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Abstract: Medical image diagnosis and delineation of lesions in the human brain require information
to combine from different imaging sensors. Image registration is considered to be an essential pre-
processing technique of aligning images of different modalities. The brain is a naturally bilateral
symmetrical organ, where the left half lobe resembles the right half lobe around the symmetrical
axis. The identified symmetry axis in one MRI image can identify symmetry axes in multi-modal
registered MRI images instantly. MRI sensors may induce different levels of noise and Intensity
Non-Uniformity (INU) in images. These image degradations may cause difficulty in finding true
transformation parameters for an optimization technique. We will be investigating the new variant of
evolution strategy of genetic algorithm as an optimization technique that performs well even for the
high level of noise and INU, compared to Nesterov, Limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm (LBFGS), Simulated Annealing (SA), and Single-Stage Genetic Algorithm (SSGA).
The proposed new multi-modal image registration technique based on a genetic algorithm with
increasing precision levels and decreasing search spaces in successive stages is called the Multi-Stage
Forward Path Regenerative Genetic Algorithm (MFRGA). Our proposed algorithm is better in terms
of overall registration error as compared to the standard genetic algorithm. MFRGA results in a
mean registration error of 0.492 in case of the same level of noise (1–9)% and INU (0–40)% in both
reference and template image, and 0.317 in case of a noise-free template and reference with noise
levels (1–9)% and INU (0–40)%. Accurate registration results in good segmentation, and we apply
registration transformations to segment normal brain structures for evaluating registration accuracy.
The brain segmentation via registration with our proposed algorithm is better even in cases of high
levels of noise and INU as compared to GA and LBFGS. The mean dice similarity coefficient of brain
structures CSF, GM, and WM is 0.701, 0.792, and 0.913, respectively.

Keywords: image registration; genetic algorithm; MFRGA; mutual information (MI)

1. Introduction

Medical images may be of the same or different types, such as Magnetic Resonance
Imaging (MRI), Computerized Tomography (CT), and Positron Emission Tomography
(PET). No single image modality provides complete information. Images of different
modalities can provide more comprehensive information than those provided by a single
modality. However, target and source images of the same object can be different and
may have different alignments due to images taken at different time instants, different
sources such as MRI, CT, and PET, or having different angles in order to have a 2D or
3D perspective [1]. Moreover, it is almost impossible to have the affected person’s head
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placed inside the scanner exactly the same way as the first time, so the information in the
acquired images will not be spatially aligned [2]. Alignment of images is important to obtain
complementary anatomic and functional information from multiple modalities for precise
diagnosis and treatment of the patient [3]. Image registration is a fundamental problem
in medical imaging and is often extensively used as a preliminary step to establishing
correspondence between two images [4]. This enables us to compare common features
in different images. In registration problems, one image is considered fixed and the
other is considered a moving image. Aligning a moving image with any fixed image
is the goal of registration. The alignment is done through the computation of spatial
transformation [5,6]. Registration can be divided into four main components: feature
space, search space, search strategy, and similarity. Each component provides essential
information to decide which registration technique is to be used in a particular scenario.
The area of interest used as the basis for registration is referred to as feature space, such
as outlines, tumors, and edges. The transformation of moving an image to align to the
source image is referred to as search space. Search strategy is the determination of the
transformation technique to be chosen based on previous transformation results. The
similarity is a metric of comparison between the source and target images that are being
aligned. This forms the basis of how a registration problem can be framed [7]. This process
has been rendered less experimental and more relevant recently by advances in image
registration research. Registration methods have traditionally focused on the matching
correspondence features in the images, but the research community has recently gained
interest in similarity measures of a global correspondence nature. In this case, image
registration performance has a direct dependency on the effectiveness of similarity measure
for computing the similarity among images [8]. Multi-modality image registration based
on comparing intensity values is not trivial because of the difference in intensity values of
the same tissues in CT and MR images. Among the brain imaging modalities, MRI is able to
scan tumor borders with a great level of detail and provides the best discrimination between
soft tissues inside the brain [9]. An image can be geometrically represented and transformed
in several ways, each with its own pros and cons. For accurate comparison and study, it is
important that key biological landmarks are in the same place. Each approach does not
work for all cases due to a number of different types of problems occurring while registering
images [10]. Image registration is crucial in situations involving brain tumors, particularly
well-defined glioblastoma multiforme, as the extraction of accurate morphological features
depends on the correct alignment of the tumor zone. Image registration of multi-modal MRI
scans of the brain is useful in the diagnosis of abnormalities. The accurate alignment of MRI
sequences [11] results in accurate feature extraction and segmentation of the brain tumor.
Moreover, deformable image registration is used in atlas-based image registration and
segmentation [12]. In this strategy, an atlas (grayscale and labeled image) is registered to the
patient’s brain MRI using its grayscale image. The deformation found using the non-rigid
image registration technique is then applied to the counterpart of the atlas labeled image.
The labels from registered labeled data of the atlas are then transferred to the patients’
data that directly segment brain structures along with anomalies. Image registration and
segmentation can be used interchangeably. These processes can be used one after the other.
The image registration aids in image segmentation while the results of image segmentation
can be further used to improve image registration results, and hence image segmentation.
Moreover, joint image registration and segmentation algorithms [13] also improve image
registration and segmentation results. Furthermore, the segmentation results can be used
to assess the registration accuracy as the image registration ground truth values are difficult
to find as compared to the manual segmentation of brain structures by medical experts.

The main challenges in medical image registration are the presence of noise and INU.
The performance of image registration may reduce as the pixels get affected by noise and
INU, creating false local contours. The optimization techniques that are used to find a
global optimum solution may be stuck in the local optimum due to noise and INU.
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The main contribution of our research work is to introduce an evolutionary-based
algorithm called MFRGA that performs well and finds a global optimum solution even
for an increased level of noise and intensity INU. Our proposed methodology is not only
successful in providing a global optimum solution but also the constituent multiple stages
improve the accuracy of results.

2. Literature Review

Multi-modal image registration focuses on finding correspondence between images of
different modalities and provides in depth visual information by fusion of multi-modal
images. It is an important task in medical image analysis. Different studies are made in
order to fully utilize its potential. A complete software framework based on multiresolution
deformable transform, tackling elastic deformations possibly occurring during the surgical
procedure, is presented [14] that enables the registration of MR and ultrasound (US) scans of
the brain. The methods that involve the image registration technique for segmentation use
the location-based information of the anatomical features. The atlas is used and transformed
to segment the target image. It also preserves the brain structures information along with
the detection of brain abnormalities [15]. However, the clustering methods [16,17] applied
for the segmentation of both normal and abnormal tissues simultaneously are rare. The
MRI sequence FLAIR is used for the segmentation of the brain tumor using sliding window
and fuzzy c-means clustering to find the exact location of the tumor [18]. The segmentation
of brain tumors, known as glioma, is done by applying a unified algorithm on multi-modal
images from the BRATS 2015 dataset. This is comprised of estimation of the region of
interest using fuzzy c-means clustering and region growing and then refining the glioma
border using region merging and improved distance regularization level set method [19].
The MRI sequences T1, T2, and FSPRG T1C are used for brain tumor segmentation using
a computational algorithm [20]. The algorithm unifies the enhancement of the region of
interest by disconnecting adjacent brain structures and segmentation using detection by
coordinates and arithmetic mean. Moreover, morphological operators are used to further
improve the results.

Moreover, Razlighi et al. [8] have shown that the measure of similarity with high
robustness is more efficient in the registration of degraded images. In their analysis, five
different brain image modalities (T1, T2, PD, EPI, PET) and four different forms of misreg-
istration (translation, rotation, scaling, and B-spline) are used to compute the robustness
of selected similarity measures (SMs). They have shown that images with higher robust-
ness are not only more tolerant to brain image degradation, but also more effective for
intermodal image registration. Uss et al. [21] demonstrated that single complex combined
SM based on five existing SMs, namely, Modality Independent Neighborhood Descriptor
(MIND), Logarithmic-Likelihood Ratio (logLR), scale-invariant feature transform-octave
(SIFT-OCT), phase correlation (PC), histogram of orientated phase congruency (HOPC),
can be applied to general cases as well to a particular case under consideration for reg-
istration. In comparison to existing multi-modal SMs, the proposed complex combined
SM increases the area under the curve by 1% to 21%. Haskins et al. [22] proposed a deep
convolutional neural network to learn the similarity metric for MR–TRUS (trans-rectal
ultrasound) registration. The learned similarity metric using a deep convolutional neural
network outperformed the existing classic mutual information and feature-based meth-
ods [23,24]. A dual supervised deep learning model called BIRNet is proposed for image
registration by prediction of deformation of the image from its appearance. The proposed
model achieved state-of-the-art performance without the need for tuning parameters [25].
Mutual information as a similarity measure was first introduced in [26,27]. These studies
were based on the assumption that the similar tissue region in one image would correspond
to a similar region in the other image and will have similar grey values. Wood’s measure
was adapted by [28]. They constructed a feature space by combining grey values for all
corresponding points in each of the two images using a two-dimensional plot. However,
they defined the regions in feature space with the difference to Wood’s method. The region
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in their method was based on clustering of registered images in feature space. Mutual
information is a good choice for multi-modal image registration; however, local intensity
variation in volumes and consideration of only statistical information are its limitations. To
overcome these limitations, Ref. [29] proposed a method of adding spatial and geometrical
information about the voxels via a 3D Harris operator. They focused on the registration
of the low- and high-resolution images. Their proposed method came up with accurate
registration and high performance with respect to other standard registration methods.
Moreover, our previous work is related to the mono-modal image registration for brain
MRI using MFRGA [30] with Structural Similarity Index Measure (SSIM) and performed
better even for higher noise and INU.

3. Materials and Methods

Multi-modal image registration requires aligning images from different modalities
so that the similarity measure is maximized between them. The dataset used here is a
BrainWeb dataset [31]—an online simulator of the brain. The multi-modal images are
taken from the mentioned dataset. The BrainWeb online simulator provides the facility
of selecting T1, T2, and PD modalities of MRI sequences, varieties of color map, slice
thickness, noise levels, and INU. T1 and T2 MRI images are selected as template and
reference images. In this research, multi-modal image registration is performed using an
evolutionary algorithm. Here, we proposed an improved version of the genetic algorithm
with better performance in terms of accuracy even with high levels of noise and INU.
Mutual information is used as a similarity measure between multi-modal images, with a
higher value representing a greater degree of alignment and accuracy. The methodology of
our research is described in this section.

3.1. Multi-Modal Image Registration

The registration of multi-modal images is a primary step in combining data from two
or more images that are collected using different modalities. In addition to structural differ-
ences and intensity variations among images, partial or full information overlap among
them adds an extra hurdle to the success of the registration process. Multi-modal image reg-
istration algorithms focus on finding the correspondence between images generated using
various modalities and providing intensive visual information from the fusion of different
medical imaging modalities. Registration while aligning two images into one geometry
is always treated as an optimization problem. It is an iterative process, which is stopped
by the optimizer. There are many optimizers, metrics, and different transformations and
interpolators for implementation in the registration process.

3.2. Mutual Information

Mutual information (MI) is an information theory-based solution to image registration
problems. Particularly, the MI similarity metric is used for the registration of multi-modal
medical images [32]. It compares two images and measures the statistical dependence
between pixel intensities in these images. MI as a registration measure was first presented
by A. Collignon et al. [33], and it became a leading method in medical image registration.
MI could be defined as a measure of information that one image contains about another.
When the amount of information that images contain about each other is maximum, the
images are believed to be correctly registered. If the images are multi-modal, then the
predictability of one model from another is necessary. Predictability is closely associated
with the notion of entropy. There is low entropy for a predictable random variable, while
an unpredictable random variable has high entropy.

MI can be presented in many ways. The most common formulae are based on Shannon
entropy and Kullback–Leibler distance measure between two probability distributions. If
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H(A) and H(B) are the entropies of random variables A and B, respectively, while H(A, B)
is their joint entropy, then mutual information could be presented as in (1) [34]:

MI(A, B) = H(A) + H(B)− H(A, B) (1)

where H(A) and H(B) are Shannon’s entropy of the image A and B calculated from the
probability distribution of its pixels’ intensities.

The Kullback–Leibler measure MI is denoted by MI(A, B), which measures the degree
of dependence of A and B by measuring the distance between the joint distribution PAB(a, b)
and the distribution associated to the case of complete independence PA(a)·PB(b) and is
expressed in (2) [35];

MI(A, B) = ∑
a,b

PA,B(a, b) log
(

PA,B(a, b)
PA(a)·PB(b)

)
(2)

For the two random variables A and B to be statistically independent, PA,B(a, b) =
PA(a)·PB(b) and MI(A, B) = 0. For maximal statistical dependence of two random vari-
ables, one-to-one correspondence between them is T : PA(a) = PB(T(a)) = PAB(a, T(a)).
The random variables A and B are considered to be the two images to be registered. One is
the reference image, and the other is the template image. The pair of corresponding voxels
in the images to be registered are referred as image intensity values a and b. The geomet-
ric transformation T relates the intensity values a and b in images A and B, respectively.
The two images are best aligned with the geometric transformation T when MI(A, B) is
maximal.

3.3. Optimization Techniques

The following optimization techniques are used in this research.

3.3.1. Nesterov’s Accelerated Gradient

Nesterov’s Accelerated Gradient (NAG) [36] is an extension to gradient descent opti-
mization. In the classical momentum, the update of parameters is performed by finding the
gradient in the direction of the updated accumulated gradient. On the other hand, NAG
first takes a big step by using the previous accumulated gradient and then calculating the
gradient for making the correction [37]. It also avoids the problem of overshooting the
minima. The update rule (3)–(5) is as follows as described in [38,39].

f (θ) = θt − γ ∗ updatet−1 (3)

updatet = γ ∗ updatet−1 + η∇θ f (θ) (4)

θt+1 = θt − updatet (5)

where f (θ) is the objective function with θ as the parameters of the model to update. η is
the step size, γ is the momentum term, and updatet is the current time step update vector.

3.3.2. Simulated Annealing

Simulated annealing (SA) is an optimization technique that is based on the theory of
thermodynamics for annealing ideal crystals [40]. It models the physical process of heating
and then slowly cooling the temperature of the material [41]. The controlled lowering of
temperature increases the crystal size and hence reduces the defects. SA is used to find
the global optimum solution where there are many local optimum solutions. The brief
mechanism of SA is as follows.

Let the cost of the current state θ be represented as f (θ) and the cost of the neighboring
state θ′ be represented as f (θ′). The difference D between f (θ′) and f (θ) is as described
in [42].

D = f
(
θ′
)
− f (θ) (6)
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If D <= 0, the neighboring state cost is less than or equal to the current state cost. θ′ is
selected as the current state due to the acceptance of downhill criteria. If D > 0, such that
e−

D
T > VRND the acceptance chances of θ′ as the current state is more as compared to the

random value VRND, where 0 < VRND < 1 and T is the controlling parameter temperature.
Moreover, the current state θ continues to be the candidate solution if D > 0, such that
e−

D
T <= VRND.

3.3.3. LBFGS (Limited-Memory BFGS)

Limited-memory BFGS is an optimization algorithm in the family of quasi-Newton
methods that approximates the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)
using a limited amount of computer memory. It is a popular algorithm for parameter
estimation in machine learning. Limited-memory BFGS works well with large datasets
because it uses less memory than the standard BFGS. It is also referred to as software for
large-scale unconstrained optimization.

The algorithm’s target problem is to minimize f (x) over unconstrained values of the
real vector x, where f is a differentiable scalar function. The algorithm starts with an initial
estimate of the optimal value, X0, and proceeds to refine the estimate iteratively with a
sequence of better estimates, X1, X2, . . .. As a key driver of the algorithm, the derivatives of
the function gk := ∆ f (Xk) are used to define the steepest descent path and also to estimate
the Hessian matrix (second derivative) of f (x).

3.3.4. Single-Stage Genetic Algorithm

Single-Stage Genetic Algorithm (SSGA) is similar to a standard genetic algorithm.
Here, individuals are rounded to increasing decimal places in successive stages and then
fitness scores are calculated. Search space constraints for SSGA are also user-defined
and vary if it is part of MFRGA. The description of SSGA for multi-modal rigid image
registration is mentioned in Algorithm 1. The population size of 50 is selected with stall
generations of 50 and tolerance function of 10−6. The results are achievable if it reaches a
maximum number of generations 300 or stall generations of 50. Here, stall generation 50
shows the average change in fitness function value is less than 10−6 for 50 generations.

3.4. Proposed Optimization Technique for Multi-Modal Image Registration
3.4.1. Multi-Stage Forward Path Regenerative Genetic Algorithm

Multi-stage Forward Path Regenerative Genetic Algorithm (MFRGA) is our proposed
strategy, which contains iterative stages of (SSGA) with increasing precision levels of
individuals and decreasing search space constraints to obtain accurate results. MFRGA
is different from the standard genetic algorithm in terms of the use of multiple stages,
restricted search space, and precision levels of individuals. In each proceeding stage,
the search space decreases, and the precision levels of individuals increase. The image
registration result of the previous stage is used by the next stage. The use of multiple
stages of SSGA ensures to produce more accurate results by improving image registration
results in each preceding stage. The description of MFRGA for multi-modal rigid image
registration is mentioned in Algorithm 2.

3.4.2. Image Registration Error and Segmentation Accuracy

The performance of our proposed algorithm is computed using image registration
error and segmentation accuracy. Less image registration error means more segmentation
accuracy. The following metrics are considered for registration and segmentation accuracy.
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Absolute Percentage Registration Error in Each Dimension

Percentage registration error is computed in each dimension, i.e., x, y and θ. Percentage
registration error for each direction is as follows:

∆i =
∣∣∣∣Ci − Gi

Gi

∣∣∣∣× 100, f or (i = x, y, θ) ∧ (Gi 6= 0) (7)

where ∆x, ∆y and ∆θ are absolute percentage error in x, y translation and θ rotation,
respectively. Cx, Cy and Cθ are computed values from applied image registration and Gx,
Gy and Gθ are ground truth transformation for x, y translations and θ rotation, respectively.

Algorithm 1: SSGA (Single-Stage Genetic Algorithm) for Multi-Modal Rigid Image Registration.

Result: Rigid image transformations (x, y and θ)
IR ← Reference Image of modality M1
IT ← Template Image of modality M2
Cmin ← Minimum constraint of search space
Cmax ← Maximum constraint of search space
Spop ← Population Size
D ← Number of decimal places
Function SSGA(IR, IT , Cmin, Cmax, D):
Initial random population of individuals containing three parameters of x, y translation and θ

rotation of Spop is generated. Individuals are rounded to D decimal places.
while No. of generations < Maximum no. of generations do
If (x, y and θ) ∈ [Cmin, Cmax] then

1. Each individual takes part in evaluating fitness value in fitness function using MI as a
similarity measure. The best fitness value is the smallest value selected from the population.

2. Fitness scores are used for the selection of parents within population.
3. Cross over is used to generate offspring.
4. Mutation is applied to each offspring.
5. Fitness of intermediate population is evaluated.
6. Fittest individuals are promoted to next generation.

else
return fittest_individuals
end
end
End Function

Overall Registration Error

Overall registration error includes all dimensional transformation errors in one metric.
It is defined as follows:

RE = ∑
i
|Ci − Gi|, f or (i = x, y, θ) (8)

where RE is the overall registration error, which is the sum of absolute differences of com-
puted transformations from the image registration algorithm, i.e., Ci and the ground truth
transformations, i.e., Gi with i corresponds to dimension index in the image registration
algorithm.

Dice Similarity

The template image with both grayscale and labeled image can be used not only
for registration but also segmentation. Here, segmentation accuracy is computed after
registering grayscale images and applying the same transformations to the labeled image
to further segment the reference image. Segmentation accuracy can be found using the
Dice Similarity Index (DSI). We found DSI of individual normal brain structures as well as
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overall brain containing all structures together considered as brain pixels. DSI is defined as
follows:

DSC =
2 ∗ |SI ∩ GT |
|SI |+ |GT |

(9)

where DSC is the Dice Similarity Coefficient, segmented image is denoted by SI , and
ground truth of the image is denoted by GT .

Algorithm 2: Multi-Stage Forward Path Regenerative Genetic Algorithm (MFRGA) for
Multi-Modal Rigid Image Registration

Result: Registered image ITk with rigid image transformations (x, y and θ)
IR ← Reference Image of modality M1
IT ← Template Image of modality M2
Cmin ← Minimum constraint of search space
Cmax ← Maximum constraint of search space
Spop ← Population Size
D ← Number of decimal places
x1, x2, x3 ← First stage parameters
xi

1, xi
2, xi

3 ← Other stages parameters,
where i ∈ {′,′′ ,′′′ }
Stage_No ← Stage number
Stage_No = 1
while Stage_No < 4 do
If (Stage_No == 1) then
1. Call SSGA (IR, IT ,−10, 10, 0)
2. Store the output of SSGA function
3. return x1, x2, x3
4. Apply image transformations x1, x2, x3 to get registered template image ITk1
end
end if (Stage_No == 2) then
Call SSGA (IR, ITk1,−0.5, 0.5, 1)
1. Store the output of SSGA function
2. return x′1, x′2, x′3
3. Apply image transformations x′1, x′2, x′3 to get registered template image ITk2
else if (Stage_No == 3) then
1. Call SSGA (IR, ITk2,−0.25, 0.25, 2)
2. Store the output of SSGA function
3. return x′′1 , x′′2 , x′′3
4. Apply image transformations x′′1 , x′′2 , x′′3 to get registered template image ITk3
else if (Stage_No == 4) then
1. Call SSGA (IR, ITk3,−0.125, 0.125, 3)
2. Store the output of SingleStageGA function
3. return x′′′1 , x′′′2 , x′′′3
4. Apply image transformations x′′′1 , x′′′2 , x′′′3 to get registered template image ITk4
else
return fittest_individuals
Stage_No = Stage_No + 1
end
end

4. Results

In order to evaluate the performance of our algorithm in rigid image registration, we
need a reference image translated in the x and y directions and also rotated. We translated
reference image T2 five pixels in the x-direction and seven pixels in the y-direction and
30 rotations. These are considered ground truth transformations, and we are here to find
these unknown transformations to which template image will best align with the reference
image. The total number of brain MRI sequence combinations of template and reference
images is 31. We divide our MRI sequence combination of template and reference into two
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sets. The first set contains MRI sequences where we have the same levels of noise and INU
for template and reference images. The second set contains MRI sequences with template
images free of noise and INU, while the reference images have different levels of noise and
INU. We have evaluated our results in three different aspects, which are as follows.

4.1. Template and Reference Images with Same Levels of Noise and INU

In the first case shown in Figure 1a, both template T1 and reference T2 have the same
levels of noise and INU. We can add noise levels of (0, 1, 3, 5, and 7)% and (0, 20, and
40)% of INU. We generated 16 cases of both template and reference images with varying
noise levels and INU. The noise field added in the real and imaginary components of
BrainWeb MRI sequences is the Gaussian noise. Experiments are performed using both
Single-Stage Genetic Algorithm and MFRGA and accuracy is computed where the template
and reference images under experimentation are at same levels of noise and INU.
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Figure 1. Multi-modal image registration using MFRGA for (a) same noise and INU levels of template
and reference image and (b) different noise and INU levels of reference image and template (INU
and Noise 0%). (c) Segmentation through MFRGA based image registration.

Table 1 shows the performance of MFRGA vs. Single-Stage Genetic Algorithm which is
clear in terms of less registration error in the case of MFRGA. All the available combinations
of noise levels and INU have been selected. In the first stage, search space constraints
are [−10,10], the result of single stage is near the final or true transformation but further
improvement in the results can be made with our proposed MFRGA, having successive
stages of GA with reducing search space constraints and iterative GA.
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Table 1. Performance of MFRGA vs. GA with same level of noise and INU of template and reference
images.

INU Noise
Stage 1 Stage 2 Stage 3 Stage 4 Final

X1 X2 X3 X1′ X2′ X3′ X1′′ X2′′ X3′′ X1′′′ X2′′′ X3′′′ X Y θ

0% 0% 5.382 7.376 3.151 −0.363 −0.390 0.242 −0.003 0.003 −0.240 −0.001 0.001 −0.051 5.015 6.989 3.102

0% 1% 4.964 6.799 2.502 0.147 0.191 −0.001 −0.003 0.034 0.225 −0.117 −0.035 −0.001 4.991 6.989 2.724

20% 1% 4.696 7.171 2.251 0.269 −0.117 0.490 −0.002 0.061 0.003 0.000 −0.048 0.098 4.963 7.067 2.842

40% 1% 4.854 6.787 3.414 0.226 0.212 0.198 0.000 0.014 0.087 0.003 −0.008 −0.045 5.083 7.005 3.655

0% 3% 5.331 6.954 2.937 −0.322 0.066 0.179 −0.001 −0.026 −0.169 0.000 −0.010 −0.004 5.009 6.985 2.942

20% 3% 5.284 6.541 3.351 −0.279 0.477 0.018 0.001 0.002 0.211 0.000 −0.001 0.016 5.006 7.018 3.596

40% 3% 4.831 6.688 3.234 0.214 0.272 −0.094 −0.001 0.023 0.041 −0.012 0.004 −0.058 5.031 6.987 3.123

0% 5% 4.137 7.813 5.170 0.462 −0.474 −0.457 0.249 −0.249 0.212 0.125 −0.125 0.032 4.973 6.965 4.958

20% 5% 4.580 7.262 3.101 0.387 −0.156 −0.200 0.246 −0.251 −0.033 0.120 −0.124 0.084 5.333 6.731 2.953

40% 5% 4.753 7.409 3.090 0.217 −0.365 −0.034 0.000 −0.001 −0.255 0.002 −0.002 0.033 4.972 7.041 2.835

0% 7% 5.242 6.875 1.650 −0.258 0.299 0.491 −0.072 −0.127 −0.010 0.034 0.063 0.018 4.946 7.110 2.149

20% 7% 5.442 7.047 3.030 −0.358 −0.081 −0.008 −0.033 −0.012 0.229 −0.005 −0.003 0.111 5.046 6.951 3.362

40% 7% 5.244 6.822 3.113 −0.240 0.244 0.155 −0.004 −0.033 −0.080 −0.001 −0.004 0.067 4.998 7.028 3.255

0% 9% 5.116 7.006 2.519 −0.028 −0.098 0.089 −0.103 0.129 0.219 0.040 −0.069 0.059 5.024 6.968 2.887

20% 9% 5.315 7.288 3.025 −0.252 −0.283 0.016 −0.014 0.000 −0.226 0.000 −0.001 0.089 5.049 7.004 2.903

40% 9% 5.436 6.740 2.834 −0.370 0.193 −0.207 −0.013 0.024 −0.203 −0.005 0.003 0.062 5.048 6.961 2.486

The result from the first stage is within error limits of [−0.5, +0.5]. Keeping in mind
this fact, the second, third, and fourth stages of GA contains reducing search space of
[−0.5, 0.5], [−0.25, 0.25], and [−0.125, 0.125], improving the accuracy even in the case of
increasing noise levels and INU. For most of the cases in Table 2, ∆x, ∆y and ∆θ for MFRGA
is less than single-stage genetic algorithm. The results of Table 3 are obtained for the case of
reference image with INU and noise 0% and template image with all the cases of increasing
INU and noise levels. It is clear that the results of MFRGA are more close to the ground
truth transformations as compared to SSGA. Table 4 shows that the overall registration
error for all cases of MFRGA is less than single-stage genetic algorithm and is also shown
in Figure 2a–c with increasing INU of 0, 20, and 40%, respectively.

4.2. Segmentation Accuracy via Image Registration

In the third case shown in Figure 1c, we evaluated the robustness of our proposed
algorithm of genetic algorithm in comparison to Nesterov, SA, LBFGS, and GA. Here, we
have taken the case of the template that was free of noise and INU and reference image with
all possible combinations of noise and INU. The template image has both a grayscale MRI
image and a labeled image. The more accurate the image registration is, the more accurate
the segmentation will be. Nesterov, SA, LBFGA, GA, and MFRGA all are applied for image
registration, and the same transformations are applied to the labeled image. In this way,
images are not only registered but also get segmented. Segmentation results are computed
using Dice Similarity (DS) index. A higher value of DS shows more segmentation accuracy,
which is the result of accurate image registration. Table 5 shows the segmentation results of
Nesterov, SA, LBFGS, GA, and MFRGA. Here, the labeled image of the template contains
labels of three normal brain structures, i.e., GM (Gray Matter), WM (White Matter), and CSF
(Cerebellum Spinal Fluid). Clearly, the MFRGA has better results than that of Nesterov and
LBFGS and comparable for the case of GA and SA. Figure 3 shows that MFRGA performs
well even in the case of increasing noise levels and INU. We have already proved in Table 3
that MFRGA performs well in comparison to GA.



Symmetry 2022, 14, 1506 11 of 17

Table 2. Image Registration Error of MFRGA vs. GA with same level of noise and INU of the template
and reference images.

Template T1 and
Reference T2

Images

Registration Error
Using Single-Stage GA

Registration Error
Using MFRGA

Overall Registration
Error Using

Single-Stage GA
∇Y(%)

Overall
Registration Error

Using MFRGA
∇θ(%)INU Noise ∇X(%) ∇Y(%) ∇θ(%) INU Noise ∇X(%)

0% 0% 7.640 5.371 5.033 0% 0% 7.640 5.371 5.033

0% 1% 0.713 2.875 16.617 0% 1% 0.713 2.875 16.617

20% 1% 6.090 2.436 24.963 20% 1% 6.090 2.436 24.963

40% 1% 2.922 3.042 13.786 40% 1% 2.922 3.042 13.786

0% 3% 6.620 0.651 2.104 0% 3% 6.620 0.651 2.104

20% 3% 5.689 6.553 11.712 20% 3% 5.689 6.553 11.712

40% 3% 3.386 4.460 7.793 40% 3% 3.386 4.460 7.793

0% 5% 17.268 11.616 72.341 0% 5% 17.268 11.616 72.341

20% 5% 8.390 3.739 3.380 20% 5% 8.390 3.739 3.380

40% 5% 4.945 5.840 2.997 40% 5% 4.945 5.840 2.997

0% 7% 4.844 1.781 44.988 0% 7% 4.844 1.781 44.988

20% 7% 8.838 0.664 0.997 20% 7% 8.838 0.664 0.997

40% 7% 4.883 2.548 3.765 40% 7% 4.883 2.548 3.765

0% 9% 2.317 0.093 16.035 0% 9% 2.317 0.093 16.035

20% 9% 6.295 4.107 0.824 20% 9% 6.295 4.107 0.824

40% 9% 8.715 3.712 5.531 40% 9% 8.715 3.712 5.531

Table 3. Image Registration Error of MFRGA vs. GA with template T1 (INU and Noise 0%) and
reference T2 with different level of noise and INU.

Reference
T2 Image

Registration Error
Using Single-Stage GA

Registration Error
Using MFRGA

Overall Registration Error
Using Single-Stage GA

∇Y(%)

Overall Registration
Error Using MFRGA

∇θ(%)INU Noise ∇X(%) ∇Y(%) ∇θ(%) INU Noise ∇X(%)

0% 1% 9.839 3.441 12.793 0% 1% 9.839 3.441 12.793

20% 1% 4.128 2.261 8.854 20% 1% 4.128 2.261 8.854

40% 1% 27.382 2.373 7.534 40% 1% 27.382 2.373 7.534

0% 3% 6.738 0.394 8.362 0% 3% 6.738 0.394 8.362

20% 3% 3.109 1.943 1.200 20% 3% 3.109 1.943 1.200

40% 3% 6.090 2.603 13.394 40% 3% 6.090 2.603 13.394

0% 5% 1.974 19.216 1.103 0% 5% 1.974 19.216 1.103

20% 5% 6.325 6.807 7.099 20% 5% 6.325 6.807 7.099

40% 5% 0.177 6.422 15.544 40% 5% 0.177 6.422 15.544

0% 7% 6.563 1.592 3.771 0% 7% 6.563 1.592 3.771

20% 7% 6.020 6.207 10.970 20% 7% 6.020 6.207 10.970

40% 7% 5.289 6.224 9.783 40% 7% 5.289 6.224 9.783

0% 9% 5.618 0.883 11.319 0% 9% 5.618 0.883 11.319

20% 9% 1.193 3.101 11.380 20% 9% 1.193 3.101 11.380

40% 9% 4.195 6.234 5.428 40% 9% 4.195 6.234 5.428
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Table 4. Performance of MFRGA vs. GA with template T1 (INU and Noise 0%) and reference T2 with
different levels of noise and INU.

Reference
T2 Image Stage 1 Stage 2 Stage 3 Stage 4 Final

INU Noise X1 X2 X3 X1′ X2′ X3′ X1′′ X2′′ X3′′ X1′′′ X2′′′ X3′′′ X Y θ

0% 1% 5.492 6.759 3.384 −0.456 0.330 −0.082 −0.004 −0.056 0.124 −0.003 −0.005 −0.001 5.029 7.027 3.424

20% 1% 5.206 7.158 3.266 −0.155 −0.220 0.032 −0.023 0.077 −0.124 −0.004 0.000 −0.011 5.025 7.015 3.162

40% 1% 6.369 7.166 2.774 −0.491 −0.188 −0.021 −0.247 0.023 0.196 −0.124 0.001 0.089 5.507 7.002 3.039

0% 3% 5.337 6.972 3.251 −0.268 0.061 0.246 −0.045 −0.080 −0.249 0.001 0.105 −0.018 5.025 7.058 3.230

20% 3% 5.155 6.864 2.964 −0.079 0.111 0.021 −0.055 0.000 0.234 −0.001 −0.001 0.015 5.020 6.974 3.234

40% 3% 4.695 6.818 3.402 0.267 0.233 −0.056 0.040 −0.047 0.130 0.003 0.001 −0.065 5.005 7.004 3.411

0% 5% 5.099 5.655 2.967 −0.194 0.497 −0.254 0.081 0.247 0.243 −0.033 0.123 −0.034 4.952 6.522 2.922

20% 5% 4.684 7.477 2.787 0.299 −0.537 0.333 0.002 0.009 −0.023 0.000 0.004 −0.096 4.985 6.953 3.001

40% 5% 4.991 6.550 2.534 0.090 0.408 0.254 −0.100 0.033 −0.138 0.045 0.000 −0.111 5.027 6.991 2.539

0% 7% 4.672 7.111 2.887 0.266 −0.129 0.128 0.047 0.000 0.002 0.002 −0.002 −0.038 4.987 6.981 2.980

20% 7% 5.301 7.434 3.329 −0.345 −0.389 −0.002 0.045 0.004 0.050 0.013 −0.003 0.065 5.014 7.046 3.443

40% 7% 4.736 7.436 3.293 0.263 −0.405 0.040 0.004 0.007 −0.207 0.000 −0.001 −0.079 5.003 7.037 3.047

0% 9% 4.719 7.062 2.660 0.299 −0.143 0.350 0.001 0.091 0.038 0.002 −0.019 −0.052 5.022 6.991 2.996

20% 9% 5.060 6.783 3.341 0.050 0.227 0.034 0.004 −0.012 0.019 0.001 0.008 −0.110 5.114 7.005 3.284

40% 9% 5.210 6.564 2.837 −0.236 0.359 −0.194 −0.002 0.021 0.083 0.008 0.000 0.083 4.980 6.942 2.809
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Figure 2. Overall Registration Error: (a–c) template and reference image at same level of noise (1%,
3%, 5%, 7%, and 9%) with INU (0%, 20%, and 40%, respectively) and (d–f) template (noise- and
INU-free) and reference image at different levels of noise (1%, 3%, 5%, 7%, and 9%) with INU (0%,
20%, and 40%, respectively).
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Table 5. Normal brain structure segmentation via registration techniques with template (INU and
Noise 0%) and reference with noise (1%, 3%, 5%, 7%, and 9%) and INU (0%, 20%, and 40%).

DSC WM DSC GM DSC CSF DSC WM DSC GM DSC CSF DSC WM DSC GM DSC CSF DSC WM DSC GM DSC CSF DSC WM DSC GM DSC CSF Noise INU

0.91 0.77 0.69 0.91 0.78 0.69 0.88 0.8 0.71 0.917 0.804 0.709 0.68 0.491 0.397 1% 0%
0.92 0.8 0.7 0.91 0.79 0.7 0.88 0.8 0.71 0.913 0.792 0.698 0.693 0.509 0.395 1% 20%
0.92 0.81 0.71 0.87 0.67 0.57 0.88 0.8 0.71 0.884 0.714 0.633 0.694 0.51 0.392 1% 40%
0.91 0.79 0.7 0.91 0.79 0.7 0.64 0.41 0.25 0.919 0.807 0.713 0.692 0.509 0.394 3% 0%
0.91 0.79 0.7 0.92 0.81 0.71 0.88 0.8 0.71 0.907 0.773 0.682 0.693 0.509 0.394 3% 20%
0.91 0.78 0.69 0.91 0.77 0.68 0.88 0.8 0.71 0.917 0.802 0.709 0.694 0.511 0.393 3% 40%
0.92 0.8 0.71 0.87 0.69 0.61 0.64 0.41 0.25 0.919 0.807 0.713 0.687 0.504 0.391 5% 0%
0.92 0.81 0.71 0.91 0.79 0.7 0.88 0.81 0.71 0.909 0.785 0.692 0.687 0.504 0.39 5% 20%
0.91 0.77 0.67 0.9 0.77 0.69 0.64 0.41 0.25 0.919 0.806 0.71 0.688 0.508 0.397 5% 40%
0.92 0.81 0.71 0.92 0.8 0.7 0.64 0.41 0.25 0.919 0.807 0.712 0.686 0.501 0.39 7% 0%
0.91 0.77 0.69 0.91 0.78 0.69 0.64 0.41 0.25 0.914 0.792 0.697 0.687 0.503 0.393 7% 20%
0.92 0.8 0.71 0.91 0.78 0.69 0.64 0.41 0.25 0.914 0.797 0.707 0.687 0.504 0.392 7% 40%
0.92 0.81 0.71 0.91 0.78 0.69 0.64 0.41 0.25 0.915 0.798 0.706 0.681 0.491 0.393 9% 0%
0.91 0.79 0.7 0.91 0.78 0.7 0.64 0.41 0.25 0.895 0.757 0.684 0.68 0.491 0.394 9% 20%
0.91 0.8 0.7 0.92 0.8 0.7 0.88 0.8 0.71 0.919 0.807 0.711 0.681 0.491 0.391 9% 40%
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Figure 3. Segmentation Results: ((a–c) DSC of CSF, (d–f) DSC of GM, (g–i) DSC of WM) using
template (noise- and INU-free) and reference image at different levels of noise (1%, 3%, 5%, 7%, and
9%) with INU (0%, 20%, and 40%) for first, second, and third column, respectively.

5. Discussion

Multi-modal image registration is an essential task in medical image analysis. Infor-
mation from different modalities is combined to form a more accurate analysis. Sensors
of imaging modalities may undergo, translations and rotation. In this regard, it is nec-
essary to align both images to obtain useful information. If one of the images has its
corresponding segmentation, then the labeled image can also be transformed using the
same transformations as being applied on the grayscale image to align with the reference
image. Our proposed algorithm consists of iterative and successive stages of the Genetic
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Algorithm with reduced search space and increased precision of GA chromosomes. The
geometrical transformations obtained from MFRGA as compared to the SSGA are closed
to the true transformations and are shown in Tables 1 and 3. It is clear that the x and y
translational and rotational transformations from MFRGA as compared to SSGA are closer
to 5, 7, and 3 pixels, respectively. As a result of these geometrical transformations, the
overall registration error of MFRGA is reduced as compared to SSGA and is clear from
Tables 2 and 4. The reduced overall registration error refers to the fact that results are better
and closer to the true transformations.

The statistical analysis of results from Table 6 proved MFRGA to be better as compared
to GA with a mean registration error of 0.492 for the same level of noise and INU in both
reference and template images and 0.317 in case of the template with no noise and INU and
varying levels of noise and INU for the reference image. Here, the minimum registration
error of the proposed methodology is 0.035 and the maximum is 2.02. The minimum regis-
tration error found in MFRGA is 10 times less than that in GA. The maximum registration
error in GA is 3.847, which is higher than that found in MFRGA. Better registration accuracy
provides better segmentation results. Dice similarity is used to evaluate the segmentation
accuracy of brain structures, i.e., CSF, GM, and WM. The comparison is performed with
Nesterov, SA, GA, and LBFGS optimization techniques. The higher value of dice coefficient
shows better segmentation results. The mean dice value using MFRGA for CSF, GM, and
WM is 0.701, 0.792, and 0.913. The minimum and maximum dice values of MFRGA are
higher than Nesterov, GA, and LBFGS and comparable with SA. The higher value of the
minimum and maximum dice values shows that MFRGA is robust and yields reliable
results even for increasing noise and INU values. In almost all of the experiments, MFRGA
provides good segmentation accuracy.

Table 6. Statistical Analysis of Results.

Result Model Mean ± Standard Deviation Min Max

Overall
Registration Error

GA * 1.008 ± 0.820 0.440 3.847

Proposed (MFRGA) * 0.492 ± 0.487 0.083 2.020

GA ** 0.898 ± 0.369 0.327 1.761

Proposed (MFRGA) ** 0.317 ± 0.195 0.035 0.604

Segmentation Accuracy
(Dice CSF)

Nesterov ** 0.393 ± 0.002 0.390 0.397

SA ** 0.698 ± 0.021 0.633 0.713

LBFGS ** 0.461 ± 0.239 0.245 0.710

GA ** 0.681 ± 0.038 0.572 0.712

MFRGA ** 0.701 ± 0.012 0.674 0.713

Segmentation Accuracy
(Dice GM)

Nesterov ** 0.502 ± 0.008 0.491 0.511

SA ** 0.790 ± 0.025 0.714 0.807

LBFGS ** 0.592 ± 0.205 0.406 0.805

GA ** 0.772 ± 0.039 0.672 0.805

MFRGA ** 0.792 ± 0.013 0.773 0.807

Segmentation Accuracy
(Dice WM)

Nesterov ** 0.687 ± 0.005 0.680 0.694

SA ** 0.912 ± 0.010 0.884 0.919

LBFGS ** 0.753 ± 0.126 0.639 0.884

GA ** 0.905 ± 0.016 0.868 0.918

MFRGA ** 0.913 ± 0.005 0.905 0.919

* Image registration with template and reference image at the same level of INU (0–40%) and noise (0–9%).
** Image registration with template (0% noise and 0% INU) and reference (1–9% noise and 0–40% INU).
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6. Conclusions

Evolutionary algorithms are considered in the class of the most popular optimization
techniques. The robustness of the evolutionary algorithm is computed in this research along
with the effectiveness of our proposed MFRGA. Multiple stages of MFRGA guarantee to
provide more accurate results in comparison to single-stage genetic algorithm. Decreasing
search space and increasing precision levels force the converged results to reduce the
registration errors and hence provide more accurate results. Its performance is prominent
in our experiments with increasing noise up to 9% and INU up to 40% levels. The overall
registration error, including x, y translations and rotation of MFRGA, is much less than
single-stage genetic algorithm in all cases of increasing noise and INU levels. The mean
registration error of MFRGA is less than 0.5. Even the maximum registration error using
MFRGA found out of all experiment cases is less than that of GA. This shows good
performance of MFRGA even for the worst case. Moreover, good segmentation accuracy
of normal brain structures was recorded via registration using MFRGA in comparison to
GA and LBFGS. The mean dice similarity coefficient for CSF, GM, and WM obtained is
0.701, 0.792, and 0.913, respectively, with a standard deviation 10 times less than 0.1. The
difference between minimum and maximum dice coefficient values is almost less than 0.05,
with minimum and maximum dice similarity values higher than GA and LBFGS.

The statistical analysis shows the effectiveness of MFRGA in all cases of changing noise
and INU levels. MFRGA can further be extended to the most challenging deformations at
pixel level called non-rigid image registration where an increased accuracy can be achieved
with better performance even for higher noise and INU levels. Moreover, the rigid image
registration is crucial for extracting useful information from multiple modalities. It is used
to remove global transformation differences among the multi-modal medical images. The
aligned images aid the physicians and surgeons in analyzing medical diagnostics. In future,
the atlas-based image registration combined with improved clustering methods [16,17]
may result in more accuracy for simultaneous segmentation of both normal and abnormal.
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