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Abstract: We demonstrate an efficient sensing of both gaseous and aqueous analytes utilizing Bloch
surface waves (BSWs) and guided waves (GWs) excited on a truncated one-dimensional photonic
crystal (1DPhC) composed of six TiO2/SiO2 bilayers with a termination layer of TiO2. For the gaseous
analytes, we show that 1DPhC can support the GW excited by an s-polarized wave and the theoretical
shift of the resonance wavelength is linear for small changes in the analyte refractive index (RI),
giving a constant RI sensitivity of 87 nm per RI unit (RIU). In addition, for the aqueous analytes, the
GW excited by s-polarized and BSW by p-polarized waves can be resolved and exploited for sensing
applications. We compare two designed and realized 1DPhCs with termination layer thicknesses
of 60 nm and 50 nm, respectively, and show experimentally the differences in their very narrow
reflectance and phase responses. An RI sensitivity and figure of merit as high as 544.3 nm/RIU
and 303 RIU−1, respectively, are obtained for the smaller thickness when both s- and p-polarized
BSWs are excited. This is the first demonstration of both very deep BSW-based resonances in two
orthogonal polarizations and a very narrow resonance in one of them.

Keywords: photonic crystal; Bloch surface wave; termination layer; reflectance; phase shift; Kretschmann
configuration

1. Introduction

One-dimensional photonic crystals (1DPhCs) are structures with a periodic modu-
lation of refractive index (RI) in one spatial dimension. There is an analogy between the
propagation of photons in a 1DPhC and the propagation of electrons in a periodic potential
of a crystal lattice, and so the concept of band gaps can be adopted [1]. The photonic band
gap determines the range of wavelengths of light that cannot propagate through the infinite
1DPhC. In practice, only the truncated 1DPhC can be prepared, which can be represented
by a multilayer dielectric structure (MDS), referred to as a Bragg reflector. Within the range
of wavelengths corresponding to the photonic band gap, the Bragg reflectors are highly
reflective, but they can also guide waves on their surface—the Bloch surface waves (BSWs).

For the excitation of the BSWs, a coupling device has to be used to fulfill the phase-
matching condition since the tangential component of the wave vector of the BSWs lies
beyond a free space light line. A common way is to use the total internal reflection in a glass
prism in the Kretschmann configuration that is widely used to excite the surface plasmon
resonance (SPR) [2]. The BSWs show up as a dip in the reflectance spectrum, similar to the
SPR, and they also can be exploited in sensing applications. However, contrary to the SPR,
narrower resonance dips are related to the BSW since the MDS is composed of low-loss
dielectrics, and both s- and p-polarized waves can be used for the BSW excitation. Moreover,
the photonic band gap position and width depend on the MDS geometry and materials,
and thus can be varied by the fabrication of the MDS so that ultra-large omnidirectional
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photonic band gaps are possible [3]. The sensors based on the BSWs often use not only a
wavelength [4–11], but also angular [5,11–14] interrogations. Importantly, sensors utilizing
a phase detection have also been demonstrated [15–18].

In this paper, we demonstrate an efficient sensing of both gaseous and aqueous
analytes utilizing a MDS composed of 6 TiO2/SiO2 bilayers with a termination layer of
TiO2. For the gaseous analyte, we show that the proposed structure can support a guided
wave (GW) excited by an s-polarized wave. The GW is accompanied by a reflectance
minimum (a dip), which theoretically shifts linearly with small changes in the analyte RI.
For the designed and realized 1DPhC and aqueous analytes, the BSWs excited by both s
and p-polarized waves can be resolved and utilized for sensing applications. We study the
effect of the termination layer thickness on the sensor response by a direct comparison of
two MDSs differing only by the termination layer thicknesses. The sensor performance
is evaluated in terms of the RI sensitivity and also figure of merit (FOM). We show that
the MDS with a termination layer thickness of 50 nm shows both higher sensitivity and
FOM than the MDS with a termination layer thickness of 60 nm. In addition, one of the
MDSs demonstrates for the first time not only very deep BSW-based resonances in two
orthogonal polarizations, but also a very narrow resonance in a single polarization.

2. Materials and Methods
2.1. Structures under Study

A truncated 1DPhC can be represented by a stack of alternating dielectric layers. For
the purpose of this study, two MDSs were prepared, each composed of six TiO2/SiO2
bilayers with a termination layer of TiO2. The 1DPhC was inspected by a scanning electron
microscope (DualBeam FIB-SEM Helios G4, Thermo Fisher Scientific, Waltham, MA, USA)
with images shown in Figure 1. The MDSs differ only in the thickness of the termination
layer, which is 60 nm in the first case (MDS60) and 50 nm in the second case (MDS50).
The thicknesses of all other TiO2 and SiO2 layers are tTiO2 = 100 nm and tSiO2 = 85 nm,
respectively, giving the spatial period Λ = tTiO2 + tSiO2 = 185 nm. Both MDSs were
prepared on a glass substrate by a method of electron beam evaporation; the process is
described in detail elsewhere [19].

(a) (b)

Figure 1. SEM images of the 1DPhC with overall (a) and detail (b) views.

2.2. Experiment
2.2.1. Experimental Setup

We performed two kinds of experiments with the prepared MDSs. First, we measured
interference reflectance R45(λ) in the experimental setup shown in Figure 2. During the
measurements, one of the MDSs on the glass substrate was attached to a BK7 glass prism
(Ealing, Inc., Scotts Valley, CA, USA) using index matching oil (Cargille, nD = 1.516). Using
a white light source (halogen lamp HL-2000, Ocean Optics, Orlando, FL, USA), a light
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beam was generated and then coupled into an optical fiber and transmitted to a collimating
lens. The collimated beam then passed through a linear polarizer (LPVIS050, Thorlabs,
Newton, NJ, USA) oriented by the angle γP = 45◦ with respect to the plane of incidence
and reached the air/prism interface at outer angle of incidence α. The inner angle of
incidence θ is given by relation θ(λ) = 60◦ − sin−1[sin α/nBK7(λ)], where nBK7(λ) is the
wavelength-dependent RI of the glass prism. After reflection from the MDS, the beam
passed through a linear analyzer (LPVIS050, Thorlabs, Newton, NJ, USA) oriented by the
angle γA = ±45◦ with respect to the plane of incidence and it was coupled to a read optical
fiber (M15L02, Thorlabs, Newton, NJ, USA) by a microscope objective. As a detector, a
compact spectrometer (USB4000, Ocean Optics, Orlando, FL, USA) was used.

WLS

CL

P

BC

A

MO

S

PC

TiO2

TiO2/SiO2

glass substrate

6 ×

α

θ

detail of the MDS
droplet of analyte

prism bilayers

Figure 2. Experimental setup: a MDS in the Kretschmann configuration; white light source (WLS),
collimating lens (CL), polarizer (P), birefringence crystal (BC), analyzer (A), microscope objective
(MO), spectrometer (S), personal computer (PC), optical fibers (shown as blue lines).

A recorded interference spectrum then followed the equation [9]

R±45(λ) =
1
4
{Rs(λ) + Rp(λ) + 2

√
Rs(λ)Rp(λ) cos [∆(λ) + δ±]}, (1)

where Rs(λ) and Rp(λ) are the spectral reflectances of s- and p-polarized light waves,
respectively, ∆(λ) is a phase change between them due to the BSW or GW excitation, and
δ± is a phase term related to the orientation of the analyzer (δ+ = 0 for γA = 45◦ and
δ− = π for γA = −45◦). This technique exploits the phase properties of BSWs and GWs to
pronounce the related reflectance dips. All measured spectra were normalized with respect
to the reflectance Rp(λ) measured for air.

Second, we measured an optical phase shift φ(λ) using a spectral interferometric
technique. In the measurement, a birefringence quartz prism of thickness 6 mm was
included in the experimental setup, which caused an additional phase difference ∆BC(λ)
between s- and p-polarized waves. As a result, a spectral interferogram (a channeled
spectrum) consisting of fringes could be resolved. Two such interferograms were recorded
to determine the phase shift φ(λ). One for the case when the BSW or GW was generated,
given by the overall phase Φ(λ) = ∆BC(λ) + ∆(λ), including the phase contributions of
both the birefringence crystal and BSW or GW, and second for the case when the waves
were not generated, given by ΦR(λ) = ∆BC(λ) + ∆R(λ), where ∆R(λ) is a reference phase
term. The reference interferogram was obtained in the setup, not including the MDS. Both
interferograms were processed by a windowed Fourier transform [18] to obtain the overall
phases Φ(λ) and ΦR(λ), and then the phase shift φ(λ) = Φ(λ)−ΦR(λ) was calculated.

2.2.2. Analytes

We performed measurement for room air (temperature t = 22 ◦C, relative humidity
RH = 30%) to show a possibility of the sensing of low RI analytes. The effect of temperature
changes is not considered, even if it is interesting from the point of view of the thermal
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stability of the sensor [20,21]. Next, we prepared six aqueous solutions of NaCl with
various RIs nD in a range of 1.3331–1.3599, corresponding to NaCl concentration ranging
from 0 weight percents (wt%) to approximately 10 wt%. The RI was measured with
refractometer AR200 (Reichert, New York, NY, USA) at sodium D line (λD = 589 nm) at
the room temperature.

2.3. Theoretical Analysis

Measurements are accompanied by the theoretical analysis. The reflectance was calcu-
lated by a transfer matrix method (TMM) [22], and we included the following dispersion
relation for TiO2 and SiO2 layers [19]

n2(λ) = A +
Bλ2

λ2 − C2 , (2)

where A, B and C are constants with values A = 2.7655, B = 2.2, C = 0.26524 µm
and A = 1.34836, B = 0.756, C = 0.10683 µm for TiO2 and SiO2, respectively, and λ is
wavelength in µm. Approximate extinction coefficients of TiO2 and SiO2, kTiO2 = 0.0016
and kSiO2 = 0.00034 were included in the calculations.

Dispersion of the water is expressed by the Sellmeier formula [23]

n2
w(λ) = 1 +

4

∑
n=1

Diλ
2

λ2 − Ei
, (3)

where Di and λi are constants with values D1 = 5.684027565× 10−1, D2 = 1.726177391× 10−1,
D3 = 2.086189578 × 10−2, D4 = 1.130748688 × 10−1, E1 = 5.101829712 × 10−3 µm2,
E2 = 1.821153936× 10−2 µm2, E3 = 2.620722293 × 10−2 µm2 and
E4 = 1.069792721× 10−2 µm2 (valid for temperature of 20◦).

Both the substrate and the prism are made of BK7 glass, and its dispersion is described
by the Sellmeier formula [24]

n2
BK7(λ) = 1 +

3

∑
n=1

Fiλ
2

λ2 − Gi
, (4)

where Ei and λi are constants with values F1 = 1.03961212, F2 = 0.231792344, F3 = 1.01046945,
G1 = 6.00069867× 10−3 µm2, G2 = 2.00179144× 10−2 µm2, G3 = 1.03560653× 102 µm2.
Finally, we used the RI of air nair = 1.

3. Results
3.1. Reflectances for Air and Water

First, we measured the reflectance ratio R−45(λ)/Rp(λ) for the MDS60, as shown in
Figure 3a by the dashed line. In the same figure, we also show the theoretical reflectance
ratio for different analyte RIs in a range of 1–1.01 and for the angle of incidence θ = 45.5◦,
when the reflectances Rs(λ) and Rp(λ) and the phase difference ∆(λ) are calculated using
the transfer matrix method [18].
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Figure 3. (a) Theoretical reflectance ratio R−45(λ)/Rp(λ) as a function of wavelength for different
RIs of the analyte and the angle of incidence θ = 45.5◦(α ≈ 22◦). Experimental result for air is shown
by the dashed line. (b) Band structure of the 1DPhC for s-polarized wave with dots corresponding to
the GWs for air (black) and water (blue), and the surface waves for water (red).

Analyzing the theoretical results, both reflectance minima correspond to the guided
waves. The narrow one at a wavelength of around 725 nm shifts linearly with the RI and is
excited by an s-polarized wave. We support this by a band structure of an infinite 1DPhC
composed of TiO2/SiO2 bilayers shown in Figure 3b. The band structure determination
is based on solving an eigenvalue problem [1], giving the dependence of the angular
frequency ω on the propagation constant β. We use the reduced quantities ω̄ = ω

c
Λ
2π and

β̄ = β Λ
2π and included the dispersion relations and thicknesses of the thin layers specified

in the previous section. The yellow regions represent the allowed bands of frequencies,
while the white regions represent the photonic band gaps. The black dots located out of the
photonic band gap denote the position of the reflectance dips determined for an angle of
incidence θ ranging from 43 to 48◦, thus confirming that the appropriate wave is the GW.
The dip positions are obtained for a structure containing 100 bilayers of TiO2/SiO2 and
including no termination layer. Moreover, we compute an optical field distribution [22]
within the MDS60, and it is shown in Figure 4a. The field intensity grows with distance
from the substrate and it has its maximum value near the MDS/analyte interface. The
shape of the field envelope in the crystal, which differs from the exponential one, is due to
the GW [25].

By tracing the dip positions (the resonance wavelengths), we obtain a linear depen-
dence on the RI, as shown in Figure 4b. The sensor response can be characterized in terms
of the RI sensitivity defined as

Sn =
δλR
δn

, (5)

where δλR is change in the resonance wavelength and δn is change in the RI of the analyte.
In this case, a constant value of 87 nm per RI unit (RIU) is reached. Next, we introduce
figure of merit (FOM), which is a parameter that takes into account also a width of the
resonance dip and is defined as

FOM = D
Sn

FWHM
, (6)

where FWHM is full width at half maximum of the resonance dip and D is its depth. In
this case, for FWHM = 5.3 nm and D = 0.96, FOM has a value of 15.7 RIU−1.
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Figure 4. (a) Normalized optical field distribution of s-polarized wave in the MDS60 for air with the
RI n = 1 and the angle of incidence θ = 45.5◦ (α ≈ 22◦). (b) Resonance wavelength as a function of
analyte RI.

3.2. Water and Aqueous Analytes

It is very well known that an entrance slit width of a spectrometer affects the spectral
resolution. Since the resonance dip related to the GW can be very narrow, it can be
sometimes problematic to resolve it if the entrance slit is not sufficiently narrow. The
resolution of the fiber-optic spectrometers is given by the effective width of the light beam
from a core of the read optical fiber [26]. As an example, we used two read optical fibers
with core diameters of 25 µm and 50 µm, respectively, to show the difference in the recorded
reflectance ratio R+45(λ)/Rp(λ) for water. As can be seen from Figure 5a, the narrowest
dip at a wavelength of approximately 660 nm is almost twice deeper when the fiber with
the 25 µm core diameter is used.
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Figure 5. (a) Comparison of spectra recorded by the spectrometer employing a read optical fiber of
two different core diameters d. (b) Band structure of the 1DPhC for p-polarized wave. Black dots
correspond to a multilayer consisting of 450 bilayers, blue and red dots to the MDS including the
termination layer with thickness of 60 nm and 50 nm, respectively.
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Analyzing the obtained reflectance ratio, one of three resolved dips can be associated
with the BSW (labeled as BSWp), and it is excited by a p-polarized wave at a wavelength of
approximately 518 nm (for a given angle of incidence), and the remaining two resolved dips
can be associated with s-polarized waves. In the band structure for the s-polarized wave
shown in Figure 3b, blue dots out of the photonic band gap represent the guided states for
water as the analyte. We can extend our considerations following an approach presented
in [27], including also the effect of the termination layer. In the case of the termination
layer thickness of 50 nm, the red dots located inside the photonic band gap are obtained.
Similarly, for a p-polarized wave, we computed the band structure shown in Figure 5b and
the reflectance dip positions are depicted by black dots for a multilayer consisting of 450
bilayers. In the case when the termination layer is included in the calculations, blue dots
and red dots are obtained for thicknesses of 60 nm and 50 nm in the MDSs, respectively.
All the obtained states are located within the photonic band gap.

3.3. Termination Layers with Thicknesses of 60 nm and 50 nm

In this section, we compare the two prepared MDSs in their sensing abilities related
to aqueous analytes. In Figure 6a,b, the measured reflectance ratios R+45(λ)/Rp(λ) are
shown for MDS60 and MDS50, respectively, for different RIs of the analyte. It can be seen
that the reflectance dips related to both s- and p-polarized waves (BSW or GW) are deeper
for the MDS60, but their shift with RI change is smaller than in the case of MDS50.
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Figure 6. Experimental reflectance ratio R−45(λ)/Rp(λ) as a function of wavelength for different RIs
of the analyte: MDS60 (a) and MDS50 (b). The dashed lines are the theoretical results for water.

The theoretical results obtained for pure water with the RI n =1.333 are shown by
the dashed lines. For the reflectance dip wavelengths, we calculated the optical intensity
distributions within the MDSs, as shown in Figure 7a,b. They clearly illustrate the substan-
tially enhanced optical field with an exponential tail for the MDS50 than for the MDS60, and
thus increased penetration depth of the field in the analyte. The discrepancy between the
theoretical and experimental reflectances can be attributed to the variable thicknesses of
all TiO2 and SiO2 layers in the real MDS as illustrated for a different MDS in a previous
paper [10].
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Figure 7. Normalized optical field distribution in MDS at different wavelengths for water and angle
of incidence θ = 64◦ (α ≈ −6◦): MDS60 (a) and MDS50 (b).

In Figure 8a, we show the resonance wavelength of both waves as a function of the RI
for both structures. In the case of BSWp, the wavelength shift is about 7.9 nm for MDS60 nm
and about 11.1 nm for MDS50. In the case of the GWs in s polarization, the wavelength shift
is about 3.3 nm for MDS60 nm and about 7.3 nm for MDS50 when the GW is transformed
into the BSW.
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Figure 8. Dependencies of resonance wavelength (a) and RI sensitivity (b) on RI.

A direct comparison of sensitivities to the RI is shown in Figure 8b. The sensitivities
change linearly with the RI, and they are higher for MDS50 than for MDS60 in the whole
RI range. The sensitivity can be further enhanced by decreasing the termination layer
thickness, but this is accompanied by the dip depth decrease [19] and thus a smaller FOM
increase. A summary of the sensor performance parameters is presented in Table 1.



Photonics 2022, 9, 561 9 of 13

Table 1. Sensor performance parameters resulting from the reflectance measurements.

Sensor Parameters for Aqueous Analytes

Structure MDS60 MDS50

Wave BSWp GWs BSWp BSWs

S (nm/RIU) 203.8–370.2 70.3–161.7 295.5–544.3 180.7–371.4
FWHM (nm) 13.3 2.7 10 2
D 0.96 0.78 0.96 0.44
FOM (RIU−1) 9.2–26.7 20.3–52.1 28.4–52.3 39.8–81.7

Comparing the results with the available ones [4,16,19,28–30], the resonance depths
obtained are the greatest; however, the sensitivities are smaller than those for a single
polarization [4,16,28], or for both polarizations [19], including also sensors employing
fibers [29] and operated in a near infrared spectral region. The sensitivities are close to
those for sensors employing a D-shaped optical fiber [30].

3.4. Phase Responses

In this section, we analyze the experimental phase responses of both MDSs. As for the
other resonance phenomena, such as a SPR [31,32], an abrupt phase change is related to the
BSWs [16], and it can be exploited for sensing applications. In Figure 9a,b, the phase shifts
measured for both MDS60 and MDS50 are shown. While the phase shifts due to the BSWp
are similar in both cases, the phase shifts due to the s-polarized waves are substantially
different, both in magnitude and sign of its change. Moreover, while a slope of the phase
shift due to the s-polarized GW is similar for every RI in the case of the MDS60, it varies
in the case of MDS50, when the GW is transformed into the BSW. It is interesting to note
that a similar behavior is revealed for a SPR phase response of a simple structure when the
thickness of a gold layer is changed [31,32]. In the same figures, we show by dashed lines
the theoretical phase ∆(λ) obtained using TMM.
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Figure 9. Phase shift as a function of wavelength for different RIs of the analyte: MDS60 (a) and
MDS50 (b). The dashed lines are the theoretical functions.

In Figure 10a,b, derivatives of the phase shifts are shown for MDS60 and MDS50,
respectively. The derivative peak position can be traced as the RI changes, similar to tracing
the reflectance dip.
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Figure 10. Derivative of the phase shift as a function of wavelength for MDS60 (a) and MDS50(b).
The dashed lines are the theoretical functions.

In Figure 11a, we show the wavelengths related to the derivative peaks of wave in
both polarizations as functions of the RI for both structures. In the case of BSWp, the
wavelength shift is about 9 nm for MDS60 nm and about 10.9 nm for MDS50. In the case of
the s-polarized GW, the wavelength shift is about 3.9 nm for MDS60 nm and about 7.1 nm
for MDS50, when the GW is transformed into the BSW. Sensitivities to the RI are compared
in Figure 11b. As in the case of reflectance, the sensitivities linearly increase with the RI and
are higher for the MDS50 than for the MDS60 in the whole RI range. Sensitivities obtained
in the phase measurements are summarized in Table 2.
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Table 2. Sensor performance parameters resulting from the phase measurements.

Sensor Parameters for Aqueous Analytes

Structure MDS60 MDS50

Wave BSWp GWs BSWp BSWs

S (nm/RIU) 131.4–459.0 70.5–193.7 337.2–482.5 220.1–302.9

FWHM (nm) 4 1 12 1–2.1

FOM (RIU−1) 32.85–114.75 75.5–193.7 28.0–40.2 104.8–302.9

The FOM of 303 RIU−1 belongs to values that are close to those of other BSW-based
sensors [4,19], but are not accessible by the SPR-based sensors [33].

4. Conclusions

In this paper, we demonstrated an efficient way of sensing of gaseous and aqueous
analytes utilizing a MDS composed of six TiO2/SiO2 bilayers with a termination layer of
TiO2. We showed that for air, the GW can be excited by an s-polarized wave in the given
wavelength range and we used a technique based on interference of reflected polarized
waves to resolve the reflectance dips with their maximum depth. Theoretical analysis
shows that the GW responses are with a linear shift of the resonance wavelength to small
changes in the RI of the analyte, giving a constant RI sensitivity of 87 nm/RIU and FOM of
15.7 RIU−1.

We performed experiments for analytes of aqueous solution of NaCl with the RI nD
in a range of 1.3331–1.3599, and we resolved resonance reflectance dips for BSWs excited
by both s- and p-polarized waves for a specific MDS. We revealed very narrow reflectance
dips whose widths can be affected by a limiting resolving power of a spectrometer. By a
direct comparison of very narrow reflectance and phase responses for two designed and
realized MDSs differing only in thicknesses of the termination layers, we showed that both
RI sensitivity and FOM, which reach 544.3 nm/RIU and 303 RIU−1, respectively, are higher
for the case of MDS50, thus making the structure more suitable for sensing applications.

Thus, we demonstrated not only very deep BSW-based resonances in two orthogonal
polarizations, but also a very narrow resonance in a single polarization. Designs and
realizations can be extended to MDSs supporting BSWs, which are characterized by a
superior sensitivity and FOM, representing an effective alternative to other optical sensors.
Moreover, based on the most recent theoretical results [34], phase response measurements
can be extended using a setup not including a coupling prism.
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