
SoftwareX 20 (2022) 101238

t
t
o
A
t

M
(

h
(

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

TAFFO: The compiler-based precision tuner
Daniele Cattaneo a,∗, Michele Chiari a, Giovanni Agosta a, Stefano Cherubin b

a DEIB – Politecnico di Milano, Italy
b Edinburgh Napier University, United Kingdom

a r t i c l e i n f o

Article history:
Received 29 April 2021
Received in revised form 28 May 2022
Accepted 15 October 2022

Keywords:
Mixed precision
Compiler
Approximate computing

a b s t r a c t

We present taffo, a framework that automatically performs precision tuning to exploit the perfor-
mance/accuracy trade-off. In order to avoid expensive dynamic analyses, taffo leverages programmer
annotations which encapsulate domain knowledge about the conditions under which the software
being optimized will run. As a result, taffo is easy to use and provides state-of-the-art optimization
efficacy in a variety of hardware configurations and application domains. We provide guidelines for the
effective exploitation of taffo by showing a typical example of usage on a simple application, achieving
a speedup up to 60% at the price of an absolute error of 3.53×10−5. taffo is modular and based on the
solid llvm technology, which allows extensibility to improved analysis techniques, and comprehensive
support for the most common precision-reduced data types and programming languages. As a result,
the taffo technology has been selected as the precision tuning tool of the European Training Network
on Approximate Computing.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Current code version 0.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00084
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used C++
Compilation requirements, operating environments & dependencies CMake, LLVM
If available Link to developer documentation/manual https://github.com/TAFFO-org/TAFFO/tree/master/doc
Support email for questions daniele.cattaneo@polimi.it
1. Motivation and significance

Approximate Computing is an increasingly popular approach
o achieve large performance and energy improvements in error-
olerant applications [1,2]. This class of techniques aims at trading
ff computation accuracy for performance and energy. Within
pproximate Computing, a key issue is to perform each compu-
ation on the most energy and performance-efficient data type

∗ Corresponding author.
E-mail addresses: Daniele.Cattaneo@polimi.it (Daniele Cattaneo),

ichele.Chiari@polimi.it (Michele Chiari), Giovanni.Agosta@polimi.it
Giovanni Agosta), stefanix@acm.org (Stefano Cherubin).

URLs: https://heaplab.deib.polimi.it (Daniele Cattaneo),
ttps://heaplab.deib.polimi.it (Michele Chiari), https://heaplab.deib.polimi.it
Giovanni Agosta).
ttps://doi.org/10.1016/j.softx.2022.101238
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
that allows to preserve the desired minimum accuracy. This non-
trivial task is usually performed manually by embedded systems
programmers, and in general by software developers that need
to achieve high performance with limited resources. However,
this operation is error-prone and tedious, especially when large
code bases are involved. Thus, a significant research effort has
been spent over the recent years to build compiler-based tools
to support or entirely replace the programmer effort [3].

In this work, we present taffo, an autotuning framework
that aims at optimising the selection of data types in C and C++
programs, particularly by replacing floating point operations with
equivalent ones based on other representations, including fixed
point. taffo has been proven to enable major speedups on most
error-tolerant classes of applications when targeting embedded
microcontrollers that lack hardware support for floating point
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101238
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101238&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00084
https://github.com/TAFFO-org/TAFFO/tree/master/doc
https://daniele.cattaneo@polimi.it
mailto:Daniele.Cattaneo@polimi.it
mailto:Michele.Chiari@polimi.it
mailto:Giovanni.Agosta@polimi.it
mailto:stefanix@acm.org
https://heaplab.deib.polimi.it
https://heaplab.deib.polimi.it
https://heaplab.deib.polimi.it
https://doi.org/10.1016/j.softx.2022.101238
http://creativecommons.org/licenses/by/4.0/

Daniele Cattaneo, Michele Chiari, Giovanni Agosta et al. SoftwareX 20 (2022) 101238

o
m
i
d

2

i
t
o
e
a

c
t
o
d
o
a
a
d

d
c
t
i
e
l
o
s

i
p
p
d
w
s
A
w

p
p
a
p
f
d
p

3

d

f
o
r
s
t
i
s
i
v
t

r

d

t
a

perations, but can also help improve performance and energy on
ore high-end platforms. taffo is implemented as a set of plug-

ns for the industry-grade llvm compiler framework, enabling its
eployment in most modern systems.

. Related works

According to the classification given by Cherubin and Agosta
n [3], in the state of the art other precision tuning tools similar
o taffo are CRAFT [4], Rosa [5] and Daisy [6]. Other tools focus
nly on one aspect of precision tuning – such as verification of
rror constraints, or the generation of a data type assignment –
nd do not provide a comprehensive applicative solution.
CRAFT is a precision tuning framework based on modifying a

ompiled binary. Through a binary search, an initial set of data
ype assignments is successively refined to produce a final rec-
mmendation. The precision/performance tradeoff is evaluated
ynamically by instrumenting the modified binary at each step
f the search. CRAFT is exclusively based on dynamic analyses,
nd is limited to applications targeting the Intel x86 processor
rchitecture. The data types supported by CRAFT are single and
ouble precision floating point.
Rosa is a source-to-source compiler that tunes a program

epending on a contract-based specification language that in-
ludes the precision requirement of each function. It is limited
o programs written in Scala, and uses the Z3 solver [7]. Daisy
s a refined version of Rosa that – among other improvements –
mploys the dReal solver [8] instead of Z3. Rosa and Daisy are
imited by the restriction to the Scala language and their usage
f a DSL for describing precision requirements. Additionally, they
upport only single and double precision floating point data types.
Amongst tools that are based on llvm, the most relevant one

s Precimonious [9]. Precimonious computes the most efficient
recision mix within an error threshold for a C program. It sup-
orts single precision, double precision and 80-bit floating point
ata types, and the search for the best precision mix is performed
ith the delta-debugging algorithm [10]. While Precimonious is
imilar to taffo in its use of llvm, it employs dynamic analyses.
dditionally, Precimonious is based on a dated version of LLVM,
hich limits its usefulness.
We can notice that most precision tuning tools target floating

oint data types, overlooking other representations. This is ap-
ropriate in the high-performance-computing context, but limits
pplicability in edge computing applications. taffo fills this gap,
roviding an increased set of supported data types – including
ixed point. Additionally, static analyses are less common than
ynamic analyses. In fact, taffo is unique amongst llvm-based
recision tuning tools in exploiting only static analyses.

. Software description

taffo tackles all the challenges of precision tuning [3], and it
oes so by using safe and deterministic static analyses.
The user is expected to annotate the source code to provide in-

ormation on the dynamic value range for the input variables and
n the scope of the optimization. In general, to achieve the best
esults, the optimization scope should be a mathematically inten-
ive computational kernel. The annotations to insert depends on
he input data to the program, therefore the typical user of taffo
s a domain expert who has access to the required information. A
tatic data flow analysis propagates the value ranges to all the
ntermediate values in the program and determines the set of
ariables that need to be changed in type. This analysis is able
o operate across function calls and loops if required.

Based on the fine-grained description of the dynamic value

anges produced by the data flow analyses, taffo performs the C

2

ata type allocation. For each dynamic value range, a constraint is
derived on the data type such instruction can use. At this point,
taffo determines the data type to assign to each variable auto-
matically. Two different approaches are available for this task. The
first one exploits a local best-fit algorithm that performs adjacent
similar type coalescing. A customisable cost function can take into
account the overhead introduced by type cast operations only,
which varies depending on the target architecture. A second more
complex algorithm [11] builds a partial mathematical model of
the program that describes the variation in execution time and
output error for a given architecture depending on the data type
selection. This model is fed into an integer-linear-programming
constraint solver to select the optimal data types for each variable
that must be optimized. This new approach requires a more
through architectural model and is more effective for embedded
platforms, while the simpler local best-fit algorithm is more
effective on superscalar architectures.

Once the data type has been decided, taffo performs the code
conversion on the llvm-ir. Whenever an equivalent instruction
(or pattern of instructions) is not immediately available — e.g. in
the case of a function call to a generic function — taffo imple-
ments a two-way best-effort approach. In case of called functions
whose definition lives within the same file, taffo creates an ad-
hoc version of the callee. In the rest of unknown cases, taffo
rejects the proposed data type and locally uses the original one.
Appropriate type-cast operations are inserted if required.

Additionally, in beta versions of taffo, in the case of well-
known functions, equivalent fixed point code can be generated
on-demand [12].

Finally, taffo performs a functional and performance estima-
tion of the conversion’s benefits via static analysis techniques. It
is worth to mention that both the cost function from the data
type allocation, and the performance estimator from this last
stage require an architectural model of the target machine. In
absence of such model, taffo uses default values which may be
suboptimal for the target architecture.

3.1. Software architecture

taffo operates during code compilation as a plug-in for the
llvm compiler infrastructure. This design decision creates several
benefits.

Portability The technique is agnostic with respect to source lan-
guage and target architecture.

Fine-Grained Data type is allocated to each individual operation
rather than declared variables.

Compatibility May be combined with other optimisation tech-
niques.

affo accepts as input llvm intermediate code representation,
nd it produces the same format as output. The llvm-ir-

equivalent version of a C/C++ program can be obtained via clang.
A plain un-modified version of the clang front-end is also able
to parse the additional annotations provided by the user in the
source code. These annotations will later be processed by the
initial stages of taffo. An example of how these annotations
appear in the source code is shown in Listing 1.

Annotations can be placed on any variable declaration, and
contain information about the value range of the variable itself,
and additional directives that affect taffo’s operation. Detailed
documentation on the syntax and the semantics of annotations is
found in the taffo project repository.1

1 https://github.com/TAFFO-org/TAFFO/blob/master/doc/
ommandLineReference.md

https://github.com/TAFFO-org/TAFFO/blob/master/doc/CommandLineReference.md
https://github.com/TAFFO-org/TAFFO/blob/master/doc/CommandLineReference.md

Daniele Cattaneo, Michele Chiari, Giovanni Agosta et al. SoftwareX 20 (2022) 101238
1 float a __attribute((annotate("scalar(range(-10,10))"))); float b __attribute((annotate("scalar()")));

Listing 1: Example of annotated C code where the programmer is requesting the transformation of variables a and b to a fixed point
type.
Fig. 1. Outline of the compilation pipeline using the clang compiler front-end with and without taffo. We highlight with red arrows the taffo pipeline stages.
Green elements refer to source code and the compiler front-end. Brown elements refer to passes of the optimizer; yellow elements correspond to the passes inserted
by taffo. Finally, the blue element represents the compiler back-end. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
e

taffo is shipped as a set of llvm passes, i.e. elementary units
of the compiler pipeline. In particular, the execution flow runs
through five stages: Initialization, Requirement Analysis, Data Type
Allocation, Code Conversion, Delta Estimation. The outline of the
compilation pipeline with and without taffo is shown in Fig. 1.
The passes can be inserted in any point of the optimization
pipeline, but usually they are executed immediately after the
frontend. Other normalization and analysis passes are automat-
ically scheduled by llvm as required.

Initialization. The Initialization pass processes the user annota-
tions, and determines the scope of the transformation which will
be performed by later passes — in other words which instructions
are affected by the type change of the annotated variables. This
process is performed through a reverse depth-first iteration in the
data flow graph.

Requirement analysis. This pass performs a fine-grained require-
ments analysis meant to augment the existing LLVM-IR with
additional information. The most important task performed is a
Value Range Analysis (VRA) based on Interval Analysis [13], and
a simplified symbolic execution framework.

The data type allocation pass. The Data Type Allocation pass de-
cides which data type should be used for each intermediate
value. It is designed to avoid overflow. Secondarily, it attempts
to minimise accuracy loss and performance degradation due to
type cast overhead.

The data types supported by taffo are single and double
precision floating point, bfloat16 and fixed point types of arbitrary
size and point position. The set of types allowed in the optimized
program can be adjusted at compile time.

The code conversion pass. The code conversion and supplemen-
tary code generation pass modifies the program code in order to
enforce the usage of the data types determined by the previous
passes of taffo. It preserves code semantics within the given
value ranges. Whenever the conversion of an unknown external
procedure is required, the data type is retained to the original
version.

The error propagation pass. This pass performs an additional code
analysis which estimates the error in the output with respect to
the original code. The error analysis is based on affine number
theory [14,15] in order to handle cancellation errors.
3

4. Illustrative example

In order to illustrate the functionalities of taffo, we show
how to optimize an example application, whose source code is
reported in Listing 2. This application computes an optical blur
(bokeh) on a pre-existing image in ppm format. The core of the
application consists of a convolution of the source image with a
fixed-size kernel image, producing in output the blurred picture.
Similar image convolution algorithms are widespread not only
in the image editing field, but they also find application in the
machine-learning field as a pipeline for image recognition.

At a fundamental level, taffo provides an eponymous com-
mand line program, taffo, for compiling a C or C++ program by
performing precision tuning optimizations. A standard invocation
of clang or gcc can be replaced with an invocation to taffo to
nable such optimizations. However, using taffo is equivalent to

using clangwhen compiling a program without any annotations.
In general, taffo requires annotations to be placed on every

floating point variable declaration that shall be subject
to precision tuning. Therefore, the first step in modifying a pro-
gram to enable taffo’s optimizations is to identify such
variables and annotate them using an empty annotation
(__attribute__((annotate("scalar()")))). These annotations do
not need to contain any range information.

In the example program, such annotations were placed on
the kernel matrix, which stores the convolution kernel, and on
the two dynamically allocated arrays containing the input and
output images respectively. Since the kernel computation process
represents only a small fraction of the total execution time of the
tool, its floating point variables were not annotated. taffo will
take care of inserting the proper casts automatically to handle the
mixup of annotated and non-annotated variables. Typically, it is
not needed to optimize an entire program with taffo to obtain
speedups, just the main computational kernel suffices.

In addition to deciding which variables will be considered for
optimization, the programmer must specify the dynamic value
range of input variables. By input variables we intend those vari-
ables whose value at runtime depends purely on external factors.
In the example program, we position the range annotations on
the output variables of the fscanf input call.

Finally, the range and error analyses in taffo require the
user to specify one or more output variables using a target

Daniele Cattaneo, Michele Chiari, Giovanni Agosta et al. SoftwareX 20 (2022) 101238

L

a
a

c

c

1 #define RADIUS (8)
2 #define K_SIDE (RADIUS*2+1)
3 float kernel[K_SIDE][K_SIDE]
4 __attribute__((annotate("scalar()")));
5 #define GET_PIX(image, w, h, x, y) \
6 ((image)+(y)*(w)*3+(x)*3)
7 #define MIN(a, b) ((a) < (b) ? (a) : (b))
8 #define MAX(a, b) ((a) > (b) ? (a) : (b))
9 #define CLAMP(min, v, max) \

10 (MAX((min), MIN((v), (max))))
11
12 void bokeh(float *res, float *image,
13 int w, int h)
14 {
15 for (int y=0; y<h; y++)
16 for (int x=0; x<w; x++)
17 for (int ky=0; ky<K_SIDE; ky++)
18 for (int kx=0; kx<K_SIDE; kx++) {
19 int oy = y - (K_SIDE-1)/2 + ky;
20 int ox = x - (K_SIDE-1)/2 + kx;
21 if (oy < 0 || oy >= h
22 || ox < 0 || ox >= w)
23 continue;
24 GET_PIX(res,w,h,ox,oy)[0]+=
25 GET_PIX(image,w,h,x,y)[0]
26 *kernel[ky][kx];
27 GET_PIX(res,w,h,ox,oy)[1]+=
28 GET_PIX(image,w,h,x,y)[1]
29 *kernel[ky][kx];
30 GET_PIX(res,w,h,ox,oy)[2]+=
31 GET_PIX(image,w,h,x,y)[2]
32 *kernel[ky][kx];
33 }
34 }
35
36 void compute_kernel(void)
37 {
38 for (int y=0; y<K_SIDE; y++)
39 for (int x=0; x<K_SIDE; x++) {
40 kernel[y][x] = 0.0;
41 }
42
43 float step = 1.0 / 32.0;
44 float mass = M_PI * RADIUS * RADIUS;
45 for (float y=0; y<K_SIDE; y+=step)
46 for (float x=0; x<K_SIDE; x+=step) {
47 float cx =
48 x - (float)(K_SIDE)/2.0 + 0.5*step;
49 float cy =
50 y - (float)(K_SIDE)/2.0 + 0.5*step;
51 if (cx*cx + cy*cy < RADIUS*RADIUS)
52 kernel[(int)y][(int)x] +=
53 (step*step) / mass;
54 }
55 }
56
57 int read_ppm(FILE *fp, float **image,
58 int *w, int *h)
59 {
60 char buf[10];
61 uint64_t max __attribute__((annotate
62 ("scalar(range(255,255)disabled)")));
63
64 fscanf(fp, "%s", buf);

65 if (strcmp(buf, "P3") != 0)
66 return 0;
67 fscanf(fp, "%d%d%"PRIu64, w, h, &max);
68 *image = calloc(sizeof(float), (*w)*(*h)*3);
69 for (int y=0; y<*h; y++) {
70 for (int x=0; x<*w; x++) {
71 for (int p=0; p<3; p++) {
72 uint64_t tmp __attribute__((annotate
73 ("scalar(range(0,255)disabled)")));
74 fscanf(fp, "%"PRIu64, &tmp);
75 GET_PIX(*image, *w, *h, x, y)[p] =
76 (float)tmp / (float)max;
77 }
78 }
79 }
80 return 1;
81 }
82
83 int write_ppm(FILE *fp, float *image,
84 int w, int h)
85 {
86 fprintf(fp, "P3\n%d%d\n%d\n",
87 w, h, 0x7FFFFFFF);
88 for (int y=0; y<h; y++) {
89 for (int x=0; x<w; x++) {
90 for (int p=0; p<3; p++) {
91 uint64_t cc = (uint64_t)(CLAMP(0.0,
92 GET_PIX(image, w, h, x, y)[p], 1.0)
93 * 0x7FFFFFFF);
94 fprintf(fp, "%"PRIu64"", cc);
95 }
96 }
97 fprintf(fp, "\n");
98 }
99 return 1;

100 }
101
102 int main(int argc, char *argv[])
103 {
104 if (argc != 3)
105 return 1;
106
107 float *image
108 __attribute__((annotate("scalar()")));
109 int w, h;
110 FILE *fp = fopen(argv[1], "r");
111 if (!read_ppm(fp, &image, &w, &h))
112 return 1;
113 fclose(fp);
114
115 float *res __attribute__
116 ((annotate("target(’res’)scalar()")));
117 res = calloc(sizeof(float), w*h*3);
118 compute_kernel();
119 bokeh(res, image, w, h);
120
121 fp = fopen(argv[2], "w");
122 write_ppm(fp, res, w, h);
123 fclose(fp);
124
125 free(image);
126 free(res);
127 return 0;
128 }

isting 2: The listing of the example program illustrated in Section 4, including the annotations required by taffo.
nnotation. We add this additional annotation on the dynamic
rray which will contain the output image.
After these simple modifications, the program is ready to be

ompiled using taffo. The command line we use is the following:
1 taffo -O3 bokeh.c -o bokeh_taffo

Once the compilation completes, the file bokeh_taffo will
ontain the executable program optimized by taffo.
4

In Fig. 2 we show an example picture as processed both by
the unmodified example program, and the same program opti-
mized by taffo. The two images appear identical. The maximum
difference between the pixel component values of the two images
is 3.53 × 10−5, which is consistent with the two images being
identical except for the quantization error introduced by the
conversion to fixed point. The execution time is also different

Daniele Cattaneo, Michele Chiari, Giovanni Agosta et al. SoftwareX 20 (2022) 101238

(
8

b
p
s
f
1
1

Fig. 2. Output of the example program shown in Listing 2, both in its original form (left), as optimized by taffo (right), and the difference between the two images
center). The maximum difference between the pixel component values of the two images is 3.53× 10−5 , a difference that disappears completely when re-scaled to
-bit component values.
r
L

D

c
t

A

t
E

R

etween the taffo optimized version and the unmodified floating
oint version. This is especially noteworthy on architectures with
low floating-point units. For instance, one run of the unmodi-
ied floating-point kernel function, as compiled by LLVM Clang
0.0.1 on a ARM1176JZ-F processor clocked at 700 MHz takes
3.4 s, while the optimized version compiled with taffo executes

in 8.4 s. This amounts to a speedup of 60%.
Additional arguments can be passed to taffo to further de-

crease the precision of the output. As an example, the argument
-Xdta -totalbits -Xdta 8 will instruct taffo to prefer 8 bit
fixed point numbers. Exhaustive documentation of these options
is found in the taffo documentation.

5. Impact

Approximate Computing is an emerging field that is quickly
gaining traction and attention from industry and research groups,
as attested by a number of very recent literature reviews [1–3,16].
Apart from taffo, current state-of-the-art tools for precision tun-
ing include Precimonious [9], Daisy [6] and CRAFT [4]. These tools
are either based on dynamic analyses (such as Precimonious and
CRAFT) or require the use of domain-specific languages (CRAFT).
As a result, taffo is unique in its ability to be both language-
independent (due to its use of llvm-ir) and fully based on static
analyses.

taffo has been developed as part of the ANTAREX project
[17,18], and is currently the only solution for precision tuning
available for the industry-standard llvm compiler [3]. Further-
more, taffo is the precision tuning tool adopted and supported
by the European Training Network on approximate computing,
APROPOS.2 This network will train the next generation of approx-
imate computing experts in Europe, and includes 14 institutions
from 9 countries. taffo is supported by the Italian National In-
teruniversity Consortium for Informatics (CINI) Workgroup on
High Performance Computing as one of its key technologies [19].
As such, taffo will be used as the precision tuning tool by the
EuroHPC TEXTAROSSA consortium [20], which aims at providing
mixed precision support in extreme-scale computing systems.
The consortium comprises, beyond CINI, three European HPC
centers, as well as the key industrial providers of HPC in Europe.
As a result, taffo is ideally positioned to become the main tool
for mixed precision tuning of applications across a wide range of
domains and platforms. In fact, since taffo is based on llvm-ir,
which is platform and language independent, it can be used in
GPU applications or as a part of an HLS toolchain. The only basic
requirement is to introduce the appropriate annotations in the
intermediate llvm-ir code, be it a shader kernel for a GPU or a
program meant for HLS synthesis.

The potential impact of taffo is reinforced by use-case ex-
plorations performed in the field of operating system sched-
ulers [21], activity classification [22] and motor field-oriented

2 https://projects.tuni.fi/apropos/
5

control [23]. Thanks to the precision tuning optimization per-
formed by taffo, the operating system scheduler state machine
update function achieved a speedup up to 80%, the activity clas-
sification workload gained a speed-up of approximately 500%,
and the algorithm for field-oriented control obtained a speedup
of approximately 250%. The effectiveness of taffo has also been
proven on well-known benchmark suites such as AxBench [24]
and PolyBench [25] in works such as [11,26]. In particular, in [12]
the usage of taffo for optimizing the implementation of trigono-
metric functions in the benchmarks of the AxBench suite resulted
in energy savings of up to 60%.

6. Conclusions

In this paper, we described the structure of taffo, a precision
tuning assistant based on compiler analyses and transformations.
We provide an overview of the key software components, and
how they tackle the precision tuning challenges. We believe
taffo represents a valuable addition to any hardware/software
co-design toolchain. Its main features — portability, fine granular-
ity, and compatibility — allow it to fit in contexts ranging from
HPC to embedded systems.

Although taffo’s main focus remains fixed point represen-
tations, its approach generalises well to new, trending numeric
representations such as bfloat16. Future releases of taffo will
explicitly support bfloat16 and an increased set of numeric rep-
esentations, parallel applications, GPU-based kernels and High-
evel-Synthesis workflows.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work is supported by the European Commission and
he Italian Ministry of Economic Development (MISE) under the
uroHPC TEXTAROSSA project (G.A. 956831).

eferences

[1] Sampson A, Dietl W, Fortuna E, Gnanapragasam D, Ceze L, Grossman D. En-
erJ: Approximate data types for safe and general low-power computation.
In: Proceedings of the 32nd ACM SIGPLAN conference on programming
language design and implementation. New York, NY, USA: ACM; 2011, p.
164–74. http://dx.doi.org/10.1145/1993498.1993518.

[2] Mittal S. A survey of techniques for approximate computing. ACM Comput
Surv 2016;48(4):62:1–33. http://dx.doi.org/10.1145/2893356.

[3] Cherubin S, Agosta G. Tools for reduced precision computation: a survey.
ACM Comput Surv 2020;53(2). http://dx.doi.org/10.1145/3381039.

[4] Lam MO. CRAFT: Configurable Runtime Analysis for Floating-point Tuning.
2018, https://github.com/crafthpc/craft. [Accessed 07 August 2018].

https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/en/workgroups/hpc-key-technologies-and-tools
https://projects.tuni.fi/apropos/
http://dx.doi.org/10.1145/1993498.1993518
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1145/3381039
https://github.com/crafthpc/craft

Daniele Cattaneo, Michele Chiari, Giovanni Agosta et al. SoftwareX 20 (2022) 101238
[5] Darulova E. Rosa, the real compiler. 2015, https://github.com/malyzajko/
rosa. [Accessed 07 August 2018].

[6] Darulova E, Horn E, Sharma S. Sound mixed-precision optimization with
rewriting. In: Proceedings of the 9th ACM/IEEE international conference on
cyber-physical systems. 2018, p. 208–19. http://dx.doi.org/10.1109/ICCPS.
2018.00028.

[7] De Moura L, Bjørner N. Z3: An efficient SMT solver. In: Proceedings
of the theory and practice of software, 14th international conference
on tools and algorithms for the construction and analysis of systems.
TACAS’08/ETAPS’08, 2008, p. 337–40.

[8] Gao S, Kong S, Clarke EM. dReal: An SMT solver for nonlinear theories over
the reals. In: Automated deduction – CADE-24. 2013, p. 208–14.

[9] Rubio-González C, Nguyen C, Nguyen HD, Demmel J, Kahan W, Sen K, et al.
Precimonious: Tuning assistant for floating-point precision. In: Proceedings
of the international conference on high performance computing, network-
ing, storage and analysis. 2013, p. 27:1–27:12. http://dx.doi.org/10.1145/
2503210.2503296.

[10] Zeller A, Hildebrandt R. Simplifying and isolating failure-inducing input.
IEEE Trans Softw Eng 2002;28(2):183–200. http://dx.doi.org/10.1109/32.
988498.

[11] Cattaneo D, Chiari M, Fossati N, Cherubin S, Agosta G. Architecture-
aware precision tuning with multiple number representation systems.
In: 2021 58th ACM/IEEE Design Automation Conference. 2021, p. 673–8.
http://dx.doi.org/10.1109/DAC18074.2021.9586303.

[12] Cattaneo D, Chiari M, Magnani G, Fossati N, Cherubin S, Agosta G. FixM:
Code generation of fixed point mathematical functions. Sustain Comput
Inform Syst 2021;29. http://dx.doi.org/10.1016/j.suscom.2020.100478, URL
http://www.sciencedirect.com/science/article/pii/S2210537920302018.

[13] Moore RE, et al. Introduction to interval analysis. Siam; 2009.
[14] de Figueiredo LH, Stolfi J. Affine arithmetic: Concepts and applications.

Numer Algorithms 2004;37(1):147–58. http://dx.doi.org/10.1023/B:NUMA.
0000049462.70970.b6.

[15] Darulova E, Kuncak V. Towards a compiler for reals. ACM Trans Program
Lang Syst 2017;39(2):8:1–28. http://dx.doi.org/10.1145/3014426.

[16] Moreau T, San Miguel J, Wyse M, Bornholt J, Alaghi A, Ceze L, et al. A tax-
onomy of general purpose approximate computing techniques. IEEE Embed
Syst Lett 2018;10(1):2–5. http://dx.doi.org/10.1109/LES.2017.2758679.

[17] Cherubin S, Cattaneo D, Chiari M, Agosta G. Dynamic precision autotuning
with TAFFO. ACM Trans Archit Code Optim 2020;17(2). http://dx.doi.org/
10.1145/3388785.
6

[18] Silvano C, Agosta G, Barbosa J, Bartolini A, Beccari AR, Benini L, et al.
The ANTAREX tool flow for monitoring and autotuning energy efficient
HPC systems. In: 2017 International conference on embedded computer
systems: architectures, modeling, and simulation. 2017, p. 308–16. http:
//dx.doi.org/10.1109/SAMOS.2017.8344645.

[19] Aldinucci M, et al. The Italian research on HPC key technologies across
EuroHPC. In: Proceedings of the 18th ACM international conference on
computing frontiers. New York, NY, USA: Association for Computing
Machinery; 2021, p. 178–84. http://dx.doi.org/10.1145/3457388.3458508.

[20] Agosta G, et al. TEXTAROSSA: Towards EXtreme scale Technologies and
Accelerators for euROhpc hw/Sw Supercomputing Applications for exas-
cale. In: 2021 24th Euromicro conference on digital system design. 2021,
p. 286–94. http://dx.doi.org/10.1109/DSD53832.2021.00051.

[21] Cattaneo D, Di Bello A, Cherubin S, Terraneo F, Agosta G. Embedded
operating system optimization through floating to fixed point compiler
transformation. In: 21st Euromicro conference on digital system design.
2018, p. 172–6. http://dx.doi.org/10.1109/DSD.2018.00042.

[22] Fossati N, et al. Automated precision tuning in activity classification
systems: A case study. In: Proceedings of the 11th workshop on parallel
programming and run-time management techniques for many-core archi-
tectures / 9th workshop on design tools and architectures for multicore
embedded computing platforms. PARMA-DITAM 2020, 2020, http://dx.doi.
org/10.1145/3381427.3381432.

[23] Magnani G, Cattaneo D, Chiari M, Agosta G. The Impact of Precision Tuning
on Embedded Systems Performance: A Case Study on Field-Oriented
Control. In: Bispo Ja, Cherubin S, Flich J, editors. 12th Workshop on
parallel programming and run-time management techniques for many-
core architectures and 10th workshop on design tools and architectures
for multicore embedded computing platforms. Open access series in
informatics (OASIcs), vol. 88, Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum Für Informatik; 2021, p. 3:1–3:13. http://dx.doi.org/
10.4230/OASIcs.PARMA-DITAM.2021.3, URL https://drops.dagstuhl.de/opus/
volltexte/2021/13639.

[24] Yazdanbakhsh A, et al. AxBench: A multiplatform benchmark suite for
approximate computing. IEEE Des Test 2017;34(2):60–8. http://dx.doi.org/
10.1109/MDAT.2016.2630270.

[25] Yuki T. Understanding PolyBench/C 3.2 kernels. In: International workshop
on polyhedral compilation techniques. 2014.

[26] Cherubin S, Cattaneo D, Chiari M, Giovanni A. Dynamic precision au-
totuning with TAFFO. ACM Trans Archit Code Optim 2020;17(2). http:
//dx.doi.org/10.1145/3388785.

https://github.com/malyzajko/rosa
https://github.com/malyzajko/rosa
https://github.com/malyzajko/rosa
http://dx.doi.org/10.1109/ICCPS.2018.00028
http://dx.doi.org/10.1109/ICCPS.2018.00028
http://dx.doi.org/10.1109/ICCPS.2018.00028
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb8
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1109/32.988498
http://dx.doi.org/10.1109/32.988498
http://dx.doi.org/10.1109/32.988498
http://dx.doi.org/10.1109/DAC18074.2021.9586303
http://dx.doi.org/10.1016/j.suscom.2020.100478
http://www.sciencedirect.com/science/article/pii/S2210537920302018
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb13
http://dx.doi.org/10.1023/B:NUMA.0000049462.70970.b6
http://dx.doi.org/10.1023/B:NUMA.0000049462.70970.b6
http://dx.doi.org/10.1023/B:NUMA.0000049462.70970.b6
http://dx.doi.org/10.1145/3014426
http://dx.doi.org/10.1109/LES.2017.2758679
http://dx.doi.org/10.1145/3388785
http://dx.doi.org/10.1145/3388785
http://dx.doi.org/10.1145/3388785
http://dx.doi.org/10.1109/SAMOS.2017.8344645
http://dx.doi.org/10.1109/SAMOS.2017.8344645
http://dx.doi.org/10.1109/SAMOS.2017.8344645
http://dx.doi.org/10.1145/3457388.3458508
http://dx.doi.org/10.1109/DSD53832.2021.00051
http://dx.doi.org/10.1109/DSD.2018.00042
http://dx.doi.org/10.1145/3381427.3381432
http://dx.doi.org/10.1145/3381427.3381432
http://dx.doi.org/10.1145/3381427.3381432
http://dx.doi.org/10.4230/OASIcs.PARMA-DITAM.2021.3
http://dx.doi.org/10.4230/OASIcs.PARMA-DITAM.2021.3
http://dx.doi.org/10.4230/OASIcs.PARMA-DITAM.2021.3
https://drops.dagstuhl.de/opus/volltexte/2021/13639
https://drops.dagstuhl.de/opus/volltexte/2021/13639
https://drops.dagstuhl.de/opus/volltexte/2021/13639
http://dx.doi.org/10.1109/MDAT.2016.2630270
http://dx.doi.org/10.1109/MDAT.2016.2630270
http://dx.doi.org/10.1109/MDAT.2016.2630270
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb25
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb25
http://refhub.elsevier.com/S2352-7110(22)00156-X/sb25
http://dx.doi.org/10.1145/3388785
http://dx.doi.org/10.1145/3388785
http://dx.doi.org/10.1145/3388785

	TAFFO: The compiler-based precision tuner
	Motivation and significance
	Related Works
	Software description
	Software Architecture

	Illustrative Example
	Impact
	Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References

