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ABSTRACT

Impedance spectroscopy (IS) is an important tool for cell detection and char-
acterization in medical and food safety applications. In this thesis, the Cal Poly
Biofluidics Lab’s impedance spectroscopy system was re-evaluated and optimized
for single-cell impedance spectroscopy. To evaluate the IS system, an impedance
spectroscopy bioMEMS chip was fabricated in the Cal Poly Microfabcrication lab,
software was developed to run IS experiments, and studies were run to validate the
system. To explore IS optimization, Maxwell’s mixture theorem and the Schwartz-
Christoffel transform were used to calculate an analytic impedance solution to the
co-planar electrode system, a novel volume fraction to account for the non-uniformity
of the electric field was developed to increase the accuracy of the analytic solution
and to investigate the effect of cell position on the impedance spectrum, a software
program was created to allow easy access to the analytic solution, and FEA models
were developed to compare to the analytic solution and to investigate the effect of
complex device geometry.
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Chapter 1: Introduction

Cell detection and characterization are important for applications in medical di-

agnosis and food safety [1]. With the advent of micro-electro-mechanical systems

(MEMS), cell characterization techniques have developed with increasing precision

and cost-effectiveness. One of these techniques is impedance spectroscopy. Cell

impedance spectroscopy measures the electrical impedance of cell(s) over a range

of frequencies and can identify cell types, differentiate cell states, and provide infor-

mation about cell components. With significantly increased manufacturing precision

provided by MEMS technologies, cell impedance spectroscopy has been miniatur-

ized to measure the impedance spectrum of single cells instead of macro suspen-

sions.

The applications of single cell impedance spectroscopy are extensive. In medi-

cal diagnostics, the ability to isolate the impedance spectrum of a single cell allows

the diagnosis of diseases with very small limits of detection, such as early detec-

tion of cancer by identifying circulating tumor cells that can be as scarce as 1 cell

per mL of blood [2]. In food safety single cell spectroscopy can detect pathogens

in a rapid and inexpensive manner, such as E.Coli and Salmonella contamination

in water sources [3]. In addition, impedance spectroscopy is an important tool in

research, with the ability to quickly measure a cell’s state and response to stimuli.

The focus of this thesis will be to reevaluate and optimize the Cal Poly Biofluidic

lab’s single cell impedance sensor.

1.1 The Cal Poly Biofluidic Lab’s Cell Impedance System

In 2009, Fadriquela and Hernandez created a cell impedance spectroscope system

for the Cal Poly biofluidic lab [4], [5]. The purpose of the project was to create

a system to measure single cell impedance measurements. The project included

the design of the electrodes and microfluidic channels of the impedance sensor,

1



1.1. CAL POLY’S IS SYSTEM CHAPTER 1. INTRODUCTION

manufacturing of the device, installment of requisite hardware, and development of

software necessary for impedance measurements.

Figure 1.1: Functional diagram of cell impedance sensor chamber.

The impedance sensor was designed with two parallel 11.5 micron wide elec-

trodes with a 5 micron offset that lays under a 15 by 15 micron target measurement

area. The device isolates a cell by activating flush and suction channels once a cell

from the sample inlet wanders into the test chamber. (figure 1.1). Once the device

captures a cell, voltage signals over a range of frequencies are applied through the

electrodes, and the impedance can be calculated from current response. Figure 1.2

depicts the simulated electric fields lines around a cell with desired device behaviour

(the development of the COMSOL model is described in section 4.2). However,

the device could not accomplish single-cell isolation and impedance measurements

were taken on a suspension of cells (figure 1.3).

Manufacturing of the device took place in the Cal Poly microfabrication lab and

the University of Santa Barbara Nanofabrication Lab. Fadriquela fabricated the mi-

crochannels using soft-lithography and Hernandez worked the Santa Barbara Lab

to create the electrodes with electron beam deposition. Figure 1.4 and 1.5 depict

2



1.2. OBJECTIVES CHAPTER 1. INTRODUCTION

Figure 1.2: Example of desired device behaviour using a COMSOL simulation of
electric field lines through a cell. A detailed description of the COMSOL model is
presented in section 4.2.

the masks used in fabricating the microfluidic channels and electrodes.

1.2 Thesis Purpose and Objectives

The purpose of this thesis is to reevaluate and optimize the Cal Poly Biofluidic Lab’s

cell impedance spectroscopy system. To accomplish this, the following questions

were answered:

1. Are there aspects of the impedance spectroscope that need redesign or opti-

mization?

2. Is the hardware implementation correct?

3. Can the correct circuit model and desired data acquisition and analysis be

packaged and incorporated in a device interface computer program?

4. Can model based design be applied to characterize and optimize electric

fields and impedance to inform future designs?

3
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Figure 1.3: Impedance spectrum of yeast suspensions and saline solution from the
Cal Poly Biofluidic Lab’s impedance spectroscopy system [5].

5. Can a device be manufactured at Cal Poly to validate the device design and

analysis?

By answering these guiding question, this thesis characterized and enhanced the

Biofluidic’s Lab’s cell impedance spectroscope and developed a model based de-

sign framework for future IS systems.

4
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Figure 1.4: Micro channel mask by Fadriquela [4].

Figure 1.5: Electrode mask by Hernandez [5].
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Chapter 2: Background

2.1 Cells

The cell is the basic unit of life. At the fundamental level, a cell must have an

outer membrane that acts as a gatekeeper between the surrounding environment

and the interior constituents. The contents of the cell interior varies widely between

organisms, cell specializations, and states of each cell. For example, mature red

blood cells do not contain a nuclei or any genetic material, but skeletal muscle fiber

consist of multiple nuclei [6]. However, all these variations can be generalized to

useful cell models, such as the model for human cells in figure 2.1.

Figure 2.1: Diagram of human cell structure [7].

Generally, a cell carries genetic information in the nucleus which resides inside

the cell membrane and cytoplasm. Cytoplasm is the cell material inside of the cell

membrane and outside the nuclei. The cytoplasm consists of non-nuclei organelles

and cytosol. Cytosol refers to the cellular solution between the cell organelles and

the membrane, wich contains salts, nucleic acids and cytoskeleton filaments [6].

6
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Organnelles are membrane bound structures inside the cell that perform special

functions. Organelles include nuclei, mitochondria, the Golgi apparatus, lysosomes,

and vacuoles.

2.1.1 The Cell Membrane

The cell membrane is an essential component of the cell that is necessary for sig-

nalling, extracellular interaction, and maintaining equilibrium. The membrane is pri-

marily composed of the lipid bilayer, which is a semi-permeable barrier constructed

from phospholipids. A phospholipid has a hydrophilic head group and a hydrophobic

tail group. When exposed to an aqueous environment, phospholipids join together

in a configuration that leaves the head groups exposed to the aqueous solution and

the tail group surrounded by other non-polar tail groups. In the case of a cell, the

phospholipids take the form of a spherical bilayer membrane (figure 2.2). The mem-

brane forms a semi-permeable barrier that allows for restricted diffusion of certain

molecules.

In addition to phospholipids, the cell membrane is packed with proteins that

are critical for cell life and its interaction with the environment. Of special interest

to this thesis, are channel and transport proteins that allow controlled passage of

molecules through the membrane.

Figure 2.2: Diagram of the cell membrane [8]

7
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2.1.2 The Electrical Model of the Cell

The state of a cell directly affects its electrical properties. Measuring these prop-

erties provides insight into the cell state, type, and afflictions. A common repre-

sentation of the bulk electrical model of a cell is presented in figure 2.3. As a bulk

electrical element, the cell membrane can be modeled as a leaky capacitor that can

accumulate a charge differential, but also leaks charges across the membrane. This

behaviour can be modeled as a resistor and capacitor in parallel. The membrane

capacitance is supplemented by the formation of an electric double layer (EDL). A

biological cell carries a net negative charge which results in the development of a

surrounding 10-100 nm thick electric double layer in electrolyte solutions [9]. The

electric double layer contributes to the capacitance of the cell membrane. The EDL

will be described in further detail in section 2.5. The bulk electrical properties of the

cytoplasm are often modeled as a RC series circuit with a relatively small capacitive

impedance.

Figure 2.3: Electrical model of single shelled cell. R′i and C ′i are the resistance
and capacitance of the cytoplasm, and R′mem and C ′mem are the resistance and
capacitance of the membrane.

.
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2.2 Dielectric Spectroscopy

The dielectric properties of cells have been investigated since 1910 when Höber

showed the existence of the cell membrane by measuring the conductivity of ery-

throcytes at high and low frequencies [10]. The field of study further developed

with Fricke’s application of Maxwell’s equations to measure the capacitance and

thickness of the cell membrane from 1924 to 1925 [11]–[14].

In 1928, Cole used Maxwell’s mixture equation to derive the complex impedance

of a single shelled cell model and developed equations to describe the Cole-Cole

plot [15]. And with Curtis, Cole made the first single cell measurements on a Nitella

cell (a large bacteria cell that ranges from 20 to 60 mm in length) [16].

From 1957-1968 Schwan used broadband electric impedance spectroscopy to

identify α, β, and γ dispersions of a cell [17]–[19]. A dielectric dispersion is a fre-

quency range with a large change in permittivity with respect to frequency. The

permittivity of a material is the resistance to forming an electric field over a medium.

In general the effects of a source charge can be described as the polarization of sur-

rounding medium and the residual electric field over the resisting polarized medium.

For a dielectric material, the electric field may be thought of as having two compo-

nents: the electric displacement vector D that accounts for the electric field gener-

ated from separated free electrical charges, and the polarization P which accounts

for the bound polarization charges in a dielectric material. The effect of P is to

attenuate of the electric field. This relationship can be observed by rearranging the

definition of electric displacement.

D = εoE + P , (2.1)

E =
1

εo

(
D − P

)
, (2.2)

where εo is known as the dielectric constant or the permittivity of the vacuum, with

a value of 8.85E-12 F/m.

9
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For a linear dielectric medium, the polarization can be defined as

P = εoχE, (2.3)

where χ is the electric susceptibility. Substituting equation 2.3 into 2.1

D = εo(1 + χ)E = εoεrE = εE, (2.4)

where ε = εoεr is the permittivity and εr = 1 + χ is the relative permittivity of

a medium. For the case of isotropic materials, χ and ε reduce to scalar values,

but for anisotropic materials, they are expressed as second order tensors. The

susceptibility describes how a material polarizes under an electric field, and the

permittivity describes the resistance to forming an electric field over that material.

For dielectrics, the permittivity and susceptibility are closely related, but due to the

resistance to forming an electric field over a vacuum, the two quantities are subtly

different. The permittivity of a dielectric can be viewed as the sum of resistance to

forming an electric field over a vacuum and the effect of polarizing a material. Figure

2.1 list the permittivity and susceptibility of some common materials.

Table 2.1: Permittivities of and susceptibilities of common materials [20].

The frequency dependence of the permittivity arises from the time dependent

material polarization or charge reorganization. Examples of charge reorganization

include electron cloud distortion, charged particle displacement, and reorientation

10
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of molecules with dipoles. α, β, and γ dispersions refers to the ranges of alternat-

ing current frequencies where the permittivity decreases significantly in cells (i.e.

dielectric relaxation). Figure 2.4 depicts an approximate permittivity spectrum of a

cell.

Figure 2.4: General cell permittivity spectrum with labeled α, β and γ dispersions.

β dispersions can occur up to a magnitude of 10 Mhz and is caused by the relax-

ation of the cell membrane. For lower frequencies, the membrane has enough time

to charge and provide resistance to the electric field, but at frequencies greater than

than the relaxation, the membrane does not have sufficient time to fully charge and

provides little resistance to the electric field. γ dispersion is related to the relaxation

of water molecules. Instead of a charging membrane, γ dispersion is due to the

dipole rotation of the water molecules and the biomolecules that water is bound to.

The source of α dispersion is undetermined, but current theories include the surface

reactance of the electric double layer near the charged cell, the impedance of the

sarcoplasmic recticulum (for muscle fibers), or the frequency dependent conduc-

tance of ionic membrane channels as predicted by the Hodgkin-Huxley equations

[19].

These developments laid the foundations for the following techniques for mea-

suring the dielectric properties of single cells.
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2.2.1 Dielectrophoresis

The dielectrophoretic force (DEP) is the force generated on a particle suspended

in a solution by the interaction of an applied nonuniform electric field and an in-

duced dipole moment developed through Maxwell-Wagner polarization (a build up of

charges at dielectric boundaries). Peter Debye and Herbert A. Pohl were among the

first to develop dielectrophoresis and demonstrated how particles could be moved

with nonuniform electric fields [21]. With an applied AC electric field, the average

DEP force on a spherical particle is expressed as [22], [23]

〈
FDEP

〉
= 2πεmR

3Re[f̃CM ]∇|Erms|2, (2.5)

with

f̃CM =
ε̃p − ε̃m
ε̃p + 2ε̃m

, (2.6)

where εm is the permittivity of the medium, R is the radius of the particle, f̃CM is

the Clausius-Mossotti factor for spherical particles, ε̃p is the complex permittivity

of the particle, ε̃m is the complex permittivity of the medium, and Erms is the root

mean square of the electric field. For most cases, the complex permittivity can be

expressed as

ε̃ = ε− j σ
ω
, (2.7)

where ε is the permittivity, j =
√
−1, σ is the conductivity, and ω is the angular

frequency of the electric field.

From equation 2.5 and 2.6, it can be noted that, given a non-uniform electric

field, the magnitude of the dielectrophoretic force depends on the size of the particle

and the polarizability of the particle with respect to the medium (i.e Re
[
f̃CM

]
), and

the sign of the force only relates to the polarizability of the particle and medium

(figure 2.5). It should be noted that, based on equation 2.6, the real part of the

Clausius-Mossotti factor is restricted to less than 1 and greater than -0.5. However,
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for non-spherical shapes, such as elongated ellipses, equation 2.6 does not satisfy

the Clausius-Mossotti factor which can reach values far greater than 1.

Figure 2.5: Frequency crossover of Clausius-Mossotti factor with labeled regions
of positive and negative dielectriphoretic forces. From equation 2.5, if ε̃p is greater
than ε̃m, then the DEP force is positive, if ε̃m is less than ε̃p, then the DEP force is
negative.

To extract dielectric properties of cells using dielectric forces, the DEP crossover

frequency can be experimentally determined and compared to theoretical values

[22]. The crossover frequency occurs when the real part of the Clausius-Mossotti

factor equals zero and is where the DEP force switches from a positive to a negative

DEP force (or vice versa). Experimentally, this can be determined by the observa-

tion of a stationary cell in a non-uniform electric field. Theoretically, the crossover

frequency can be described as

fcross =
1

2π

√
(σm − σp)(σp + 2σm)

(εp − εm)(εp + 2εm)
, (2.8)

where fcross is the crossover frequency, subscript p denotes the particle, and sub-

script m denotes the medium. Equation 2.8 can be rewritten to include the Maxwell-

Wagner relaxation frequency as [22]

fcross =
1

2π

√
σm − σp
εp − εm

fMW , (2.9)
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with

fMW =
1

2πτMW

, (2.10)

τMW =
εp + 2εm
σp + 2σm

, (2.11)

where fMW and τMW are the Maxwell-Wagner relaxation frequency and time con-

stant respectively. The Maxwell-Wagner relaxation frequency characterizes the fre-

quency of β dispersion described by Schwan [22].

For a single shelled model of a cell, the crossover frequency can be expressed

as

fcross =

√
2

8πRCmem

√
(4σm −RGmem)2 − 9R2G2

mem, (2.12)

where Cmem is the specific capacitance of the cell membrane and Gmem is the spe-

cific conductance of the membrane.

2.2.2 Electrorotation

Electrorotation is the applied torque to a polarized particle in a medium of different

dielectric properties by a rotating electric field. Such a field can be created with a

system of four electrodes with sinusoidal signals of 90° phase shifts between adja-

cent electrodes [24]. The phenomenon of electrorotation was first documented by

Pohl in 1978 and then developed into dependable methods by Arnold and Zimmer-

man in 1982 [25], [26].

The average torque exerted on a spherical particle can be expressed as [22]

TROT = −4πεmR
3Im
[
f̃CM

]
|E|2, (2.13)

where TROT is the torque applied to the induced dipole of the particle, εm is the

permittivity of the medium, R is the radius of the spherical particle, E is the electric

field, and Im
[
f̃CM

]
is the imaginary part of the Clausius-Mossotti factor expressed

in equation 2.6. Similar to the average dielectrophoretic force (equation 2.5), the

Clausius-Mossotti factor is the frequency dependent element and controls whether
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the particle rotates with or against the applied rotating electric field.

The applied torque can be measured by the angular velocity of the particle,

which can be expressed as [27]

RROT = −
εmIm

[
f̃CM

]
|E|2

2η
K, (2.14)

where RROT is the angular velocity, η is the dynamic viscosity, and K is the scaling

factor. When the angular velocity has reached equilibrium, the applied torque will

be proportional RROT and related by the scaling factor K. The electrorotation torque

spectrum of a cell can be used, in tandem with equation 2.13, to determine the

dielectric properties of the cell.

By combining dielectrophoretic and electrorotation spectroscopy techniques, sig-

nificant details of the dielectric properties can be obtained. Since dielectrophoretic

spectroscopy determines the real Clausius-Mossotti factor spectrum, and electro-

rotation determines the imaginary Clausius-Mossotti factor, the full f̃CM spectrum

can be deduced from which dielectric properties can be extracted. By separating

the real and imaginary components of the Clausius-Mossotti factor, the following

expressions are obtained [22], [28].

Re
[
f̃CM
]

=
(σp − σm)

(1 + ω2τ 2MW)(σp + 2σm)
+

ω2τ 2MW(εp − εm)

(1 + ω2τ 2MW)(εp + 2εm)
, (2.15)

Im
[
f̃CM
]

=
3ωτMW(εpσm − εmσp)

(1 + ω2τ 2MW)(εp + 2εm)(σp + 2σm)
. (2.16)

A major shortcoming of the previously discussed techniques is the long time

needed for measurements. An electrorotaion assay could potentially take up to sev-

eral seconds per test and limit the number of cells tested. An alternative approach,

electric impedance spectroscopy, allows for rapid dielectric spectroscopy, and with

flow-through designs, allows dielectric spectroscopy of every cell in a sample.
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2.2.3 Impedance Spectroscopy

Impedance

Electrical Impedance is defined as the opposition of a system to the flow of electri-

cal current for an applied voltage. If a sinusoidal voltage is applied to an arbitrary

system, then the voltage and current can be expressed as

V (w) = |V | cos(wt− θV ), (2.17)

I(w) = |I| cos(wt− θI), (2.18)

where w is the angular frequency, t is the time in seconds, and θV and θI are the

phase of V and I respectively. Using Euler’s formula, equations 2.17 and 2.18 can

be recognized as the real part of the following:

V̂ (w) = |V |ej(wt−θV ), (2.19)

Î(w) = |I|ej(wt−θI). (2.20)

Applying Ohm’s law, the impedance of the system can be expressed as

Z =
|V |
|I|

ej(θI−θV ), (2.21)

or as

Z = |Z|ejθ, (2.22)

where θ is the difference in phase of the voltage from the current after the current

passes through the system. Equation 2.22 sets the interpretation of impedance to

be a vector that lives on the complex plane where |Z| is the length of the vector, and

θ is the angle of the vector from the positive real axis (figure 2.6).

As a vector on the complex plane, impedance can be represented in rectangular
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Figure 2.6: Representation of Impedance as a vector on the complex plane with a
real component R and imaginary component X.

coordinates and polar form:

Z = R + jX, (2.23)

where R and X are the real and imaginary components of the impedance vector,

Z = |Z|6 θ, (2.24)

where |Z| is the magnitude of the impedance vector and θ is the angle of the vector

from the positive real axis. Given an AC applied signal, Ohm’s law can then be

expressed as

|V | = |Z||I|, (2.25)

and the phase of the voltage signal will be shifted from the current signal by θ.

The rectangular form and polar form of the impedance are related as follows:

|Z| =
√
R2 +X2, (2.26)

θ = arctan
(X
R

)
, (2.27)
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Figure 2.7: Current Response of a system to a 1 volt applied potential. Using
equations 2.24 and 2.25, the impedance of the system can be expressed as Z =√

26 − π/4.

R = |Z| cos θ, (2.28)

X = |Z| sin θ. (2.29)

The impedance of a system can be represented by a combination of elementary

circuit components: resistors, capacitors, and inductors. The voltage response of

these elements in the time domain can be expressed as

Resistor: V = IR, (2.30)

Capacitor: V = C
dV

dt
, (2.31)

Inductor: V = L
dI

dt
, (2.32)

where V (t) and I(t) are the voltage and current as a function of time, R is the

resistance, C is the capacitance, and L is the inductance. After applying Laplace

transforms, the frequency dependent impedance of each element can be obtained
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as

Resistor: Z(w) = R, (2.33)

Capacitor: Z(w) =
1

sC
, (2.34)

Inductor: Z(w) = sL, (2.35)

where s = jw for steady state solutions.

Impedance Spectroscopy: Coulter Counter

One of the first devices capable of measuring the electrical properties of particles is

the Coulter counter, which measures the direct current resistance of two fluid filled

chambers connected by an aperture (figure 2.8). The apparatus drives fluid through

the aperture by a pressure differential caused by different levels of fluid in the two

chambers. As particles flow through the aperture, conductive fluid is displaced

and there is a change in resistance. Pulses of increased resistance mark particles

flowing through the aperture, and the magnitude of the resistance pulse relates to

the size of the particle.

In 1970, Deblois and Bean developed an analytical model of the Coulter counter

resistance that can be related to dielectric properties of the particle [29]. The resis-

tance of the large chambers were assumed to be negligible and the resistance of

the aperture was derived (figure 2.9). For a tube of a mixture solution, the resistance

can be expressed as

Rt =
4ρmixL

πdt
G, (2.36)

whereG is a correction term for the non-uniform current density, Rt is the resistance

of the tube, L is the length of the tube, dt is the diameter of the tube, and ρmix is the

resistivity of the mixture, which can be expressed using Maxwell’s approximation,

ρmix = ρm

[
1 +

3φ

2
+
( −9φρm

4ρp + 2ρm

)]
, (2.37)
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Figure 2.8: A Coulter counter that measures the DC resistance of the fluid in the
chamber with two electrodes. When a particle enters the aperture, the change in
resistance will provide information about the size and electrical properties of the
particle

where φ is the volume fraction, ρm is the resistivity of the conductivity, and ρp is

the resistivity of the particle. This approximation is only valid with the assumption

that the particle diameter is small relative to the aperture. The volume fraction of a

spherical particle in a tube is

φ =
2d3p

3d2tL
, (2.38)

where dp is the diameter of the particle.

Since 2000, Coulter counters have been fabricated on the micro scale and have

allowed increased sensitivity and adaptability, leading to nanopore devices capable

of analyzing single molecules [30].

Impedance Spectroscopy: Microfluidic Impedance Cytometry

Instead of electrodes on either side of an aperture, as in Coulter counter designs,

microfluidic impedance cytometry designs electrodes directly onto the walls of the
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Figure 2.9: The aperture connecting the two chamber of the Coulter counter where
L is the length of the aperture, dp is the diameter of the particle flowing through the
aperture, and dt is the diameter of the aperture.

test volume. The test volume is the region that contains the particle and fluid with

significant current density. The impedance of the test volume can be approximated

as a leaky capacitor:

Z̃mix =
1

jwC̃mix
, (2.39)

where C̃mix is the complex capacitance of the test volume, and can be expressed

as

C̃mix = ε̃mixGf , (2.40)

where ε̃mix is the complex permittivity derived from Maxwell’s mixture law and Gf

is the geometric factor that accounts for fringing electric fields. Further details are

provided in section 2.3.

Figure 2.10: Parallel electrode configuration for impedance cytometry.
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Common electrode configurations are parallel and coplanar facing (figure 2.10

and 2.11). Coplanar electrodes are easier to fabricate than parallel facing elec-

trodes, but come at the cost of diminished sensitivity and accuracy [31]. Paral-

lel electrode systems produce smaller variations in the electric field compared to

coplanar electrodes. As a result, the signal variation is far greater for coplanar con-

figurations. This results in a loss of accuracy, unless the vertical placement of the

cell in the test volume can be controlled. In addition, parallel facing electrodes de-

signs generally have larger volume fractions, and therefore, are more sensitive than

coplanar electrodes. This can be observed by noting that given an electrode width,

channel height, and channel depth, the coplanar test volume will be over twice that

of parallel electrodes configurations.

Figure 2.11: Coplanar electrode configuration for impedance cytometry.

In microfluidic impedance cytometry, alternating currents at a series of frequen-

cies are applied to the system to measure the impedance response. From this

impedance spectrum, the frequency dependent response can be depicted as magnitude-

phase plots, real-imaginary plots, and nyquist plots in order to gain insight into the

behaviour of the system (figure 2.12).
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(a) Magnitude-phase versus frequency diagrams

(b) Real-imaginary versus frequency diagrams

(c) Nyquist plot

Figure 2.12: Examples of magnitude-phase diagrams, real-complex diagrams, and
a nyquist plot. The data is based off of the impedance of the circuit in figure 2.13.
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Figure 2.13: Example circuit used in impedance diagrams.

Circuit Implementation

The general process of impedance spectroscopy involves the application of a volt-

age or current signal, and the measurement of the signal response over a range

of frequencies to obtain an impedance spectrum of the device under testing (DUT).

The resulting spectrum provides insight into the dielectric properties of the DUT.

The simplest circuit for measuring impedance is based on the I-V method (figure

2.14). The I-V method determines the impedance of a DUT by measuring the volt-

age drop over the DUT and a high precision resistor in series. The current through

the system can be calculated with Ohm’s law at the high precision resistor. The

impedance of the DUT for the I-V method can be expressed as

ZDUT =
∆VDUT

I
=
V1 − V2
V2

R, (2.41)

where V1, V2, and R correspond to values of elements in figure 2.14. An important

disadvantage of this configuration, is that the accuracy of the impedance values

relies on the precision of the resistor value, the extent of the parasitic capacitance

in the system, and quality of the probes measuring V 1 and V 2 which can be chal-

lenged under a large DUT impedance and high frequencies. If the I-V method is

used, coaxial cables will result in inaccuracies and should not be used.

Another circuit configuration to measure impedance is the auto-balancing bridge

method (figure 2.15) [32]. The auto-balancing bridge method works as an extension
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Table 2.2: Common impedance measurement methods. [32]

Figure 2.14: I-V impedance measurement.

of the I-V method. Instead of measuring the current directly, the potential on the low

side of the DUT is driven to a virtual ground by an op-amp, and an equivalent cur-

rent is measured. By applying Kirchoff’s current law to the virtual ground node,

the impedance of the DUT for using the auto-balancing bridge method can be ex-

pressed as

V1
ZDUT

− V2
R

= 0, (2.42)

ZDUT =
V1
V2
R. (2.43)

A significant advantage of the auto-balancing bridge method, is that when used

with coaxial-grounded cables, the parasitic capacitance is removed from the mea-

surement since all capacitances and measured elements are connected to ground.
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Figure 2.15: Auto-balancing bridge impedance method.

2.3 Theoretical Model of Impedance Cytometry

2.3.1 Maxwell’s Mixture Theory

Figure 2.16: Diagram of the simplified impedance sensor chamber where w, g, and
l are the width, gap, and length of the electrodes respectively, and h is the height of
the chamber.

The impedance of a single cell suspension with low volume fractions (less than

10%), such as depicted in figure 2.16, can be solved for with Maxwell’s mixture

thoery [11], [30]. For high volume fraction suspensions, Hanai’s theory should be

considered [33]. In the case of single-cell impedance spectroscopy, the inherently

low volume fraction of the suspension justifies the use of Maxwell’s mixture theory.

Maxwell’s equation for the complex permittivity of a mixture is

ε̃mix = ε̃m
1 + 2Φf̃CM

1− Φf̃CM
, (2.44)
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where ε̃mix and ε̃m are the complex permittivity of the mixture and medium respec-

tively, f̃CM is the Clausius Mossotti factor, and Φ is the volume fraction. For most

cases, the complex permittivity can be expressed as

ε̃ = ε− j σ
ω
, (2.45)

where ε is the permittivity, j =
√
−1, σ is the conductivity, and ω is the angular

frequency. The Clausius Mossotti factor is defined as

f̃CM =
ε̃p − ε̃m
ε̃p + 2ε̃m

, (2.46)

where ε̃p is the complex permittivity of the particle.

Figure 2.17: A diagram of a single shelled cell model where σ is the conductivity,
ε is the permittivity, and the subscripts m and i denote the membrane and cyto-
plasm respectively. R and d are the radius of the cell and membrane thickness
respectively.

The permittivity of the single-shelled cell in figure 2.17, can be modelled as

ε̃p = ε̃mem
γ3 + 2( ε̃i−ε̃mem

ε̃i+2ε̃mem
)

γ3 − ( ε̃i−ε̃mem

ε̃i+2ε̃mem
)

with γ =
R + d

R
, (2.47)

where ε̃i is the complex permittivity of the cytoplasm, ε̃mem is the complex permittivity
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of the cell membrane, R is the radius of the cell, and d is the thickness of the cell

membrane.

The impedance of the mixture is

Z̃mix =
1

jwC̃mix
, (2.48)

where w is the angular frequency and C̃mix is the complex capacitance of the mix-

ture which can be expressed as

C̃mix = ε̃mixGf . (2.49)

If equations 2.48 and 2.49 are combined, we obtain

Z̃mix =
1

jwε̃mixGf

. (2.50)

To find the value of the geometric factor Gf , the cell constant of electrodes must

be determined.

2.3.2 Electrode Cell Constant

The cell constant κ is defined as the proportionality factor between the measured

resistance Rb and the resistivity ρ of a material:

Rb = κρ. (2.51)

Olthius related the measured resistance to capacitance in order to derive an analytic

solution to the cell constant [34].

To find Rb for two electrodes with an interspatial material, the measured resis-

tance can be related to capacitance via Ohm’s law and Maxwell’s equation:

RC =

‚
εE · dS‚
σE · dS

, (2.52)
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where R and C are the resistance and capacitance between the electrodes, ε is the

product of the relative and vacuum permittivity, E is the electric field vector, and the

integral is taken over a surface including one electrode.

If the interspatial material is homogeneous and isotropic, then equation 2.52 can

be reduced to

RC =
ε

σ
. (2.53)

If we take Rb = R, we can combine equation 2.53 and 2.51 to express the cell

constant in terms of capacitance:

κ =
ε

C
. (2.54)

Figure 2.18: Uniform electric field between two parallel electrodes where E is the
electric field, φ is the voltage, and dφ

dn
= 0 is the boundary condition of a perfect insu-

lator. The dimensions of the capacitor are the electrode height γ, and the distance
between the electrodes d.

The capacitance of the two parallel plates with a uniform electrode field in figure

2.18 is

C =
εA

d
, (2.55)

where A the area of the plate, and d is the distance between the plates. Since

A = lγ, where l is the width, and γ is the height of the electrode, the capacitance

29



2.3. MODEL OF CELL SUSPENSION IMPEDANCECHAPTER 2. BACKGROUND

per unit width can be written as

Cl =
εγ

d
where C = l Cl. (2.56)

Returning to equation 2.54, and substituting equation 2.56, the cell constant can

be expressed as

κ =
d

γ l
. (2.57)

The geometric factor is the inverse of the cell constant

Gf = (κ)−1, (2.58)

and can be expressed as

Gf =
γl

d
. (2.59)

Equation 2.59 is the solution of the geometric constant for the electrode config-

uration in figure 2.18, but to find the geometric constant for any other configuration,

including the coplanar electrode in figure 2.16, d and γ will need to be mapped to

the other configuration. This can be accomplished with conformal transformations.

2.3.3 Conformal Transformations

Figure 2.19: An Illustration of complex mapping.

Let z = x + j y, where j is the imaginary number
√
−1, then a function of z,
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such as W (z) = u(x, y) + j v(x, y), can be considered a mapping of an area of

one complex plane to an area in another complex plane (figure 2.19). Conformal

transformations are a special kind of mapping between two complex planes that pre-

serves local angles. A mapping is conformal if it is composed of analytic functions,

and as a consequence, fulfills the Cauchy-Rieman equations. Conformal mappings

are extremely useful for solving complicated problems by mapping the problem to

a simplified domain. An example of a conformal mapping is w(z) = tan(z), which

maps an infinite vertical strip to a circle (figure 2.20).

(a) Part of the partial infinite strip−π/4 <
x < π/4.

(b) Mapping of the partial infinite vertical
strip to a circle

Figure 2.20: An example of conformal mapping by transforming a partial infinite
vertical strip to a circle with the mapping w(z) = tan(z).

Sun, Greene, et al. utilized the Schwartz-Christoffel transform to map the copla-

nar electrode configuration in figure 2.16 to the configuration of parallel electrodes

with uniform electrode fields in figure 2.18 [31]. The Schwartz-Christoffel formula is

a powerful transform that allows the mapping of the upper complex T-plane (y > 0)

to the inside of a polygon. The formula is

Z = C1

ˆ T

T0

m∏
r=1

(T − Tr)(θr/π−1)dT + C2, (2.60)

where Z is the interior of a polygon in the Z-plane with vertices Z1, Z2, Z3, ..., Zm

and angles θ1, θ2, θ3, ..., θm which correspond to the points T1, T2, T3, ..., Tm on

the real axis of the T-plane. C1 and C2 are integration constants. The Schwartz-
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Christoffel transform has three degrees of freedom, and consequently, up to three

points may be chosen arbitrarily. T0 is the reference and is typically chosen at the

origin.

The solution and application of the Schwartz-Christoffel transform to co-planar

electrodes will be further explored in chapter 4.

2.3.4 Cell Suspension Equivalent Circuit

With a solution to the impedance of the system, an equivalent circuit of the cell

and medium can be used to approximate discrete components. A simple equivalent

circuit was described by Foster and Schwan that describes the cell as a capacitor

and resistor in series (figure 2.21) [19]. The model assumes that the resistance

of the cell membrane is far greater than its reactance and can be expressed as a

capacitor. Similarly, it is assumed that the cytoplasm resistance is far greater than

its capacitance and can be modeled as a resistor.

The values of the simplified circuit model are as follow [22]:

Rm =
1

σm(1− 3Φ/2)Gf

, (2.61)

Cm = ε∞Gf , (2.62)

Cmem =
9ΦRCmem,0

4
Gf , (2.63)

Figure 2.21: Simple equivalent circuit of cell and medium.
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Figure 2.22: Complete equivalent circuit of cell and medium.

Ri =
4
(

1
2σm

+ 1
σi

)
9ΦGf

, (2.64)

where σm and σi are the conductivities of the medium and cytoplasm respectively,

R is the cell radius, Φ is the volume fraction, and Cmem,0 is the specific membrane

capacitance and can be expressed as [30]

Cmem,0 = εmem/d, (2.65)

where εmem is the permittivity of the cell membrane and d is the thickness of the

membrane. ε∞ is the high frequency permittivity of the suspension and can be

approximated as

ε∞ ≈ εm

[
1− 3Φ

εm − εi
2εm + εi

]
. (2.66)

For cases where the cytoplasm reactance and membrane resistance are signif-

icant, such as during cell lysis, the complete equivalent circuit can be used (2.22)

[30]. A quantitative description of the model is described by Sun et al. [35].

2.4 MEMS and Microfluidics

Microelectromechanical systems (MEMS) are devices on the order of microns, and

are often smaller than the diameter of a human hair (about 100 microns). MEMS

evolved from the manufacturing processes used to fabricate integrated circuits and

ink jet cartridges [36]. Using silicon based microfabrication techniques such as
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photolithography, etching, and metal deposition; mechanical and electrically driven

micro-sized pumps, cantilevers, and sensors can be fabricated [37].

Using these microfabrication techniques, systems can be miniturized in precise

and reproduceable packages with applications in a variety of biology related prob-

lems. MEMS applied in these fields are referred to as BioMEMS. The majority of

BioMEMS are focused on creating diagnostic systems that can identify diseases

and properties of biogical substances. These devices usually need to treat, filter,

and utilize detection methods that include electrophoresis, dielectrophoresis, sur-

face plasmon resonance, and enzyme-linked immunosorbent assays (ELISA) [38].

In order to run diagnostics on a solution of biological material, a sample needs to

undergo pretreatment, sample preparation, preconcentration, and detection. With

the miniaturization afforded by microfabrication technology, the concept of combin-

ing these steps into a single chip is now feasible. These devices are referred to as

labs on a chip or micro total analysis systems. This thesis focuses on the detection

method of such a device.

2.4.1 MEMS Fabrication

Photolithography

Photolithography is a MEMS fabrication method that patterns a thin layer of photore-

sist onto a substrate. Photoresist is a polymer that reacts to certain wavelengths of

light. How the photoresist reacts determines whether the photoresist is classified

as a positive or negative photoresist. Positive photoresist becomes soluble to a de-

veloper after exposure to light, and negative photoresist becomes cross-linked and

insoluble to the developer after exposure.

Photoresist can be applied to a substrate with a precise thickness through ap-

plication of a spinner machine. The machine spins the substrate at given rotation

velocities to evenly distribute the photoresist and precisely control the thickness.

The photoresist can then be exposed to ultra violet light. In order to apply a

design to the surface, a contact aligner can be used to expose the substrate under
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Figure 2.23: A comparison of positive and negative photoresist. For positive pho-
toresist, exposed regions are removed, and for negative photoresist, unexposed
regions are removed.

a mask. The mask is a transparency sheet with the design printed on it. The mask

controls where light is allowed and the contact aligner controls the distance between

the mask and the photoresist. The resist is then developed to reveal the patterned

design.

Soft-lithography

Soft-lithography uses photolithography to create a mold of the desired structures.

A material such as polydimethyl siloxane (PDMS) can be cast on the mold and

then removed to create the desired structure. The PDMS can be plasma bonded

to a substrate to create fluid channels. Soft-lithography is frequently used for the

fabrication of microfluidic channels since the process is far easier and cheaper than

the alternative of glass etching [39].

Metal Deposition

One of several methods for MEMS metal deposition is sputtering. Sputtering ejects

metal ions onto the target surface. The target substrate is placed on the anode
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with the desired metal used as the cathode. An argon plasma bombards the metal

plate and ejects metal ions that are attracted to the anode and deposit on the target

substrate.

Lift-off Process

The lift-off process is a method for precise metal deposition of a pattern onto a

substrate and is useful for creating micro-scale electrodes. Photolithography is first

used to pattern photoresist where metal is not desired. After metal deposition of

the substrate with patterned photoresist, the sputtered substrate is then placed in

photoresist remover to lift off the photoresist with the undesired metal.

Plasma Bonding

To irreversibly bond PDMS, the surface can be exposed to an air plasma. The

plasma activates the PDMS surface by creating Si-OH groups that can bond to

itself, glass, silicon, polystyrene, polyethylene, and silicon nitride [40].

2.4.2 Microfluidics

In most BioMEMS there is fluid flow on the micrometer scale. At this scale fluid

flow physics differ from fluid flow at the macro scale. Understanding and leveraging

microfluidic mechanics allows for small reagent and sample volumes, multiplexing,

and physic phenomenon that allow experiments and functions not possible at the

macro scale. Laminar flow, diffusion, fluidic resistance, surface area to volume, and

surface tension, may not be dominant in phenomenon on the macro scale, but on

the micro scale become significant [41]. Microfluidics are discussed in further detail

in appendix A.

2.5 The Electric Double Layer

When electric fields are applied to ionic solutions, the electrodes will attract ions of

opposite charge. With equilibrium to thermal forces, the applied field will result in the
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electric double layer (figure 2.24) [42]. The electric double layer creates an effective

capacitance at the electrode-fluid interface. For electrodes with large surface areas,

the capacitance may be large enough to be negligible, but for MEMS with micro-

scale electrodes, the capacitance will be small and can mask the impedance of the

device under testing for frequencies up to 100 kHz to 1 MHz [43].

2.5.1 Theoretical Capacitance

Figure 2.24: The Stern model of the electric double layer that includes the Helmholtz
and diffuse layers.

Helmholtz was the first to describe the electric double layer and modeled it as

a single layer of ions adsorbed to the surface of the electrode [42]. If the ions are

treated as point charges, the Helmholtz model can be interpreted as a parallel ca-

pacitor with a distance dH between the plates that represents the distance between

the center of the ion and the surface of the electrode. The capacitance per unit area

can be approximated as
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C =
εoεr
dH

, (2.67)

where εo is the permittivity of the vacuum, εr is the relative permittivity of the medium,

and dH is the thickness of the Helmholtz layer [44]. The Helmholtz model neglects

the thermal, concentration, and voltage dependencies that experiments have con-

firmed [45].

Guoy and Chapman expanded on the electric double layer by including the ef-

fects of thermal motion, concentration, and applied voltage [44], [46]. This results

in a diffuse layer that consists of counter-ions and co-ions. The distribution of ions

in the diffuse layer can be described by the Boltzmann distribution:

ni± = noiexp
(∓zieφ
kbT

)
, (2.68)

where ni is the concentration of the ion i, φ is the electric potential, T is the temper-

ature, kb is the Boltzmann constant, zi is the charge number of the ion, and e is the

charge of an electron. The charge density can be written as the sum of all ions:

ρ(x) = e
∑
i

noi ziexp
(−zieφ
kbT

)
. (2.69)

Combining Poisson’s equation with the charge distribution above, results in the

Poisson-Boltzmann equation:

∇2φ =
e

εoεr

∑
i

noi ziexp
(−zieφ
kbT

)
, (2.70)

and then recognizing that
d2φ

dx2
=

1

2

d

dx

(dφ
dx

)2
, (2.71)

then with the boundary condition for electrodes far apart, φ → 0 and dφ
dx
→ 0 as
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x→∞, equation 2.70 can be integrated to

(dφ
dx

)2
=

2kbT

εoεr

∑
noi

[
exp
(−zieφ
kbT

)
− 1

]
. (2.72)

For a symmetrical electrolyte, the Poisson-Boltzmann equation can be expressed

as
dφ

dx
=

8kbTn
o

εoεr
sinh

( zeφ
2kbT

)
. (2.73)

Capacitance can generally be defined as the differential capacitance:

Cdiff =
dσ

dφo
(2.74)

where σ is the surface charge of the electrode and φo is the electric surface poten-

tial. From Gauss’s law and equation 2.73, the charge for the electric double layer

is

σ = εoεr

[dφ
dx

]
x=0

=
√

8kbTnoi εoεr sinh
( zeφo

2kbT

)
. (2.75)

Differentiating 2.75 with respect to surface potential gives the differential capaci-

tance of the electric double layer:

CGC =
(2z2e2noi εrεo

kbT

)
cosh

( zeφo
2kbT

)
. (2.76)

Stern combined the Helmholtz and the Guoy-Chapman thoeries to create a

model with two layers: the inner layer known as the Stern layer, which consists

of the adsorbed ions on the electrode surface from the Helmholtz model, and the

outer diffuse layer (figure 2.24 [45]. The capacitance of the Stern model can be

approximated by the capacitance of the Helmholtz and Guoy-Chapman models in

series [44]:

Cs =

[
1

CH
+

1

CGC

]−1
. (2.77)

Unfortunately, these models do not fully describe the electric double layer and
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Figure 2.25: A series resistor and capacitor equivalent circuit of the electric double
layer.

significantly overestimates the electric double layer capacitance. Gongadze et al.

measured the capacitance of the electric double layer in a phosphate-buffered elec-

trolyte solution with titanium electrodes. Using theory, the electric double layer ca-

pacitance was calculated as 231.7 µF/cm2, 77.16 µF/cm2, and 57.92 µF/cm2 for

the Helmholtz, Guoy-Chapman, and Stern model respectively, but the experimental

capacitance was 6 µF/cm2 [44]. Predicting the electric double layer is convoluted

by the surface properties of the electrodes, electrochemical reactions, and other

non-quantified phenomena in the solution.

2.5.2 Correction for the Electric Double Layer

To overcome the theoretical shortcomings, devices can be designed to minimize

the effect of the electric double layer and/or an empirical corrective function can

be applied to data. Physical compensations include four electrode sample cells,

increasing the surface area by coating the electrode in black platinum or polypyr-

role polystyrenesulphonate, and high current density methods [42]. However, due

to a combination of device constraints, difficulty in implementation, reduced elec-

trode strength, and failure to completely bypass the electric double layer, physical

compensations are usually avoided [47].

Empirical recalculations involve fitting a reference measurement to a function or

equivalent circuit. One of the more common equivalent circuit models of the electric

double layer is a resistor and capacitor in series (figure 2.25) [48]. The impedance
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of the system can be expressed as

Z = 2Zp + Zm, (2.78)

Zp =
1 + sCpRp

sCp
, (2.79)

Zm =
Rm

sCmRm + 1
, (2.80)

where Zp, Cp, andRp are the impedance, capacitance, and resistance of the electric

double layer respectively; and Zm, Cm, and Rm are the impedance, capacitance,

and resistance of the medium respectively. s is the Laplace variable, and since our

interest is in the steady state behaviour, s = jw.

Figure 2.26: A recap equivalent circuit of the electric double layer.

A second equivalent circuit involves a similar system, but with the inclusion of

recap elements (figure 2.26) [49]. A recap element can be modeled as

Cv = R(RC)−vs−v, (2.81)

where C is capacitance, R is resistance, and v is 0 < v < 1. v determines the

degree of capacitance or resistance behavior, with v = 1 a complete capacitor, and

v = 0 a pure resistor. The recap element is known as a type of constant phase

element (CPE), which is named after its property of contributing a constant angle

and describes an imperfect dielectric. Constant phase elements are found in a wide

range of electrodes and are used extensively in empirical descriptions of electrode

polarization [42]. To fit data to the CPE, it is useful to express the system impedance
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as

Zsys = Zbulk + Z0

(
j
f

f0

)−v
, (2.82)

where Zbulk is the impedance of the medium, j is the imaginary number, f is

frequency, f0 is the onset frequency of the electrode polarization, and Z0 is a

impedance fitting term. It is convenient to find the onset frequency by looking for

the characteristic tail of the CPE on a nyquist plot [47].
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Chapter 3: Methods

3.1 Device Manufacturing

3.1.1 PDMS Channel Fabrication

The device microchannels were fabricated by pouring polydimethysiloxane (PDMS)

over a silicon wafer master mold. Through photolithography, a master mold was

created by patterning a silicon wafer with SU-8 photoresist in a process known as

soft lithography. A 6"x6" 20,000 DPI negative transparency mask was ordered from

CAD/Art Services Inc. with the emulsion face down. A general process flow is

depicted in figure 3.1.

Figure 3.1: Micro-channel manufacturing flowchart with SU-8 photoresist and soft-
lithography.

SU-8 Master Mold

Before photolithography, silicon wafers were cleaned in a piranha bath (mixture of

sulfuric acid and hydrogen peroxide) for 15 minutes with a deionized (DI) water

rinse, and dipped in a BOE solution (buffered oxide etchant; mixture of buffer and

concentrated hydrofluoric acid) for 5 minutes with another DI rinse. The wafers were

washed and dried in the SRD (spin rinse dry) machine. The wafers were baked at
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205◦C for 10 minutes and allowed to cool for 10 minutes. This dehydration bake

ensured that moisture was evaporated from the silicon surface.

Figure 3.2: Laurel Technologiers ws-400 spin coater.

The wafers were coated with SU-8 (negative tone photoresist) on a spin coater

(Laurel Technologies, ws-400; figure 3.2). The spin coater rotates at a series of

angular velocities in order to coat the wafer with the desired thickness of photoresist.

About 4 mL of SU-8 2007 (#07110769, MicroChem) was placed on the center of the

wafer, spun at 400 RPM for 20 seconds to disperse the SU-8, and then at 1500 RPM

for 35 seconds to spread the photoresist to a 10 µm thickness. After spin-coating,

the wafer was soft-baked at 85◦C for 3 minutes and allowed to cool for 4 minutes.

The photolithography process was completed using the Cannon PLA-501FA

mask aligner (figure 3.3). With the transparency mask centered over the wafer and

the 365 nm glass-transparency filter in place, UV light was applied to the photoresist

for 14 seconds with a total exposure of 140 mJ/cm2. The wafer was baked at 85 ◦C

for 4 minutes with a 10 minute cool down.
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Figure 3.3: Cannon PLA501FA mask aligner.

Figure 3.4: SU-8 master mold.

The wafer was developed in propylene glycol monomethyl ether acetate (SU-8

developer, MicroChem) in order to remove the non-exposed SU-8 from the wafer.

The wafer was placed in the SU-8 developer for 3 minutes and hard baked for 15

minutes at 210◦C. The result was a SU-8 patterned silicon wafer mold (figure 3.4).
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Soft Lithography

The Dow Corning 184 Sylgard kit was purchased through Ellsworth adhesives for

the PDMS supply. The kit comes with a base and a curing agent that cross-links the

PDMS and increases the polymer’s stiffness. The PDMS was prepared by mixing

the base and the curing agent at a 10:1 ratio. The mixture was degassed under

vacuum until the PDMS was free of bubbles (figure 3.5). The PDMS was then

poured directly onto the SU-8 master mold until the PDMS covered the wafer with

approximately 1/4" of depth. The PDMS-covered master mold was baked at 65◦C

for at least an hour in order to cure the PDMS. The PDMS chips were cut from the

master mold with a scalpel and peeled off the wafer.

Figure 3.5: Degassing PDMS mixture under vacuum.

The finished product was a PDMS chip with the desired microchannel dimen-

sions molded into the polymer surface.

3.1.2 Electrode Fabrication

The device electrodes were fabricated onto a glass substrate using the lift-off pro-

cess (section 2.4.1). The process utilized a 6"x6", 20,000 DPI transparency mask

ordered from CAD/art services Inc. A flow chart of the overall process is depicted

in figure 3.6.
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Figure 3.6: Electrode fabrication flowchart through the lift off-process.

Photolithography

Glass wafers were prepared for the lift-off process by cleaning the wafers in a pi-

rahna bath for 15 minutes with a DI rinse, and a 1 minute dip in BOE with another DI

rinse before running the wafers through the SRD. The wafers were dehydrated by

baking on a hot plate for 10 minutes at 200 ◦C and allowed to cool for five minutes.

The wafers were coated with ma-N1420 negative-tone photoresist on a spin

coater (Laurel technologies, ws-400; figure 3.2). The ma-N1420 photoresist is ad-

vantageous for the lift-off process since the developed photoresist has an undercut

profile, and the cross-linked property of the negative photoresist is more durable

than the "soft" positive photoresist. Before application of the ma-N1420, a primer

was dispersed and then spun onto the wafer at 3000 RPM for 30 seconds to in-

crease photoresist adhesion. Ma-N1420 was then dispersed onto the glass wafer,

but before spinning, it was ensured that the photoresist spread to all edges of the

wafer. The photoresist was spun at 2000 RPM for 35 seconds with a target of 2.5

micron thickness. The wafers were then soft-baked on a hotplate at 120◦C for 3

minutes to increase stability.

The photolithography process was completed using the Cannon PLA-501FA

mask aligner (figure 3.3). The glass wafer was placed in the aligner with a black

tape backing in order to prevent light scattering and absorb radiation. UV light was
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applied to the wafer for 30 seconds for a total of 450 mJ/cm2.

The wafer was then developed for 60-90 seconds in ma-D 533/3 developer and

rinsed in DI water. At this step, the wafer was examined under a microscope to

ensure the photoresist was fully developed with sharp patterns (figure 3.7). If not,

the wafer was developed for another 10 seconds and reexamined.

Figure 3.7: Post-developed Ma-N1420 photoresist. The two outlined areas depict
areas of removed photoresist.

After the photoresist was fully developed, the wafer was flood-exposed (i.e. no

transparency) in order to improve stability. The photoresist was exposed 3 times

for 40 seconds with a five minute rest between each exposure for a total of 1800

mJ/cm2. Finally, the wafers were baked on the hotplate with a ramping temperature

from 60 ◦C to 100 ◦C for 10 minutes and allowed to cool for 10 minutes.

Metal Deposition

To deposit the electrode metals onto the developed-photoresist wafer, the AGS re-

active ion etcher, CrC-150 chrome sputtering system, and the Denton Desk V sput-

tering system were used to clean and sputter chromium and gold. The target metal

deposition consists of three layers: a 125 Å thick base chromium layer to facilitate
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adhesion of the electrode to glass, a 180 nm thick gold layer as the main conductor

in the electrode, and a 42 Å thick layer of chromium that will oxidize to an inert finish

(figure 3.8).

Figure 3.8: Diagram of the three layered metal deposition onto photoresist-
developed substrate.

To prepare the photoresist-developed wafer for metal deposition, the wafers

were exposed to an oxygen plasma to volatilize and remove organic residues. The

wafer was placed under vacuum in the AGS RIE system and exposed to an oxygen

plasma for 30 seconds (figure 3.10). The CrC-150 sputtering system was then used

to deposit 125 Å of chromium at a rate of 250 Å per minute for 30 seconds. Using

the Denton Desk 5, 180 nm of gold was deposited at a rate of 180 Å per minute for

10 minutes. A final 42 Å layer of chromium was deposited with the CrC-150 at a

rate of 250 Å per minute for 10 seconds (figure 3.9).

(a) CCr-150 Sputter system (b) Denton Desk V Sputter/Etch unit

Figure 3.9: The sputter machines used for metal deposition. The CCr-150 and the
Denton Desk V were used for chromium and gold deposition respectively.
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Figure 3.10: The AGS reactive ion etcher used to remove organic residue with an
oxygen plasma.

During the transition between sputtering systems, the wafers were kept under

vacuum in order to keep them clean, and in the case for chromium depositions, to

reduce the formation of chromium oxide which can significantly impair chromium-

gold adhesion.

Lift Off

The final step of the electrode fabrication process was to remove the photoresist

with the undesired metal depositions. The wafers were submerged in Microposit

remover 1165 for five days under constant agitation (figure 3.11a). To increase the

speed of lift off, the solution can be heated to 65◦C.
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(a) Sputtered wafer in Microposit remover (b) Wafer with electrode post lift off

Figure 3.11: (a) Metal depositions removed from the glass substrate with Microposit
remover 1165. (b)The remaining depositions after the lift off process.

3.1.3 Device Assembly: Alignment and Plasma Bonding

To assemble the PDMS chip the electrodes, the components were plasma bonded

to create a water-tight seal that permits optical viewing. The PDMS and the glass

electrode substrate were placed device-side up in the Cal Poly Microfabrication

Lab’s PDC-32G plasma cleaner. After pumping the plasma cleaner down to a vac-

uum, the device was exposed to an atmospheric plasma for 10 seconds.

Figure 3.12: PDC-32G plasma cleaner used for plasma bonding.

After plasma activation, a drop of ethanol was placed on the PDMS surface be-

fore placing the PDMS onto the electrode substrate. This created a liquid float bar-

rier that prevented permanent binding for ∼5 minutes. The electrodes and PDMS

microchannels were aligned by hand with a microscope set at 20X magnification for
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visual feedback. After proper alignment, the device was baked in an oven at 65◦C

for an hour.

3.2 Software Interface

LabVIEW was used to interface with the NI-5421 function generator and the NI-5124

oscilloscope to package the circuit model, data acquisition, and data analysis into

an impedance spectroscope program. The LabVIEW language was chosen due to

the ease of connecting to the National Instrument hardware and the rapid develop-

ment cycle. The program specifications include interfacing with the NI-hardware to

run an impedance spectroscopy experiment, the ability to control the sweeping fre-

quencies, the ability to switch circuit topologies, the ability to automatically run tests

at specified intervals, the implementation of a data saving system that records the

users settings for the experiment as well as the impedance spectroscopy results,

and the ability to view and compare data.

3.2.1 Architecture

The LabVIEW program was designed with an event-driven state machine architec-

ture and is diagrammed in figure 3.13. A state machine is a common LabVIEW

coding pattern where the program exists as a set of states. Depending on user in-

put or calculations, each state leads to a subsequent state that can potentially lead

to a large network of modular decision making code. For this program, the state

machine is simple with most states leading to an idle state that continues to wait for

user input. The state machine lives inside an event structure that listens for specific

user interface (UI) interactions. These interactions trigger an event that runs code

and can specify the next state in the machine. After a specified amount of time

passes without an event triggering, the time out event will trigger and run the state

machine.
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(a) Event-driven state machine architecture

(b) Event-driven state machine code

Figure 3.13: The event-driven state machine architecture used for the impedance
spectroscope LabVIEW program.

The event driven state machine architecture allowed for a responsive UI that

maintained the modularity of a state machine with safe program initialization and

exit. The architecture was implemented to create two main modules: the impedance

spectroscope, and the data viewer.
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3.2.2 Impedance Spectroscopy

The impedance spectroscopy UI gives users the ability to control settings for ex-

periments and view results (figure 3.14). All impedance spectroscopy settings are

located in a set of three tabs: circuit topology, frequency parameters, and interval

parameters.

Figure 3.14: Impedance spectroscopy user interface

The circuit topology tab informs the software of the circuit being used and the

value of the external resistor (figure 3.15). With each circuit selection, an image

updates to display the measurement method and the required oscilloscope connec-

tions. In the current implementation, the software includes options for the I-V and

auto-balancing bridge circuits.

The frequency parameter tab controls the frequencies studied in the impedance

spectroscopy experiment (figure 3.16). The frequency expression shows how fre-

quency values are calculated with x and y representing incremented values with the

caveat that a value for every increment of x is generated for every one increment of

y. For example, with the settings given in figure 3.16, ten frequencies per decade

with decades 1E3 to 1E7 are generated. The max input frequency truncates the

frequencies generated to the specified value. In addition to frequency parameters,
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the tab also includes controls for the waveform amplitude, the number of cycles

measured by the oscilloscope, and the sample rate.

(a) I-V topology (b) Auto-balancing bridge topology

Figure 3.15: Circuit settings

Figure 3.16: Frequency sweep options Figure 3.17: Interval measurement set-
tings

The interval parameters tab contains options for running automatic experiments

at timed intervals (figure 3.17).

After running an experiment, the results are visualized and saved in a text file.

The results are used to generate seven plots in four different tabs: impedance mag-

nitude and phase, real and imaginary impedance, the Nyquist plot, and voltage

bode and phase plots (figure 3.18). With the exception of the voltage bode and

phase plots, the graphs are different ways of visualizing the impedance data. The

voltage bode and phase plots were primarily used in troubleshooting.

Every experiment is automatically saved in a tab delimited text file with the des-

ignated experiment name (a number is appended to a filename duplicate; i.e. no
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(a) Impedance magnitude and phase (b) Real and imaginary impedance graphs

(c) Nyquist plot (d) Bode pot and phase shift plot

Figure 3.18: Software generated graphs to display the results of the impedance
spectroscopy experiment. Sub-figures (a), (b), and (c) present different views of the
calculated impedance data while sub-figure (d) is reserved for troubleshooting.

files are overwritten) with the option to generate dated folders. Each file contains

a header that saves the date and time the experiment was run, the user, and user

defined settings. The impedance spectroscope data is saved in labeled columns.

An example of a saved experiment file is given in figure 3.19.
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Figure 3.19: An example of the impedance spectroscopy data file. All user and
experiment data is recorded in a TSV file.

3.2.3 Data Viewer

The data viewer UI allows users to visualize and compare previous experiments

(figure 3.20). The UI allows up to ten experiments to be simultaneously plotted with

a legend in the top right corner and a table to display each experiment’s header

information.

Figure 3.20: The data viewer UI allows users to compare up to 10 experiments
simultaneously.
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3.3 System Implementation

To run impedance spectroscopy tests, a system was assembled to control and

record experiments. The complete implementation included a function generator

(NI PXI-5421), an oscilloscope (NI PXI-5124), a hardware interfacing labview pro-

gram, an I-V circuit, three Harvard apparatus syringe pumps, an inverted video

microscope (LabSmith SVM340) for imaging, and the impedance spectroscopy mi-

crofluidic chip. Figure 3.21 displays the impedance spectroscopy system.

Figure 3.21: The impedance spectroscopy system.

3.3.1 Electrical Interface

NI Hardware

The NI PXI-5421 function generator and the NI PXI-5124 oscilloscope were used

to load and measure the impedance spectroscopy chip. The NI PXI-5421 is a 43

MHz waveform generator capable of generating user defined standard and arbitrary

waveforms with a ±6 V range and a 50 Ω output impedance. The signal generator
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was controlled with the LabVIEW program and operated to run at specified frequen-

cies of a standard sine wave. The NI PXI-5124 is a 150 MHz 200 MS/s oscilloscope.

The PXI-5124 has a 4.0 GS/s equivalent time sampling rate for repetitive signals,

and a selectable 50 Ω or 1 MΩ||29 pF input impedance. The oscilliscope was con-

trolled with LabVIEW and configured to have a 1 MΩ||29 pF input impedance.

Electrode Interface

To establish an electrical connection to the impedance spectroscopy chip, solid core

wires were soldered to to the device. Since the metal depositions were too thin for

direct soldering, copper tape was placed adjacent to the electrode pads, soldered

to the solid-core wire, and then a silver-based epoxy was applied to the copper tape

and electrode pads using the M6 Chemicals silver conductive pen (figure 3.22). The

epoxy has a resistivity of 1E-4 Ω·cm.

Figure 3.22: The electrode interface consisting of solid-core wire soldered to copper
tape epoxied to the electrode pads.
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Connections to the NI instruments were made with solid-core wires soldered

to BNC female jacks. Since the function generator output signal was not 50 Ω

terminated, the signal amplitude will be twice the selected amplitude. Wiring length

to the I-V circuit was minimized.

I-V Circuit

An I-V circuit, with an external resistor of 3300 Ω, measured the impedance of the

device under testing. The circuit was discussed in detail in section 2.2.3, and the

implementation is depicted in figure 3.23.

Figure 3.23: Implementation of the I-V circuit including impedance loads of the
function generator and oscilloscopes.

The circuit was implemented using two different methods: a system of soldered

solid core wires, and using a breadboard. There was no difference noted between

the two implementations sweeping up to 40 MHz. However, the breadboard should

generally be avoided for high frequencies due to intercontact capacitance (∼25 pF

for power strips, and ∼2.5 pF for the remaining breadboard).

3.3.2 Microfluidics

Three Harvard Apparatus syringe pumps driving 1 mL BD syringes were used to

control fluid flow through the impedance spectroscope chip. The microfluidic net-
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work is diagrammed in figure 3.24.

The original design of the device was meant to capture a single cell in the mea-

surement chamber, but since this design cannot achieve single-cell isolation (sec-

tion 1), pump #3 was used to initially flood the flush channels and then hold its

syringe at a constant volume to prevent flow through the flush channels. For fluid

flow, pump #1 drove fluid at 1 µL/min and pump #2 pulled fluid at 1 µL/min.

Figure 3.24: The implemented microfluidic network utilzed 3 Harvard Apparatus sy-
ringe pumps. Pump #1 drove fluid into the device and pump #2 suctioned particles
into the sensor region.

Spherotech polystyrene beads (FP-2052-2) were injected into the impedance

spectroscope system for system evaluation. The Spherotech beads ranged from

7 µm to 7.9 µm in diameter and had a relative permittivity of 2.5 (table 2.1). The

beads were mixed with a separate DI water and phosphate bufferred saline solution

(PBS) at 0.1% by mass. A single drop of Titron x-100 surfactant was added to both

solutions and then sonicated.

The device was evaluated by making impedance measurements of DI water,

PBS, polystyrene micro-beads.
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Chapter 4: Modeling

In order to understand, validate, and optimize the single cell impedance spec-

troscopy system, three models were implemented: an analytic impedance solution,

finite element analysis simulations, and a circuit model. The analytic impedance so-

lution was implemented to build a foundational understanding of basic IS systems,

to optimize simple IS systems, and to validate FEA simulations. The finite element

analysis expands upon the analytic solution to understand how the complex device

geometry differentiates from the simple analytic impedance model geometry, and to

inform optimized device designs. The circuit model was developed to validate the

IS DAQ system and understand its shortcomings.

4.1 Analytic Single Cell Impedance Model

For cell suspensions with low volume fractions, Maxwell’s Mixture theory can model

the electrical impedance of the system. The model is summarized in equations 4.1

to 4.5 below.

Z̃mix =
1

jwC̃
, (4.1)

C̃ = ε̃mixGf , (4.2)

ε̃mix = ε̃m
1 + 2φf̃cm

1− φf̃cm
, (4.3)

f̃cm =
ε̃p − ε̃m
ε̃p + 2ε̃m

, (4.4)

ε̃p = ε̃mem
γ3 + 2( ε̃i−ε̃mem

ε̃i+2ε̃mem
)

γ3 − ( ε̃i−ε̃mem

ε̃i+2ε̃mem
)

with γ =
R + d

R
. (4.5)

An explanation of these equations is given in section 2.3.1. The values for Gf

(geometric constant) and φ (volume fraction) are dependent on the geometry of the

system. In the following sections, solutions to both variables will be presented for

the co-planar electrode configuration in figure 4.1.
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Figure 4.1: Diagram of a simplified impedance sensor chamber where w, g, and l
are the width, gap, and length of the electrodes respectively. h is the height of the
chamber.

4.1.1 Coplanar Electrode Cell Constant

The geometric constant is the inverse of the cell constant (κ). If the cell constant is

thought of in terms of the resistive cell constant (R = κρ), then the geometric cell

constant can be thought of as the capacitive cell constant (C = Gfε). If equations

4.1 to 4.5 were expressed in terms of complex conductivities rather than complex

permittivities, the impedance of the mixture could be expressed as Z̃mix = κ
σ̃

. For

the ideal parallel plate capacitor in figure 4.2, where the electric field is uniform, the

geometric constant can be expressed as

Gf = (κ)−1 =
γl

d
, (4.6)

where d is the distance between the electrodes, γ is the height of the electrodes,

and l is the length of the electrodes. This relation is discussed in further detail in

section 2.3.2. If the co-planar electrode geometry is mapped to the ideal parallel

plate capacitor configuration, the ratio of d and γ can be derived.

Sun, Greene, et al. utilized the Schwartz-Christoffel transform to map the copla-

nar electrode configuration in figure 4.1 to the configuration of parallel electrodes

with uniform electrode fields in figure 4.2 [31]. The Schwartz-Christoffel formula is

a powerful transform that allows the mapping of the upper complex T-plane (y > 0)

to the inside of a polygon and can be expressed as
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Z = C1

ˆ T

T0

m∏
r=1

(T − Tr)(θr/π−1)dT + C2, (4.7)

where Z is the interior of a polygon in the Z-plane with vertices Z1, Z2, Z3, ..., Zm

and angles θ1, θ2, θ3, ..., θm which correspond to the points T1, T2, T3, ..., Tm on

the real axis of the T-plane. C1 and C2 are integration constants. The Schwartz-

Christoffel transform has three degrees of freedom, and consequently, up to three

points may be chosen arbitrarily. T0 is the reference and is typically chosen at the

origin.

Figure 4.2: Uniform electric field between two parallel electrodes where E is the
electric field, φ is the voltage, and dφ

dn
= 0 is the boundary condition of a perfect

insulator. The dimensions of the capacitor are the electrode height γ, and the dis-
tance between the electrodes d.

A brief solution for the co-planar electrode system is covered in the following

section with the complete step-by-step solution included in appendix B.3.

To find the geometric constant for coplanar electrodes, Schwartz-Christoffel trans-

forms will be used to map half of the co-planar electrode geometry (Z-plane) to the

upper complex plane (T-plane) and then to map the T-plane to half of the ideal par-

allel plate geometry (W-plane). The W-plane vastly simplifies the solution to the cell

constant and will allow the direct calculation of the ratio γ to d. Figure 4.3 diagrams

the three mapped planes.

64



4.1. ANALYTIC SINGLE CELL IMPEDANCE MODEL CHAPTER 4. MODELING

Figure 4.3: Diagrams of coplanar electrodes through Schwartz-Christoffel mapping
where the Z-plane contains the physical dimensions of the electrode configuration,
the T-Plane links the Schwartz-Christoffel mappings of Z and W plane, and the W-
plane represents the parallel electrodes producing a uniform electrode field.

In this model, it will be assumed that the floor and the ceiling of the model are

perfect insulators, the medium is homogeneous, and the channel is infinitely long.

Schwartz-Christoffel Transform Mapping

Mapping the T-plane to the Z-plane, point C and D from figure 4.3 will be chosen

as the polygon corners with angles of π/2.

Z = C1

ˆ
(T − Tc)−1/2(T − TD)−1/2dT + C2, (4.8)

By integrating equation 4.8 with the coordinate relationships ZC = 0, TC = 1 and

ZD = jh, TD = 0, the mapping between the Z-plane and the T-plane can be ex-

pressed as

Z =
2h

π
ln
(√

T − 1 +
√
T
)
, (4.9)

The mapping of the T-plane to the Z-plane is depicted in figure 4.4.

The mapping of the Z-plane to the T-plane can be found by solving for the inverse

of equation 4.9:

T = cosh2

(
Zπ

2h

)
. (4.10)

Figure 4.5 depicts the mapping of the Z-plane to the T-plane.

65



4.1. ANALYTIC SINGLE CELL IMPEDANCE MODEL CHAPTER 4. MODELING

(a) Part of upper complex T-Plane (b) Mapping of the part of the T-plane to
the polygon in the Z-plane

Figure 4.4: Mapping of the T-plane to the inside of the open polygon in the Z-Plane
outlined by the points F , C, D, and E in the Z-plane. Equation 4.9 is the mapping
function.

(a) Part of the open polygon in the Z-
plane.

(b) Mapping of part of the polygon in the
Z-plane to the T-plane.

Figure 4.5: Mapping of the open polygon in the Z-Plane outlined by the points F ,
C, D, and E. Equation 4.10 is the mapping function.

To map the T-plane to the W-Plane, points A, B, C, and D, will be chosen as

the polygon corners with angles of π/2:

W = D1

ˆ
(T − TA)−1/2(T − TB)−1/2(T − TC)−1/2(T − TD)−1/2 dT +D2. (4.11)

Since equation 4.11 is an integral of a rational function with a root of a quartic

polynomial, the function can be rewritten as an elliptic integral [50]. For T > TA >

TB > TC > TD,

W = D3F (v, k) +D2, (4.12)
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D3 =
2D1√

(TA − TC)(TB − TD)
, (4.13)

v = arcsin

√
(TB − TD)(T − TA)

(TA − TD)(T − TB)
, (4.14)

k =

√
(TB − TC)(TA − TD)

(TA − TC)(TB − TD)
, (4.15)

where F (v, k) is the incomplete elliptic integral of the first kind, and can be ex-

pressed as

F (v, k) =

ˆ v

0

dα√
1− k2 sin2 α

, (4.16)

where v and k are referred to as the amplitude and modulus respectively. For all

values that T are greater than TA or do not lay on the real number line (i.e. has an

imaginary component), the elliptic integral provided is valid.

Using the coordinate relations for point A: WA = 0, F
(
v(TA), k

)
= 0; point B:

WB = jγ, F
(
v(TB + limx→0 jx), k

)
= jK(k′); and point D: WD = δ, F

(
v(TD), k

)
=

K(k); we find that

D2 = 0, (4.17)

D3 =
δ

K(k)
, (4.18)

and

D3 =
jγ

K(k′)
, (4.19)

where K(k) is the complete elliptic integral and is expressed as

K(k) =

ˆ π/2

0

dα

1− k2 sin2(α)
, (4.20)

and where k′ is the complement modulus and is expressed as

k′ =
√

1− k2, (4.21)
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By combining equations 4.18 and 4.19 we get

γ

δ
=
K(k′)

K(k)
, (4.22)

and then substituting equation 4.22 into equation 4.6, and recognizing that δ in the

W-plane only represents half of the actual parallel plate distance (d), we find that

the cell constant and geometric factor for co-planar electrodes are

κ =
2K(k)

lK(k′)
, (4.23)

Gf =
lK(k′)

2K(k)
. (4.24)

It should be noted that the current mapping of the T-plane to W-plane is uncon-

strained with no solution to the constant D3. By selecting a value for either D3, γ, or

δ, we constrain the mapping, but the actual value we choose is of no consequence

to the power, current, or impedance of the system. Physically, this is explained since

the cell constant is defined by the ratio of d and γ and, given the same material prop-

erties, as long the ratio in equation 4.22 is maintained, the effective impedance will

be the same. There are an infinite number of W-planes that satisfy the ratio in equa-

tion 4.22. For mapping the T-plane to the W-plane, D3 can be arbitrarily chosen. If

D3 is chosen to be 1, the W transform can be expressed as

W = F (v, k). (4.25)

Figure 4.6 depicts the mapping the Z-plane to the W-plane.

68



4.1. ANALYTIC SINGLE CELL IMPEDANCE MODEL CHAPTER 4. MODELING

(a) Part of the open polygon in the Z-
plane.

(b) Mapping of part of the polygon in the
Z-plane to the W-plane.

Figure 4.6: Mapping of the open polygon in the Z-Plane outlined by the points F ,
C, D, and E to the W-plane. Equation 4.25 is the mapping function.

4.1.2 Coplanar Electric Field

With Z-T and T-W mappings, the solution of the electric field in the W-plane can be

mapped to the Z-plane. The mapping of the electric field can be expressed as

Ez = −∇φz with ∇φz = ∇φw
dW

dZ
. (4.26)

Where ∇φ is the gradient of potential and dW
dZ

is the conjugate of the derivative of

W with respect to Z [51].

Applying the chain rule to equation 4.26, the electric field mapping is expressed

as

Ez = −∇φw
dW

dT

dT

dZ
, (4.27)

with

−∇φw =
V

d
, (4.28)

dW

dT
=

d

2K(k)

(TA − TC)1/2(TB − TD)1/2

(T − TA)1/2(T − TB)1/2(T − TC)1/2(T − TD)1/2
, (4.29)

and
dT

dZ
=
π

h
(
√
T − TD)(

√
T − TC). (4.30)

Combining equations, 4.27, 4.28, 4.29, and 4.30, the electric field for co-planar
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electrodes can be expressed as equation 4.31. The electric field solution is depicted

with streamlines in figure 4.7a and with electric field magnitude in figure 4.7b. A

complete step-by-step solution is provided in appendix B.4.

Ez =
πV

2hK(k)

√
(TA − TC)(TB − TD)√
(T − TA)(T − TB)

(4.31)

(a) Electric field stream lines for co-planar electrodes.

(b) Electric field magnitude generated by co-planar electrodes. The magnitude is reported
in units Log10(V/m).

Figure 4.7: The electric field for co-planar electrodes as defined by equation 4.31.
The electrodes are 11.5 µm wide with a 5 µm gap and the chamber is 10 µm tall.
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4.1.3 Novel Volume Fraction

The traditional method to approximate the volume fraction of a single spherical par-

ticle suspended over co-planar electrodes is to calculate the ratio of the cell volume

to the volume over the electrodes in the channel:

φ =
4
3
πR3

(2w + g)hl
, (4.32)

where R is the particle radius, w is the electrode width, g is the gap between the

coplanar electrodes, h is the height of the channel, and l is the length of the elec-

trodes in the channel. This approximation assumes that the fringe fields outside

the boundaries of the electrodes is negligible, and that the electric field magnitude

is uniform inside the boundaries of the electrodes. However, for most co-planar

electrode geometries used in impedance spectroscopy, the electric field is highly

non-uniform. Figure 4.7 depicts the non-uniformity of an electric field produced by

co-planar electrodes. In this section, two alternative approaches to calculating the

correct volume fraction are proposed.

Mapping Particle Volume to the W-Plane

To calculate the effective volume fraction, it is necessary to calculate the ratio of

effective volumes:

φ′ =
V ′p
V ′sys

, (4.33)

where φ′ and V ′p and V ′sys denotes the effective volume fraction, effective volume of

the particle, and effective volume of the system respectively. When considering a

particle suspended in the Z-plane, it is difficult to determine the effective volume for

the system or the particle due to the non-uniform electric field. However, the electric

field is uniform when the system is mapped to the W-plane. The effective volume

fraction can be expressed as

φ′ =
V w
p

V w
sys

, (4.34)
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where w denotes volumes in the W-plane.

By referring to the ideal capacitor geometry in figure 4.2, the system volume in

the W-plane can be expressed as

V w
sys = γdl, (4.35)

and by substituting in equations 4.18 and 4.19, and remembering D3 was arbitrarily

chosen as 1 for the W-mapping, we find

V w
sys = 2K(k)K(k′)l. (4.36)

When a spherical particle is mapped to the W-plane, the particle cross-sections

are deformed based on the non-uniformity of the electric field. If we assume that

these cross-sections are deformed to either "circle-like" or "ellipsoid-like" sections,

the mapped volume of the sphere can be approximated as

V w
p =

4

3
πrzrw1rw2, (4.37)

where rz is the radius of the spherical particle in the Z-plane, and rw1 and rw2 are

the principle radii of the "ellipsoid-like" mapping of the particle orthodrome to the

W-plane. Equation 4.37 can be rewritten as

V w
p =

4

3
rz

¨
Aw

dA, (4.38)

where the integral represents the area of the particle orthodrome mapped to the

W-plane.

Combining equations equations 4.36 and 4.38, we can approximate the effective

volume fraction as

φw =
2

3

rz
˜
Aw
dA

K(k)K(k′)l
. (4.39)

The major shortcoming of this method is operating under the assumption that
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the mapped particle cross-sections are circle or ellipsoid-like. From simulated data,

many particle-electrode configurations result in mapped particle cross-sections that

do appear circular or ellipse-like, but there will be an associated error that will often

grow with the degree of the non-uniformity. Compared to the traditional volume

fraction, the error is minimal. The W-plane volume fraction accounts for fringe field

effects and the local non-uniformity of the electric field, allowing for the calculation

of the volume fraction for a particle located anywhere in the system.

Power Volume Fraction

In the W-plane, which represents the ideal parallel plate electrode model depicted in

figure 4.2, the electric field is uniform inside the valid domain, and as a direct result,

the power density is uniform throughout the domain of the W-plane. By interpreting

the effective volume fraction as the ratio of volumes in the W-plane, we arrive at the

following relationship:

φ′ =
V ′p
V ′sys

=
V w
p

V w
sys

=
Pp
Psys

. (4.40)

By finding the ratio of power in the domain of the particle to the power of the

system, we are able to calculate the effective volume fraction as the power fraction:

φp =
Pp
Psys

, (4.41)

The power of the system can be expressed as

Psys =
(∆V )2

Rsys

, (4.42)

where ∆V is 2V for our mapped system. By recalling that R = ρκ,

Psys =
4V 2

ρκ
. (4.43)

By substituting equation 4.23 for the cell constant, the power of the system is ex-
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pressed as

Psys =
2V 2K(k′)l

ρK(k)
. (4.44)

The power in the domain of a spherical particle can be solved for by integrating

the power density over the volume of the particle.

Pp =

˚
V

ρ
∣∣J∣∣dV =

˚
V

1

ρ

∣∣E∣∣2dV (4.45)

By substituting the solution of the electric field from equation 4.31, we can express

the power in the domain of the particle as

Pp =
1

ρ

(
π2V 2

4h2K(k)2

)˚
V

∣∣∣∣(TA − TCT − TA

)(
TB − TD
T − TB

)∣∣∣∣ dV. (4.46)

Combining equations 4.41, 4.44, and 4.46, the power fraction can be expressed

as

φp =
π2

8h2K(k)K(k′)l

˚
V

∣∣∣∣(TA − TCT − TA

)(
TB − TD
T − TB

)∣∣∣∣ dV. (4.47)

If the particle is a sphere, the integral can be conveniently expressed in spherical

coordinates:

φp(Zc, R) = 2C

ˆ pi
2

0

ˆ 2π

0

ˆ R

0

r2 sin(φ)F (r, θ, φ, Zc)dr dθ dφ, (4.48)

where Zc is the center of the particle on the complex Z-plane, R is the particle

radius,

F (r, θ, φ) =

∣∣∣∣( TA − TC
T (r, θ, φ, Zc)− TA

)(
TB − TD

T (r, θ, φ, Zc)− TB

)∣∣∣∣, (4.49)

T (r, θ, φ, Zc) = cosh2

(
π

2h

(
Zc + r cos(

π

2
− φ)eiθ

))
, (4.50)

and

C =
π2

8h2K(k)K(k′)l
. (4.51)

The power fraction provides an accurate solution to the volume fraction for the
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co-planar electrode system outlined in section 4.1.1. These corrected volume frac-

tions allow for a complete analytic impedance solution that accounts for the effect of

the fringe field and non-uniform electric field based on the position of the particle. If

incorporated in a drag-flow model, flow-through IS systems can be simulated with

respect to time.

To illustrate the relationship between these volume fractions, figure 4.8 illustrates

the power fraction and W-plane mapping as a cell traverses through the co-planar

electrode chamber.

(a) Particle position overlay on the electric field magnitude plot of a co-planar electrode
system.

(b) Particle mapped to the W-plane. (c) Calculated power fraction of the particle.

Figure 4.8: Illustration of the W-plane particle mapping and the power fraction. (b)
depicts the mapped region of an ideal parallel electrode system occupied from a
particle in a co-planar electrode system.The gold colored y axis represent the sys-
tems electrodes.

As expected, both illustrations of the power fraction indicates the maximum vol-

ume fraction as the particle passes through the center of the electrode chamber. It

should also be noted how the orthodrome of the particle mapped to the W-plane

becomes deformed, which will contribute error to the W-plane volume fraction esti-
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mate described by equation 4.39. Although the power fraction is the more accurate

tool in calculating the volume fraction, the W-plane mapping is a powerful tool in

visually investigating the effects of cell position, chamber geometry, and electrode

geometry.

4.1.4 Device Sensitivity

Linderholm defined the sensitivity of a device as the local dissipation of power nor-

malized by the total power of the system. In otherwords, Linderholm sensitivity is

the ratio of power density at a point in the system to the power of the system, and

can be expressed as

SLinderholm =
ρ|j|2

RsysV 2
sys

[52]. (4.52)

The Linderholm definition of sensitivity takes into account the non-uniformity of the

electric field, but does not include the particle size and dielectric properties of the

particle and the medium.

If instead of taking the ratio of power density at a specific point to the power of

the system, the ratio of power in the region of the particle to the power of the system

is calculated, we arrive at the power fraction described in equation 4.41. The power

fraction, as a measure of sensitivity, extends Linderholm’s sensitivity to account for

the size and shape of the particle.

Sun proposed an alternative sensitivity definition as the ratio of relative impedance

to the impedance of the medium:

SSun =
||Z̃mix| − |Z̃m||

|Z̃m|
[31]. (4.53)

Sun’s definition has the advantage of taking into account the dielectric prop-

erties of the suspension. However, his calculations used the standard method of

determining the volume fraction, which do not account for the non-uniformity of the

electric field local and the position of the particle.
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By using the power volume fraction with Sun’s definition of sensitivity, we get the

advantages of both sensitivity definitions: the ability to account for dielectric proper-

ties, and local non-uniformity in the power density over the region of the particle.

When choosing a sensitivity metric to optimize the device, the power fraction or

Linderholm’s sensitivity should be employed when only concerned with optimizing

the geometry of the device. Sun’s definition of sensitivity is useful in considering the

medium used in the device.

4.1.5 Analytic Impedance Modeling Tool

The analytic impedance solution for co-planar electrode systems was implemented

in the MATLAB programming language. To facilitate simulation and exploration of

the analytic impedance solution, the IS App was created. The IS App collated the

analytic impedance solution into a single program with a graphical user interface.

The main page of the application is displayed in figure 4.9. The IS App is split into

three sections: impedance spectroscopy, equivalent circuit values, and the electric

field and volume fraction analysis.

Impedance Spectroscopy

The main section of the IS App is the impedance spectroscopy simulation. The pa-

rameter entry section is located on the right side of the user interface depicted in

figure 4.9 and allows the user to dictate the parameters in the analytic impedance

solution. It is important to keep in mind that the analytic impedance solution as-

sumes that the channel length continues infinitely, but the electrode geometry, chan-

nel height, and particle geometry can all be specified.

The parameters RelTol and AbsTol under the Volume Fraction subsection affect

the acceptable error tolerance when calculating the power volume fraction. Smaller

values will provide more accurate answers at the expense of computing time. In

most cases, the default values are more than sufficient. The current application

requires so little computing time that there is little reason to increase the tolerance
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Figure 4.9: The IS app GUI created in MATLAB to calculate and display the ana-
lytic impedance solution to a single cell suspension over co-planar electrodes. The
impedance is displayed as magnitude-phase, real-imaginary, and Nyquist plots. The
IS app also includes the capability to calculate the Clausius Mossotti spectrum, an
equivalent circuit model, the electric field of the co-planar electrode system, and a
mapping of the cell orthodrome to the W-plane.

parameters from their default value, and few applications would require higher pre-

cision than currently provided.

The electric double layer capacitance parameter determines the effect of the

EDL on the model. The model takes the simplest approach to the EDL and repre-

sents its as two capacitors in series to the analytic impedance solution. The capac-

itance is calculated by finding the product of the capacitance per unit area and with

the area of the electrodes. Implementation of sophisticated EDL models should be

considered for further development of the IS App.

The checkmarks under the Impedance Data to Plot subsection dictates what

data sets will be plotted and saved after running the simulation. The mixture,

medium, and difference option denote the impedance solution of the single cell

suspension, no-cell solution, and the difference between the single cell suspension

and the no-cell solution impedance respectively. The EDL, φV, and φp options cal-

culates the analytic impedance solution with the electric double layer, the traditional
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volume fraction, and the power fraction respectively.

(a) Impedance magnitude and phase (b) Real and imaginary impedance

(c) Nyquist plot (d) Clausius Mossotti Factor

Figure 4.10: Example plots depicting results of the analytic impedance solution
generated by the IS App.

The IS App visualizes the results as impedance magnitude-phase plots, real-

imaginary parts, a Nyquist plot, and the real and imaginary parts of the Clausius

Mossotti factor. An example of the plots is given in figure 4.10.

Equivalent Circuit

The equivalent circuit section of the the IS App uses the Foster-Schwan model to

calculate the equivalent circuit values for the single cell suspension described by the

parameter entries displayed in figure 4.9. A full explanation of the Foster-Schwan

model is provided in section 2.3.4. The equivalent circuit section of the IS App is

displayed in figure 4.11. For comparison purposes, the equivalent circuit values

using both the traditional volume fraction and the power fraction are provided.
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Figure 4.11: The IS app display for the equivalent circuit model of a single cell sus-
pension. The application uses the Foster-Schwan model to calculate circuit values
with the geometric and power volume fractions.

Electric Field and Volume Fraction

The electric field and volume fraction section of the IS App was created to depict

how the geometry of the system affects the electric field and volume fraction. The

electric field and volume fraction section of the program is displayed in figure 4.12.

The top chart in figure 4.12 depicts the logarithm electric field magnitude of the

co-planar electrode system. Since this analytic impedance solution describes an

infinitely long channel, the width of the calculated electric field must be truncated.

The user is given the ability to control the width of the data calculated with the Plot

width multiplier parameter. The parameter determines the width of the calculated

electric field with the following relation:

Data Width = (Plot width multiplier) ∗ (2welectro + gelectro),
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Figure 4.12: The IS app display for the electric field magnitude, the cell orthodrome
mapping to the W-plane, and volume fractions.

where welectro is the electrode width, and gelectro is the gap between the elec-

trodes. In addition, the user can specify the color bar range plotted with the Color

Axis Max and Color Axis Min parameters. Altering these parameters is useful when

the area of interest is over-saturated by the color axis extrema, or the user desires

to identify where a bounded range of the electric field magnitude occurs. If the plot

cell checkbox is selected, the orthodrome perimeter of the cell is plotted.

The bottom chart in figure 4.12 plots the transformed orthodrome perimeter of

the cell to the ideal parallel plate capacitor plane (W-plane) using the SCM-derived

mapping described by equation 4.25. The depiction of the cell orthodrome in the

W-plane provides a direct illustration of how the position of the cell in the chamber

affects its effective volume fraction. In addition, the calculated values of the tradi-

tional, power, and mapped volume fraction are provided in the bottom left corner.
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4.2 Finite Element Analysis

Finite element analysis (FEA) models were developed to characterize the single cell

impedance spectrum and to investigate optimal co-planar electrode configurations

with the purpose to inform future designs. To accomplish this goal, four FEA models

were designed:

• Simple medium: a basic model that only includes electrodes and medium

inside a rectangular domain.

• Simple cell: a basic model inclusive of the simple medium model with the

addition of a cell centered over the electrodes.

• Device medium: a model that replicates the designed geometry of the Cal

Poly Biofluidic Lab’s impedance spectroscopy device. The model only in-

cludes electrodes and the device medium.

• Device cell: inclusive of the the device medium model with the addition of a

cell centered over the electrodes.

Figure 4.13 depicts the four models. The simple models will investigate the

characteristics of an ideal co-planar electrode cell and provide model validation by

comparison to the analytic impedance solution. The device models will provide in-

sight into the impedance characteristics of the Cal Poly Biofluidics Lab’s impedance

spectroscopy device.

4.2.1 Model Development

The simple medium, simple cell, device medium, and device cell models were cre-

ated using COMSOL Multiphyisics FEA software with the electric current physics

module. Model development included the specification and implementation in COM-

SOL of geometry, material properties, and governing physics.
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(a) Simple medium model (b) Simple cell model

(c) Device medium model (d) Device cell model

Figure 4.13: The four finite element analysis models depicted in COMSOL. The
simple medium and simple cell models are based off the geometry used for the
analytic impedance solution. The device models are based on the geometry of the
Cal Poly Biofludic Lab’s impedance spectroscopy device.

Model Geometry

Two geometries were developed for the impedance spectroscopy models: a ba-

sic rectangular electrode cell for the simple models, and an implementation of the

impedance spectroscopy device for the device models. The simple geometry is de-

picted in figure 4.13a and 4.13b, and the device geometry in figure 4.13c and 4.13d.

Dimensioned drawings are presented in figure 4.14 and figure 4.15 for the simple

and device models respectively.

In general, the simple geometry attempts to follow two of the assumptions made

in the analytic impedance solution with reference to the electrode orientation given
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in figure 4.1:

1. The electrode fringe fields are allowed to expand infinitely in the ı̂ direction

(i.e. there are no horizontal bounds).

2. The electric field has no component in the ̂ direction (i.e. geometry must be

uniform in the direction parallel to the electrodes).

The simple geometry approximated assumption 1 by making the sensor cham-

ber sufficiently long. An iterative approach determined the sufficient length of the

chamber by repeatedly increasing the length of the chamber until the model impedance

stabilized to a constant value.

Figure 4.14: Drawing of the Simple FEA models’ geometry. The simple medium
model excludes the 6 µm diameter cell. All units of length are in microns.
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(a) Drawing of the geometry used in the device FEA model with dimensioned system and
PDMS geometry. All dimensions of length are in units of microns.

(b) Drawing of the geometry used in the Device Medium and Device Cell FEA models with
dimensioned electrode geometry. All dimensions of length are in units of microns.

(c) Drawing of the geometry used in the Device Cell FEA model with dimensioned cell
geometry. All dimensions of length are in units of microns.

Figure 4.15: Drawing of the Device FEA geometry models. All dimensions of length
are in microns.
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At this point, any additional fringe fields permitted by an infinitely long channel was

assumed to be negligible. This approach led to an optimal model length of 38

microns. The second assumption was met by creating uniform features in the ̂

direction.

The device geometry focused on the sensor chamber of the impedance spectro-

scope device and assumed that the effects of the electrodes far from the chamber

are negligible.

The cell version of both geometries includes a cell centered over the electrodes

with the cell center 5 microns above the electrodes. The cell was modeled as a 6

µm diameter sphere of cytoplasm. The 7.5 nm cell membrane is implemented in

the physics.

Material Properties

The materials used in the FEA models included the medium solution, the cell mem-

brane, cytoplasm, and polydimethylsiloxane (PDMS). For each of these materials

materials, the conductivity and relative permittivity were specified and are summa-

rized in table 4.1.

Table 4.1: The electrical conductivity and permittivity material properties used in the
FEA models [30],[22],[53].

Physics

The electric current COMSOL interface set the physical equations for the models.

The governing formula is the equation of continuity:

∇ · J = −dρ
dt
, (4.54)
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where −dρ
dt

is the rate of change of charge density and J is the current density

expressed as

J = σE + jwD + Je, (4.55)

where E is the electric field, j is
√
−1, w is the angular frequency, Je is the exter-

nally generated current density, and D is the electric displacement field.

All exterior bounds, except for the electrodes, were modeled as perfect insulators

with the boundary condition

n̂ · J = 0. (4.56)

The cell membrane was modeled with the contact impedance condition. This is

an effective alternative to meshing very thin boundaries. The condition is defined by

n̂ · J =
σ̃

dm
∆V, (4.57)

where dm is the thickness of the cell membrane and σ̃ is the complex conductivity

expressed as

σ̃ = σ + jwε, (4.58)

The contact impedance condition allows current normal to the selected bound-

ary, but does not allow tangential current flow through the boundary. The condition

can be used as an effective approximation to thin and relatively non-conductive do-

mains. In the case of the cell membrane, it is an appropriate approximation.

The low and high potential electrodes were set as the ground (v = 0) and the

applied voltage (v = v0).

The impedance of the system was calculated by dividing the input voltage of

v0 = 1V by the system current. The system current was calculated by placing a

boundary probe over the ground electrode that integrated the current density over

the surface of the electrode. The calculation resulted in the phasor impedance of

the electrode cell.
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4.2.2 Mesh Development

The FEA models were meshed with quadratic tetrahedral meshes. Mesh conver-

gence studies were run on all four models to determine appropriate meshes and

to validate that the model is convergent. To improve the simulation efficiency, the

mesh was only refined in the regions over the electrodes.

Each convergence study was based on the calculated resistance of the sys-

tem (i.e. impedance at 0 hz), which requires integrating the current density over

an electrode to find current. In COMSOL, the default settings using the Electric

Current module only provides a discretized spatial gradient to the post-processor.

When post-processing calculations use the discretized spatial gradient, the result

is highly mesh dependent and can result in greater errors. In the simple medium

model, this effect manifested as non-zero current values through perfectly insulated

boundaries, and the apparent break down of the continuity equation. As a result,

an additional error is added to the calculated impedance and the model will require

a finer mesh to converge. The effect can be mitigated by applying weak constraints

on the boundaries used for post-processing flux calculations. The weak constraint

setting provides the post-processor with additional variables that allow for accurate

flux calculations. The effect of weak constraints is illustrated in the convergence

study of the simple medium model depicted in figure 4.16. Weak constraints were

used in the simple models, but due to complicated geometry over the electrodes

in the device models, COMSOL was unable to compile the device model simula-

tions with weak constraints and the non-weak constraints were used keeping this

shortcoming in mind.

The results of the convergence studies are presented in figures 4.16, 4.17, 4.18,

and 4.19. The meshes corresponding to 2.18E5, 2.785E5, 8.45E5, and 8.33E5 de-

grees of freedom were chosen for the simple medium, simple cell, device medium,

and device cell respectively. The chosen meshes are depicted in figure 4.20 with

mesh descriptions in table 4.2. The converged meshes were chosen for the simple

models and the finest meshes that didn’t crash COMSOL during parametric analysis

88



4.2. FINITE ELEMENT ANALYSIS CHAPTER 4. MODELING

were used for the device models.

Figure 4.16: Simple medium convergence study using weak and non-weak con-
straints. The non-weak constraints resulted in added mesh dependence in the
impedance calculation. The mesh corresponding to 2.18E5 DOFs was used as
the chosen mesh.

Figure 4.17: Simple cell convergence study. The mesh corresponding to 2.79E5
DOFs was used as the chosen mesh.
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Figure 4.18: Device Medium convergence study. The mesh corresponding to
8.45E5 DOFs was used as the chosen mesh.

Figure 4.19: Device Cell convergence study. The mesh corresponding to 8.33E5
DOFs was used as the chosen mesh.
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(a) Simple medium mesh with with
2.18E5 DOFs.

(b) Simple cell mesh with 2.78E5
DOFs.

(c) Device medium mesh with
8.45E5 DOFs.

(d) Device cell mesh with 8.33E5
DOFs.

Figure 4.20: Selected finite element analysis meshes.

Table 4.2: Mesh descriptions and statistics. The triangular, edge, and vertex two
dimensional elements line the boundary of the model, while the three dimensional
tetrahedral elements fill the volume. The domain element quality is based on the
skewness measure.

4.2.3 Model Validation

The FEA models were validated by comparing the analytic impedance solutions to

the results of the simple medium and the simple cell models. The analytic solutions

were calculated using the the dimensions of the figure 4.14, the material properties
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in table 4.1, direct current, and utilizing both the traditional and power fractions. The

results of the analytic impedance solutions were overlayed on the simple model

convergence studies and presented in figure 4.21 and 4.22.

Figure 4.21: A comparison of the medium-only analytic impedance solution and the
FEA simple medium convergence results.

Figure 4.22: A comparison of the FEA simple cell convergence results and the ana-
lytic impedance solution using the traditional volume fraction and the power fraction.

A percent error of 0.368% was calculated for the medium comparison, and per-

cent errors of 2.524% and 0.00990% were calculated using the traditional and the

power volume fraction for the single cell suspension comparisons respectively. By

taking the difference of the medium and the single cell suspension impedance, a
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value more closely related to the cell impedance can be obtained. Percent errors

of 58.2% and 0.148% were calculated for the traditional and power volume fraction

respectively for the difference comparisons.

These results validate the simple FEA models and provides strong evidence

that extensions of these models (i.e. parametric analysis, frequency sweeps, and

the device models) will provide accurate results. In addition, these results highlight

how the use of the the adjusted volume fractions are significantly more accurate

than the traditional volume fraction (error with power fraction: 0.148% vs. error with

traditional volume fraction: 58.2%).

4.3 Circuit Models

Circuit simulations were developed to validate the IS DAQ system and investigate

its shortcomings.

The circuit models were simulated by leveraging the NGSPICE circuit simulator

and interfaced to MATLAB to script model execution and analyze results. By inter-

facing MATLAB to NGSPICE, greater flexibility allowed for multi-variable parametric

analysis, programmatic data analysis, and result presentation.
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Chapter 5: Results

5.1 Device Fabrication

A functional impedance spectroscopy chip was successfully produced. To create

the chip, a PDMS cast was successfully fabricated and validated; a microelectrode

fabrication process was developed, and a viable electrode set was created; and the

PDMS cast and electrodes were successfully aligned and bonded.

5.1.1 PDMS Cast

Due to the limitations of using the 20,000 DPI photo-plotting service of CAD/Art Ser-

vices Inc, the produced transparency is only accurate to 8 microns. Consequently,

while widths and lengths remained largely unaffected, features, such as square cor-

ners on the resolution of microns, were lost. The produced mask largely matched

the CAD drawing with the exception of the rectangular cell capture/measurement

chamber, which was reduced to a diamond shape. This effect was expected and

replicated the results of Fadriquela [4]. Increased accuracy and resolution can be

achieved using chrome masks, but at a premium cost that is outside project scope.

The SU-8 master mold matched the transparency and the designed mold height

closely. A representative SU-8 mold is depicted in figure 5.1. The sensor chamber

portion of the mold, located where all four channels converge, demonstrates the

limitation of the transparency mask. Rather than a square chamber, corners are

opened up to create a diamond-shaped chamber.
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Figure 5.1: SU-8 photoresist as the master mold for PDMS micro-fluidic channels.

The dimensions of the SU-8 mold was verified using the Ambios Xp-1 profilome-

ter. The SU-8 surface profile measured by the profilometer are presented in figure

5.2 and 5.3. Profilometry found that our mold-height closely matched our target

height of 10 µm with large chambers at 9.6 µm and the smaller 10 µm chamber at

9 µm.

Figure 5.2: Surface profile of a 300 micron wide channel on the SU-8 master mold.
The profile was captured with the Ambios XP-1 profilometer. The profilometer
recorded a channel height of 9.6 microns.
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Figure 5.3: Surface profile of a 10 micron and 100 micron wide channel on the SU-
8 master mold. The profile was captured with the Ambios XP-1 profilometer. The
data depicts the 100 micron channel as about 140 microns wide since it crossed the
channel at 45◦. The profilometer recorded a channel height of 9 and 9.6 microns for
the 10 micron and 100 micron channels respectively.

PDMS casts were successfully fabricated from the SU-8 molds and operation

was validated by successfully plasma bonding the casts to glass blanks and verify-

ing channel flow with no leaks or clogs. Figure 5.4 displays a typical PDMS cast.

The outlined region represents the effective measurement chamber. The diamond-

shaped measurement chamber was carried through all steps of the manufacturing

process, originating from the defective transparency mask.

Figure 5.4: PDMS cast of the master mold. Once bonded to a glass substrate, the
cast will form the micro-fluidic channels of the device. The outlined region repre-
sents the effective measurement chamber.

96



5.1. DEVICE FABRICATION CHAPTER 5. RESULTS

5.1.2 Electrode Fabrication

The micro-electrode fabrication process was developed with Dr. Hawkins and Foley

through the course of this thesis. The fabrication process was developed through

an iterative approach of tuning process parameters and was met with many failures

before successful fabrication.

Figure 5.5: Electrode fabrication failure demonstrating two modes of failure: Ma-
N1420 photoresist failure to properly adhere to the glass surface manifesting as
two anomalous flower patterns, and poor adhesion of the deposited gold to the first
chrome layer as evident by gold-stripped leads.

Once the photolithography process was tuned, processed electrodes were met

with three main modes of failure: poor photoresist adhesion, poor gold adhesion,

and thin cracks or scrapes. Figure 5.5 and 5.6 depict these failure modes at macro

and micro scales respectively.

The poor durability of the electrodes was attributed to an overall ineffectiveness

of the chromium adhesion layer meant to glue the gold to the glass substrate. The

process step of transferring the chromium sputtered wafer from the CrC-150 to the
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(a) Break in electrode due to delamina-
tion of gold strip.

(b) Visible chromium layer at site of elec-
trode delamination highlights failure of
gold adhesion to chromium layer.

(c) Thin crack in electrode. (d) Gold electrode strips sliding off
chrome adhesion layer.

Figure 5.6: Images of common electrode fabrication failures.

Denton Desk 5 sputtering system for gold deposition was identified as a likely can-

didate for the poor chromium-gold adhesion and hypothesized that the formation

of chromium oxide during the wafer’s exposure to atmosphere was the cause of

poor-adhesion. As a consequence, the wafers were held in vacuum until they were

quickly transported to the Denton Desk 5. Future microelectrode fabrication pro-

cesses should take advantage of a dual-target sputtering system that can sputter

chromium and gold in series while maintaining vacuum.

With a remedied procedure, two additional sets of electrodes were fabricated.

Figure 5.7 depicts representative fabrication results. Overall, both sets of electrodes

presented no initial cracking or delamination. However, as discussed in the following

section, a set of electrodes manifested adhesion issues during device bonding.
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(a) Successful fabrication of device electrodes.

(b) Integral crack-prone segment. (c) Image of the electrode gap.

Figure 5.7: Integral electrodes with no breaks in sputtered gold layer. The success-
ful results were realized by minimizing the exposure of the chromium adhesion layer
to air and reducing the formation chromium oxide.

Microscopy found both sets to be intact with only negligible defects. The suc-

cessful results are evidence that reducing air exposure of the chromium adhesion

layer is a critical process parameter. However, as discussed in the following section,

a set of electrodes manifested adhesion issues during device bonding showing that

while adhesion has been significantly improved, adhesion-issues continue to persist

and supports the need for a dual-target sputtering system.
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5.1.3 Device Bonding

By the end of the electrode fabrication process, we had what appeared like two

well-adhered and integral electrode chips. Alignment for bonding was completed

by hand. The first alignment attempt resulted in delamination of gold from the

chromium adhesion layer. Although non-functional, the bonding process for the

device was continued to completion. The result of the alignment and bonding for

device 1 is depicted figure 5.8.

Figure 5.8: Electrode adhesion failure during plasma bonding process of device
1. The sputtered gold layer delaminated from the chromium adhesion layer during
PDMS to electrode alignment.

Device 1 was bonded with adequate alignment and exhibited good glass-PDMS

adhesion. As evident from the remains of the sputtered chromium layer, the hand

alignment was successful in aligning the electrode sensor inside of the PDMS mea-

surement chamber, although slightly biased towards the inlet channel. Tactile test-

ing showed no delamination and the device was successfully used to test microflu-
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idic operations. If the electrodes had survived the alignment process, this would be

a functional device.

The second attempt resulted in a successful alignment and bonding. Figure 5.9

displays the alignment and bonding results for device 2.

Figure 5.9: Successfully bonded impedance spectroscopy device. PDMS and elec-
trodes were aligned by hand. There is a slight rotational misalignment, but is ex-
pected to be functionally negligible.

Device 2 is slightly rotationally misaligned, but is centered on the sensor cham-

ber where the electrodes are nearly perfectly aligned. This rotational misalignment

is expected to have only negligible effects on the recorded impedance spectra, but it

is a note-worthy topic for potential investigation. The electrodes survived the align-

ment process with no delamination or cracks. Plasma bonding produced strong

PDMS-glass adhesion.

The micro-fabrication results gave us one viable impedance spectroscopy de-

vice, and a procedure for creating new viable chips.
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5.2 Impedance Spectroscopy System

To characterize and evaluate the impedance spectroscopy system, the microfluidic

performance of the IS chip was evaluated, the impedance spectroscopy measure-

ment system was validated, and the performance of impedance spectroscopy with

the IS chip was analyzed.

5.2.1 Microfluidic Performance Evaluation

As expected and discussed in chapter 1, the current microfluidic design is not capa-

ble of isolating a single cell. This is largely due to the tolerances of the transparency

masks as discussed in section 5.1.1. However, the device was evaluated on its abil-

ity to flow solutions, saturate the sensor chamber with beads, and clear the sensor

chamber of beads. See figure 5.10 for the fully assembled impedance spectroscopy

chip under testing.

Figure 5.10: Successfully assembled cell impedance spectroscopy device.
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Using the the Harvard Apparatus syringe pumps, PBS and DI water were suc-

cessfully pumped into impedance spectroscopy chip. However, the introduction of

7 µm polystyrene beads initiated debris flow. See figure 5.11 for representative

images of IS chip lifecycle.

(a) Sensor chamber saturated with phos-
phate buffered solution.

(b) Sensor chamber saturated with 7µm
polystyrene beads.

(c) Sensor region jammed with debris
and beads.

(d) Device delaminated after attempt to
flush jammed sensor region.

Figure 5.11: Images of the sensor region of the impedance spectroscopy device.
The device successfully measured fluid and 7 µm beads before the sensor region
became jammed and the device ultimately delaminated. Images were taken with
the LabSmith SVM340 inverted microscope.

As the device channels were saturated with liquid, it became evident that the

device channels contained debris, however, no visible debris was present in the

sensor chamber and the flows of DI water and PBS did not agitate any debris. All

four channels were tested with DI water and proved capable of fluid flow.

The introduction of 7 µm polystyrene beads into the solution initiated debris

flow. By significantly decreasing the inlet flow rate, debris flow was minimized and

bead suspensions were successfully captured and measured in the sensor cham-
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ber. With careful application of alternating flow, the sensor chamber was repeatedly

saturated and flushed of microbeads for repeated IS measurements. However, de-

bris progressively aggregated near the sensor chamber and ultimately entered the

chamber and clogged the device as depicted in 5.11c. Subsequent attempts to flush

the chamber lead to device delaminaton.

Fortunately, a sizable, but limited, body of data was collected. The following sec-

tion describes the collected data and characterizes the device response to deion-

ized water, phosphate buffered solution, and a suspension of polystyrene beads.
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5.2.2 Impedance Spectroscopy Measurement System Validation

The validation of the impedance spectroscopy system focused on the data acqui-

sition system and the impedance calculating circuit. Operation utilizing the cell

impedance chip was reserved for the following section.

(a) The idealized test circuit.

(b) The implemented test circuit.

Figure 5.12: The idealized and implemented I-V circuits. For the validation tests, a
10 pF capacitor was used in place of the IS chip or DUT, and a 33 kΩ resistor was
used as the external resistor.

To validate and investigate the impedance spectroscopy DAQ system, the test

circuit in figure 5.12b was physically implemented and tested with the IS system.

The results were compared to simulations of the implemented circuit and the ideal

circuit in figure 5.12a. A 10 pF capacitor was used as the device under testing.

The use of the capacitor was justified by noting that the electric double layer will

be the largest impedance contributor, and using Gongadze’s [44] experimentally

determined EDL capacitance of 6 µF/cm2 for titanium electrodes, and assuming

each electrode has a fluid contact area of 11.5 µm by 15 µm, the capacitance of the
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EDL for our electrodes can be very roughly estimated as 5.2 pF. Using a capacitor

of 10 pF as the DUT is well within the margin of error.

As illustrated in the bode plot of figure 5.13, the measured data and the imple-

mented circuit simulation with scopes largely matched, but there were large devia-

tions from the idealized simulation. The I-V method assumes that all current flowing

through the DUT is also flowing through the external resistor REXT , but with the ap-

plication of oscilloscope 1, this is no longer the case. All current that leaks through

oscilloscope 1 will inflate the calculated impedance of the DUT.

Figure 5.13: Bode plot of the ratio of the voltage out of the DUT to the voltage in.

Revisiting the impedance solution using the I-V method, and referring to figure

5.12 for circuit elements, we have

ZDUT =
V1 − V2

I
. (5.1)

In ideal scenarios, we would assume all current flows through the external resistor

and then I = V2/REXT . However, we know this is not true: non-ideal properties al-

lows current to flow through our attached oscilloscopes. This additional current flow

can be compensated by replacing REXT with ZEXT to account for the impedance

of the oscilloscope and the external resistor.
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ZDUT =

(
V1 − V2
V2

)
ZEXT . (5.2)

Given the equivalent circuit of the oscilloscope, ZEXT can be expressed as

ZEXT =

(
jwCs +

1

Rs

+
1

REXT

)−1
, (5.3)

where Cs and Rs are the capacitance and resistance of the oscilloscope respec-

tively, w is the angular frequency, and j is
√
−1. To correct the data calculated with

the uncorrected I-V formula, the following correction function can be applied:

ZDUT = ZNC

(
ZEXT
REXT

)
, (5.4)

where ZNC is the non-corrected data.

The correction function, equation 5.4, was applied to the measured data and the

results are presented in figure 5.14 and 5.15.

Figure 5.14: Plot of the measured, ideal, and corrected measured impedance mag-
nitude.
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Figure 5.15: Plot of the measured, ideal, and corrected measured impedance
phase.

The corrected data displayed in figure 5.14 and 5.15 shows that the application

of the correction function significantly decreased the observed deviation from the

ideal circuit model, particularly at higher frequencies. This confirms that the os-

cilloscopes are a source of significant error that needs to be accounted for either

through the circuit topology, or through data post-processing as done here. To in-

vestigate unaccounted deviations and to quantify residual errors, the measured and

calculated errors were compared.

The error associated by attaching the oscilloscope can be quantified as

%%%Error = 100 ·
∣∣∣∣1− REXT

ZEXT

∣∣∣∣. (5.5)

Figure 5.16 displays the measured percent error and the error calculated from

equation 5.5.
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Figure 5.16: Comparison of the calculated percent error caused by the oscillo-
scopes and the measured percent error.

The calculated error quantifies the error created by adding the oscilloscope cir-

cuits to the I-V model while the measured error quantifies the error of the empirical

data compared to the I-V model. Although a significant amount error is unaccounted

for in the noisy low frequencies and frequencies above 25 MHz, the error due to the

attached oscilloscope accounts for a significant amount of error. The remaining

residual error is depicted in figure 5.17.

Figure 5.17: Residual percent error of impedance spectra after applying the cor-
rection function. Between 3 kHz and 25 MHz, the residual error does not exceed
30%.
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Between 3 kHz and 25 MHz, the percent error does not increase beyond 30%,

a significant improvement over the exponential error of the uncorrected data. The

unaccounted residual error may be attributed to parasitic capacitance in the bread-

board and the system at large; deviations in reported values in the external resistor,

the oscilloscope, and the test capacitor; and high frequency parasitic inductance.

The low-frequency noise is likely caused by the large impedance attenuating the

measurement signal (V2 from figure 5.13) to the noise floor of the system. This

could be solved by implementing noise protection into the circuit design, or by in-

creasing the applied voltage signal.

Without revising the current measurement system, and while applying the cor-

rection function (equation 5.4), data collected within 3 kHz to 25 MHz can be ana-

lyzed with reasonable confidence.
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5.2.3 Impedance Spectroscopy Reproducibility

To characterize the reproducibility of the impedance spectroscopy chip, PBS medium

samples were tested over three consecutive days. Prior to each measurement, the

chip was flushed with DI water and saturated with PBS. Figure 5.18 displays the

measured impedance spectra, and figure 5.19 depicts the variation of the sample

set.

(a) PBS impedance spectroscopy results in polar form.

(b) PBS impedance spectroscopy results in rectangular form.

Figure 5.18: Reproducibility of IS measurements demonstrated with repeated mea-
surement of phosphate buffered solution over a span of three days.

As apparent in figure 5.19, there is a considerable amount of variation from 1

kHz to 5 kHZ. This low frequency "noise" consistently occurs throughout all of our

111



5.2. IMPEDANCE SPECTROSCOPY SYSTEM CHAPTER 5. RESULTS

recorded IS data. After 5 kHz, the impedance spectra becomes less variable with

a coefficient of variability that fluctuates between 5% and 10%. Although a larger

study involving more days of testing, additional solutions, and mixtures, is needed

to make a definitive assessment, the current data indicates that impedance spectra

measured from 10 kHz to 40 MHz are reproducible.

(a) The mean and 2x standard deviation of the impedance magnitude of the reproducibility
studies.

(b) The % coefficient of variation of the impedance magnitude calculated from the repro-
ducibility studies.

Figure 5.19: Measured variability of the reproducibility studies expressed as the
standard deviation and the coefficient of variation.
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5.2.4 Impedance Spectroscopy Performance

To evaluate the performance of the impedance spectroscopy system, impedance

spectra for DI water, PBS, and 7 µm polystyrene beads suspended in PBS were

acquired. Representative samples are displayed in figure 5.20.

(a) Impedance spectroscopy results in polar form.

(b) Impedance spectroscopy results in rectangular form.

Figure 5.20: Comparison of impedance spectroscopy results using raw measure-
ments of phosphate buffered solution, de-ionized water, and the chamber saturated
with 7 µm polystyrene beads suspended in PBS.

The collected data met the expectations set by the material properties. Deion-

ized water exhibited the largest impedance due to its high resistance, and the con-

ductive PBS responded with a significantly lower impedance. By saturating the

sensor chamber with PBS suspended polystyrene beads, the capacitive load signif-

icantly increased over PBS medium. However, as mentioned in the reproducibility
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study, low-frequency-high impedance loads continued to be inconsistent.

To demonstrate how to isolate the effect of suspended suspended particles,

the difference between the polystyrene bead suspension and the pbs solution was

calculated. The results are depicted in the frequency domain of 10 kHz to 30 MHz

are depicted in figure 5.21 with the applied correction function of equation 5.4.

(a) IS results in polar form.

(b) IS results in rectangular form.

Figure 5.21: Comparison of impedance spectroscopy results from measurements
of phosphate buffered solution, phosphate buffered solution saturated with 7 µm
polystyrene beads, and the phasor difference between the two. The phase data
was cleaned and the real and imaginary impedance was re-calculated.
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5.3 Modeling

5.3.1 Impedance Spectroscopy Results

The impedance response for the analytic solution, the simple FEA model, and the

device model were calculated for medium saturation and a single cell suspension.

The analytic solution utilized the power volume fraction discussed in section 4.1.3.

For details on the material properties used see table 4.1. Additional information on

the analytic solution is available in section 2.3.1 and details on the FEA model are

available in section 4.2.

The results for the medium impedance spectra are given in figure 5.22. The

medium impedance spectra behaves as a bulk resistor and capacitor element in

parallel with a single relaxation starting around 100 Mhz. In practice, an additional

relaxation, governed by the polarization at the electrode-medium inteface (i.e. the

EDL), would occur and largely mask the medium and cell relaxations. For these

simulations the electric double layer phenomenon was excluded.

By comparing the three model results depicted in figure 5.22, it can be noted that

the device model has a significantly smaller impedance response than the analytic

solution and the simple FEA model. This difference can be attributed to geometry

and will be further explored later in this section. In addition, the analytic and simple

model spectra are nearly identical. This was expected since they model identical

geometries.

With the inclusion of a single cell in the medium, the impedance spectra devel-

oped new dielectric dispersions. The simulated impedance spectra are depicted in

figure 5.23. According to Pauly and Schwan, the addition of the single-shelled cell

into the system is expected to add two new relaxations to the impedance spectra:

the Maxwell-Wagner relaxation that occurs from the polarization of the cell mem-

brane with the medium, and the relaxation from polarization of the cytoplasm and

medium at high frequencies when the cell membrane capacitance has been short-

circuited [30], [54]. The effect of the single cell is small, but can be readily identified
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(a) Impedance spectra in polar form.

(b) Impedance spectra in rectangular form.

Figure 5.22: Medium impedance spectrum generated by the analytic impedance
solution, the simple FEA model, and the device FEA model.

as a small relaxation starting around 10 Mhz. However, the two distinct relaxations

of the single shelled cell can’t be distinguished among the large relaxation of the

medium. The small size of the characteristic single cell suspension in comparison

to the medium impedance spectrum highlights the importance of sensitivity opti-

mization. The device model, which features a smaller device sensitivity, generated

data with a significantly smaller cell suspension relaxations.
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(a) Impedance spectra in polar form.

(b) Impedance spectra in rectangular form.

Figure 5.23: Single cell impedance spectrum generated by the analytic impedance
solution, the simple FEA model, and the device FEA model.

To isolate the effect of the simulated cell, the difference between the single cell

suspension and medium impedance spectra were generated and are displayed in

figure 5.24. The spectra in figure 5.24 are ideal results that could be obtained from

using two differential sets of electrodes, where one pair measures the single cell

suspension, and the second identical pair measures a chamber of only medium.

This is a powerful configuration for bypassing the overbearing presence of the elec-

tric double layer in the impedance data and to distinguish the effects of the single

cell. With the effects of the cell isolated the two characteristic cell relaxations can

be easily identified near 10 MHz and 100 MHz.

In addition to the differential spectra, figure 5.24 overlays the Clausius Mossotti

factor. See section 2.2 for a description of the Clausius Mossotti factor. The onset
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(a) Clausius Mossotti factor overlaid on difference impedance in polar form.

(b) Clausius Mossotti factor overlaid on difference impedance in rectangular form.

Figure 5.24: Clausius Mossotti factor overlaid on the phasor difference between
mixture and medium impedance spectra model data generated from the analytic
solution, the simple FEA model, and the device FEA model. The Clausius Mossotti
factor overlay illustrates how the impedance responds to cell-medium polarization.

of local minima and maxima in the Clausius Mossotti factor predicts the frequencies

of the dielectric dispersions, and can be used as a tool in system design and opti-

mization. As demonstrated in figure 5.24a, the curvature of the Clausius Mossotti

factor strongly correlates to the isolated particle impedance spectra as the Clau-

sius Mossotti factor describes the polarizability of the particle with respect to the

medium. This application is further discussed in section 5.3.2.

As similarly noted in the medium and mixture impedance spectra results, the

difference device impedance is significantly less pronounced. In addition, there are
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now discrepancies between the analytic solution and the simple FEA spectra. The

differences begin to manifest at the onset of the Maxwell-Wagner relaxation at 10

MHz. Although the frequency positions of the dispersions coincide, the magnitude

and shape of their spectra differ. This is most notable in the impedance magnitude

chart in figure 5.24a. Since the analytic solution and the device model share the

same shape, the simple model is suspected to contain errors. It is important to con-

sider that the impedance difference spectra are a small fraction of the impedance

of the medium and mixture models from which it is derived, and that errors can be

compounded.

Figure 5.25: Current density plot of the FEA device model at DC. The color mapping
depicts the logarithm of the current density magnitude.

Throughout the device model results, the device FEA model produced a smaller

impedance than the analytic or simple FEA models. As depicted in figure 5.25, it can

be seen that the overlap of a flush channel and an electrode opens up an additional

current path. To measure the designed device inefficiency, a surface integration of

current density over the electrode region overlapping with the flush channel was cal-

culated. 27.53% and 29.29% of the system current flowed through the flush channel

electrode region without and with a cell in the sensor region respectively. The side

channel inefficiency will decrease the system cell constant and the effective volume
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fraction with the net effect of decreasing the device sensitivity.

To aid in visualizing how the impedance spectra develops as a function of fre-

quency, figure 5.26 plots the electric field lines and magnitude of the center cross-

section of the FEA simple model.

At DC, the cell membrane is effectively non-conductive relative to the medium

and the cell acts as an obstruction to current through the chamber.

With an applied frequency of 1 MHz there is evidence of applied signal fre-

quency nearing the time constant of the membrane interface, but the electric field of

the cell is only a fraction of the surrounding medium and the cell continues to largely

obstruct current through the chamber. At 1 MHz the onset of Maxwell-Wagner re-

laxation is evident, but is far from dominating the spectra.

At 10 MHz, the effects of Maxwell-Wagner relaxation have fully developed. The

cell membrane is effectively short-circuited and the effect of the cell is dominated

by the dielectric properties of the cytoplasm. In this model, since the cytoplasm is

more conductive than the medium, the isolated cell impedance is negative at 10

MHz, signifying that the cell is promoting current flow instead of impeding it.

With an applied frequency of 1 GHz the effect of the cell is negligible as the entire

system is effectively short-circuited and current is unaffected by non-homogeneities

of the dielectric.
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(a) The electric field at DC.

(b) The electric field at 1 Mhz.

(c) The electric field at 10 Mhz.

(d) The electric field at 1 GHz.

(e) The color map axis describing the magnitude of the electric field for the preceding sub-
figures as log10(V/m).

Figure 5.26: FEA simple model plots of the electric field at frequencies of interest.
The logarithm of the electric field magnitude is depicted through the color mapping
outlined by the color axis in sub-figure (e), and the electric field lines are illustrated
with white curves in the region of the electrodes and cell.
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5.3.2 Solution Optimization

As demonstrated in figure 5.24, the Clausius Mossotti factor can be used to de-

termine at which frequencies dielectric dispersions occur. Measuring these dis-

persions is an important goal of single-cell impedance spectroscopy and provides

significant insight about the cell under testing. As can be seen in equation 2.6, the

Clausius Mossotti factor is largely driven by the dielectric properties of the medium

and the particle. By tuning the properties of the medium, we can exercise some con-

trol over the frequency location of dielectric relaxations and optimize the solution for

our IS system.

(a) The real part of the Clausius Mossotti factor.

(b) The imaginary part of the Clausius Mossotti factor.

Figure 5.27: The Clausius Mossotti factor varied over several medium conductivity
values. All other parameters are given in table 4.1

The effect on the Clausius Mossotti factor of altering the medium conductance
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and permittivity are presented in figure 5.27 and 5.28 respectively. As demonstrated

in figure 5.27, decreasing the conductivity of the medium shifts dielectric relaxations

to lower frequencies. In contrast, figure 5.28 shows how the permittivity of the

medium has little effect on the frequency of relaxations.

For application with the IS system of this thesis, the conductivity of the solution

should be minimized as much as possible since our system has a high frequency

limit of 40 MHz. It should be noted that there are significant limits to this approach.

Hypotonic solutions can lead to cell swelling and death and small quantities of con-

taminates can severely increase the conductivity of DI water.

(a) The real part of the Clausius Mossotti factor.

(b) The imaginary part of the Clausius Mossotti factor.

Figure 5.28: The Clausius Mossotti factor varied over several medium permittivity
values. All other parameters are given in table 4.1
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5.3.3 Optimization

FEA Sensitivity Curves

To optimize the geometry of the device, a parametric analysis based on the elec-

trode gap and width were run on the simple and device FEA models at DC. For each

model the electrode width and gap were varied from 5 µm to 15 µm and 1 µm to 10

µm respectively with 1 µm steps. All other geometry remained unchanged. Further

details on the FEA models can be found in section 4.2.

(a) Impedance difference curve. (b) Impedance sensitivity curve.

(c) Projection of the sensitivity curve onto the
sensitivity - electrode gap plane.

(d) Projection of the sensitivity curve onto the
sensitivity - electrode width plane.

Figure 5.29: Parametric study on sensitivity using the Simple FEA model. The
study varied the electrode width and gap from 5 µm to 15 µm and 1 µm to 10 µm
respectively with 1 µm steps. The Simple FEA model held a channel height of 10
µm and a cell centered between the two electrodes with a center height of 5 µm.
The sensitivity was calculated with equation 4.53. See section 4.2 for additional
details on the Simple FEA model.
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The parametric studies are presented as the difference between the medium

and cell suspension impedance, the sensitivity as defined by Sun in equation 4.53,

the sensitivity curve projected onto the sensitivity-electrode gap plane, and the sen-

sitivity projected onto the sensitivity-electrode width plane. The parametric study of

the simple and device FEA model are presented in figure 5.29 and 5.30 respectively.

The simple FEA parametric study identified a max sensitivity of 0.0762 with an

electrode width of 14 µm and an electrode gap of 4 µm. The study found that the

electrode gap had a large effect on sensitivity and formed an optimal electrode gap

"ridge" around 4-5 µm on the sensitivity curve. The effect of the electrode width was

small with slight increases in sensitivity with increased width.

The device FEA parametric study identified a max sensitivity of 0.059 with an

electrode gap of 6 µm and an electrode width of 6 µm. However, as apparent in

figure 5.30b, there is significant "noise" which is indicative of low precision results.

Figure 5.30c and 5.30d depict the average trends over the electrode width and gap.

In both the device and, to a lesser extent, the simple FEA results, there is ap-

parent "mesh noise". COMSOL generates a new mesh for each simulation in the

parametric study. What is referred to as "mesh noise" is the accumulation of ef-

fects caused by the differences in meshes. Any mesh noise from the medium and

mixture FEA studies are amplified through the calculations for sensitivity. The sever-

ity of "mesh noise" in the device FEA sensitivity is a clear signal that the meshing

scheme needs to revisited.

To clarify and to expand upon the FEA parametric studies, the next section takes

an analytic approach to sensitivity.
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(a) Difference (b) Sensitivity

(c) The electrode width average of the sen-
sitivity curve projected onto the sensitivity -
electrode gap plane.

(d) The electrode gap average of the sen-
sitivity curve projected onto the sensitivity -
electrode width plane.

Figure 5.30: Parametric study on sensitivity using the device FEA model. The study
varied the electrode width and gap from 5 µm to 15 µm and 1 µm to 10 µm respec-
tively with 1 µm steps. The device FEA model held a channel height of 10 µm and
a cell centered between the two electrodes with a center height of 5 µm. The sensi-
tivity was calculated with equation 4.53. See section 4.2 for additional details on the
device FEA model. In an attempt to identify trends through the mesh noise apparent
in (b), the width and gap averages are presented in (c) and (d) respectively.
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5.3.4 Analytic Solution Sensitivity Curves

Analytic methods for calculating the sensitivity of the impedance spectroscopy de-

vice were used to validate the FEA study, expand the parametric study, and to

explore the effect of cell location on the sensitivity curves. There are three main

advantages to using the analytic impedance solution for optimization over finite ele-

ment methods:

1. significantly faster run time, allowing for far higher resolutions over far greater

ranges.

2. General solution that isolates the effect of the electrode out from more com-

plicated geometries.

3. No mesh noise. Parametric analysis does not bring in the effects of re-

meshing and effectively removes the effect of mesh artifacts from the sim-

ulation.

The analytic sensitivity was calculated with Sun’s definition using the power fraction

(equation 4.53 and 4.47), and the power fraction by itself (4.47).

Sun’s sensitivity and the simple FEA sensitivity are compared in figure 5.31.

Sun’s method found a maximum sensitivity of 0.0684 at an electrode width and gap

of 15 µm and 5 µm respectively, compared to the simple FEA maximum sensitivity

of 0.0762 at an electrode width and gap of 14 µm and 4 µm respectively. The curves

largely tracked each other except for electrode gap values less than 4 µm where the

analytic sensitivity drops. This is where the maximum percent difference of 52.88%

is recorded.

Since the power fraction does not share the same scale as Sun’s method and

the simple FEA sensivity, all three studies were normalized by their maximum and

compared in figure 5.32. The maximum power fraction was found at an electrode

width and gap of 15 µm and 5 µm. The mean absolute error between the power

fraction vs. Sun’s method, the power fraction vs. the simple FEA, and Sun’s method
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vs the simple FEA sensitivity curves are 0.0039, 0.0471, and 0.0486 respectively.

This indicates that while the all three sensitivity studies track each other well, Sun’s

sensitivity and the power fraction clearly track each other the closest. This is sup-

ported by how all three studies predict nearly the same optimal electrode gap and

width values inside the tested domain.

(a) Overlay of the Sun and Simple FEA
sensitivity curves.

(b) Percent difference between the Sun
and Simple FEA Sensitivity.

Figure 5.31: Comparison of Sun’s Sensitivity calculated with the power fraction,
and the simple FEA sensitivity. Sun’s sensitivity found a maximum of 0.0684 at an
electrode width and gap of 15 µm and 5 µm respectively. This is compared to the
simple FEA maximum sensitivity of 0.0762 at an electrode width and gap of 14 µm
and 4 µm respectively. The maximum percent difference is 52.88%.

Figure 5.32: Comparison of power fraction, Sun’s, and the simple FEA sensitivity
curves normalized to their max sensitivity. The mean absolute error between the
power fraction vs. Sun’s method, the power fraction vs. the simple FEA, and Sun’s
method vs the simple FEA are 0.0039, 0.0471, and 0.0486 respectively.
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The power fraction (equation 4.47) was used to calculate a high resolution sen-

sitivity curve, perform a parametric study over an expanded domain, and to explore

the effects of cell position on sensitivity.

The high resolution power fraction curve is depicted in figure 5.33. The study

found a maximum power fraction of 0.0438 at an electrode width of 20 µm and an

electrode gap of 4.8 µm to a precision of 0.1µm. The study was performed over an

electrode length spanning 5 µm to 20 µm and the electrode gap spanning 1 µm to

10 µm.

(a) High resolution power fraction curve.

(b) Projection of the high resolution power
fraction curve onto the power fraction - elec-
trode gap plane.

(c) Projection of the high resolution power
fraction curve onto the power fraction - elec-
trode width plane.

Figure 5.33: A high resolution power fraction curve calculated over the electrode
width spanning 5 µm to 20 µm and the electrode gap spanning 1 µm to 10 µm. The
curve has a resolution of 0.1 µm. The study found a maximum power fraction of
0.0438 at an electrode width 20 µm and a electrode gap of 4.8 µm.
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The expanded sensitivity study calculated the electrode width and gap from 1

µm to 40 µm with a resolution of 0.5 µm and is presented in figure 5.34. The study

found a maximum power fraction of 0.0438 with an electrode gap and width of 5 µm

and 40 µm respectively.

(a) The impedance difference between the
single cell suspension and the medium.

(b) The power fraction sensitivity curve.

(c) Projection of the power fraction curve
onto the power fraction - electrode gap plane.

(d) Projection of the power fraction curve
onto the power fraction - electrode width
plane.

Figure 5.34: Expanded sensitivity study that varied the electrode width and gap
from 1 µm to 40 µm with a resolution of 0.5 µm. The study found a maximum power
fraction of 0.0438 with an electrode gap and width of 5 µm and 40 µm respectively.
A 2.26% increase in power fraction was found by increasing the electrode width
from 10 µm to 20 µm. A 0.091% increase in power fraction was found by increasing
the electrode width from 20 µm to 40 µm.

The impedance difference between the mixture and medium is presented in

figure 5.34a. The impedance difference maximizes and plateaus at a low electrode

gap value. By increasing the electrode gap, power is distributed more evenly and

progressively higher up in the center of the channel. Up to a certain point, this will
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increase the power in the region of a cell suspended above the channel. At the same

time, increasing the electrode gap increases the measured medium impedance.

The balance of these trends leads to the characteristic "ridge" of the sensitivity

curve which designates the optimized electrode geometry.

Increasing the electrode width over 10 µm found diminishing returns in optimiz-

ing the sensitivity. A 2.26% increase in power fraction was found by increasing the

electrode gap from 10 µm to 20 µm. A 0.091% increase in power fraction was found

by increasing the electrode gap from 20 µm to 40 µm.

The limiting effects of the electrode gap and width are strongly affected by the

channel height. With a small channel height, larger electrode gaps and widths are

restricted from producing power in regions far above the cell, instead the power is

focused into the small region containing the cell.

The results presented in figure 5.35 studied the effects of cell position on the

sensitivity curve. As expected and depicted in figure 5.35b, the power fraction is

maximized for a cell centered between the electrodes. It should be noted that by

sacrificing maximum sensitivity, increasing the electrode gap can increase the ef-

fective sensor zone of the device and decreases the variability within that zone.

Figure 5.35a tells a similar story. The sensitivity is maximized the closer the cell

is to the plane of the electrodes. However, at the expense of sensitivity, the electrode

gap can be increased to decrease the effect of cell height on the sensitivity. By

increasing the electrode gap, the fringe effects of the electric field become smaller

relative to the effective sensor zone and the power dissipation becomes increasingly

homogeneous in the region between the electrodes.
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(a) Power fraction curves for several cell
height positions centered over the elec-
trodes.

(b) Power fraction curves for several horizon-
tal cell positions with the cell centered at a
height of 5 µm.

(c) Projection of power fraction curves for
several cell height positions onto the power
fraction - electrode gap plane. The electrode
width is 20 µm.

(d) Projection of power fraction curves for
several horizontal cell positions onto the
power fraction - electrode gap plane. The
electrode width is 20 µm.

Figure 5.35: The effect of cell position on the power sensitivity curves. Graphs (c)
and (d) are calculated with an electrode width of 20 µm.
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Chapter 6: Discussion

Revisiting the thesis objectives set out in chapter 1, the purpose of this thesis

is to re-evaluate and optimize the Cal Poly Biofluidic Lab’s cell impedance spec-

troscopy system by exploring the following questions:

1. Are there aspects of the impedance spectroscope that need redesign or opti-

mization?

2. Is the hardware implementation correct?

3. Can the correct circuit model and desired data acquisition and analysis be

packaged and incorporated in a device interface computer program?

4. Can model based design be applied to characterize and optimize electric

fields and impedance to inform future designs?

5. Can a device be manufactured at Cal Poly to validate the device design and

analysis?

To investigate these questions, the following was accomplished throughout the

scope the thesis:

• Fabrication of a micro-scale impedance spectroscopy chip in the Cal Poly

Microfabrication lab.

• Design and implementation of a software interface to drive, measure, calcu-

late, and compare impedance spectroscopy data in LabVIEW.

• Re-evaluation and validation of the impedance spectroscopy measurement

circuit and requisite hardware.

• Evaluation of the impedance spectroscopy system by measuring impedance

spectra of DI water, PBS, and a suspension of 7 µm polystyrene beads.

133



6.1. MICRO-FABRICATION CHAPTER 6. DISCUSSION

• Innovation of a novel volume fraction to fully account for cell geometry and

fringe fields.

• Implementation of single-cell impedance spectroscopy models with numerical

and analytic methods to investigate IS behaviour and optimization.

• Development of a graphical user interface for the analytic impedance solution

to aid in model-based design.

To answer our guiding questions listed above, the findings from the aforemen-

tioned works are discussed and recommendations for future work are made.

6.1 Micro-fabrication

A fully-functional impedance spectroscopy chip was fabricated in the Cal Poly micro-

fabrication lab. The microfluidic channels of the previous generation of the Biofluidic

Lab’s impedance spectroscopy chip was fabricated at Cal Poly, but the manufac-

turing of the micro-electrodes were outsourced to the UC Santa Barbara micro-

fabrication lab. In this thesis, in addition to recreating the PDMS microfluidic chan-

nels, a process for micro-electrode fabrication was developed and demonstrated the

capability to fabricate the complete impedance spectroscopy chip at Cal Poly.

Future Work for Device Manufacturing

Although a complete BioMEMS impedance spectroscopy chip was successfully fab-

ricated at Cal Poly, there is significant room for improvement to increase reliability

and to decrease the scrap rate. There is a need for an alignment device to align

the PDMS and the electrodes during glass bonding. The current solution is to align

the device components by hand while observing the sensor region under a micro-

scope. Making this alignment by hand is difficult and nearly impossible without

adding ethanol to act as lubricant to provide about 10 minutes before bonding. It

is possible that the rough process of hand alignment is responsible for some of the
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particulate generation that eventually led to the jamming and delamination of the IS

chip.

This thesis demonstrated the ability to create microelectrodes at the Cal Poly

microfabrication lab; however, the process is fraught with risks that can destroy the

electrodes and has a very high scrap rate. A huge improvement in the electrode

manufacturing process could be realized by utilizing a dual target sputtering tool.

Such a tool could allow the deposition of chromium and gold while keeping the

substrate under vacuum. This is expected to prevent the formation of chromium

oxide before the deposition of gold and significantly increase its adhesion.

6.2 IS Software

To drive, measure, and calculate impedance spectroscopy experiments, a software

interface was programmed in LabVIEW. The software is capable of making mea-

surement from an I-V or auto-balancing bridge circuit; performing single IS experi-

ments or timed IS runs at intervals of seconds to days; and features the the ability

to compare previously recorded experiments. However, for the application of con-

tinuous IS measurements on the scale required for flow-through devices, there are

significant updates required.

Future Work

If a flow-through impedance spectroscopy is developed, techniques to measure the

broadband impedance spectra quickly as cells flow through the sensor region must

be implemented. The currently implemented NI PXI-5421 function generator can

output arbitrary waveforms that can be programmed to apply a broadband signal

and the frequency response can be analyzed with the Fast Fourier Transform, but

the power distribution of the broadband signal, the short measurement time, and

noise complicates the practical implementation. Several solutions to this problem

have been proposed and include applications of chirp waveforms and maximum

length sequences. [55]–[57].
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The current implementation of the IS software is built with the ability to incorpo-

rate new modules to allow for future features to be added to the program without

affecting existing functions. These additions can be made by adding new states or

state flows to the program. However, a large draw back to the current architecture

is its limited ability of concurrency. If the need arises to make significant changes

to the IS software, it is recommended to consider the implementation of a queued

message handler architecture (QMH). The QMH architecture encourages parallel

programming while also fortifying low-coupling practices with code modules that

can co-exist and execute independently. It allows for a more responsive, faster, ex-

tendable, and maintainable program. Although likely overkill for this application, the

object-oriented analogue to QMH, the ACTOR framework can also be considered.

The actor framework ships standard with LabVIEW and its implementation can build

a powerful architecture for medium to large applications.

6.3 Impedance Measurement Hardware

The impedance spectroscopy I-V measurement circuit was validated against a test

circuit and a large portion of the reported error was quantified and used to improve

upon the IS DAQ system.

The measurement circuit was validated against a test circuit and its simulated

response. The first limitation realized by evaluating the previous version of the IS

hardware, is that the use of coaxial cables incurs significant errors and should be

avoided in the current configuration. If coaxial cables are properly implemented,

they are exceptional for radio frequency (RF) signal transmission featuring low loss,

shielding to noise, and reduced RF emissions. However, when implemented with

the I-V circuit described in this thesis, they are a source of significant error. Re-

ferring to figure 3.23, if a coaxial cable is used to connect scope ch.1 to between

the DUT and the external resistor, the characteristic capacitance of the coaxial ca-

ble would draw a significant amount of current through its shielding into ground

and grossly invalidate the assumption that all current flowing through the DUT also
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flows through the external resistor. In addition, this implementation of the I-V cir-

cuit requires that the oscilloscopes are set to their high impedance settings rather

than the 50 Ohm input used for avoiding reflectance with coaxial cable. However,

if the auto-balancing bridge method is utilized, the benefits of coaxial cable can be

obtained while the measurement circuit is protected from extra current draw by an

operational amplifier, or equivalent, that maintains a virtual ground after the DUT.

The current implementation utilizes insulated solid core wire while minimizing wire

length to decrease noise susceptibility.

After the implementation of solid core wire, the effect of the oscilloscope on the

recorded impedance was measured and quantified. Similar to the error caused by

the coaxial cable, the current that leaks through the oscilloscope will artificially in-

flate the measured impedance. Errors were measured that reached over 10,000%.

This error was quantified as a factor of the external resistor and the effective ex-

ternal impedance and used to develop a correction factor. After application of the

correction factor described in equation 5.2, errors were reduced to under 30% over

the range of 3 kHz to 25 MHz.

Future Work

All recorded IS datasets feature low-frequency noise that abates near 3 kHZ to 10

kHZ. This noise could be from small voltage signals approaching the noise floor, or

the resolution limit of the oscilloscope. The cause of this noise was not pursued and

is a shortcoming of the current IS measurement system that should be explored in

future iterations.

Beyond the low-frequency noise, the broadband error can be further reduced

by replacing breadboards for alternative connections that are less prone to parasitic

capacitance, the implementation of high impedance FET oscilloscope probes, or the

application of an autobalancing-bridge circuit. Practical auto-balancing bridge cir-

cuits can be complicated to implement accurately for broadband signals, but some

have had success creating digital auto-balancing circuit systems [58].
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For the current implementation, insulated solid core wire was connected to the

impedance spectroscopy chip, and the length of the wire was minimized to reduce

noise. A breadboard was used for making and organizing connections. Although

no differences were noticed between data measured with and without the the use of

a breadboard, future implementations should move away from using a breadboard

due do its inherent capacitance.

6.4 IS System Evaluation

The complete IS system was evaluated on the basis of repeatability and qualitative

accuracy through the comparison of measured impedance spectra of DI water, PBS,

and 6µm polystyrene beads suspended in PBS. Due to debris flow that ultimately

clogged the device, the evaluation was made on a limited body of data. However, the

results were consistent and appeared sufficient to draw conclusions on the system’s

performance.

To assess the reproducibility of the IS system, impedance spectra of PBS mea-

sured over three consecutive days were compared. The data clearly showed that

experiment could be reproduced over the broadband range of 10 kHz to 40 MHZ.

However, the low frequency noise observed in the measurement hardware valida-

tion also occurred in IS chip measurements and caused high variability. Hypotheses

on the source of this noise are discussed in 6.3.

The accuracy was qualitatively assessed by comparing the relative impedance

spectra of DI water, PBS, and a 6µm polystyrene bead suspension in PBS. The

impedance spectra met the expectations set by the dielectric properties of the so-

lutions. Deionized water exhibited the largest impedance due to its high resistance

and the conductive PBS responded with significantly lower impedance. By satu-

rating the sensor chamber with PBS suspended polystyrene beads, the capacitive

impedance significantly increased over the PBS medium.
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Future Work

Although experiments largely appeared promising and demonstrated a functioning

impedance spectroscopy device, there is future work required to bring a more robust

device on-line. First and foremost the manufacturing process should be revisited

and refined with an emphasis on particulate reduction. Particles on the order of 10

µm will significantly reduce the life-span of the device.

The investment in higher resolution photolithography masks will likely be re-

quired to manufacture single-cell impedance spectroscopy cell-capture devices. Al-

ternatively, a flow-through device will be easier to fabricate with lower resolution

masks. However, flow-through devices will require additional changes to the soft-

ware and data post-processing if broadband frequencies need to be explored. Fur-

thermore, the addition of a second set of electrodes to make differential measure-

ments should be considered. The dual sets of electrodes will allow for real-time

subtraction of the medium and EDL from the impedance spectra to isolate the effect

of the cell. Alternatively, particle spectra isolation can be calculated from a single

set of electrodes by comparing the individually captured particle suspension spec-

tra to the medium spectra as depicted in figure 5.24, however, this method runs the

risk that the medium properties have changed between experiments.

6.5 Impedance Spectroscopy Modeling

To investigate and optimize the single cell impedance spectroscopy system, analytic

and finite element models were developed.

By following the work of Sun [31], an analytic solution of co-planar electrodes

was developed through application of Maxwell’s Mixture Theorem and conformal

mapping. Part of this solution required the use of the volume fraction. Previously

used volume fractions were calculated as the ratio of the cell volume to the volume

over the electrodes, however, this method neglects the position of the cell and the

non-uniformity of the electric field. This thesis addressed the problem by develop-
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ing effective volume fractions based on conformal mapped volumes and dissipated

power. These methods increased the accuracy of the analytic impedance solution

and allowed for the quantification of the effect of the cell position.

The analytic solution and the finite element model largely agreed with each other

with percent errors reaching as low as 0.01%. The finite element model further

explored the effect of the device geometry and found that over 29% of the electric

current leaked through the overlap of the electrodes and flush channel. This current

leak significantly decreases the device sensitivity.

In section 5.3.3 device optimization was explored. With the ability to simulate the

effect of position with novel effective volume fraction methods, it became obvious

that there were two opposing qualities to optimize: the maximum sensitivity given

a particle location and size, and the maximum sensitivity given a desired volume of

uniform sensitivity. In both cases, the optimal geometry was highly dependent on

the application. It was concluded that there is not optimal geometry for all scenarios.

However, several trends were found that are critical for device design.

Given an electrode height of 10 µm, small to negligible gains in sensitivity were

found with increased electrode width. This is an important finding of the optimization

studies. Although the sensitivity benefits are meager, wider electrodes are far easier

to manufacture and are more resilient to cracks and defects. The modest effect of

increased sensitivity is explained by opening additional parallel current paths with

wider electrodes and, in effect, increasing the dissipated power in the region of the

particle. However, if the particle is near the base of the sensor chamber and is small

compared to the chamber height, increasing the electrode width will decrease the

sensitivity since the majority of the additional dissipated power occurs above the

particle.

Since the electric double layer (EDL) can be modeled as a largely capacitive dis-

tributed impedance over the electrode surface, it may be tempting to conclude that

by increasing the the width of electrodes, the impedance load of the EDL is reduced.

And while that is true, the effect rapidly diminishes. In general for a given channel
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height, additional electrode area distal to the sensor chamber center contributes

less current than electrode area near to the sensor chamber. Likewise, the EDL on

distal electrode areas contributes less capacitance to the system impedance. This

can be visualized by revisiting our ideal capacitor model in the W-plane (2.18). For

each additional increase in electrode width, γ becomes larger compared to δ, but

each additional increase in electrode width contributes progressively less to γ.

The effect of channel height on sensitivity matched intuition. Smaller channel

heights increase sensitivity in all scenarios by restricting parallel currents outside of

the particle region and by focusing the particle to higher power regions. In addition,

short channel heights enable wider electrodes. With increased channel heights, the

distal portions of wider electrodes will contribute more current to the higher regions

of the chamber and effectively reduce the sensitivity. With target particles of 6µm in

diameter, a chamber height of 10µm in our current device is near optimal. Although

the sensitivity of the device could dramatically be increased with decreased channel

height, it comes with the increased risk of clogs from particles and debris.

Optimizing the electrode gap to maximize the device sensitivity is highly depen-

dent on the cell size, cell location, and channel height. The optimization for a 6µm

diameter cell centered in the sensor chamber with a channel heighth of 10 µm is

found at an electrode gap of about 5 µm, which is the electrode gap of our cur-

rent device design. However, if the cell deviates from this position, the sensitivity

will rapidly diminish. If an accurate method of cell-capture is employed, this highly

spatially-dependent sensitivity may be acceptable. However, for cell-capture de-

vices where the cell position cannot be guaranteed or for flow-through devices, a

large region of uniform power dissipation is desired. A uniform power region can

be accomplished by increasing the electrode gap, but at the cost of high sensitivity.

This could be useful for increasing the device resident time in flow-through devices.

141



6.6. IS MODEL-BASED DESIGN FRAMEWORK CHAPTER 6. DISCUSSION

Future Work

In both the analytic and the finite element models the electric double layer is ne-

glected, but, the electric double can easily shroud the effect of a single particle.

Although techniques have been mentioned in this thesis to isolate the effect of the

particle from the EDL, the development of an accurate EDL model would be use-

ful for device validation and experiment interpretation. Current analytic models are

largely inaccurate, but electrodes can be characterized by fitting experimental data

to empirical models.

6.6 A Framework for Single-Cell IS Model-Based Design

As previously discussed, there is no optional design for all cases. To that end, a

model-based design framework using the simulations and tools developed in this

thesis is presented. The IS app presented in chapter 4 contains most of the tools

required for design calculations in the following steps.

1. Identify Functional Requirements and Material Properties

Prior to device design or fabrication, the functional requirements of the device

and the relevant material properties should be identified. This information

should include the device type (i.e. flow-through or cell-capture), the cell type,

the literature values of the cell’s dielectric properties, the average and variance

of the cell size, the plausible cell mediums, and the dielectric properties of

those mediums.

2. Determine Required Frequency Range

The required frequency range of the impedance spectroscopy system should

be determined by the functional requirements identified in step 1. Cell count-

ing or cell size can be determined with a DC or low-frequency applied signal.

However, if information regarding the cell membrane or internals is required,

a broadband frequency range will be required. A useful tool to determine the

142



6.6. IS MODEL-BASED DESIGN FRAMEWORK CHAPTER 6. DISCUSSION

required frequency range is the Clausius Mossotti factor. By using the litera-

ture values of the dielectric properties of the cell and medium to be measured,

theoretical values of the suspensions dielectric relaxations can be identified

and used to inform a required frequency range.

3. Model and Optimize Simple Device Design

The purpose of this step is to use the analytic IS solution for co-planar elec-

trodes to inform initial design and electrode optimization. If the cell will be

focused to a specific height, the electrodes can be optimized to the maximum

sensitivity, but if the resident time needs to be increased, the electrodes can

be optimized to create a region of uniform power density at the cost of maxi-

mum sensitivity. If the fluid dynamics requires a channel geometry that differs

significantly from the simple model, a FEA simulation can quantify the device

impedance and sensitivity. However, it is still recommended to optimize the

system with the analytic model as mesh changes throughout a parametric

analysis can introduce “mesh noise” into the optimization curve. Once the

general sensor region design is determined, an estimate of the impedance

load of the system should be calculated (including an estimate of the EDL).

4. Design Impedance Spectroscopy Measurement Hardware

With an estimate of the required frequency range, the impedance load, and

the device type, the impedance measurement system can be selected or de-

signed. For measurement circuits, this thesis focused on the simplest I-V

circuit and discussed the auto-balancing bridge method, but there are other

methods that range in complexity and are appropriate for different frequency

and impedance loads. See section 2.2.3 for a short discussion of I-V and

auto-balancing circuits and "A Guide to Measurement Technologies and Tech-

niques" by Keysight Technologies for a more in-depth discussion of a wider

range of measurement circuits [32]. The ability of the signal generator should

be determined by the required frequency range and the type of the device.
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Depending on the type of the measurement circuit and impedance load, close

attention should be made to the input impedance of the oscilloscope or the

ADC and how this will affect measurement readings.
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Chapter 7: Conclusion

This thesis implemented a bioelectric impedance spectroscopy system and de-

veloped a model to inform design and aid in the interpretation of single-cell impedance

spectroscopy.

To implement the impedance spectroscopy system, an impedance spectroscopy

bioMEMS chip was fabricated in the Cal Poly Microfabcrication lab, software was de-

veloped to run impedance spectroscopy experiments, and impedance spectroscopy

experiments were run to validate the system.

To develop the single-cell impedance spectroscopy model, Maxwell’s mixture

theorem and the Schwartz-Christoffel transform were used to calculate an analytic

impedance solution to the co-planar electrode system, a novel volume fraction to

account for the non-uniformity of the electric field was developed to increase the

accuracy of the analytic solution and to investigate the effect of cell position on the

impedance spectrum, a software program was created to allow easy access to the

analytic solution, and FEA models were developed to compare to the analytic solu-

tion and to investigate the effect of complex device geometry. This model was used

to explore device optimization and to develop a model-based design framework.

This thesis found that the Cal Poly Biofluidics Lab’s impedance spectroscopy

system is a viable system to make cell measurements. With improvements to the IS

measurement system and new IS chips guided by model-based design, this system

can make repeatable, accurate, and meaningful single-cell impedance measure-

ments.
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Chapter A: Microfluidics

In most BioMEMS there is fluid flow on the micrometer scale. At this scale fluid

flow physics differ from fluid flow at the macro scale. Understanding and leveraging

microfluidic mechanics allows for small reagent and sample volumes, multiplexing,

and physic phenomenon that allow experiments and functions not possible at the

macro scale. Laminar flow, diffusion, fluidic resistance, surface area to volume, and

surface tension, may not be dominant in phenomenon on the macro scale, but on

the micro scale become significant [41].

A.1 The Navier-Stokes Equation

The Navier-Stokes formula is a partial differential equation that describes the fluid

velocity given a set of boundary conditions. The Navier-Stokes equation is derived

from applying Newton’s second law to an infinitesimally small arbitrary control vol-

ume:

ρ
Du
Dt

=
∑

f, (A.1)

where ρ is the mass density, u is the velocity vector,
∑

f is the sum of forces applied

to the control volume, and D()
Dt is the material derivative [59]. The material derivative

is the time derivative of a function that is spatially dependent and arises from the

chain rule. The material derivative of an arbitrary spatial and temporal function

(F = F (t, x, y, z)) can be calculated as

DF
Dt

=
dF

dt
+
dF

dx

dx

dt
+
dF

dy

dy

dt
+
dF

dz

dz

dt
, (A.2)

and can be expressed as

DF
Dt

=
dF

dt
+ v ·∇F, (A.3)
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or in index notation as
DF
Dt

=
dF

dt
+ vj

dF

dxj
. (A.4)

The material derivative is valid for scalars and vectors.

Surface forces are present in many fluid systems and generally arise from pres-

sure driven flow and viscous properties of the fluid. In general, the surface forces

are expressed as the divergence of the stress tensor:

fs =∇ · T , (A.5)

fs =
dτij
dxi

, (A.6)

where fs is the surface force, and T and τij are the second order stress tensor which

is dependent on the type of fluid and the driving forces. For pressure driven inviscid

fluids, the stress tensor and surface forces can be expressed as

τij = −pδij, (A.7)

fs = − dp

dxj
, (A.8)

where p is the pressure.

For a viscid Newtonian fluid, the stress tensor and surface force can be ex-

pressed as [59]

τij = −pδij + 2µ(εij −
1

3
εkkδij), (A.9)

fs =
dp

dxi
+ µ

d

dxj
(
dui
dxj

+
duj
dxi
− 2

3
δij
duk
dxk

), (A.10)

where εij is the rate of strain tensor written as

εij =
1

2

(dui
dxj

+
duj
dxi

)
. (A.11)

148



A.1. THE NAVIER-STOKES EQUATION APPENDIX A. MICROFLUIDICS

If the fluid is incompressible, then conservation of mass states

duk
dxk

=∇ · u = 0, (A.12)

and equation A.10 can be simplified to

fs = − dp

dxi
+ µ

d2ui
dx2j

(A.13)

fs = −∇p+ µ∇2u (A.14)

Additional common forces on the control volume can include the gravitational

force

fg = ρg, (A.15)

where g is the acceleration of gravity, and for some microfluidic applications, the

electroosmotic flow force (EOF)

fEOF = −ρeE, (A.16)

where E is the electric field vector, and ρe is the net charge density of the electric

double layer (EDL). Electric osmotic flow arises from the Coulomb force caused by

the net electric charge from the electric double layer at the channel surface and

the applied electric field. The electric double layer arises from the equilibrium of

the solid-fluid interface [20]. EOF results in plug flow which is characterized by a

flat velocity profile in contrast to a parabolic velocity profile in pressure driven flow

(figure A.1).

The most common form of the Navier-Stokes equation includes the surface

forces of pressure driven Newtonian fluids with the gravitational forces, and can

be expressed by combining equations A.1, A.14, and A.15.

ρ(
du
dt

+ u ·∇u) = −∇p+ µ∇2u + ρg (A.17)
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Figure A.1: Pressure driven versus electroosmotic flow profile. The pressure driven
flow results in a parabolic flow profile while the electroosmotic flow with an applied
voltage of φ results in a plug flow velocity profile. Near the wall of the EOF conduit
in the EDL, the velocity increases until outside of the EDL there is no net charge to
fight viscous forces, and the velocity profile plateus.

For microfluidic applications, the Navier-Stokes equation can often be simplified by

assuming negligible inertial forces (Re << 2300; laminar flow) and gravitational

forces allowing equation A.17 to be rewritten as

∇p = µ∇2u. (A.18)

Currently there is no general solution to the Navier-Stokes equation, but can be

solved in specific applications with simplifying assumptions, and is widely used in

computational approximations.

A.2 Laminar Flow

Laminar flow describes the condition where the velocity of a particle in fluid flow is

not a random function of time. This is in contrast to turbulent flow which is chaotic

[41]. The dimensionless Reynold number can quantitatively characterize a fluid flow

and is a ratio of inertial and viscous forces. The Reynold number can be expressed

as

Re =
ρvL

µ
, (A.19)
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where ρ is the fluid density, v is the characteristic fluid velocity, µ is the fluid viscosity,

and L is the characteristic length. In many cases, the characteristic length is the

hydraulic diameter (Dh). The hydraulic diameter is used for fluid calculations in non-

circular conduits by relating the conduit to a circular geometry in a proportion that

maintains the conservation of momentum of the original conduit [41].

The hydraulic diameter can be expressed as ratio of cross-sectional area to

conduit perimeter:

Dh = 4
A

P
, (A.20)

where A and P are the cross-sectional area and perimeter of the conduit respec-

tively. For a cylindrical conduit, equation A.20 simplifies to Dh = Dc where Dc is the

diameter of a circular cross-section. For a rectangular cross-section, the hydraulic

diameter is expressed as

Dh =
2hw

w + h
, (A.21)

where h andw are the height and width of the cross-sectional rectangle respectively.

For turbulent flows, where the geometry is of lesser consequence, equation A.20 is

a good approximation for fluid calculations, but for laminar flow, specifics of the

conduit geometry is of great consequence and equation A.20 should be used with

caution.

In general, flow conditions with a Reynolds number much larger than 2300

exhibit turbulent behaviours, and flow conditions with a Reynolds number much

smaller than 2300 exhibit laminar flow behaviours. The laminar-turbulent transition

number of 2300 is reportedly accurate for microfluidics as well [41].

Referring back to equation A.20, since the product of characteristic length and

velocity for microfluidic systems, most microfluidic flows are considered laminar. An

important consequence is that separate streams that come in contact will not mix

via convection, but primarily through diffusion. This phenomenom can be quantified

with the dimensionless Péclet number (Pe), which is defined as the ratio of con-

vection transport to diffusion transport [60]. The Péclet number can be expressed
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as

Pe =
vL

D
(A.22)

where D is the diffusion coefficient. The Péclet number can also be defined with the

Reynolds number

Pe = Re Sc (A.23)

where Sc is the dimensionless Schmidt number and describes the ratio of momen-

tum diffusivity and and mass diffusivity. The Schmidt number can be calculated

as

Sc =
µ

ρD
(A.24)

For fluid systems where Pe is much larger than 1, the system is convection

dominated and when Pe is much smaller than 1, the system is diffusion dominated.

Again, the product of the characteristic velocity and length in microfluidic systems

is usually very small so in BioMEMS, the system is diffusion dominated and cannot

rely on convective mixing. To facilitate mixing in microfluidic systems, the device

should be designed to create large surface areas between streams to expedite the

diffusion process, or stimulate turbulent flow to create convective transport.

A.3 Diffusion

Since microfluidic flow is almost always laminar, mixing will mainly occur via dif-

fusion (figure A.2) [41]. Diffusion is the phenomenon where a concentration will

average over a volume by Brownian motion. Fick’s laws gives a quantitative de-

scription of diffusion. The first law states that the molar flux of a dissolved species

is proportional to the concentration gradient of that species and can be expressed

as

J = −D∇C, (A.25)

where J is the molar flux of a diffusive species, ∇C is the concentration gradient,

and D is a proportionality factor known as the translational diffusion constant.
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Fick’s second law arises from the continuity of mass

∂C

∂t
+∇ · J = 0, (A.26)

And by substituting in Fick’s first law (equation A.25), Fick’s second law can be

expressed as
∂c

∂t
= D∆C (A.27)

Equation A.27 describes the time and spatial dependencies of concentrations.

By examining the random walk of a particle due to Brownian motion, the mean

displacement of particles can be described:

〈
r2
〉

= 2NDt (A.28)

where < r2 > is the squared mean displacement of a particle, N = 1, 2, or 3 for

analysis in 1, 2, or 3 dimensions respectively, t represents the time elapsed, and D

is the translation diffusion constant.

The translation diffusion constant is a ratio of thermal motion and viscous resis-

tance terms and can be generally expressed as

D =
kbT

fr
, (A.29)

where kb is the boltzman constant, T is the temperature, and fr is the mean friction

coefficient [61], [59]. The mean friction coefficient arises from the average of the

translation friction tensor (fij) components. This tensor describes the viscous force

on a particle as a function of velocity:

Fi = fijvj (A.30)

where for a rigid particle

fij = 6πµRij, (A.31)

153



A.3. DIFFUSION APPENDIX A. MICROFLUIDICS

where µ is the fluid viscosity, and Rij is the translation tensor that describes the

equivalent radius. For a spherical particle, Rij reduces to the radius of the sphere

and fij becomes the viscous resistance from Stokes law. In this special case, the

diffusion translation constant becomes

Do =
kBT

6πµr
, (A.32)

and is known as the Stokes-Einstein equation. For spheroid particles where the

radius depends on the orientation of the particle, the mean friction coefficient can be

used since brownian motion will randomly move the particle in all directions. From

the translation friction tensor, the mean friction coefficient can be described as

f−1r =
1

3
(

1

f1
+

1

f2
+

1

f3
) (A.33)

where f1, f2, and f3 refer to the components of the main diagonal of the translation

friction tensor [59].

Figure A.2: Illustration of diffusion dominated transport.
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A.4 Hydraulic Resistance

Fluid resistance is a powerful analogy of fluid flow to Ohm’s law where pressure is

analagous to electric potential, and volumetric flow rate (Q) is analagous to electrical

current:

∆V = IR, (A.34)

∆P = QR. (A.35)

In both equation A.34 and A.35 there is a quantity referred to as the resistance that

resists a flow under an applied voltage or pressure.

If the velocity profile is solved for from the Navier-Stokes equation and is in-

tegrated over the volume of the conduit, the volumetric flow rate as a function

of applied force can be derived. In the case of pressure-driven flow of a non-

compressible Newtonian fluid through a cylindrical conduit, the Hagen-Pouisuelle

equation is derived, and is expressed as

∆P = Q
8µL

πR4
c

(A.36)

where L is the length of the conduit, Rc is the radius of the conduit, and µ is the

viscosity. In the case of Hagen-Pouisuelle flow, the hydraulic resistance is

R =
8µL

πR4
c

. (A.37)

In the case of a rectangular conduit, the hydraulic resistance can be expressed

as

R =
12µL

wh3

[
1− h

w

(
192

π5

∞∑
n=1,3,5

1

n5
tanh

(nπw
2h

))]−1
, (A.38)

where w and h are the cross-sectional width and height of conduit respectively [41].

If the width is far greater or smaller than the width, the hydraulic resistance can be
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expressed by a much simpler expression [41]:

R =
12µL

wh3
(A.39)

The Ohm’s law analogy of fluid flow can be expanded to other circuit techniques

such as equivalent parallel and series resistors, and Krichoff’s current and voltage

laws. This analogy allows for the design of complicated fluid networks at the system

level.
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Chapter B: Detailed Analytic Impedance Solution

Impedance is the resistance of electrical current flow of a system for a given

voltages signal. For dielectric materials, the impedance is related to the complex

permittivity expressed as

ε̃ = ε− j σ
ω

(B.1)

where ε is the permittivity, j =
√
−1, σ is the conductivity, and ω is the angular

frequency. The impedance of a single cell suspension, such as depicted in figure

B.1, can be solved for with Maxwell’s mixture thoery [11], [30].

Figure B.1: Schematic diagram of simplified impedance sensor chamber where w,
g, and l are the width, gap, and length of the electrodes respectively, and h is the
height of the chamber.

B.1 Maxwell’s Mixture Theory

Maxwell’s equation for the complex permittivity of a mixture is

ε̃mix = ε̃m
1 + 2Φf̃CM

1− Φf̃CM
(B.2)

where ε̃mix is the complex permittivity of the mixture, ε̃m is the complex permittivity

of the medium, f̃CM is the Clausius Mossotti factor, and Φ is the volume fraction.

The Clausius Mossotti factor is defined as
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f̃CM =
ε̃p − ε̃m
ε̃p + 2ε̃m

(B.3)

where ε̃p is the complex permittivity of the particle and ε̃m is the complex permit-

tivity of the medium.

Figure B.2: A diagram of a single shelled cell model where σm, εm; σmem, εmem; σi,
and εi are the conductivity and permittivity of the medium, cell membrane, and cell
cytoplasm respectively. R and d are the radius of the cell and membrane thickness
respectively.

The permittivity of the single shelled cell in figure B.2, can be modelled as

ε̃p = ε̃mem
γ3 + 2( ε̃i−ε̃mem

ε̃i+2ε̃mem
)

γ3 − ( ε̃i−ε̃mem

ε̃i+2ε̃mem
)

with γ =
R + d

R
(B.4)

where ε̃i is the complex permittivity of the cytoplasm, ε̃mem is the complex permittivity

of the cell membrane, R is the radius of the cell, and d is the thickness of the cell

membrane.

The impedance of the mixture is

Z̃mix =
1

jwC̃mix
(B.5)

where w is the angular frequency and C̃mix is the complex capacitance of the mix-

ture and can be expressed as
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C̃mix = ε̃mixGf (B.6)

If equations B.5 and B.6 are combined, we obtain

Z̃mix =
1

jwε̃mixGf

(B.7)

To find the value of the geometric factor Gf , the cell constant of the electrodes

must be determined.

B.2 Electrode Cell Constant

The cell constant κ is defined as the proportionality factor between the measured

resistance Rb and the resistivity ρ of a material.

Rb = κρ (B.8)

Olthius related the measured resistance to capacitance in order to derive an analytic

solution to cell constant [34].

To find Rb for two electrodes with an interspatial material, the measured resis-

tance can be related to capacitance via Ohm’s law and Maxwell’s equation.

RC =

‚
εE · dS‚
σE · dS

(B.9)

where R and C are the resistance and capacitance between the electrodes, ε is the

product of the relative and vacuum permittivity, E is the electric field vector, and the

integral is taken over a surface including one electrode.

If the interspatial material is homogeneous and isotropic, then equation B.9 can

be reduced to

RC =
ε

σ
(B.10)

If we take Rb = R, we can combine equation B.10 and B.8 to express the cell
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constant in terms of capacitance.

κ =
ε

C
(B.11)

Figure B.3: Uniform electric field between two parallel electrodes where E is the
electric field, φ is the voltage, and dφ

dn
= 0 is the boundary condition of a perfect

insulator. The dimensions of the capacitor are the electrode height γ, and the dis-
tance between the electrodes d.

The capacitance of the two parallel plates with a uniform electrode field in figure

B.3 is

C =
εA

d
(B.12)

where A is the area of the plate and d is the distance between the plates. Since

A = lγ, where l is the width, and γ is the height of the electrode, the capacitance

per unit width can be written as

Cl =
εγ

d
where C = l Cl (B.13)

Returning to equation B.11, and substituting equation B.13, the cell constant can

be expressed as

κ =
d

γ l
(B.14)

160



B.3. CONFORMAL TRANSFORMATIONS APPENDIX B. ANALYTIC IS

The geometric factor is related to the cell constant by

Gf = (κ)−1 (B.15)

By combining equations B.14 and B.15, the geometric factor can be expressed as

Gf =
γl

d
(B.16)

Equation B.16 is the solution of the geometric constant for the electrode config-

uration in figure B.3, but to find the geometric constant for any other configuration,

including the coplanar electrode in figure B.1, d and γ will need to be mapped to

parameters in the other configuration. This will be accomplished in the next section

with conformal transformations.

B.3 Conformal Transformations

Figure B.4: An Illustration of complex mapping.

Let z = x + j y, where j is the imaginary number
√
−1, then a function of z,

such as W (z) = u(x, y) + j v(x, y), can be considered a mapping of an area of one

complex plane to an area in another complex plane (figure B.4). Conformal transfor-

mations are a special kind of mapping between two complex planes that preserves

local angles. A mapping is conformal if it is composed of analytic functions, and

as a consequent, fulfills the Cauchy-Rieman equations. Conformal mappings are
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extremely useful for solving problems in complicated domains by mapping the prob-

lem to a new domain where the problem is simplified. An example of a conformal

mapping is w(z) = tan(z), which maps an infinite vertical strip to a circle (figure

B.5).

(a) Part of the partial infinite strip−π/4 <
x < π/4.

(b) Mapping of the partial infinite vertical
strip to a circle

Figure B.5: An example of conformal mapping by transforming a partial infinite ver-
tical strip to a circle with the mapping w(z) = tan(z).

Sun, Greene, et al. utilized the Schwartz-Christoffel transform to map the copla-

nar electrode configuration in figure B.1 to the configuration of parallel electrodes

with uniform electrode fields in figure B.3 [31]. The Schwartz-Christoffel formula is

a powerful transform that allows the mapping of the upper complex T-plane (y > 0)

to the inside of a polygon. The formula is

Z = C1

ˆ T

T0

m∏
r=1

(T − Tr)(θr/π−1)dT + C2 (B.17)

where Z is the interior of a polygon in the Z-plane with vertices Z1, Z2, Z3, ..., Zm

and angles θ1, θ2, θ3, ..., θm which correspond to the points T1, T2, T3, ..., Tm on

the real axis of the T-plane. C1 and C2 are integration constants. The Schwartz-

Christoffel transform has three degrees of freedom, and consequently, up to three

points may be chosen arbitrarily. T0 is the reference and is typically chosen at the

origin.

To find the geometric constant for coplanar electrodes, Schwartz-Christoffel trans-
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forms will be used to map the coplanar electrode geometry (Z-plane) to the upper

complex plane (T-plane) and then to map the T-plane to the W-plane. The W-plane

vastly simplifies the solution to the cell constant, and the goemetric constant can be

solved for with equation B.16.

Figure B.6: Diagrams of coplanar electrodes through Schwartz-Christoffel mapping
where the Z-plane contains the physical dimensions of the electrode configuration,
the T-Plane links the Schwartz-Christoffel mappins of Z and W plane, and the W-
plane represents the parallel electrodes producing a uniform electrode field.

B.3.1 Schwartz-Christoffel Transform: T to Z Mapping

Mapping the T-plane to the Z-plane, point C and D will be chosen as the polygon

corners with angles of π/2.

Z = C1

ˆ
(T − Tc)−1/2(T − TD)−1/2dT + C2 (B.18)

To integrate

ˆ
(T − TD)−1/2(T − TC)−1/2dT

163



B.3. CONFORMAL TRANSFORMATIONS APPENDIX B. ANALYTIC IS

Substitute u = (T − TC)1/2 with du = 1
2
(T − TC)−1/2 dT

= 2

ˆ
du√
T − TD

with T = u2 + TC

= 2

ˆ
du√

u2 + TC − TD

= 2

ˆ √
TC − TD√
u2

TC−TD
+ 1

du

substitute t = u√
TC−TD

; dt = du√
TC−TD

= 2

ˆ
dt√
t2 + 1

Substitute t = tan(s) with dt = sec2 s

= 2

ˆ
sec(s)ds

= 2 ln(tan(s) + sec(s))

= 2 ln(t+ sec(arctan(t)))
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= 2 ln(t+
√
s2 + 1)

= 2 ln

(
u√

TC − TD
+

√
u2

TC − TD
+ 1

)

= 2 ln

(
u√

TC − TC
+

√
u2 + TC − TD
TC − TD

)

= 2 ln

(√
T − TC
TC − TD

+

√
T − TD
TC − TD

)

Add the integration constants from equation B.18 and combine (TC +TD)−1/2 in C2,

then

Z = 2C1 ln

(√
T − TC +

√
T − TD

)
+ C2 (B.19)

The points TC and TD will be chosen to be 1 and 0 respectively

Z = 2C1 ln

(
√
T − 1 +

√
T

)
+ C2 (B.20)

The integration constants can be solved by relationships in the coordinates between

the Z-plane and T-plane.

For point C, ZC = 0 and TC = 1,

0 = 2C1(0) + C2

C2 = 0
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For point D, ZD = jh and TD = 0,

jh = 2C1 ln(j)

jh = 2C1(
π

2
j)

C1 =
h

π

After substituting the values of the integration constants into equation B.20,

Z =
2h

π
ln
(√

T − 1 +
√
T
)

(B.21)

(a) Part of upper complex T-Plane (b) Mapping of the part of the T-plane to
the polygon in the Z-plane

Figure B.7: Mapping of the T-plane to the inside of the open polygon in the Z-Plane
outlined by the points F , C, D, and E in the Z-plane. Equation B.21 is the mapping
function.

The mapping from the Z-plane to the T-plane can be found by solving for T in equa-

tion B.21.

Z =
2h

π
ln
(√

T − 1 +
√
T
)

Zπ

2h
= ln

(√
T − 1 +

√
T
)
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And utilizing the inverse hyperbolic identity

arccosh(z) = ln
(
z +
√
z − 1

√
z + 1

)

arccosh(z) = ln
(
z +
√
z2 − 1

)

Substitute z =
√
T

arccosh(
√
T ) = ln

(√
T +
√
T − 1

)

Then T can be solved for as

T = cosh2

(
zπ

2h

)
(B.22)

(a) Part of the open polygon in the Z-
plane.

(b) Mapping of part of the polygon in the
Z-plane to the T-plane.

Figure B.8: Mapping of the open polygon in the Z-Plane outlined by the points F ,
C, D, and E to the T-plane. Equation B.22 is the mapping function.

B.3.2 Schwartz-Christoffel Transform: W to T Mapping

Mapping the T-plane to the W-Plane, points A, B, C, and D, will be chosen as the

polygon corners with angles of π/2.

W = D1

ˆ
(T − TA)−1/2(T − TB)−1/2(T − TC)−1/2(T − TD)−1/2 dT +D2 (B.23)

Since equation B.23 is an integral of a rational function with a root of a quartic
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polynomial, the function can be rewritten as an elliptic integral [50].

W = D3F (v, k) +D2 (B.24)

D3 =
2D1√

(TA − TC)(TB − TD)
(B.25)

v = arcsin

√
(TB − TD)(T − TA)

(TA − TD)(T − TB)
(B.26)

k =

√
(TB − TC)(TA − TD)

(TA − TC)(TB − TD)
(B.27)

Where F (v, k) is the incomplete elliptic integral of the first kind, and can be ex-

pressed as

F (v, k) =

ˆ v

0

dα√
1− k2 sin2 α

(B.28)

Where v and k are referred to as the amplitude and modulus respectively. For all

values of T that are greater than TA or do not lay on the real number line (i.e. has

an imaginary component), the elliptic integral provided is valid.

Solving for the integral constants, for point A, WA = 0 and v = 0

0 = D3F (0, k) +D2

F (0, k) = 0

D2 = 0

For point D, WD = d and v = π/2

d = D3F (π/2, k)

D3 =
d

F (π/2, k)

D3 =
d

K(k)
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Where K(k) is the complete elliptic integral and is expressed as

K(k) =

ˆ π/2

0

dα

1− k2 sin2(α)
(B.29)

For point B, WB = jγ and limx→0 v(TB + jx)

jγ = lim
x→0

D3F (v(TB + jx), k)

D3 = lim
x→0

F (v(TB + jx), k)

jγ

Equating the two solutions for D3, the Geometric factor (equation B.16) in the W-

Plane can be mapped to T-plane and, using equation B.22, mapped to the Z-plane.

D3 =
d

K(k)
=

jγ

limx→0 F (v(TB + jx), k)
(B.30)

Gf =
γl

2 d
=

limx→0 F (v(TB + jx), k)l

j 2K(k)
(B.31)

A constant of two appears in the denominator of B.31 since the conformal mapping

takes advantage of symmetry and only accounts for half of the disance between the

electrodes in the W-plane (figure B.6).

However, the expression limx→0 F (v(TB + jx), k) is inconvenient to handle, but

by using the imaginary-argument transform, it can be shown that limx→0 F (v(TB +

jx), k) = iK(k′).

The Imaginary-argument transform states that

F (iφ, k) = iF (ψ, k′) with sinhφ = tanψ (B.32)

Where k′ =
√

1− k2 and is called the complement modulus. Applying the imaginary-

argument transform,

ψ = lim
x→0

arctan

(
sinh

(arcsin
√

(TB−TD)(TB+jx−TA)
(TA−TD)(TB+jx−TB)

j

))
(B.33)
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Working from the inside out,

lim
x→0

(TB − TD)(TB + jx− TA)

(TA − TD)(TB + jx− TB)

= lim
x→0

(TB − TD)(TB + jx− TA)

(TA − TD)jx
where TD = 0

= lim
x→0

TB
TA

(TB − TA)

jx
+
TB
TA

Since TA > TB, then TB − TA < 0. Therfore,

lim
x→0

(TB − TD)(TB + jx− TA)

(TA − TD)(TB + jx− TB)
= −∞. (B.34)

Substituting the results from equation B.34 into equation B.33,

ψ = lim
x→−∞

arctan
(

sinh
(arcsin

√
x

j

))
= arctan

(
sinh

(arcsin(j∞)

j

))
(B.35)

Working from the inside out and starting with the definition of arcsinx,

arcsinx = −j ln(jx+
√

1− x2)

arcsin(jx) = −j ln(
√

1 + x2 − x)

lim
x→∞

arcsin(jx) = lim
x→
−j ln(

√
1 + x2 − x)

= lim
x→∞
−j ln

(
(
√

1 + x2 + x)(
√

1 + x2 − x)

(
√

1 + x2 + x)

)

= lim
x→∞
−j ln

(
1

x(
√

1/x2 + 1 + 1)

)
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= −j ln(0)

lim
x→∞

arcsin(jx) = j∞ (B.36)

Substituting equation B.36 into equation B.35

ψ = lim
x→∞

arctan(sinh(x)). (B.37)

Applying the following common limits,

lim
x→∞

sinhx =∞,

lim
x→∞

arctanx =
π

2
,

ψ =
π

2
(B.38)

And then applying the results of equation B.38 to equation B.32,

F (lim
x→0

v(TB + jx), k) = jF (π/2, k′) (B.39)

F (lim
x→0

v(TB + jx), k) = jK(k′) (B.40)

Returning to the mapping of the geometric factor (equation B.30, and B.31), D3 and

Gf can be expressed as

D3 =
d

K(k)
=

γ

K(k′)
(B.41)

Gf =
lK(k′)

2K(k)
(B.42)

B.4 Solution to the Electric Field

Now with Z-T and T-W mappings, the solution of the electric field in the W-plane can

be mapped to the Z-plane. The mapping of the electric field can be expressed as
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Ez = −∇φz with ∇φz = ∇φw
dW

dZ
(B.43)

Where ∇φ is the gradient of potential and dW
dZ

is the conjugate of the derivative of

W with respect to Z [51].

Applying the chain rule to equation B.43, the electric field mapping is expressed

as

Ez = −∇φw
dW

dT

dT

dZ
(B.44)

The gradient of φw can be reduced to d
dx
φw since the electric potential in the

W-plane is independent of the y and z direction (figure B.6). The electric potential

and electric field in the W-plane can be expressed as

φw = V
(

1− x

d

)
(B.45)

Ew = −∇φw =
V

d
(B.46)

dW
dT

can be found by integrating equation B.23.

dW

dT
=

d

K(k)

(TA − TC)1/2(TB − TD)1/2

(T − TA)1/2(T − TB)1/2(T − TC)1/2(T − TD)1/2
(B.47)

And dT
dz

can be found by integrating equation B.22.

T = cosh2
(Zπ

2h

)

dT

dZ
= 2 cosh

(Zπ
2h

)
sinh

(Zπ
2h

) π
2h

Substitute equation B.21

dT

dZ
=
π

h
cosh

(
ln(
√
T − 1 +

√
T )
)

sinh
(

ln(
√
T − 1 +

√
T )
)

172



B.4. SOLUTION TO THE ELECTRIC FIELD APPENDIX B. ANALYTIC IS

And then applying the inverse cosh and sinh log relations,

arccoshx = ln(x+
√
x2 − 1)

arcsinhx = ln(x+
√
x2 + 1)

dT

dZ
=
π

h
(
√
T − TD)(

√
T − TC) (B.48)

Combining equations, B.44, B.46, B.47, and B.48, the electric field for the copla-

nar electrodes can be expressed as equation B.49 and is depicted in figure B.9

Ez =
πV

2hK(k)

√
(TA − TC)(TB − TD)√
(T − TA)(T − TB)

(B.49)

Figure B.9: The electric field for coplanar electrodes as defined by equation B.49.
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