(Ωij) = h. Choosing the
weights as normal directions, we obtain for (34)

duk,k(t)

dt
=

1

h2

{

(uk+1,k(t) − 2uk,k(t) + uk−1,k(t))h
2 〈e1, e1〉

+ (uk,k+1(t) − 2uk,k(t) + uk,k−1(t)) h
2 〈e2, e2〉

}

= (uk+1,k(t) + uk,k+1(t) − 4uk,k(t) + uk,k−1(t) + uk−1,k(t)) ,

which represents the undivided standard stencil of (15a) in 2d. Note that (33) gives
exactly the same result. Assuming that u(., t) ∈ C2,1(U) by Taylor’s expansion the
approximate second derivatives satisfy

1

h2
(uk+1,k(t) − 2uk,k(t) + uk−1,k(t)) = o(h),

1

h2
(uk,k+1(t) − 2uk,k(t) + uk,k−1(t)) = o(h).

Therefore, for a cartesian mesh the dissipation operators defined by the right hand
side of (33) and (34) are of order o(h). In general, for a given unstructured mesh
we cannot expect better than this.

To increase the order of accuracy of the dissipation operator we define

(∆u(t))i :=
∑

j∈N (i)

(

uj(t) − ui(t)

d(pj ,pi)

)

vol(Ωij)wji. (35)

According to (17) we now apply the construction of the dissipation operator above
to (∆u(t))i and obtain

vol(Ωi)

(

d(∆u(t))i
dt

)

=
∑

j∈N (i)

vol(Ωj)
−1(∆u(t))j − vol(Ωi)

−1(∆u(t))i
d(pj,pi)

vol(Ωij),

which can be viewed as the application of the right hand side of (16) twice. Again,
introducing some weight w̃ij > 0, w̃ij = w̃ji a dissipative operator may be given by

d(∆u(t))i
dt

=
1

vol(Ωi)

∑

j∈N (i)

vol(Ωj)
−1(∆u(t))j − vol(Ωi)

−1(∆u(t))i
d(pj,pi)

vol(Ωij)w̃ji

=
1

vol(Ωi)

∑

j∈N (i)

vol(Ωij)w̃ji
d(pj,pi)







1

vol(Ωj)

∑

k∈N (j)

(

uk(t) − uj(t)

d(pk,pj)

)

vol(Ωkj)wjk

− 1

vol(Ωi)

∑

k∈N (i)

(

uk(t) − ui(t)

d(pk,pi)

)

vol(Ωki)wik







,
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which as above may be scaled with some grid dependent value. Following the idea
above we multiply with d(pk,pj)

2,

1

vol(Ωj)

∑

k∈N (j)

(

uk(t) − uj(t)

d(pk,pj)

)

vol(Ωkj)wjk

∼ 1

vol(Ωj)

∑

k∈N (j)

(uk(t) − uj(t)) d(pk,pj)vol(Ωkj)wjk

and get

d(∆u(t))i
dt

∼ 1

vol(Ωi)

∑

j∈N (i)

vol(Ωij)w̃jid(pj,pi)







1

vol(Ωj)

∑

k∈N (j)

(uk(t) − uj(t)) d(pk,pj)vol(Ωkj)wjk

− 1

vol(Ωi)

∑

k∈N (i)

(uk(t) − ui(t)) d(pk,pi)vol(Ωki)wik







. (36)

Considering as above a 2d cartesian grid with grid size h and assuming again that
the unknowns are ordered in a matrix ui,j we have vol(Ω)i = h2, d(pj,pi) = h
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and vol(Ωij) = h. Then the dissipation operator (36) can be expressed by

d(∆u(t))i
dt

∼
∑

j∈N (i)

w̃ji







∑

k∈N (j)

(uk(t) − uj(t))wjk

−
∑

k∈N (i)

(uk(t) − ui(t))wik







=
∑

j∈N (i)

w̃ji {(uj+1,j(t) + uj,j+1(t) − 4uj,j(t) + uj,j−1(t) + uj−1,j(t))

− (ui+1,i(t) + ui,i+1(t) − 4ui,i(t) + ui,i−1(t) + ui−1,i(t))}
= −4 (ui+1,i(t) + ui,i+1(t) − 4ui,i(t) + ui,i−1(t) + ui−1,i(t))

+ (ui,i−2(t) + ui+1,i−1(t) − 4ui,i−1(t) + ui,i(t) + ui−1,i−1(t))

+ (ui+1,i−1(t) + ui+2,i(t) − 4ui+1,i(t) + ui+1,i+1(t) + ui,i(t))

+ (ui,i(t) + ui+1,i+1(t) − 4ui,i+1(t) + ui,i+2(t) + ui−1,i+1(t))

+ (ui−1,i−1(t) + ui,i(t) − 4ui−1,i(t) + ui−1,i+1(t) + ui−2,i(t))

= − (ui,i+2(t) − 4ui,i+1(t) + 6ui,i(t) − 4ui,i−1(t) + ui,i−2(t))

− (ui−2,i(t) − 4ui−1,i(t) + 6ui,i(t) − 4ui+1,i(t) + ui+2,i(t))

+ {(ui−1,i−1(t) − 2ui−1,i(t) + ui−1,i+1(t))

−2 (ui,i−1(t) − 2ui,i(t) + ui,i+1(t))

(ui+1,i−1(t) − 2ui+1,i(t) + ui+1,i+1(t))}
+ {(ui−1,i−1(t) − 2ui,i−1(t) + ui+1,i−1(t))

−2 (ui−1,i(t) − 2ui,i(t) + ui+1,i(t))

(ui−1,i+1(t) − 2ui,i+1(t) + ui+1,i+1(t))} . (37)

By (37) it is obvious that on a 2d cartesian mesh the dissipation operator (36) is
an approximation of the differential operator

h4∆(∆u) = h4

(

∂4u

∂x4
1

+
∂4u

∂x2
1∂x

2
2

+
∂4u

∂x2
2∂x

2
1

+
∂4u

∂x4
2

)

.

This analyis can be extended to 3d, and it can be shwon that in 3d on a cartesian
grid (36) approximates the differential operator

h4∆(∆u) = h4

(

∂4u

∂x4
1

+
∂4u

∂x2
2∂x

2
1

+
∂4u

∂x2
3∂x

2
1

+
∂4u

∂x2
1∂x

2
2

+
∂4u

∂x4
2

+
∂4u

∂x2
3∂x

2
2

+
∂4u

∂x2
1∂x

2
3

+
∂4u

∂x2
2∂x

2
3

+
∂4u

∂x4
3

)

. (38)
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Hence, at least on a cartesian mesh we conclude that the construction (36) yields
for an inner point to an operator of order (o(h2)).

We want to emphasize that on a given, unstructured mesh one cannot expect to get
this order of accuracy for the operator above. Moreover, (38) also shows a major
difference of the construction of the dissipative operator when compared with a
structured code. In general, in a structured code having determined directions
in hand, the dissipative operator is constructed by considering only the diagonal
terms of (38), that is ∂4u

∂x4
i

, i = 1, 2, 3, whereas the construction (36) also leads to

cross derivative terms, as shown in (38).

3.5 Construction of blended dissipation

In Sections 3.3 and 3.4 above we have presented some general view on the con-
struction of a dissipative operator. As we have seen there is quite some freedom to
choose proper weightings for the dissipation operators to ensure both

a) accuracy,

b) reliablity.

On the other hand it is clear that if the weights are not chosen adequately both
accuracy and reliablity can be severely deteriorated.

It is now our goal to define and investigate required terms for the dissipative term D

given in (10). Starting with the pressure switch Ψ
(t)
ij , t = 1, 2, we investigate the

two formulations

Ψ
(1)
ij := min{εψ max{Ψi,Ψj}, 1}, Ψi :=

∣

∣

∣

∣

∣

∑

j∈N (i)(pj − pi)
∑

j∈N (i)(pj + pi)

∣

∣

∣

∣

∣

, (39a)

Ψ
(2)
ij := min{εψΨij , 1}, Ψij :=

(pj − pi)
2

(pj + pi)2
. (39b)

Note that (39a) and (39b) only differ in the formulation of the scaled pressure
difference over the face ij. Whereas (39a) takes into account neighbor information
which increases the stencil, (39b) only evaluates the difference across some face,
yielding a nice compact stencil. The formulation of the pressure sensors (39a)
and (39b) are such that across a shock the pressure difference is large, and therefore
the first order terms in (10) are activated, whereas in smooth regions of the flow the
first order terms should be negligible. The unknown value εψ deals as weight for the
scaled pressure difference. The choice εψ = 0 switches off the first order terms, the
choice εψ = ∞ gives a purely first order scheme assuming that either max{ψi, ψj} >
0 or Ψij > 0 for all i, j. In applications we use in general εψ ∈ [1, 8].
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The complete first order dissipative term for the point i is given by

D1st
(

Wi,Wj,j∈N (i)

)

=
1

2

∑

j∈N (i)

ψ
(t)
ij |Aij| (Wj − Wi)

=
1

2

∑

j∈N (i)

ψ
(t)
ij Gij|Λij|G−1

ij (Wj − Wi) ,

which corresponds to (33). The weight satisfying wji = wij is given by

wji = ψ
(t)
ij Gij|Λij|G−1

ij .

Following the analysis of Section 3.3 we conclude that D1st can be written as

D1st
(

Wi,Wj,j∈N (i)

)

= BW,

where

bii = −
∑

j∈N (i)

ψ
(t)
ij Gij|Λij|G−1

ij ,

bij = ψ
(t)
ij Gij |Λij|G−1

ij .

Note that each bij is a block matrix. By similar arguments we may conclude that
all eigenvalues of B are nonpositive.
The remaining term on the right hand side of (10) given by

D2nd
(

Wi,Wj,j∈N (i),Wk,k∈N (j)

)

= −1

2

∑

j∈N (i)

sij(W)
(

1 − ψ
(t)
ij

)

|Aij|
(

L
(z)
j (W) − L

(z)
i (W)

)

(40)

is more complicated. First of all we define

L
(1)
i (W) :=

∑

j∈N (i)

(Wj − Wi) ,

L
(2)
i (W) :=

1

#N (i)

∑

j∈N (i)

(Wj − Wi) ,

L
(3)
i (W) :=





∑

j∈N (i)

1

d(pj,pi)





−1
∑

j∈N (i)

(Wj − Wi)

d(pj,pi)
.

Then we conclude that the construction of (40) corresponds to (36) and (37) re-

spectively. Note that on a cartesian mesh we have L
(2)
i = L

(3)
i and therefore L

(3)
i

can be viewed as generalization of L
(2)
i . The operator L

(2)
i has been introduced
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dh
dh

dh

dh
dh
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(k + 2, ℓ− 1)

(k + 2, ℓ)

(k + 2, ℓ+ 1)
(k + 2, ℓ+ 2)

Figure 2: Example of an anisotropic cartesian mesh

in [5]. The scaling by grid distances has been suggested in [18]. Such a scaling
is important when working with highly stretched meshes as required in boundary
layers for RANS computations.

When choosing L
(2)
i or L

(3)
i we set s(W) = 1 and use the resulting scheme as dissi-

pative operator. Another idea to introduce some proper scaling for the dissipative
term D2nd is to use values arising from the scheme itself. To this end we construct
a scalar s(t) based on the largest convective eigenvalues. Using the notation

λmaxij := |Vij| + vol(Ωij)aij , λmaxi :=
∑

j∈N (i)

λij

z
(1)
i :=

λi − λij
λij

, z
(2)
i :=

max{1
2
λi − λij, 0}
λij

we define

s
(t)
ij (W) := 1 + 2

√

z
(t)
i

√

z
(t)
j

√

z
(t)
i +

√

z
(t)
j

. (41)

To understand the construction (41) we consider the boundary layer of an anisotropic
mesh, represented in Figure 2. Assuming that the magnitude of the speed of sound
is much greater than the streamwise normal velocities in the viscous boundary layer,
that the speed of sound is constant over neighboring cells and that dH ≫ dh, we
approximate for a vertical face for example between the cells (k, ℓ) and (k + 1, ℓ)

z
(1)
i =

∑

k∈N (i) (|Vik| + vol(Ωik)aik) − |Vij| + vol(Ωij)aij

|Vij| + vol(Ωij)aij

≈ 2dH + dh

dh
≈ 2

dH

dh

and therefore

s
(1)
ij (W) ≈ 1 + 2

2dH
dh

2
√

2dH
dh

= 1 +
√

2

√

dH

dh
. (42)
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Exchanging the role of dh and dH we get for a horizontal face (e.g. the face between
the cells (k, ℓ) and (k, ℓ+ 1)

z
(1)
i ≈ 2dh+ dH

dH
≈ 1

and therefore

s
(1)
ij (W) ≈ 1 + 21

2
= 2.

Following the arguments for z
(1)
i we may also conclude for a vertical face for example

between the cells (k, ℓ) and (k + 1, ℓ)

z
(2)
i ≈

1
2
(2dH + dh)

dh
≈ dH

dh
(43)

and therefore

s
(2)
ij (W) ≈ 1 + 2

dH
dh

2
√

dH
dh

= 1 +
√

dH
dh
.

The approximations (42) and (43) show that the for both z
(1)
i and z

(2)
i the factor sij

is designed to increase the dissipation significantly for highly stretched cells in di-
rection of the cell stretching. This is a desired effect to improve the reliability of
the algorithm.

Let us still shortly discuss the difference between z
(1)
i and z

(2)
i . As seen above

from (42) and (43) z
(1)
i produces finally slightly bit more dissipation for highly

stretched meshes. However, the advantage of z
(1)
i is that it satisfies z

(1)
i > 0. There-

fore the expression s
(1)
ij is well defined. Although z

(2)
i produces slightly bit less

dissipation it happens that z
(2)
i = 0. Hence, s

(2)
ij is not necessarily well defined for

all states and all faces. In particular in the critical starting phase of the algorithm
in general this happens. Therefore, for z

(2)
i some fix needs to be employed and the

the term s
(2)
ij must be exchanged by for example

s̃
(2)
ij (W) := 1 + 2

√

z
(2)
i

√

z
(2)
j

√

z
(2)
i +

√

z
(2)
j + ε

, ε > 0

or

s̄
(2)
ij (W) :=

{

1, z
(2)
i = 0 and z

(2)
j = 0,

s
(2)
ij (W), else.

In summary: To construct the dissipative part of the convective flux we can choose
the pressure sensor either by (39a) or by (39b). These pressure sensors can be

combined with L
(t)
i , t = 1, 2, 3, where for the choice L

(1)
i again between z

(1)
i or z

(2)
i

may be chosen. Hence, totally we have 8 different formulations of a dissipative term
and it is hard to evaluate which to prefer.
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3.6 Construction of dissipation at the boundary

For the implementation of the dissipation at the boundary we have not tried yet the
rather complicate formulation in formula (25). Instead we construct the following
operator at the boundary. Using the notation of Figure 3, which shows a dual cell
around a boundary point pb given by a half cell, we close this boundary element
by mirroring the values with respect to the nearest boundary point pn. Then, for
a quadrilateral element as given in the right of Figure 3 we obtain using (33)

dub(t)

dt
=

(

upb−1
(t) − upb

(t)
)

+
(

upb1
(t) − upb

(t)
)

+ (upn
(t) − upb

(t)) + (upb
(t) − upn

(t))

= upb−1
(t) − 2upb

(t) + upb1
(t). (44)

Obviously this constructions yields for a quadrilatel mesh an undivided Laplacian
on the boundary. Unfortunately this construction does neither carry over straight-
forward to triangular or tetrahedral meshes nor to curved boundaries. On the one
hand for a general mesh as can be seen by the left of Figure 3 a nearest neighbor
point is not well defined i.e. unique, on the other hand the projection is in general
not directly in direction of the normal. Both properties are only satisfied for special
cases.

Hence, to generalize the construction (44) to unstructured meshes we neglect in the
boundary formulation of the dissipation the faces connecting the boundary point
and the neighboring inner points. Then for both the triangular and quadrilateral
mesh in Figure 3 we obtain (44) as boundary operator.

To obtain the fourth difference operator we simply apply the described idea above
to dub(t)

dt
. Then we get a typical fourth difference on the boundary. For example for

a one dimensional boundary surface as given in Figure 3 we obtain using (44)

d(∆u(t))b
dt

= upb−2
(t) − 4upb−1

(t) + 6upb
(t) − 4upb1

(t) + upb2
(t). (45)

Both (44) and (45) generalize straightfoward to 3d, where the surface boundary is
represented by a two dimensional manifold.

3.7 Viscous contribution

The derivatives of the flow variables required to discretize the viscous terms fv · n
are computed by a Green-Gauss ansatz,

∂w

∂xk
≈
(

∂w

∂xk

)GG
:=

1

vol (Ωi)

∑

j∈N (i)

nk
2

(

w(i) + w(j)
)

, k = 1, 2, 3, (46)
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Figure 3: Example of an anisotropic cartesian mesh

where nk describes the kth entry of the normal vector. Using an averaging of the
velocities, the viscosity and the conductivity on the face kℓ

ui :=
1

2

(

u
(k)
i + u

(ℓ)
i

)

, µeff :=
1

2

(

µ
(k)
eff + µ

(ℓ)
eff

)

, κeff :=
1

2

(

κ
(k)
eff + κ

(ℓ)
eff

)

(47)

formulae (46) and (47) allow a straightforward implementation of the viscous terms.

3.8 Source terms

The source terms are discretized in a straightforward manner using the approxima-
tion

∫

Ωi

Q dx ≈ vol(Ωi)Q (Wi, grad Wi) .

The dependency of the source terms with respect to grad Wi is due to curl (u) and
the diffusion term Di. Hence, the source term also depends on the variables of the
direct neighbors of point i. All the other terms occurring in the source terms only
require direct information of the variables Wi.
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4 Line implicit preconditioner

4.1 Determination of lines

Grids given in an unstructured data format have no line information. This infor-
mation must be generated. To this end we exploit that, in general, meshes for high
Reynolds number turbulent flows have a structured boundary layer with strong
anisotropies. To detect these anisotropies we formulate in this section a so-called
line search algorithm. Similar line search algorithms have been suggested for exam-
ple in [15, 6]. A line search algorithm based on the boundary surface can be found
in [19]. In the context of Discontinuous Galerkin methods there also line search
algorithms based on an advection-diffusion equation are established [7].

The line search algorithm presented here is based on a weighted graph method. Each
edge of the mesh is assigned a weight w(ei) representing the degree of coupling in
the discretization. The weights are taken as the inverse of the edge length,

w(ei) := (‖vi(left) − vi(right)‖2)
−1 , (48)

where vi(left) and vi(right) denote the left and the right vertex of the edge ei. The
ratio of maximum to average weight is used as an indication of the local anisotropy
in the mesh at each vertex.
In the next step the vertices are sorted according to the ratio of the maximum to
the average weight. This is an important issue since it ensures that lines originate
in areas of maximum grid stretching and end in isotropic regions.

To construct the lines the first vertex in this ordered list is picked as the starting
point for a line. The line is built by adding to the original vertex the neighboring
vertex which is most strongly connected to the current vertex, provided this vertex
does not already belong to a line, and provided the ratio of maximum to minimum
edge weights is greater than some threshold parameter γline ≥ 1. The line terminates
when no additional vertex can be found.

The line search algorithm can be summarized as follows:

1) For each vertex vj , construct a list of edges ei(j) originating from the vertex
and determine the weight (48).

2) Compute the minimum weight, maximum weight, the average weight and the
ratio of both of them:

wmin(vj) := min
i∈N (j)

{w(ei(j)}, wmax(vj) := max
i∈N (j)

{w(ei(j)}

wavg(vj) :=
1

#N (j)

#N (j)
∑

i=1

w(ei(j)), rat(vj) := wmax(vj)/wavg(vj).
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3) Sort the vertices vj with respect to rat(vj).

4) Construct the lines:

a) Set searchOppositeDirection = false.

b) Pick the first vertex vk out of the sorted list, delete it from the list and
add it to the line.

c) If the ratio wmax(vk)/wmin(vk) ≥ γline:

∗ Find the neighbor vertex vneig corresponding to wmax(vk), delete
it from the sorted list and add it to the line.

∗ Define vk := vneig and go back to b).

d) else if the ratio wmax(vk)/wmin(vk) < γline and searchOppositeDirection =
false:

∗ searchOppositeDirection = true

∗ Go back to the first element in the line. (E.g. when a line starts in
a wake region, one has to search in both directions from the original
element.)

∗ Go to c).

e) else

∗ Go to a).

We denote the sets of points determined by the algorithm above by L1, . . . , Ln.
These sets of points satisfy for j = 1, . . . , n:

Lj ⊂ {1, . . . , N}, Lj ∩ Li = ∅, i 6= j, ∪nj=1Lj = {1, . . . , N}

The number of points in the set Li is given by

ri := #{Li}, i = 1, . . . , n.

If ri > 1 we call Li a line, otherwise we say Li is a point.

4.2 Line implicit Runge-Kutta method

To derive a line implicit Runge-Kutta method we start with an s-stage diagonally
implicit Runge-Kutta method given by the Butcher scheme

A :=











α11 0 · · · 0

α21
. . .

. . .
...

...
. . .

. . . 0
0 · · · αs,s−1 αss











, b :=











0
...
0

αs+1,s











and c :=







0
...
0






. (49)

25



The stages of this scheme and the discrete evolution are given by

k1 = −M−1R
(

WTn + ∆tα11k1

)

k2 = −M−1R
(

WTn + ∆tα21k1 + ∆tα22k2

)

... (50)

ks = −M−1R
(

WTn + ∆tαs,s−1ks−1 + ∆tαssks
)

WTn+1 = WTn + ∆tαs+1,sks.

Instead of considering the stages kj, j = 1, . . . , s, being functions of all vari-
ables Wi, i = 1, . . . , N , we consider them as being functions only of the variables
along the lines L1, . . . , Ln. Then the nonlinear equations kj of the scheme (50)
decouple for i = 1, . . . , n as follows:

k1(WLi
) = −M−1

Li
RLi

(

WTn + CFLimpl∆tLi
α11k1(WLi

)
)

k2(WLi
) = −M−1

Li
RLi

(

WTn + CFLimplα12∆tLi
k1(WLi

) + CFLimplα22∆tLi
k2(WLi

)
)

... (51)

ks(WLi
) = −M−1

Li
RLi

(

WTn + CFLimplαs−1,j∆tLi
ks−1(WLi

) + CFLimplαss∆tLi
ks(WLi

)
)

W
Tn+1

Li
= WTn

Li
+ CFLimplαs+1,s∆tLi

ks(WLi
).

Here the diagonal matrices with respect to the local time steps and the cell volumes
along the lines Li are denoted by

∆tLi
:= diag

(

∆tℓ1i , . . . ,∆tℓ
ri
i

)

and MLi
:= diag

(

vol
(

Ωℓ1i

)

, . . . , vol
(

Ωℓ
ri
i

))

.

To approximate a solution of the nonlinear systems k1, . . . , ks we use Newton’s
method to approximate the root of the function

gj(kj(WLi
)) := kj(WLi

) + M−1
Li

RLi

(

WTn

+ CFLimplαj−1,j∆tLi
kj−1(WLi

) + CFLimplαjj∆tLi
kj(WLi

)) .

Its derivative is given by

∂gj(kj(WLi
))

∂kj(WLi
)

[kj(WLi
)] = I + CFLimplαjj∆tLi

M−1
Li

∂RLi

∂WLi

(

WTn

+ CFLimplαj−1,j∆tLi
kj−1(WLi

) + CFLimplαjj∆tLi
kj(WLi

)) .

and Newton’s method may be formulated by

k
(0)
j (WLi

) = 0 (initial guess)

∂gj(kj(WLi
))

∂kj(WLi
)

[k
(m)
j (WLi

)]hm(Li) = −g(k(m)
j (WLi

)),

hm(Li) = k
(m+1)
j (WLi

) − k
(m)
j (WLi

).
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Stopping Newton’s iteration after one step we get for j = 1, . . . , s the iterates

k
(1)
j (WLi

) = − [Pj(Li)]
−1 (gj(k

(0)
j (WLi

))), i = 1, . . . , n, (52)

where

Pj(Li) = I + CFLimplαjj∆tLi
M−1

Li

∂RLi

∂WLi

[

WTn + CFLimplαj,j−1∆tLi
k

(1)
j−1(WLi

)
]

.

Using these formulae the line implicit Runge-Kutta method (51), where the inner
Newton iteration is truncated after one step can, be represented by the algorithm

k1(WLi
) = − [P1(Li)]

−1
M−1

Li
RLi

(

WTn
)

k2(WLi
) = − [P2(Li)]

−1
M−1

Li
RLi

(

WTn + CFLimplα21∆tLi
k1

)

...

ks(WLi
) = − [Ps(Li)]

−1
M−1

Li
RLi

(

WTn + CFLimplαs+1,s∆tLi
ks−1

)

W
Tn+1

Li
= WTn

Li
+ CFLimplαs+1,s∆tLi

ks(WLi
).

Defining the updates W
(0)
Li

:= WTn

Li
and

W
(j)
Li

:= WTn

Li
− CFLimplαj+1,j∆tLi

[Pj(Li)]
−1

M−1
Li

RLi
(W(j−1))

we notice that the Runge-Kutta scheme above can be formulated equivalently by

W
(0)
Li

:= WTn

Li

W
(1)
Li

= W
(0)
Li

− CFLimplα21∆tLi
P1(Li)

−1M−1
Li

RLi

(

W(0)
)

... (53)

W
(s)
Li

= W
(0)
Li

− CFLimplαs+1,s∆tLi
Ps(Li)

−1M−1
Li

RLi

(

W(s−1)
)

W
Tn+1

Li
= W

(s)
Li
.

Algorithm (53) indicates that along each line the linear system

Pj(Li)hLi
= CFLimplαj+1,j∆tLi

M−1
Li

RLi
(W(j−1))

needs to be solved. This can be equivalently formulated by

(

1

CFLimpl
(∆tLi

)−1
MLi

+ αjj
∂RLi

∂WLi

)

hLi
= αj+1,jRLi

(W(j−1)). (54)

The exact construction of the preconditioner Pj is topic of the next section. Here
we want to mention that the actual preconditioner Pj is given by a simplification
of a first order approximation to the Jacobian of the residual function R(W(0)).
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Then the residual at point i only depends on its direct neighbors (i.e., Ri =
Ri

(

Wi,Wj,j∈N (i)

)

). Therefore, along a line Li the extracted part ∂RLi
/∂WLi

of the full Jacobian can be represented by a block tridiagonal matrix,

∂RLi

∂WLi

=





























∂R
ℓ1
i

∂W
ℓ1
i

∂R
ℓ1
i

∂W
ℓ2
i

∂R
ℓ2
i

∂W
ℓ1
i

∂R
ℓ2
i

∂W
ℓ2
i

∂R
ℓ2
i

∂W
ℓ3
i

. . .
. . .

. . .
∂R

ℓ
ri−1
i

∂W
ℓ
ri−2
i

∂R
ℓ
ri−1
i

∂W
ℓ
ri−1
i

∂R
ℓ
ri−1
i

∂W
ℓ
ri
i

∂R
ℓ
ri
i

∂W
ℓ
ri−1
i

∂R
ℓ
ri
i

∂W
ℓ
ri
i





























. (55)

Hence, to compute one stage of Algorithm (53) n block-tridiagonal linear sys-
tems (54) need to be solved. This can be efficiently done by applying for example
a block LU-decomposition (see e.g. [8]).

In the case when a line degenerates to a point, which is usually the case for the
isotropic part of the mesh, Algorithm (53) becomes point implicit. Hence, the line
implicit preconditioned Runge-Kutta method (53) is a straightforward generaliza-
tion of the algorithm presented in [10]. Moreover, specifically, a line implicit method
is a hybrid method which is

a) line implicit in anisotropic parts of the mesh,

b) point implicit in isotropic parts of the mesh.

Similar line implicit methods are suggested in [1, 6, 14, 15, 16]. However, usually
the derivation of these methods in these references are quite specific and do not
exploit the general formulation of implicit Runge-Kutta methods.
Finally, note that in our line implicit solution strategy all lines determined by
the line search algorithm are used. This remark seems to be trivial. However,
for example in [6] it was mentioned that their algorithm only accepts lines of a
minimum length of 10 elements. In our algorithm this does not play a role since
our algorithm becomes automatically point implicit. Therefore lines of very short
length can be handled.
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5 Construction of the preconditioner

The construction of the preconditioner is guided by the following rules:

a) We only consider a first order discretization of the residual function, that is
we neglect second order terms.

b) The dissipation operator |Aij| in (9) is assumed to be constant.

c) The effective viscosity µeff and effective conductivity κeff (see (6)) are assumed
to be constant.

For the exact inviscid contribution to the preconditioner we refer to [10]. A detailed
description of the viscous contribution and the contribution with respect to the
source terms is given in the Appendix, Section 8.

Therefore, the diagonal entries of the tridiagonal matrix (55) are approximated by

∂Ri

∂Wi
≈

∑

j∈N (i)

{

1

2
|Aij | −

[

∂(fv · n)(W(p(i),p(j)))

∂Wp(i)

]TSL,µeff=const
}

+
∂ (fbdry · n) (Wi)

∂Wi
− vol (Ωi)

∂Q(Wi,Wj)

∂Wi
. (56)

For an inner point i the boundary term fbdry ·n vanishes. However, since we consider
all derivatives of the boundary terms (e.g. characteristic farfield, Euler wall) we
mention them here for completeness. For example, for an inviscid calculation the
derivative of the Euler boundary condition fbdry,eul · n := (0, n1p, n2p, n3p, 0) given
by

∂ (fbdry,eul · n) (W)

∂W
= (γ − 1)















0 0 0 0 0
n1‖u‖2

2

2
−n1u1 −n1u2 −n1u3 n1

n1‖u‖2
2

2
−n2u1 −n2u2 −n2u3 n2

n1‖u‖2
2

2
−n3u1 −n3u2 −n3u3 n3

0 0 0 0 0















is added to the preconditioner. (We left out the sixth component in the formula
above because turbulence is not present in an inviscid calculation.) Moreover, in
a cell vertex code the boundary condition for a boundary point i in general only
depends on variables at point i. Hence, derivatives of the boundary fluxes need
only be added to the diagonal of the Jacobian.

The approximate derivative of the residual with respect to a neighboring point j ∈
N (i) reads

∂Ri

∂Wj
≈ −1

2
|Aij | +

1

2

[

∂(fc · nij)(W(p(i),p(j)))

∂Wp(j)

]

−
[

∂(fv · nij)(W(p(i),p(j)))

∂Wp(j)

]TSL,µeff=const

− vol (Ωi)
∂Qi(Wi,Wj)

∂Wj
.(57)
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The terms on the right hand side of (56) and (57) are used to approximate the
block tridiagonal matrix (55) denoted in the following by ∂RLi

/∂WLi
. The linear

system (54) is slightly modified into

(

1

CFLimpl

(∆tLi
)−1

MLi
+ εPαjj

∂RLi

∂WLi

)

hLi
= αj+1,jRLi

(W(j−1)). (58)

The parameter εP can be used for overrelaxation and underrelaxation. It can be
similarly interpreted as in [10, Section 5.1] (see also [2]). The estimate for the
time step ∆ti is computed by a weighting of the largest convective and viscous
eigenvalues (see e.g. [11]),

∆ti := vol(Ωi)





∑

j∈N (i)

1

2
(|Vij | + aijAij)

+
Cvisc(µeff)ijAij
‖p(i) − p(j)‖2ρ(i)

(

max

{

4

3
,
(κeff)ij(γ − 1)

(µeff)ij

})]−1

, Cvisc := 4.
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6 Numerical results

6.1 Investigation of dissipative scheme

In Section 3 we suggested many different techniques to construct the term (9).
Once again we want to emphasize that in particulat this term is responsible for
both accuracy and reliability of a flow simulation. Prior to the investigations it
should be mentioned that the suggested methods have reached a final end. From our
point of view still many things need to be considered to reach an overall satisfying
formulation of the dissipative terms. The following investigationy may be viewed
as a first step towards such a formulation.

6.1.1 Inviscid flow over smooth bump

We consider the inviscid flow simulation over a smooth bump. The grids are shown
in Figures 4– 6. Their generation is completely described in the notes of the High-
Order CFD workshop taken place at the AIAA conference January 2012. The flow
conditions for the testcase are Ma = 0.5 and Angle of attack 0°.

First of all we want to get an idea of the order of accuracy of the discretization
defined by (9). To this end first of all note that the argumentation given in (37)
and (36) do not hold since we work with triangular meshes. Hence, considering the
general theory of Section 3.3 we can only expect a method of order one. However,
Figure 7 shows that the considered method yields on the sequence of triangular
meshes a method which approximately shows a second order of accuracy. The
considered error in Figure 7 is a so-called entropy error

Error :=

(

N
∑

j=1

vol(Ωj)

)−1/2




N
∑

j=1

vol(Ωj)

( pj

ργ
j
− p∞

ργ
∞

p∞
ργ
∞

)2




1/2

, (59)

which needs to go to 0 for an infinite fine mesh.

6.1.2 Influence of construction of dissipation at the boundary

To give an initial impression of the influence of the construction of dissipation at
the boundary we consider again the smooth bump as in Section 6.1.1. Only for
the finest mesh (see Figure 6) we have plotted the total pressure loss in Figure 7
on the right. Here the effect described in Section 3.6 can be observed. Dealing
with a triangular mesh formulae (44) and (45) are not good approximated by the
construction with the nearest neighbor point to the wall when compared with the
construction where the faces connecting the boundary point and the next inner
points are neglected. For the first construction a significant larger total pressure
loss can be observed.
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Having Figure 7 we restrict ourselves in the following to the construction of bound-
ary dissipation by neglecting faces connecting the boundary point and the next inner
points. Note that so far we have not implemented and investigated the boundary
construction using formula (25). Moreover, it is still an open issue to construct
a stable artificial dissipation operator in corners such as wing body junction. We
assume that many reliability problems of unstructured CFD codes is due to the
problem of constrcution of dissipation near the boundary.

6.1.3 Inviscid flow over NACA0012

To investigate the interplay of different parameters we investigate inviscid flow over
a NACA0012 airfoil under flow conditions Ma = 0.8, AoA = 1.25°. We consider a
sequence of meshes of dimension 640× 128, 320× 64 and 160× 32. An illustration
of the meshes is given in Figures 8 – 10.

Mesh: 640 × 128 C-drag C-lift

Ψ(1), εΨ = 1, ξ = 0.015625, s(1) 2.1425e− 02 3.3425e− 01

Ψ(1), εΨ = 8, ξ = 0.015625, s(1) 2.1484e− 02 3.3522e− 01

Ψ(1), εΨ = 8, ξ = 0.03125, s(1) 2.1502e− 02 3.3555e− 01

Ψ(2), εΨ = 1, ξ = 0.015625, s(1) 2.1417e− 02 3.3413e− 01

Ψ(2), εΨ = 8, ξ = 0.015625, s(1) 2.1426e− 02 3.3427e− 01

Ψ(2), εΨ = 8, ξ = 0.03125, s(1) 2.1458e− 02 3.3486e− 01

Table 1: C-drag and C-lift for the mesh 640 × 128

Mesh: 320 × 64 C-drag C-lift

Ψ(1), εΨ = 1, ξ = 0.015625, s(1) 2.1493e− 02 3.3525e− 01

Ψ(1), εΨ = 8, ξ = 0.015625, s(1) 2.1614e− 02 3.3671e− 01

Ψ(1), εΨ = 8, ξ = 0.03125, s(1) 2.1638e− 02 3.3707e− 01

Ψ(2), εΨ = 1, ξ = 0.015625, s(1) 2.1474e− 02 3.3500e− 01

Ψ(2), εΨ = 8, ξ = 0.015625, s(1) 2.1500e− 02 3.3538e− 01

Ψ(2), εΨ = 8, ξ = 0.03125, s(1) 2.1546e− 02 3.3612e− 01

Table 2: C-drag and C-lift for the mesh 320 × 64

To get an impression of the influence of the two different pressure switches (39a)
and (39b) we make computations for both. Moreover, to see the influence of the
weighting coefficient εψ and ξ we choose either εψ = 1 and εψ = 8 and we con-
sider ξ = 0.015625 and ξ = 0.03125. The weighting function sij is always deter-

mined by s
(1)
ij .
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Mesh: 160 × 32 C-drag C-lift

Ψ(1), εΨ = 1, ξ = 0.015625, s(1) 2.1624e− 02 3.3759e− 01

Ψ(1), εΨ = 8, ξ = 0.015625, s(1) 2.1969e− 02 3.3851e− 01

Ψ(1), εΨ = 8, ξ = 0.03125, s(1) 2.2007e− 02 3.3863e− 01

Ψ(2), εΨ = 1, ξ = 0.015625, s(1) 2.1587e− 02 3.3721e− 01

Ψ(2), εΨ = 8, ξ = 0.015625, s(1) 2.1633e− 02 3.3710e− 01

Ψ(2), εΨ = 8, ξ = 0.03125, s(1) 2.1706e− 02 3.3776 − e01

Table 3: C-drag and C-lift for the mesh 320 × 64

Results for C-drag and C-lift for all computations are given in the Table 1– 3.
However, these values seem to carry only little information to evaluate the different
discretizations and one should be very careful by evaluating the different discretiza-
tions with respect to these values. It is more important to have a closer look at the
cp distributions given in Figures 11– 13. From Figure 11 it is obvious that a choice
of εΨ = 1 and ξ = 0.015625 is not appropriate since the cp distribution shows lots
of oscillations in a neighborhood of the shock.

A first explanation for this behavior is given by Figure 14. Despite the theoretical
assumption also in a neighbor of the shock neither of both pressure switches (39a)
and (39b) is close to 1. Therefore the scheme (10) will never reach a first order
scheme in the neighborhood of the shock. It will only deliver a small scaled first
order part and will mainly be a second order scheme. Hence, oscillations in a
neighborhood of the shock can be expected. Therefore, we increased the εΨ = 1
to εΨ = 8. Then, in a neighborhood of the shock comes closer to a first order
scheme. However, by a look at Figure 12 it can be observed that the influence of
increasing εΨ to 8 is negligible.

So, to reduce the oscillations we finally increased the weighting factor ξ to 8. This
improves the quality of the solution significantly. We want to mention that the final
oscillation of Figure 13 cannot be significantly reduced by playing around with εΨ

and ξ. It can be avoided by modifying the pressure switch a little. However, since
such an oscillation can in general not be observed in viscous computations, no
modifications are included into the implementation.

Figure 13 also shows that the shock position is not significantly influenced by the
choice of the pressure switch. Following the argumentation in Section 3.5 we there-
fore recommend to use the more local formulation (39b). Although not shown here
in particular for 3d configurations it figured out that this formulation yields better
reliability.
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6.2 Concluding remarks with respect to construction of dis-

sipation

Both the theory presented in Section 3 and the numerical investigations of Sec-
tions 6.1.1, 6.1.2 and 6.1.3 may be viewed as initial data points to construct an
accurate and reliable scheme. We have tried to give arguments that the construc-
tion yields a stable implementation by estimating the eigenvalues of the dissipative
operators. Moreover, we showed which accuracy of the scheme can be expected.
However, the theoretical view does not circumvent the problem that in pratice
some scaling of first and second order terms is required. Also the construction of
dissipation along the boundary is still not answered satisfactory.

So, in future work additional data points are required to get an impression of the
behavior of the dissipative scheme. Here in particular turbulent high Reynolds
number flow simulations also on complex 3d configurations should be investigated.

Moreover, we think that further significant improvements can only be reached by
extending the theory presented in Section 3 to the relevant block systems. Special
focus should be in the construction of dissipation along boundaries in particular in
junction areas.

6.3 Application of the line search algorithm

To demonstrate the influence of the threshold parameter γline of the line search
algorithm we consider a structured RAE 2822 airfoil grid of dimension 736 × 176.
In Figures 15 – 17 the lines determined in the neighborhood of the airfoil are shown
for γline = 5 and γline = 20. Obviously, the choice γline = 20 is far more restrictive
and the lines are significantly shorter.
As a second example the determined lines of a three element high lift airfoil with
a structured boundary layer and unstructured farfield (see Figure 23) are shown in
Figures 18 – 19 for γline = 2. The mesh has 69534 cells. Whereas the lines on the
finest grid are as expected, on the coarse grids the lines deteriorate.
As a third example and to demonstrate the applicability of the line search algorithm
for 3-D unstructured grids we show results for a 3-D wing-body configuration in
Figure 20. The mesh has 2953483 cells. The loss as well as the deterioration of the
lines on the agglomerated grid levels happens here as well.

6.4 Application of line implicit method

In all our computations we chose the Butcher schemes
The preconditioner required required for equation (58) is only constructed and in-
verted on the first stage of the Runge-Kutta scheme. Updating the preconditioner
on every stage in general did not show any significant improvement in the conver-
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0 0 0 0
0 2/3 0 0
0 0 2/3 0

0 0 1

(expl.RK.),

0 1 0 0
0 2/3 1 0
0 0 2/3 1

0 0 1

(Algorithm (53)).

Size 736 × 176 368 × 88 184 × 44 92 × 22 46 × 11
Max. aspect ratio 4000 3800 3500 3000 2200

Iter. Res. 10−12 expl. RK. 86309 24393 10829 6395 2952
Iter. Res. 10−12 line impl. 4852 2372 2639 942 862

CPU time expl. RK. > 24h 2h 14 min. 120sec. 15sec.
CPU time line impl. 9.5h 1.2h 21 min. 105sec. 30sec.

Table 4: Main results for the RAE2822 testcase

gence rate whereas the CPU time is substantially increased. The parameter εP is
always chosen as 2.

6.4.1 RAE 2822 airfoil

We apply Algorithm (53) to a sequence of five meshes for the RAE 2822 airfoil
under the following conditions:

a) Onflow Mach number: 0.73

b) Angle of attack: 2.8°

c) Reynolds number: 6.5e6

To eliminate parallelization effects in the algorithm all computations were performed
on a single core. For the line implicit method the parameter γline = 5.0 was chosen.
A plot of the convergence histories is given for the finest grid in Figure 21. The drag
coefficient shows that it is usually not enough to reduce the density residual several
orders of magnitude. For the explicit Runge-Kutta methods after about 20000
iterations the density residual is reduced about eight orders of magnitude. However,
the drag coefficient after 20000 iterations is still not converged for this method. This
observation again indicates that for highly stretched meshes reliable and efficient
solution methods are required which approximate a solution of the discrete equation,
that is, which decrease the residual to machine accuracy in an adequate number
of iterations. The final drag coefficient of about Cd = 0.01708 corresponds to
other results given in literature, see e.g. [22]. Figure 22 shows the Cp–distribution
compared to measured data ([4]). The agreement is acceptable.
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6.4.2 Three element high lift airfoil

Results for the three element high lift airfoil are shown in Figure 23 and Figure 24.
The compuations were performed on a single core. For the line implicit method the
parameter γline = 4.0 was chosen. The total CPU time was about four hours. The
flow conditions of this test case are as follows:

a) Onflow Mach number: 0.22

b) Angle of attack: 21.4°

c) Reynolds number: 4.0e6

Figure 24 shows the complexity of flow field around a high lift airfoil. On the one
hand there are small transonic and supersonic regions in a neighborhoood of the slat
whereas the rest of the flowfield is dominated by low Mach numbers. Moreover, one
can observe that on the lower side of the slat, on the upper side of the flap and at the
end of the main wing there exist regions of separation. The flow solver is required
to handle all these flow features. This configuration provides an example for the
gain in reliability of the line implicit Algorithm (53). The explicit Runge-Kutta
method was not successful at all for this configuration whereas the line implicit
method yield to a convergent solution (see Figure 23).

6.5 Helicopter fuselage

The first 3D example we consider is turbulent flow around an analytic streamlined
body, which can be viewed as a generic helicopter fuselage (for details see [9, Chapter
33]). The mesh has 425984 elements and 38912 surface elements. A plot of the mesh
as well as the lines for γline = 10 is given in Figure 25. The flow conditions of this
test case were as follows:

a) Onflow Mach number: 0.8

b) Angle of attack: 5.0°

c) Reynolds number: 1.0e7

The computations for this testcase were done in a parallel version of the code using
twelve processes. The convergence histories of the testcase are given in Figure 26.
The results are summarized in the following tabular:
Tabular 5 shows the significant superiority of the line implicit method (53) when
compared with the explicit Runge-Kutta method. In CPU time the speed up was
about a factor of three.
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Stopping criterion Iterations CPU time
expl. RK. Res. 10−12 12566 3.1h
line impl. Res. 10−12 875 0.9h

Table 5: Main results for the helicopter fuselage

6.6 ONERA M6 wing

We consider turbulent flow over the ONERA M6 wing. The mesh is purely hexa-
hedral with 1725056 elements. The number of surface quadrilaterals is 79280. A
section of the mesh is given in Figure 27. The lines used in the multigrid cycle are
given in Figure 28. Moreover, in Figure 28 the convergence histories for the density
and the turbulent variable residual as well as the convergence history for the lift
are plotted. The flow conditions of this test case were as follows:

a) Onflow Mach number: 0.8395

b) Angle of attack: 3.06°

c) Reynolds number: 11.3e6

Note that the explicit Runge-Kutta method in combination with a Matrix dissipa-
tive scheme (see (9)) was not successful at all. This observation goes along with the
theory presented in ([10]). The computation was performed using eight processes.
The total computation time to reduce the residual about nine orders of magnitude
took about 33 hours.

6.7 DPW4

As last example we consider turbulent flow over a configuration used at the Drag
Prediction Workshop 4. It is a wing-body configuration with horizontal tail plane (see
Figure 29). For more details on this test case we refer to [28]. The mesh is hybrid
with 8565419 elements and 167863 surface elements given by:

a) 5309541 tetrahedrons

b) 18384 prisms

c) 108987 pyramids

d) 3128507 hexahedrals

e) 40888 surface triangles

f) 126975 surface quadrilaterals
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The flow conditions of this test case were as follows:

a) Onflow Mach number: 0.85

b) Angle of attack: 2.33548°

c) Reynolds number: 5.0e6

Figure 29 also shows the convergence history of the density and the turbulent vari-
able residual as well as the convergence history for the drag. Note that also in this
testcase the explicit Runge-Kutta method in combination with a Matrix dissipative
scheme (see (9)) was not successful at all. The computation was performed using 16
processes. The total computation time to reduce the residual about ten orders of
magnitude took about 25 hours.

7 Conclusion and future work

We have presented a line implicit Runge-Kutta method. This technique was applied
to fully coupled turbulent flow problems for the one equation turbulence model of
Spalart and Allmaras [23]. For all parts of the equations the required approximative
derivative terms have been presented as well as the complete construction of the
preconditioner. The improved reliability and efficency in particular for meshes
with large anisotropies and for critical flow conditions such as high lift have been
demonstrated.

In our framework an agglomeration strategy built upon the same idea as the con-
struction of the preconditioner is still missing yielding in particular on coarse grid
levels within the multigrid badly shaped lines. Therefore, as one of the next steps
it is planned to combine the line implicit method with a directional coarsening
strategy [14, 12].

It was presented that the length and the shape of the lines are determined by some
user defined parameter input γline. To make the line implicit method reliable for
industrial application the influence of the length and the shape of the lines to the
flow solver must be investigated. From an algorithmic point of view lines resolving
the complete anisotropies in the given grid are desired. Then the method gets a
more implicit behaviour. This problem is in particular from relevance for parallel
applications. Domain decomposition methods are required taking care of the lines
representing the anisotropies of the grid. To ensure a good load balancing correct
weights need to be incorporated into the domain decomposition algorithms since
the main complexity of the algorithm is to set up and solve the block tridiagonal
linear systems (54).

So far, computational expensive parts namely, the solution of the block tridiagonal
linear systems, rely on private implemented routines. It can be assumed that these
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routines are not implemented in an optimal way and should therefore be exchanged
by professional tools such as LAPACK. Hence, the given CPU times in this article
may be misleading and the potential of the line implicit method is even greater
than indicated in this article.

39



8 Appendix: Required derivative terms

8.1 The viscous contribution

Instead of considering the full derivative including the derivative of the Green-Gauss
gradients, we use a thin shear layer approximation for the construction of the viscous
part of the preconditioner.
For a detailed computation of the derivative given below we refer to [11]. For
notation only we describe the points i and j corresponding to the face ij by i = p(0)

and j = p(1). The derivative of the viscous flux fv ·n given on the face p(0)p(1) with
respect to the conservative variables Wp(ℓ), ℓ = 0, 1 can be assembled as

[

∂(fv · n)
(

Wp(0),Wp(1)

)

∂Wp(ℓ)

]TSL,µeff=const

=
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where

E
(ℓ)
1 := (−1)ℓ

{
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[
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(ℓ)
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1

3
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1
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1

3
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1
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,

E
(ℓ)
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2
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3
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u
(ℓ)
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3
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1

3
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]
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3

}

,

N
(ℓ)
12,13 := N12u

(ℓ)
2 +N13u

(ℓ)
3 , N

(ℓ)
12,23 := N12u

(ℓ)
1 +N23u
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3 ,

N
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∆ (p(1),p(0))

1
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4

3
n2

1 + n2
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2 +
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3
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8.2 Contribution of the source terms

We rewrite Sutherland’s law (7) as

µl = µl,∞

(

T

T∞

)3/2 1 + T̄
T∞

T
T∞

+ T̄
T∞

.
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Usually T̄ and T∞ are user defined parameters with default values

T̄ := 110.4K (Sutherland’s constant),

T∞ := 273.15K (Reference temperature).

Working with non dimensionalized variables the temperature T is replaced by Tnd :=
T/T∞ and Sutherland’s law reads

µl = µl,∞T
3/2
nd

(

1 + Csuth

Tnd + Csuth

)

, Csuth =
T̄

T∞
. (60)

For the rest of the paper Sutherland’s law is always used in its non dimensional-
ized form (60) and therefore we will skip the subscript on the non dimensionalized
temperature Tnd.

Note that µl,∞ is a predetermined value and therefore constant. The derivative of
Sutherland’s law can be computed as

∂µl
∂W

= µl,∞

{√
T

2

(1 + Csuth)(T + 3Csuth)

(T + Csuth)2

}

∂T

∂W
.

Using the representation T = p/ρ we find

∂T

∂W
=
∂(p/ρ)

∂W
=

1

ρ2

[

ρ
∂p

∂W
− p

∂ρ

∂W

]

=
1

ρ

∂p

∂W
− T

ρ

∂ρ

∂W
.

The formulas

∂p

∂W
= (γ − 1)

(‖u‖2
2

2
,−u1,−u2,−u3, 1, 0

)T

and
∂ρ

∂W
= (1, 0, 0, 0, 0, 0)

conclude the derivative of Sutherland’s law. In the following we will list all required
derivatives with respect to the source terms of the turbulence model. We have

∂χ
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∂
(

ρν̃
µl

)
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=
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)

and ∂(ρν̃)
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= (0, 0, 0, 0, 0, 1). Therefore, we get the following derivatives:
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To compute the derivative of S̃ we start with the derivative of the Green-Gauss gra-
dients (46) applied to the velocities. Denoting the conservative variables by (z1, z2, z3, z4, z5, z6) :=
(ρ, ρu1, ρu2, ρu3, ρE, ρν̃) we have

(
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Therefore, we have for i = 1, 2, 3, ℓ = 2, 3, 4,
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Hence, the derivative of S̃, r, g and fw is computed by

∂S̃

∂W
=

∂‖curl u‖2
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Finally, the derivatives of production and destruction can be computed by
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To get a reliable solution algorithm care has to be taken by incorporating parts
of the derivative of the source terms into the preconditioner. To get a robust
implementation in the production part it was necessary to replace

ρν̃
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}
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.

For the derivative of the diffusion part Di we compute
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The additional derivatives satisfy

∂

∂z
(ℓ)
i

(

∂ν̃(k)

∂xj

)GG

= 0, i = 2, 3, 4, 5.

Then the derivative of the diffusion is given by
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)GG
∂
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(
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)GG

.

Finally, note that only the terms curl (u) and Di require gradient information
and depend therefore not only on the variables Wi, but also on all neighbor vari-
ables Wj,j∈N (i). This means that off-diagonal terms with respect to the source
terms need to be considered in the block tridiagonal matrix (55). But only terms
arising from

∂S̃(Wi)

∂Wj

=
∂‖curl u(i)‖2

∂Wj

and
∂Di(Wi)

∂Wj

, j ∈ N (i),

produce off-diagonal terms.
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Figure 4: Bump grid: No. of elements 25 (left), No. of elements 81 (right)

Figure 5: Bump grid: No. of elements 289 (left), No. of elements 1089 (right)

Figure 6: Bump grid: No. of elements 4225 (left), No. of elements 16641 (right)
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Figure 7: Left: Order of accuracy with respect to entropy error (59), Right: Com-
parison of total pressure loss for construction of boundary dissipation by nearest
point to wall and neglecting of boundary faces
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Figure 8: NACA0012 Euler grid 160 × 32: total view (left), neighborhood of the
airfoil(right)

Figure 9: NACA0012 Euler grid 320 × 64: total view (left), neighborhood of the
airfoil(right)

Figure 10: NACA0012 Euler grid 640× 128: total view (left), neighborhood of the
airfoil(right)
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Figure 11: NACA0012 Euler grid 640 × 128: cp distribution, εΨ = 1, ξ = 0.015625

Figure 12: NACA0012 Euler grid 640 × 128: cp distribution, εΨ = 8, ξ = 0.015625

Figure 13: NACA0012 Euler grid 640 × 128: cp distribution, εΨ = 8, ξ = 0.03125
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Figure 14: Computed pressure sensor by formula Ψi :=
∣

∣

∣

P

j∈N (i)(pj−pi)
P

j∈N (i)(pj+pi)

∣

∣

∣
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Figure 15: RAE2822: Determined lines in the neighborhood of the airfoil on the
finest grid (left) and on the first agglomerated grid (right), γline = 5.0

Figure 16: RAE2822: Determined lines in the neighborhood of the airfoil on the
second agglomerated grid (left) and on the third agglomerated grid (right) γline = 5.0

Figure 17: RAE2822: Determined lines in the neighborhood of the airfoil on the
finest grid (left) and on the first agglomerated grid (right), γline = 20.0
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Figure 18: High lift airfoil: Determined lines in the neighborhood of the airfoil on
the finest grid (left) and on the first agglomerated grid (right), γline = 2.0

Figure 19: High lift airfoil: Determined lines in the neighborhood of the airfoil on the
second agglomerated grid (left) and on the third agglomerated grid (right) γline = 2.0

Figure 20: Wing-body configuration: Unstructured mesh with prismatic boundary
layer(left), determined lines on the finest grid (right), γline = 10.0
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Figure 21: RAE2822: Comparison of density residual and turbulent variable resid-
ual (left) and drag (right) for the expl. RK. and the line implicit method. The
computation of the line implicit method were performed with γline = 5.0.

Figure 22: RAE2822: Comparison of computed Cp–distribution on the finest mesh
of 736 × 176 and measured data [4]

Figure 23: High lift airfoil: Section of the grid (left), Comparison of density residual
and turbulent variable residual for the expl.RK. and the line implicit method (right).
The computation of the line implicit method were performed with γline = 2.0
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Figure 24: High lift airfoil: Mach number and velocity stream traces (left), Cp
distribution (right)

Figure 25: Helicopter fuselage: Section of the grid (left), determined lines on the
finest grid γline = 10(right)

Figure 26: Helicopter fuselage: Comparison of density residual and turbulent vari-
able residual (left) and drag (right) for the expl. RK. and the line implicit method
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Figure 27: ONERA M6 wing: Section of the grid (left), determined lines on the
finest grid in the neighborhood of the wing, γline = 100(right)

Figure 28: ONERA M6 wing: Determined lines on on the second agglomerated
grid, γline = 100, residual, turbulent variable residual and lift coefficient for the line
implicit method (right)

Figure 29: Configuration of the Drag Prediction Workshop 4: Section of the grid
(left), density residual, turbulent variable residual and lift coefficient for the line
implicit method (right)

55



References

[1] S. R. Allmaras, Analysis of semi-implicit preconditioners for multigrid solu-
tion of the 2-d compressible navier-stokes equations, AIAA Paper 95-1651-CP,
95 (1995).

[2] , Multigrid for the 2-d Compressible Navier-Stokes Equations, AIAA Paper
99-3336, 99 (1999).

[3] J. S. Cagnone, K. Sermeus, S. K. Nadarajah, and E. Laurendeau,
Implicit multigrid schemes for challenging aerodynamic simulations, Computer
& Fluids, 44 (2011), pp. 314–327.

[4] P. H. Cook, M. A. McDonald, and M. C. P. Firmin, Aerofoil rae 2822
pressure distributions and boundary layer and wake measurements, AGARD-
AR, 138 (1979).

[5] P. Crumpton, A efficient cell vertex method for unstructured tetrahedral
grids, Technical Report NA 93/09, Oxford University Computing Laboratory,
1997.

[6] P. Eliasson, P. Weinerfelt, and J. Nordström, Applicaton of a line-
implicit scheme on stretched unstructured grids, AIAA Paper, AIAA-2009-163,
(2009).

[7] K. J. Fidkowsky, A High-Order Discontinuous Galerkin Multigrid Solver for
Aerodynamic Applications, Master’s thesis, Massachusetts Institute of Technol-
ogy, 2004.

[8] G. H. Golub and C. F. van Loan, Matrix Computations, The John Hop-
kins University Press, Baltimore, second ed., 1983.

[9] N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. Ven, and

K. Sorensen, ADIGMA - A European Initiative on the Development of Adap-
tive Higher-Order Variational Methods for Aerospace Applications: Results of
a Collaborative Research Project Funded by the European Union, 2006-2009,
Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer,
2010.

[10] S. Langer, Investigation and application of point implicit Runge-Kutta meth-
ods to inviscid flow problems, International Journal for Numerical Methods in
Fluids, 69(2) (2012), pp. 332–352.

[11] S. Langer and D. Li, Application of point implicit Runge-Kutta methods
to inviscid and laminar flow problems using AUSM and AUSM+ upwinding,

56



International Journal of Computational Fluid Dynamics, 25:5 (2011), pp. 255–
269.

[12] J. V. Lassaline and D. W. Zingg, Development of an Agglomeration Multi-
grid Algorithm with Directional Corasening, AIAA paper 99-3338, 1999.

[13] D. J. Mavriplis, Multigrid Technqiues For Unstructured Meshes, ICASE
Report 95-27, 1995.

[14] , Directional Coarsening and Smoothing for anisotropic Navier-Stokes
Problems, Electronic Transactions on Numerical Analysis, 6 (1997), pp. 182–
197.

[15] , Directional Agglomeration Multigrid Techniques for High-Reynolds Num-
ber Viscous Flows, ICASE Report No.98-7, (1998).

[16] , Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstruc-
tured Meshes, ICASE Report No.98-6, (1998).

[17] D. J. Mavriplis and V. Venkatakrishnan, A 3D Agglomeration Multigrid
Solver For The Reynolds-Averaged Navier-Stokes Equations On Unstructured
Meshes, ICASE Report 95-30, 1995.

[18] P. Moinier, Algorithm Developments for an Unstructured Viscous Flow
Solver, PhD thesis, University of Oxford, 1999.

[19] E. J. Nielsen, J. Lu, M. A. Park, and D. L. Darmofal, An implicit,
exact dual adjoint solution method for turbulent flows on unstructured grids,
Computer & Fluids, 33 (2004), pp. 1131–1155.

[20] N. A. Pierce, M. B. Giles, A. Jameson, and L. Martinelli, Acceler-
ating Three-Dimensional Navier-Stokes Calculations, AIAA 97-1953, (1997).

[21] P. Roe, Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes, Journal of Computational Physics, 43 (1981), pp. 357–372.

[22] C.-C. Rossow, Efficient computation of compressible and incompressible
flows, Journal of Computational Physics, 220 (2007), pp. 879–899.

[23] P. R. Spalart and S. R. Allmaras, A One-Equation Turbulence Model
for Aerodynamic Flows, AIAA Paper, AIAA-92-439, (1992).
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