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Methods to increase algae biomass productivity in raceway pond monocultures 

Ryan Scott Anderson 

The economics of algae biofuels and bioproducts would be improved by increased biomass productivity. 

Two studies on this potential are described in this thesis – one on a locally isolated filamentous yellow-

green alga and the other on a planktonic strain genetically improved via adaptive laboratory evolution. 

Polycultures have been viewed as productive, stable, and, in some cases, harvestable by natural 

bioflocculation. Local native strains might have higher productivity than culture collection strains because 

they are already adapted to local outdoor conditions. In this study, the filamentous yellow-green alga 

Tribonema minus was isolated from a local volunteer polyculture.  Its productivity as a monoculture was 

compared to a volunteer polyculture in a year of thrice-weekly samples. The study was conducted in 

duplicate 1,000-L, 3.5-m2 outdoor raceway ponds fed with nitrified and filtered reclaimed wastewater. T. 

minus monocultures were more productive (17.6 ± 0.5 g/m2-d; mean ± range) than the polyculture (13.3 ± 

0.4 g/m2-d). The T. minus monocultures were stable, growing for an average of 38 days before significant 

contamination with other algae genera, at which point the cultures were restarted. The annual average 

biochemical composition, in percent of ash-free dry-weight, of the T. minus cultures was 28.3 ± 0.4% 

(mean ± std. dev.)  carbohydrates, 37.6 ± 0.7% proteins, and 6.1 ± 0.3% lipids. Eicosapentaenoic acid, a 

valuable nutritional omega-3 fatty acid, comprised 0.3% to 4% of the ash-free dry-weight and was the 

predominant fatty acid methyl ester measured. In summary, an alga isolated from a volunteer polyculture 

was more productive as a monoculture than the originating polyculture.  The monoculture biomass 

contained a valuable nutritional fatty acid.  

Scenedesmus obliquus was subjected to UV mutagenesis followed by cultivation in benchtop bubble 

columns at high dilution rates to select for cultures (cultigens) that grew faster than the wild-type. Fast 

growing cultigens were transferred to 1,350-L outdoor raceways ponds for productivity measurement. 

Cultigen and wild-type cultivations were conducted on reclaimed wastewater media in coastal central 

California for seven months. One cultigen, MBE 501, had 23% higher productivity than the S. obliquus 

wild-type (11.5 ± 0.02 vs. 9.4 ± 0.6  g/m2-d) during July 28 -December 30, 2019.  MBE 501 had been 
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subjected to 1:400 and 1:200 dilutions twice per week for the first two months and last five months of 

selection, respectively, and went through 289 generations in the lab..  Compared to a volunteer polyculture 

(14.4 ± 1.3 g/m2-d), MBE 501 was not as productive on average. This study demonstrated that high dilution 

rates in lab cultures can select for cells that are more productive in outdoor raceways.  Genetic comparison 

of MBE 501 and its wild-type are pending.  

 

Keywords: algae, wastewater, bioprospecting, adaptive laboratory evolution, directed evolution, strain 

development, productivity 
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Chapter 1. Productivity of Tribonema minus and Volunteer 

Polycultures in Outdoor Raceway Ponds 
 

1. Introduction 
 

Microalgae can be  feedstocks for biofuels and bioproducts, with the potential advantage of not requiring 

arable land or freshwater for cultivation (Burlew, 1953). Despite the high growth rate of many microalgae, 

the projected costs of algae biofuels are not competitive with liquid fossil fuels (Davis et al., 2011). Algae 

biorefineries have been suggested to reduce the cost of algae biofuel by simultaneous production of the 

low-value biofuels and high-value bioproducts (Brennan and Owende, 2010) such as nutritional fatty acids 

(e.g., eicosapentaenoic acid) and pigments (phycocyanin, astaxanthin, and other carotenoids) in addition to 

less valuable constituents such as crude protein. In particular, cultivation of yellow-green algae 

(xanthophytes) is one option for algae biorefinery because this taxon is known to produce beta-carotene and 

eicosapentaenoic acid—compounds with health benefits that can be sold as food supplements or used in 

animal feeds (Chen, 2019).   

Fertilizer costs can be decreased or eliminated by using treated wastewaters containing dissolved nutrients 

as algae growth media.  Algal assimilation of nutrients also provides wastewater treatment benefit (Oswald 

and Gotaas, 1954; Lundquist et al., 2010). Increasing areal productivity is another way to potentially lower 

production costs (Davis et al., 2011).  The term “culture performance” can be used to encompass the 

combination of growth rate and culture stability (e.g., resistance to pathogens and weed algae).  High 

performance cultures would have high annual average areal productivity due to rapid growth rate plus 

minimal culture crashes and contamination events. 

Native strains are adapted to their local biotic and abiotic conditions and are expected to perform better 

under those conditions than nonnative culture collection strains (Sun et al., 2011). In the present study, 

filamentous Tribonema minus, was isolated from a volunteer polyculture grown in outdoor raceway ponds 

on reclaimed wastewater.  The raceways were located in San Luis Obispo in central coastal California. The 

annual average productivity of T. minus grown in outdoor raceways was compared to volunteer 
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polycultures. The biochemical composition of T. minus cultures was measured to determine potential uses 

of the biomass.  

T. minus is an unbranched filamentous yellow-green alga in the class Xanthophyceae. Filaments are 

composed of “H” shaped overlapping compartments, with each compartment containing two to three –disk-

shaped chloroplasts arched against the cylindrical cell wall ().  The chloroplasts contain chlorophyll a, 

chlorophyll c, beta-carotene, and diadinoxanthin (Wehr, 2010). T. minus biomass has been demonstrated as 

a feedstock for aquaculture feed and biofuels production. Chen et al. (2019) found that flesh quality was 

better for fish receiving feed containing T. minus. They also observed that T. minus produced both 

eicosapentaenoic acid and palmitoleic acid, both valuable for nutrition. Additionally, Wang et al. (2014) 

showed that Tribonema can be used as a feedstock for bioethanol and biodiesel production. 

 

 

Figure 1. Micrograph of native Tribonema minus used in the present work. 1,000x total magnification. 

Filaments are unbranched with square ends. 

 

2. Materials and Methods 
 

This section describes the materials and methods associated with strain isolation of T. minus, culture 

propagation for inoculum production, and outdoor cultivation. The analytical methods used to measure 

raceway pond productivity, nutrient concentrations and biochemical composition are described. The 

equation used to calculate the areal productivity of outdoor raceway cultures is presented as well as the 

other data analysis methods used for comparison between T. minus and the polyculture. 
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2.1 Strain Isolation   
 

Samples were obtained from municipal reclaimed wastewater raceway polyculture ponds at the San Luis 

Obispo Water Resource Reclamation Facility (SLO WRRF) in San Luis Obispo, California Samples were 

diluted 100-fold and several 100 µL aliquots were plated on solid BG-11 medium (utex.org/products/bg-

11-n-medium) containing a 1:1000 dilution of an antibiotic-antimycotic mixture consisting of penicillin, 

streptomycin and amphotericin B (Millipore Sigma, Burlington, Mass.). Plates were incubated at room 

temperature under continuous illumination (100 µmol/m2s1) for 10 – 20 days. Isolated colonies were 

expanded on a shaker table under 200 µmol/m2s1 set at 200 rpm and using 150 mL borosilicate flasks 

containing 10-20 glass beads and BG-11 growth media. Strain isolated was performed by Dr. Aubrey Davis.  

2.2 T. minus Inoculum Production 

 
T. minus cultures for scale-up inoculum production were started indoors from agar plate cultures in five one 

liter glass bubble columns using 800 mL of autoclaved liquid BG-11 media. Plates were maintained at 

room temperature (20-25ºC) under low light conditions (50-100 µmol/m2s1) on solid BG-11 medium. 

Bubble columns were illuminated on a 16h:8h light/dark cycle with a light intensity of 600 100 µmol/m2s1 

at temperatures between 20 and 25ºC. Once per week 600 mL of each bubble column was harvested and 

replaced with fresh BG-11. Bubble column cultures were completely restarted from plates every two 

months. Culture harvested from bubble columns was used as inoculum for four indoor 18-L acrylic flat 

panel photobioreactors. Bubble columns and panel photobioreactors were sparged from the bottom of the 

reactors with 1.5% v/v CO2-air mixture at a flowrate which maintained complete mixing. Indoor reactors 

and had a typical pH of 7.5. Panels were started at a volume of 10 L with chlorinated and dechlorinated 

reclaimed wastewater from the SLO WRRF. Panels were topped off to 15 L after five days of growth. 

Panels were harvested completely each week and bleached before restart. Microscopic examination was 

conducted weekly on bubble column and panel cultures to ensure culture purity.  Photos of the bubble 

columns and panel photobioreactors used for inoculum production can be found in the appendix. 

Culture harvested from the panels was used as inoculum for outdoor raceway ponds. 
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2.3 Outdoor Pond Materials 
 

A native volunteer polyculture was established by seeding a raceway pond with algae samples from nearby 

wastewater evaporation ponds at the SLO WRRF. T. minus cultures and the volunteer polyculture were 

grown in duplicate 1000-L paddle-wheel mixed raceway ponds (3.5-m2 surface area, 0.3-m depth; RW3.5, 

MicroBio Engineering Inc., San Luis Obispo, Calif.) (). Raceway ponds were constructed of white high-

density polyethylene resin (HDPE) and grade-316 stainless steel cross beams. The outsides of pond side 

walls were painted black to prevent light penetration. Pond paddle wheels were made of transparent 

polycarbonate. Pond depth was set at 30 cm using a 4-inch PVC standpipe (Figure 3). 

 

Figure 2. Paddle-wheel mixed raceway ponds used in the present study. (3.5-m2 surface area, 0.3-m 

depth). Tribonema minus and the volunteer polyculture were each cultivated in duplicate ponds.  
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Figure 3. Effluent standpipe used for sample collection and to maintain the 30-cm pond depth. Mixing 

flow in the pond was counterclockwise.  

 

Ponds were fed fully-nitrified, granular media-filtered reclaimed wastewater (RWW) from SLO WRRF 

(Table 1). RWW flowed from a pressurized line provided by the WRRF to 55-gallon HPDE constant 

headtanks, which were connected to the ponds by 1 ¼ inch schedule 40 PVC pipe. Flow of RWW to the 

ponds was controlled by actuated valves (Part #EATB1150STE, Hayward Flow Control, Clemmons, North 

Carolina) and electronic controllers (APEX Fusion by Neptune Systems, Morgan Hill, Calif.). Ponds were 

sparged with pure CO2 from 50-lb cylinders. Porous soaker hose tubing in each pond was connected to ½ 

inch plastic tubing mainline, and the mainline to a regulator (Taprite, Item #: C384-3741T) the CO2 tank. 

Mainline pressure was set at 15 psi. The CO2 soaker hose was zip-tied to a weighted PVC strut to keep the 

hose at the bottom of the pond and prevent the hose from becoming entangled in the paddlewheel. Figure 

__ shows a process flow diagram of the outdoor raceway pond testing site at the SLO WRRF. Figure __ 

shows a labelled photograph of a raceway pond. 
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Figure 4. Process flow diagram of the outdoor raceway pond testing site at the San Luis Obispo Water 

Resource Reclamation Facility. Wastewater was disinfected by chlorination and was dechlorinated prior to 

use.  

 

 

 

Figure 5. Photograph of an outdoor raceway pond culture. (1) The standpipe collected overflow to keep 

pond depth constant. (2) The pipe jutting over the sidewall of the pond provided influent reclaimed 
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wastewater. (3) The flow direction in the pond was counterclockwise. (4) The PVC pipe with attached 

clear tubing is used to hold porous CO2 sparging tubing at the bottom of the pond. 

 

APEX Fusion was used as the electronic system for pond management, including controlling CO2 sparging 

and the reclaimed wastewater feed cycle. In situ temperature and pH probes were hooked up to the APEX 

Fusion system. Temperature and pH were monitored continuously, with a data point logged at the top of 

each hour. 

Table 1. Reclaimed Wastewater Yearly Average Constituent Concentrations, May 8, 2017 to April 
27, 2018.  SLO WRRF data provided by Landon Mortimer.  

Constituent Average Concentration (mg/L) Standard Deviation n 

Total Suspended 
Solids* 

4.43 2.33 354 

Ammonia Nitrogen* 0.36 1.43 354 

Nitrate Nitrogen* 45.10 8.01 354 

Dissolved 
Phosphorus** 

5.43 0.77 36 

5-day Biochemical 
Oxygen Demand** 

4.85 1.92 75 

* Measured by SLO 
WRRF 

**Measured by Cal Poly   

 

 

2.4 Outdoor Pond Operations 
 

After initial seeding and start up the volunteer polyculture was not seeded with additional algae. T. minus 

raceway cultures were started using 25 L of inoculum from indoor panels for each pond. Cultures were 

started at a depth of 10 cm in RWW. Cultures were gradually filled to the operating depth of 30 cm over 

two days and were operated in batch mode at 30 cm until the cultures had a biomass concentration such 

that the bottom of the pond could not be seen. This density was typically 50 – 80 mg/L AFDW for T. 

minus. Not being able to see the bottom of the pond is an approximation for knowing that the greatest 

amount of incident photons will be absorbed by the culture and water column, and not be wasted by 

hitting the bottom of the pond and reflecting out of the culture. Cultures will have lower productivity if 
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they do not have a sufficient biomass concentration to capture the highest number of incident photons 

(Slocombe et al, 2016).  

 

Once raceway pond cultures achieved sufficient density, they were operated with semi-continuous flow on 

an 8-hour feed cycle. Ponds received influent reclaimed wastewater daily from 08:00 to 16:00 local time 

with influent pulses every half hour for a total of 16 pulses per pond per day. Dosing timers were adjusted 

to follow Day Light Savings Time.  Hydraulic residence times (HRTs) were controlled to within 10% of 

the desired value in weekly calibrations in which the volume of one pulse was measured. The HRT was 

calculated with . HRT was adjusted throughout the study with the goal of maintaining an AFDW 

concentration of 80 -120 mg/L. This concentration was found to be high enough to prevent washout of 

photoautotrophic algae cultures (R. Spierling, unpublished data). HRT of T. minus cultures was maintained 

at 2 days for the entire year, while the polyculture HRT was adjusted between 2 to 4 days ().  

Equation 1. ����������� �� ���� ��������� ��������� ���� 

��� =
������

����
=

������� �����, � ∗ ���� ����, ��

�������� ����� ������, ��/����� ∗ �� 
������

���

 

 

Table 2. Hydraulic Residence Times used for Volunteer Polyculture Ponds 

Start End HRT (days) 

5-Jul-18 27-Dec-18 2.0 

28-Dec-18 15-Jan-19 3.0 

16-Jan-18 3-Mar-19 4.0 

4-Mar-19 17-Mar-19 3.0 

18-Mar-19 8-Jul-19 2.0 
 

 

Ponds were sparged with pure CO2 to maintain a pH below 8.0, and in situ pH probes were calibrated 

weekly. CO2 flowed to ponds by a programmed solenoid, which opened after a 5-minute delay when pH 

exceeded 8.0. The solenoid closed after pH had fallen below 7.5. Ponds were mixed by a paddlewheel set at 

a speed of 25 rpm. 
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2.5 Sampling Methods 
 

Raceway pond samples for ash-free dry weight (AFDW), microscopy, nitrate and phosphorus measurement 

were collected between 09:00 and 10:00 local time every Monday, Wednesday, and Friday. After a routine 

influent pulse to a pond, a plastic cup was inserted into the pond standpipe to collect an overflow sample of 

1.5 L (). Samples were transferred from the plastic cup to 1.5L polypropylene sample bottles (Part # 2121-

0005, Thermo Scientific™ Nalgene™, Waltham, Mass.). Sample bottles were stored in a dark cooler and 

transported to a Cal Poly laboratory. The samples spent between 1 to 3 hours in the cooler before analysis. 

Samples of 20 L were collected weekly from each pond for biochemical analysis. Samples for biochemical 

analysis were settled in an indoor lab at room temperature (20-25ºC) after collection for two hours followed 

by filtration or centrifugation to dewater the biomass, which was then freeze dried for at least two days.  

2.6 Ash-Free Dry Weight Measurement 
 

Algal concentrations as mg/L ash free dry weight (AFDW), following APHA Standard Methods 2450 

(APHA, 2005), were measured in triplicate three times per week on samples collected from pond standpipe 

overflow. Samples collected were homogenized prior to analysis. 

2.7 Raceway Pond Culture Composition 
 

The T. minus pond cultures were examined weekly under the microscope to evaluate culture health, 

predator populations, and contamination with algae other than T. minus. Polyculture pond cultures were 

also examined for algae genera composition. Raceway pond samples were prepared on a wet mount and 

viewed under magnifications of 100x, 400x and 1,000x using a bright field microscope (CX41 upright 

microscope, Olympus Lifescience, Shinjuku, Tokyo) with microscope camera (INFINITY2-1R, Teledyne 

Lumenera, Ottawa, Ontario) and image capture software (Infinity Analyze and Capture, Teledyne 

Lumenera, Ottawa, Ontario). One wet mount slide per pond was evaluated for percent biovolume 

contributed by algae genera. If a T. minus pond culture was less than 80% pure in terms of biovolume as 

determined by microscopy both ponds in the set were cleaned with bleach and the culture restarted from 

indoor inoculum. 
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2.8 Raceway Pond Nutrient Concentrations 
 

Nitrate, the predominant nitrogen species in fully-nitrified reclaimed wastewater, was measured weekly 

using Hach TNT 836 Nitrate vial kit and TNTplus® method 10206. Dissolved phosphorus was measured 

weekly on outdoor raceway pond cultures. Samples were filtered through a 0.45-micron filter prior to 

analysis using Hach TNT 844 Phosphorus vial kit and TNTplus® method 10209. The purpose of measuring 

nutrient concentrations was to ensure cultures were nitrogen and phosphorus replete.  

Algae are about 8% nitrogen and 1% phosphorus in percent of AFDW. Average reclaimed wastewater 

nutrient concentrations were 45.1 mg/L NO3 -N and 5.4 mg/L PO4-P (Table 1). If raceway pond cultures 

were to reach twice the upper end of the goal concentration (80-120 mg/L AFDW), AFDW concentrations 

in the cultures would be 240 mg/L. At this concentration, algae biomass would assimilate 19.2 mg/L nitrate 

nitrogen and 2.4 mg/L phosphorus. At twice the goal concentration, the bulk fluid in the raceway pond 

cultures would still contain approximately 25.9 mg/L nitrate nitrogen and 3.03 mg/L phosphorus, indicating 

that cultures will be nutrient replete when a safety factor of two is applied to the goal biomass 

concentration.  

 

2.9 Raceway Pond Culture Biochemical Composition  

 
Biochemical analysis for carbohydrates, lipids as fatty acid methyl esters (FAMEs) and protein was 

completed using National Renewable Energy Labs methods (Laurens, 2015, Van Wychen and Laurens, 

2015a, Van Wychen and Ramirez, 2015, Van Wychen and Laurens, 2015b). Samples collected from the 

ponds were dewatered by centrifugation and then freeze-dried for at least two days. Freeze-dried algal 

biomass was tested for ash, carbohydrate, lipid, and protein content. Totals solids of samples were 

measured after 18+ hours in a 60oC oven to ensure a constant moisture content of less than 20%. Ash 

content was measured after placing samples in a 575 oC muffle furnace for 24 hours. Total carbohydrates 

were tested by hydrolysis to monomers and 3-methyl-2-benzotheazolinonehydrazone (MBTH) reaction 

with spectrophotometry at 620 nm. Lipids were converted to FAMEs by acid-catalyzed transesterification 

and then quantified by GC-FID. NuCheck lipid standard (#: GLC 461 C, Nu-Chek Prep, Inc, Elysian, 
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Minn.) was used to determine the peak for each FAME, and match sample peaks to generate a FAMEs 

profile. The sum of the FAMEs profile concentrations was equal to the total FAMEs concentration. Protein 

was determined by combustion and elemental nitrogen conversion by a factor of 4.78. Biochemical analysis 

for this study was performed by Sara Leader. 

 

2.10 Raceway Pond Productivity Calculation 
 

Gross areal productivity of outdoor raceway cultures was calculated using AFDW, HRT and pond depth 

(Equation 2). Productivity values reported herein are gross areal productivity, the total biomass produced 

by each pond per area per time. Samples were collected from standpipe overflow, meaning that 

productivity values reported herein represent the biomass that would be harvested. Gross productivity of 

reclaimed wastewater algae cultures is nearly equal to net productivity, as AFDW contribution from 

influent reclaimed wastewater to the raceway cultures was negligible. In addition, productivity values 

reported herein are from photoautotrophic cultures, as exogenous carbon concentrations in the reclaimed 

wastewater are very low (Table 1). When reporting productivity, low biomass concentration values due to 

restart of outdoor T. minus cultures were excluded from reporting. Productivity calculations began when 

ponds reached a density of approximately 80 mg/L. 

Downtime and restart of T. minus monocultures must be accounted for when comparing the productivity of 

T. minus and the polyculture. Total biomass produced per pond area per year factors in culture downtime as 

well as productivity during normal operations. To calculate the annual biomass production for each culture 

productivity measurements were interpolated to give each day of the year a productivity value. Samples 

were not taken on Tuesdays, Thursdays, or Weekends. Interpolation for no sample days was done by 

averaging the antecedent and subsequent measurements and setting the productivity value for the day(s) in 

between measurements equal to the average. Days in which T. minus ponds were contaminated, empty or 

growing up to density were counted as zero productivity, as culture downtime is not the same as a day in 

which cultures were operational without measurement. 

Equation 2. ����������� �� ������� ������� ���� ����� ����� ������������ 
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3. Results and Discussion 
 

This section compares the performance of T. minus monocultures to the polycultures in raceway ponds. 

Ash-free dry-weight concentrations over time for both cultures are presented, followed by productivity. 

Monthly average and annual average productivities are presented for each culture, along with the average 

length of T. minus growth periods outdoors. The annual biomass produced by each culture per area was 

then calculated. The section concludes with the biochemical composition of raceway T. minus cultures and 

a discussion of future research areas. 

3.1   Biomass concentrations 
 

AFDW varied seasonally due to changes in local weather and HRT (Error! Reference source not found.). 

Higher HRTs were used for the local polyculture during the winter months of December and January. Both 

the polyculture ponds and T. minus ponds had AFDW concentrations below the 80 mg/L goal in December 

and January (), indicating that residence times should have been increased further during these months. T. 

minus cultures started in January did not reach a density of above 50 mg/L and were excluded from 

productivity analysis as the HRT was too low to allow the cultures to grow up to the goal density. During 

Fall, Spring and Summer months the ponds were operated at HRTs that kept AFDW concentrations near 

the goal range of 80-120 mg/L AFDW, with the exception of low AFDW data points at the beginning of T. 

minus growth periods. These start up points were excluded from productivity analysis. Notable spikes in 

AFDW were observed in the T. minus pond cultures throughout the study, the exact causes of which were 

not determined. 
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Figure 6. Ash-free dry-weight of outdoor T. minus and polyculture cultures over time. Ponds 7 and 8 are T. 
minus replicates. Ponds 9 and 10 are polyculture replicates. Each point is the average of triplicate 
measurements. 

3.3 Productivity and Stability 
 

Average productivity of T. minus cultures and the polyculture follow similar trends to those observed in 

AFDW over time (Error! Reference source not found.). This is due to the dependence of productivity on 

AFDW concentration (Equation 2). T. minus appears to be more productive than the polyculture during 

most time periods. Low AFDW grow up periods of T. minus cultures excluded from productivity analysis 

are reported in the AFDW timeseries (Error! Reference source not found.) and these points are not 

reported on the productivity time series (Error! Reference source not found.). 
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In the outdoor raceways operated for a year, the annual average productivity of T. minus monocultures 

(17.6 ± 0.5 g/m2-d) was higher than that of the volunteer polyculture (13.3 ± 0.4 g/m2-d), (). Error bars are 

equal to ± values, and represent range of the mean of the duplication ponds.  

Both T. minus and the native polyculture exhibit seasonal productivity differences, with greatest 

productivity in spring and summer. T. minus cultures appeared to be more productive than the polyculture 

for 9 months out of the year (). T. minus culture residence times should have been increased in January 

because ponds were not able to reach AFDW concentration goal, resulting in all data points being from 

dilute cultures (Error! Reference source not found.). Cultures that are too dilute will be less productive 

than cultures that have a high enough biomass concentration to capture as many photons as possible 

(Slocombe et al, 2016). Large error bars in some months shown in  are due variability in AFDW between 

replicate ponds, not due to analytical error. Phenotypic changes in filament length in T. minus cultures can 

affect how much biomass flows over the standpipe and into the sample collection cup, which affects 

AFDW measurement. T. minus ponds were found to have an average of 10% biomass retention in the 

ponds (R. Anderson, data unpublished).  

T. minus cultures stability was reasonably good in outdoor ponds.  The interval between restarts due to 

contamination with other genera averaged 38 days, with a total of 10 approximately week-long restart 

periods. Low AFDW grow up values were excluded from productivity analysis but were included in terms 

of days T. minus cultures grew without contamination. Polyculture ponds were restarted only once, due to 

the need to move the raceway ponds.  
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Figure 7. Average gross productivity of Tribonema minus and polycultures over time. Error bars represent 

the range of the mean of the duplication ponds. The gap in data collection in November is due to a site 

move. 
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Figure 8. Average gross productivity of Tribonema minus and native volunteer polyculture outdoor pond 

cultures from July 5, 2018 to July 8, 2019. Error bars represent the range of the mean of the duplication 

ponds. 

 

 

Figure 9. Monthly average gross productivities of Tribonema minus monocultures and volunteer 
polycultures. Error bars represent the range. Annual average productivities of T. minus and the 
polycultures were 17.6 ± 0.5 and 13.3 ± 0.4 g/m2-d, respectively. 
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While T. minus cultures were more productive on average than the volunteer polyculture, an annual 

biomass production of each culture is important. Monocultures had cleaning and restart downtime due to 

contamination by competing strains, whereas the volunteer polyculture did not. T. minus monocultures 

produced more biomass per year than the polyculture despite T. minus having zero productivity days during 

cleaning and restart (Table 3). T. minus cultivation practices were not optimized in terms of minimizing the 

downtime of cultures, e.g., ponds were not restarted the same day they were cleaned, which is possible 

provided that dense inoculum is available. In practice, the amount of biomass produced per year could have 

been larger if more emphasis was placed on minimizing culture down time. 

Table 3. Average ash-free dry-weight produced per area per year.  

 

The most common contaminant observed in T. minus cultures was Nitzschia, a genus of pennate diatoms. 

The composition of the polyculture was dynamic and exhibited seasonal variation. The five most common 

genera observed were, in no particular order: Chlorella, Scenedesmus, Chlorococcum, Actinastrum, and 

Nitzchia. Predator populations were not observed in T. minus cultures during this study. Wang, et al, (2014) 

found that Tribonema cultures were resistant to predation by grazers, which could explain the lack of 

grazers observed during this study.  

3.4 Biochemical composition of Tribonema minus raceway cultures. 
 

Stable biochemical composition without much seasonal variability was observed for T. minus cultures 

(Figure 10). This stability would like be an advantage in processing the biomass into products. Table 4 

displays annual average biochemical macromolecule composition of T. minus biomass. Annual average T. 

minus ash content, of oven dry-weight, was 8.21 ± 2.38%. T. minus cultures had a high carbohydrate 

content averaging 28.16% of AFDW (Table 4). This indicates that T. minus biomass is an excellent 

feedstock for bioethanol production, agreeing with findings from Wang et al., 2014b. Average protein 

content for the year was 39.05% of AFDW, and stable lipid content was observed throughout the year 

averaging of 6.16% AFDW (Table 4). A lipids as FAMEs profile was generated for all sampling dates 
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(Figure 11). Lipids were measured as FAMEs but were not present in the biomass as such. Each FAME 

corresponds to a fatty acid present in the biomass. The predominant lipids in T. minus biomass throughout 

the year were eicosapentaenoic acid and palmitoleic acid, measured as methyl eicosapentaenoate and 

methyl palmitoleate, respectively. 

Table 4. Annual average biochemical composition of reclaimed wastewater fed T. minus raceway pond 
cultures, in percent of ash-free dry-weight 

Biochemical Macromolecule Annual Average, % AFDW Max. and Min., % AFDW; respectively 

Carbohydrates 28.16 20.86 – 36.63 

Proteins 39.05 24.09 – 45.10 

Lipids as FAMEs 6.16 3.90 – 8.20 

 

Methyl palmitoleate (C16:1-n7, palmitoleic acid), was an average of 22.13 ± 4.31% (average ± std. dev of 

pond replicates) of FAMEs and reached a maximum profile of 43.05% of FAMEs. As percent of AFDW, 

methyl palmitoleate was an average of 1.35± 0.30% of AFDW, with a maximum and minimum of 2.42 % 

and 0.87%, respectively. Methyl eicosapentaenoate (C20:5, eicosapentaenoic acid, (EPA)) was an average 

of 35.22 ± 7.69% of FAMEs and was the predominant FAME species observed during the study. As a 

percent of AFDW, methyl eicosapentaenoate was an average of 2.20± 0.66% of AFDW, with a maximum 

and minimum of 3.34% and 0.36%, respectively. No obvious correlations existed to describe the changes in 

biochemical composition and lipid profile. EPA is an omega-3 unsaturated fatty acid. Palmitoleic acid has 

application as a nutraceutical (Morse, 2015). Methyl palmitate (C16:0, palmitic acid) was also present in 

the FAMEs profile, and provides a potential substitute for palm oil, whose modern-day production is 

unsustainable (Gatti et al, 2019). Methyl palmitate was an average of 16.85 ± 2.82% of FAMEs. 
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Figure 10. Annual average biochemical composition of outdoor Tribonema minus pond cultures in percent 
of ash-free dry-weight (AFDW) and ash in percent of oven dry-weight (ODW). Each data point is the 
average of data from duplicate ponds. No seasonal trends were observed. Annual average percent 
composition of ash-free dry-weight was 28.16 ± 3.23% carbohydrates, 6.16± 0.93% lipids as FAMEs, and 
38.19± 3.64% protein. Annual average ash composition was 8.21 ± 2.38% of oven dry weight. n = 34 data 
points. Figure courtesy of Sara Leader. 
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Figure 11. Profile of lipids as FAMEs in Tribonema minus outdoor pond cultures over one year. Each data 

point is the average of data from duplicate ponds. n = 34 data points. Figure courtesy of Sara Leader. 

 

3.5 Future Research Involving Tribonema minus 
 

While T. minus was found to have a consistent biomass composition and lipid profile when grown in 

outdoor ponds, the biomass value would be improved by increasing the content of carbohydrates and/or 

lipids and decreasing the content of ash and proteins Wang et al. ( 2013, 2014a) demonstrated that high 

culture concentration induced lipid accumulation, and nitrogen starvation induced carbohydrate 

accumulation in Tribonema sp. biomass grown in indoor reactors. Previous research has also indicated that 

nitrogen depravation does not change the fatty acid profile of T. minus or result in lipid accumulation (Guo 

et al., 2014). T. minus has been previously found to accumulate lipids when grown heterotrophically (Zhou 

et al., 2017). Zhou’s group found that T. minus was able to grow heterotrophically and make use of 

ammonium, indicating that T. minus may be able to grow on wastewaters. By growing T. minus on 

wastewater, treatment credits might be obtained supporting algae biofuel and biorefinery concepts (Oswald 

et al. 1960).   
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4. Conclusions  

Tribonema minus isolated from a volunteer polyculture was productive when grown in outdoor 

monocultures on reclaimed wastewater in raceway ponds. The cultures were N and P replete and sparged 

with CO2 to maintain pH 7.5-8.0. An annual averaged productivity for Tribonema minus (17.6 ±  0.5 g/m2-

d, average ± range) appeared to be higher than that of volunteer polycultures (13.3 ± 0.4 g/m2-d) grown on 

the same water. The T. minus monocultures grew for an average of 38 days before contamination with 

invasive algae genera. T. minus cultures produced more biomass per annum (5.51 ± 0.11 kg/m2-yr) than the 

local polyculture (4.66 ± 0.21 kg/m2-yr). Downtime during restart of T. minus cultures was not minimized 

in this study, but could be in future studies, meaning that even higher annual biomass production can be 

achieved. 

The biochemical composition of T. minus cultures was stable year-round, and cultures had an average 

composition of 28.3 ± 0.4% carbohydrates, 37.6 ± 0.7% proteins, and 6.1 ± 0.3% lipids as FAMEs. T. 

minus cultures had an average eicosapentaenoic acid content of 2.20% of the ash-free dry-weight, and an 

average palmitoleic acid content of 1.35% of ash-free dry-weight. T. minus isolated from a volunteer 

polyculture grew as a fairly stable monoculture while producing easily-harvested biomass with stable 

desirable biochemical composition over the course of a full year.  
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Chapter 2. Adaptive Laboratory Evolution to Improve the 

Productivity of Scenedesmus obliquus in Raceway Ponds 
 

Introduction 
 

The economics of algae biofuels and bioproducts production can be improved by increasing the  

productivity of algal cultures (Davis et al., 2011). A way to possibly improve productivity of monocultures 

is adaptive laboratory evolution (ALE). In one form, ALE places cultures of microorganisms under 

deliberate selection pressure to make genetic changes in the population and select for a desired phenotype.. 

ALE has been used previously to enhance carotenoid production in microalgae (Sun et al., 2018). In the 

present study, ALE was used to create cultigens that had greater biomass productivity than the original wild 

type organism.. The goal of the study was to determine if high productivity cultigens generated in 

laboratory reactors would also be more productivity than the wild type when grown in outdoor raceway 

ponds with reclaimed wastewater as the medium.  

The microalga Scenedesmus obliquus was chosen for ALE because full genetic sequence is known, it 

grows well in wastewater and it has been studied previously as a biofuel feedstock due to ability to 

accumulate lipids or carbohydrates. S. obliquus is a Chlorophyceae which grow in multi- cell coenobia 

(Figure 12).  Although polycultures have had higher productivity than simultaneous monocultures (A. 

Davis, unpublished data), monocultures were used in the present study so that genetic changes might be 

tracked and that a cultivar with stable characteristics might be developed.   

To improve the economics and environmental sustainability of algae production, use of wastewater or 

treated wastewater as the growth medium has been considered (Oswald and Golueke, 1960; Lundquist et al. 

2010; Woertz et al. 2014).  Wastewater treatment could be a revenue source in addition to that from the 

biomass.(Ansari et al., 2019). The present study focused on quantifying changes in areal productivity 

between indoor selected cultigens and wild-type S. obliquus monocultures cultivated in 1,350 L outdoor 

raceway ponds on reclaimed wastewater in coastal central California. 
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Figure 12. Scenedesmus obliquus bubble column culture micrograph. 400x total magnification, scale 
bar is 20 microns in length. 

2. Materials and Methods 
 

Methods used in this study for outdoor raceway sample collection, ash-free dry-weight, culture 

composition, nutrient measurement and productivity calculation were described in Chapter 1 sections 

2.5, 2.6, 2.7, 2.8 and 2.10, respectively. This section will cover S. obliquus cultigen development and 

outline differences in inoculum production and outdoor pond operations from the previous T. minus 

chapter. Biochemical analysis of S. obliquus pond cultures is not presented in this study. 

2.1 Cultigen Development  
 

S. obliquus was grown with high dilution rates in laboratory bubble columns to select for high growth rate 

phenotypes. To increase genetic heterogeneity, ultraviolet (UV) light random mutagenesis was used. S. 

obliquus was grown in indoor 800-mL glass bubble column reactors using BG-11 growth media and 1:400 

twice per week dilutions for the first two months of selection, followed by 1:200 dilutions for the last five 

months of selection. Wild-type S. obliquus cultures did not undergo intentional selection pressures, and 

were cultivated indoors alongside. Establishment of a cultigen occurred when that culture’s productivity 

was measured to be improved over that of wild-type S. obliquus in indoor bubble column reactors. Once a 

cultigen was established, the cultigen was considered for outdoor cultivation. Cultigens were then 
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compared to each other in terms of indoor bubble column productivity, and the cultigens that were the most 

productive indoors were cultivated outdoors in raceway ponds.  

Genomic analysis to identify differences between the wild-type and the cultigens and propose potential 

mechanisms behind the improvements is currently ongoing at Sandia National Laboratories in Livermore, 

California.  

 

2.2 Inoculum production 
 

Cultigens with the highest indoor bubble column productivity improvements over the wild type were 

scaled-up from five 800-mL bubble columns to four 18-L flat panel photobioreactors, for later inoculation 

into outdoor ponds. Cultigens and wild-type S. obliquus cultures were handled carefully using sterile 

method to avoid contamination. Cultigens and the wild-type were restarted from slants ever other month to 

avoid cultures adapting to lab conditions and undoing potential improvements selected for with outdoor 

cultivation in mind. The growth media used in the panel photobioreactors was chlorinated and 

dechlorinated reclaimed wastewater from the San Luis Obispo Water Resources Recovery Facility. RWW 

was treated by nitrifying activated sludge followed by granular media filtration and chlorination.  (Images 

of photobioreactors used in this study may be found in the supplementary material.) Once in the scale-up 

phase, bubble column reactors were diluted weekly with 600 mL autoclaved BG-11, and the harvested 

biomass was used as inoculum for the larger panel photobioreactors. Deliberate selection pressures were 

not applied to cultigens during the scale-up phase. Panel photobioreactors were harvested completely each 

week and used to restart ponds if necessary. Panel photobioreactors were restarted using the volume of 

bubble column culture harvested from dilutions and fresh chlorinated and dechlorinated RWW. Two 

cultigens and the wild-type S. obliquus were made continuously available to restart the ponds as needed. 

 

2.3 Outdoor Cultivation 
 

S. obliquus cultigens and wild-type were cultivated outdoors at the SLO WRRF from May 26, 2019 to 

December 30, 2019 in duplicate 1,350 L, 30 cm deep raceway ponds fed with reclaimed wastewater. 
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Duplicate native polycultures were cultivated during the same time in 1,000 L, 30 cm deep raceway ponds. 

Materials used in outdoor raceway pond cultivation were described in Chapter 1, section 2.3, with the only 

difference being the volume of S. obliquus ponds. 

Pond infrastructure allowed for two S. obliquus cultigens to be tested alongside the wild-type at one time. 

Wild-type S. obliquus and a volunteer polyculture were grown for the duration of the study to serve as 

productivity baselines. The remaining two pond sets were used to cultivate ALE generated S. obliquus 

cultigens that had showed promise indoors. Raceway pond cultures were started and operated as 

perveiously described in Chapter 1, section 2.4. All cultures had an HRT of 2-4 days. Methods used in the 

operation of outdoor raceway ponds were described in Chapter 1, section 2.4. 

 

2.4 Sampling, Ash-Free Dry-Weight, Culture Composition, Nutrient Measurements and 

Productivity Calculation 
 

Methods used in this study for outdoor raceway sample collection, ash-free dry-weight, culture 

composition, nutrient measurement and productivity calculation were described in Chapter 1 sections 

2.5, 2.6, 2.7, 2.8 and 2.10, respectively. 

 

3. Results and Discussion  
 

Three S. obliquus cultigens were established indoors and tested in outdoor raceway ponds during this study. 

Cultigen MBE 501 was developed after 289 total lab generations and was the result of 100 remixed 

colonial isolates. MBE 503 was developed after 280 total lab generations, and MBE 504 was developed 

from MBE 503 after an additional 143 generations, for a total of 423. S. obliquus cultigens MBE 501 and 

MBE 504 were cultivated outdoors alongside the wild-type and volunteer polyculture outdoors from May 

26 to September 4, 2019. The cultigen MBE 503 replaced MBE 504 on September 6, 2019, and 

simultaneous cultivation of MBE 501, MBE 503, wild-type and volunteer polyculture continued from 

September 6 to December 30, 2019. All three cultigens were observed to be stable outdoors, with MBE 501 

appearing to be most productive (). The startup periods in which ponds were growing up to desired density 

were excluded from productivity analysis.  Productivity varied over time due to weather and restarts of 
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each culture due to contamination. The HRT of all S. obliquus cultures was the same at any given time, 

ranging from 2 to 4 days. The volunteer polyculture HRT was not always set equal to that of the S. obliquus 

ponds. HRT needed to be increased during winter months to maintain goal AFDW concentrations in the 

ponds (Table 5). Growth periods of S. obliquus cultures were not always synchronized due to time 

constraints of the study. Too many resources would have been expended if all six S. obliquus test ponds 

were restarted due to one pond culture crashing or becoming contaminated. 

 

Figure 13. Time series of average gross productivity of S. obliquus cultigens alongside the wild-type. 

Repeated dips in productivity are due to restarts of the outdoor cultures. Error bars represent the range 

for each culture on each given date.   
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Table 5. Hydraulic residence time of outdoor pond cultures. 

S. obliquus ponds Polyculture ponds 

Date Range: HRT (days) Date Range: HRT (days) 

May 26- June 18, 2019 3 May 26 - Oct. 29, 2019 2 

June 19 - Oct. 18, 2019 2 Oct. 30 - Nov. 26, 2019 3 

Oct. 19 - Nov. 27, 2019 3 Nov. 17 - Dec 30, 2019 4 

Nov. 28 - Dec. 30, 2019 4   

 

During the first outdoor testing time period from May 20 to September 4, 2019, MBE 501 had a higher 

average productivity (17.5 ± 0.4 g/m2-d; mean ± range of duplication ponds) than MBE 504 (15.1 ± 0.1 

g/m2-d) and the wild-type (14.6  ± 0.8 g/m2-d) (). The volunteer polyculture had an average productivity of 

18.8 ± 1.3 g/m2-d during this time period. The and minimum average pond productivity ranges (error bars 

in Figure 14) of MBE 501 and the volunteer polyculture overlap, indicated that MBE 501’s most 

productive pond was as productive as the volunteer polyculture’s least productive pond, on average. MBE 

501 reached a higher maximum productivity than both MBE 504 and the wild-type, but not the volunteer 

polyculture (Table 6). MBE 501 had  higher monthly average productivities than wild-type and MBE 504 

(Figure 15).. MBE 504 was not more productive than the wild-type and cultivation of MBE 504 was 

discontinued after September 4. A different cultigen, MBE 503, was cultivated for the remainder of the 

experiment alongside MBE 501 and the wild-type. 

Table 6. Maximum average productivity values of outdoor cultures. Error bars illustrate the range. 

 

 

 

Culture Maximum productivity ( g/m2-d ) Error Date 

MBE 501 26.13 0.26 7/17/2019 

MBE 504 22.03 0.00 7/24/2019 

Wild-type S. obliquus 21.57 1.11 7/17/2019 

Polyculture 31.60 0.03 7/19/2019 
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Figure 14. Average outdoor pond productivities from May 26 to September 4, 2019. Error bars represent 

the range of the mean of the duplication ponds. 

 

MBE 501 had higher monthly average productivities than the wild-type each month except September 

(Figure 15). The atypically low monthly average productivity in September for MBE 501 might be 

attributable to a poor growth period from mid- to late-September (Figure 17), which shows MBE 501 

performing equal to or better than the wild-type at the vast majority of sampling points except during 

September. The start date of Figure 17, June 28th, is significant as it the first growth period in which MBE 

501 and the wild-type were started at the same time outdoors. The low productivity of MBE 501 ponds 

during this September period can be attributed to poor start up conditions, which will be described in the 

following paragraphs. 

MBE 501 ponds were inoculated at an average of 34 mg AFDW/L on September 11, 2019. This was a 

typical starting point after indoor inoculum was added to an outdoor pond at 10 cm depth. Batch operation 

for startup of the cultures continued until September 16, 2019, which included filling the pond to the full 

30-cm depth, resulted in an AFDW concentration of 22.5 mg/L in one duplicate and 29.0 mg/L in the other.  

Dilution was started for the MBE 501 ponds at this time. Maximum AFDW for this growth period was 

achieved on September 23, 2019 at 36.9 and 56.5 mg/L for the duplicates and occurred due to 

contamination of the culture with Nitzschia sp., as the low culture concentration presumably allowed 

contaminants to move into the culture.  
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Concentrations of AFDW achieved during this time period were far below the goal concentration of 80-120 

mg/L AFDW. The culture was too dilute after typical batch start-up operation and should have been given a 

longer growth time in batch mode to reach an adequate concentration prior to starting dilution. While 

typical times to reach the goal concentration are useful for planning purposes, the lesson of this time period 

of MBE 501 cultivation is that times required for proper culture start up can vary, and that diluting an MBE 

501 culture too soon can result in washout of the culture. Due to the error made in the cultivation of MBE 

501, this growth period was excluded from all averaging and analysis. 

During the time period in which MBE 503 was cultivated, September 6 to December 30, MBE 501 had a 

higher productivity (7.1 ± 0.1 g/m2-d) than the wild-type (6.0  ±  0.3 g/m2-d), and MBE 503 (6.8  ±  0.6 

g/m2-d) was as productive as both MBE 501 and the wild-type (Figure 16). MBE 503 was improved on 

average during some months. MBE 503 was more productive than the wild-type during October, November 

and December and was more productive than MBE 501 in November (Figure 15). Further testing is needed 

to determine the if MBE 503 is improved over the wild-type and to determine whether MBE 501 or MBE 

503 is the most productive.  
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Figure 15. Monthly average productivities for S. obliquus cultigens, wild-type, and native polyculture. 

Error bars represent the range of the mean of the duplication ponds. 

 

 

 

Figure 16. Average productivity of pond cultures from September 6 to December 20, 2019. Error bars 

represent the range of the mean of the duplication ponds. 
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Over the entire experiment, from June 28 to December 30, 2019, MBE 501 had  a higher average 

productivity (11.5 ±  0.02 g/m2-d) than the wild-type (10.4  ±  0.6 g/m2-d) and had a lower average 

productivity than the volunteer polyculture (14.4 ±  1.3 g/m2-d), (Figure 19). June 28 is significant is it is 

the first time in the study where MBE 501 and wild-type cultures were started outdoors simultaneously and 

allows for the best direct comparison.  MBE 501 performed on par with the native polyculture in terms of 

monthly average productivity in the months of June, July, August and December of 2019, and MBE 501 

had a higher monthly average productivity than the wild-type in all months except September (Figure 15). 

MBE 501’s productivity improvement over the wild type are visible in a time series, with September’s 

growth period as a notable exception (Figure 17). MBE 501 did briefly match the productivity of the 

polyculture on some dates  in early June, mid-July, mid-August, and mid-December (Figure 18). While 

improving the productivity of an individual strain over that strain’s wild-type was demonstrated, this 

improvement was not great enough to exceed the productivity of a volunteer polyculture. 
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Figure 17. Average productivity of MBE 501 and wild-type S. obliquus. June 28, 2019 was the first good 

growth period when both strains were restarted simultaneously. Error bars represent the range of the 

duplication ponds. 
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Figure 18. Productivity of MBE 501 and the native polyculture over time. Error bars represent the range of 

the duplication ponds. 

 

The amount of biomass produced by each strain can give additional insight into which strain performed 

better outdoors. During the time period June 28 to December 30, 2019, productivity measurements for 

MBE 501 and the wild-type were interpolated for days in which no productivity measurement was taken 

because of Tuesdays, Thursdays, weekends and holidays. The sum of productivity measurements was used 

to calculate total biomass produced per area for each strain during the experiment. Days in which ponds 

were contaminated, empty due to cleaning, or growing up to density in batch mode were counted as a 

productivity of zero. MBE 501 was calculated to have produced 1,326.4 ± 108.0 g AFDW, and wild-type 

produced 1,056.3 ± 87.5 g AFDW (Table 7). The mid- to late-September period was included for MBE 501 

for the biomass production comparison despite challenges in outdoor cultivation. MBE 501 was on average 

more productive during both outdoor cultivation periods and produced more biomass.  
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Biomass production was affected by both culture stability and productivity. MBE 501 cultures were grown 

outdoors for 126 days and wild-type for 117 days, excluding culture grow up time outdoors when ponds 

were not producing biomass. MBE 501 cultures were restarted nine times and wild-type cultures restarted 

eight times between June 28, 2019, and December 30, 2019 (Figure 17). Culture up-time at desired 

concentration outdoors was not optimized for this experiment, but certainly could be by more frequent 

production of high-density inoculum. If MBE 501 biomass production was normalized to the wild-type 

number of operational days, MBE 501 still would have produced 1,231.7 g AFDW (1,326.4 multiplied by 

the ratio of wild-type’s 117 operational days to MBE 501’s 126 days), which when coupled with MBE 

501’s higher average productivity (Figure 19) informs that MBE 501’s larger amount of AFDW produced 

was not due simply to more operational days outdoors.  

Table 7. Interpolated total biomass produced by MBE 501 and wild-type S. obliquus between June 28 and 
December 30, 2019.  

 MBE 501 Wild-Type 

 Average Range Average Range 

Figure 19. Average productivity of the polyculture, MBE 501 and S. obliquus wild-type  

between June 28 and December 30, 2019. Error bars represent the range of the mean of the 

duplication ponds. 
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Biomass produced (g/m2) 1,326.4 216 1056.3 175 

Number of operational 

days 

126 N/A 117 N/A 

 

MBE 501 was more productive on average than the wild-type and did perform on par with the volunteer 

polyculture in terms of productivity during some growth periods (Figure 18). This result indicates that 

MBE 501, or other improved cultigens grown in monoculture, have the potential to match the productivity 

of polycultures in outdoor cultivation. One advantage that the native polyculture has over improved strains, 

or other pure cultures, is the lack of restarts required. This being said, consistent biomass or genera 

composition is not available when cultivating a volunteer polyculture. An area of future research to 

improve the productivity of outdoor algae cultures is the augmentation of native polycultures with 

improved cultigens such as MBE 501. Isolation and subsequent cultivation of local strains is also an avenue 

to improve productivity in addition to selective enrichment (Wilke, et al., 2011), and the two methods could 

be combined in the future to realize a strain that is highly productive for a given climate.   

In summary, cultigen MBE 501 produced more biomass than the wild-type and was more productive. The 

mechanism behind the improvements were unconfirmed, but pathways for improvement of algal 

productivity in mass culture have been explored and identified in the past (Polle et al., 2002), and genomics 

work regarding this study is currently underway at Sandia National Labs. Future research includes testing 

of the improved S. obliquus cultigen on primary wastewater, which could improve biomass production as S. 

obliquus has been shown to grow heterotrophically (Abeliovich & Weissman, 1978) and could lead to 

economically viable wastewater treatment and biofuel feedstock production (Ansari et al., 2019). 

4. Conclusions  
 

Adaptive laboratory evolution techniques were used to create S. obliquus cultigens MBE 501, MBE 503 

and MBE 504. These cultigens were then grown outdoors in raceway ponds on reclaimed wastewater with 

an HRT of 2 to 4 days. From June 28 to December 30, 2019 MBE 501 was more productive (11.5 ±  0.02 

g/m2-d) than the wild type (10.4 ±  0.6 g/m2-d), but was not as productive as a volunteer polyculture (14.4 ±  

1.3 g/m2-d). MBE 501 was calculated to have produced more biomass (1.326 kg/m2) during outdoor testing 

than the wild type (1.056 kg/m2). MBE 501 cultures were occasionally as productive as the native 
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polyculture but were not as productive on average. MBE 504 was found to not be improved over the wild-

type, and further testing is needed to determine if MBE 503 is improved. This study demonstrated that high 

dilution rates in lab cultures can select for cells that are more productive in outdoor raceways.  
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