AN ASYMPTOTIC FORMULA FOR THE DISPLACEMENT FIELD IN THE PRESENCE OF THIN ELASTIC INHOMOGENEITIES*

ELENA BERETTA ${ }^{\dagger}$ AND ELISA FRANCINI ${ }^{\ddagger}$

Abstract

We consider a plane isotropic homogeneous elastic body with thin elastic inhomogeneities in the form of small neighborhoods of simple smooth curves. We derive a rigorous asymptotic expansion of the boundary displacement field as the thickness of the neighborhoods goes to zero.

Key words. Lamé system, thin inhomogeneities, asymptotic formulas
AMS subject classifications. 35C20, 35R05
DOI. 10.1137/050648596

1. Introduction. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded smooth domain representing the region occupied by an elastic material.

Let $\sigma_{0} \subset \Omega$ be a simple smooth curve and define, for a positive small ϵ, the set

$$
\omega_{\epsilon}=\left\{x \in \Omega: d\left(x, \sigma_{0}\right)<\epsilon\right\}
$$

which represents an inclusion of small size made of a different elastic material.
Let \mathbb{C}_{0} and \mathbb{C}_{1} be the elastic tensor fields in $\Omega \backslash \bar{\omega}_{\epsilon}$ and ω_{ϵ}, respectively.
Given a traction field g on $\partial \Omega$, the displacement field u_{ϵ}, generated by this traction in the body containing the inclusion ω_{ϵ}, solves the following system of linearized elasticity:

$$
\left\{\begin{array}{rlll}
\operatorname{div}\left(\mathbb{C}_{\epsilon} \widehat{\nabla} u_{\epsilon}\right) & = & 0 & \text { in } \quad \Omega \tag{1}\\
\left(\mathbb{C}_{\epsilon} \widehat{\nabla} u_{\epsilon}\right) \cdot \nu & = & g & \text { on } \quad \partial \Omega,
\end{array}\right.
$$

where $\mathbb{C}_{\epsilon}=\mathbb{C}_{0} \chi_{\Omega \backslash \omega_{\epsilon}}+\mathbb{C}_{1} \chi_{\omega_{\epsilon}}, \widehat{\nabla} u_{\epsilon}=\frac{1}{2}\left(\nabla u_{\epsilon}+\left(\nabla u_{\epsilon}\right)^{T}\right)$ is the symmetric deformation tensor and ν denotes the outward unit normal to $\partial \Omega$.

Let us also introduce the background displacement u_{0}, namely the solution of

$$
\left\{\begin{array}{rll}
\operatorname{div}\left(\mathbb{C}_{0} \widehat{\nabla} u_{0}\right) & =0 & \text { in } \quad \Omega \tag{2}\\
\left(\mathbb{C}_{0} \widehat{\nabla} u_{0}\right) \cdot \nu & =g \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

The goal of this paper is to find an asymptotic expansion for $\left(u_{\epsilon}-u_{0}\right)_{\left.\right|_{\partial \Omega}}$ as $\epsilon \rightarrow 0$. An analogous expansion has been derived in [BFV] for the case of thin conductivity inclusions. These expansions represent a powerful tool to solve the inverse problem of identifying the inclusions, given boundary measurements (see, [ABF] and [ABF2] for the case of thin conductivity inclusions and $[\mathrm{AK}]$ for further references).

[^0]In [AKNT] the authors derive an asymptotic expansion for the boundary displacement field $\left(u_{\epsilon}-u_{0}\right)_{\left.\right|_{\Omega \Omega}}$ in the case of diametrically small elastic inclusions, namely inclusions of the form $z+\epsilon B$, where z is a point in Ω and B is a bounded domain containing the origin. The approach they use, based on the method of layer potentials (see $[\mathrm{AK}]$), allows them to find a very accurate expansion. Unfortunately, this method does not seem to work in the case of thin elastic inclusions. Hence, in order to derive the expansion in our context, we apply similar arguments as in [BFV] for conductivity inclusions; more precisely, we use a variational approach and fine regularity estimates for solutions of elliptic systems with discontinuous coefficients obtained by Li and Nirenberg in [LN]. The main difficulty arising in the framework of linear elasticity, compared to the conductivity case, consists of finding an explicit representation formula for the tensor appearing in the first order term of the asymptotic expansion.

The plan of the paper is as follows: in section 2 we introduce some notation and state the main result. Section 3 is devoted to the derivation of some estimates and properties of the displacement field, and in section 4 we prove our main result.
2. The main result. Let us introduce some notation and assumptions that will be useful in what follows.
(a) We will assume that σ_{0} is of class C^{3} and that there exists some $K>0$ such that

$$
\begin{align*}
d\left(\sigma_{0}, \partial \Omega\right) & \geq K^{-1} \\
\left\|\sigma_{0}\right\|_{C^{3}} & \leq K \tag{3}\\
K^{-1} \leq \operatorname{length}\left(\sigma_{0}\right) & \leq K
\end{align*}
$$

Moreover, we assume that for every $x \in \sigma_{0}$ there are two discs, B_{1} and B_{2}, of radius K^{-1} such that

$$
\bar{B}_{1} \cap \bar{B}_{2}=\bar{B}_{1} \cap \sigma_{0}=\bar{B}_{2} \cap \sigma_{0}=\{x\}
$$

The latter assumption guarantees that different parts of σ_{0} do not get too close, so that ω_{ϵ} does not self-intersect for small ϵ.
(b) Ω and ω_{ϵ} are both homogeneous and isotropic, i.e., the elastic tensor fields \mathbb{C}_{0} and \mathbb{C}_{1} are of the following form:

$$
\begin{equation*}
\left(\mathbb{C}_{m}\right)_{i j l k}=\lambda_{m} \delta_{i j} \delta_{k l}+\mu_{m}\left(\delta_{k i} \delta_{l j}+\delta_{k j} \delta_{l i}\right), \text { for } i, j, k, l=1,2, \quad m=0,1 \tag{4}
\end{equation*}
$$

where $\left(\lambda_{0}, \mu_{0}\right)$ and $\left(\lambda_{1}, \mu_{1}\right)$ are the Lamè coefficients corresponding to $\Omega \backslash \bar{\omega}_{\epsilon}$ and ω_{ϵ}, respectively, and $\left(\lambda_{0}-\lambda_{1}\right)^{2}+\left(\mu_{0}-\mu_{1}\right)^{2} \neq 0$.
(c) There are two positive constants α_{0} and β_{0} such that

$$
\begin{equation*}
\min \left(\mu_{0}, \mu_{1}\right) \geq \alpha_{0}, \quad \min \left(2 \lambda_{0}+2 \mu_{0}, 2 \lambda_{1}+2 \mu_{1}\right) \geq \beta_{0} \tag{5}
\end{equation*}
$$

We note that the last conditions ensure that \mathbb{C}_{ϵ} is strongly convex in Ω, i.e., if we set $\xi_{0}=\min \left(2 \alpha_{0}, \beta_{0}\right)$, then

$$
\mathbb{C}_{\epsilon} A \cdot A \geq \xi_{0}|A|^{2}
$$

for any symmetric 2×2 matrix A, where $A \cdot B=\sum_{i j} a_{i j} b_{i j}$ and $|A|^{2}=A \cdot A$.
(d) We shall prescribe a traction field $g \in H^{-1 / 2}\left(\partial \Omega, \mathbb{R}^{2}\right)$ satisfying the compatibility condition

$$
\begin{equation*}
\int_{\partial \Omega} g \cdot R=0 \tag{6}
\end{equation*}
$$

for every infinitesimal rigid displacement R, that is $R(x)=c+W x$, where c is any constant vector in \mathbb{R}^{2} and W any constant 2×2 skew matrix.

Under our assumptions there exist weak solutions u_{ϵ} and $u_{0} \in H^{1}\left(\Omega, \mathbb{R}^{2}\right)$ to the problems (1) and (2), respectively (see, for example, [V] or [F]). Concerning uniqueness we recall that solutions of the above problems are uniquely determined up to infinitesimal rigid displacements. Hence, in order to uniquely identify such solutions, we assume that u_{ϵ} and u_{0} satisfy the normalization conditions

$$
\begin{equation*}
\int_{\partial \Omega} u=0, \quad \int_{\Omega} \nabla u-(\nabla u)^{T}=0 \tag{7}
\end{equation*}
$$

It is easy to see that if u_{ϵ} is solution of (1), then it solves the Lamé system

$$
\left\{\begin{array}{rll}
\mu_{0} \Delta u_{\epsilon}+\left(\lambda_{0}+\mu_{0}\right) \nabla\left(\operatorname{div} u_{\epsilon}\right) & =0 \quad \text { in } \Omega \backslash \bar{\omega}_{\epsilon}, \tag{8}\\
\mu_{1} \Delta u_{\epsilon}+\left(\lambda_{1}+\mu_{1}\right) \nabla\left(\operatorname{div} u_{\epsilon}\right) & =0 \quad \text { in } \omega_{\epsilon}, \\
u_{\epsilon}^{i} & =\quad u_{\epsilon}^{e} \text { on } \partial \omega_{\epsilon}, \\
\left(\mathbb{C}_{0} \widehat{\nabla} u_{\epsilon}^{i}\right) \nu & =\left(\mathbb{C}_{1} \widehat{\nabla} u_{\epsilon}^{e}\right) \nu \text { on } \partial \omega_{\epsilon},
\end{array}\right.
$$

where ν is the outward unit normal to $\partial \omega_{\epsilon}$, and, for $x \in \partial \omega_{\epsilon}$,

$$
u_{\epsilon}^{e}(x)=\lim _{\substack{y \rightarrow x \\ y \in \Omega \backslash \overline{\omega_{\epsilon}}}} u_{\epsilon}(y), \quad u_{\epsilon}^{i}(x)=\lim _{\substack{y \rightarrow x \\ y \in \omega_{\epsilon}}} u_{\epsilon}(y),
$$

and

$$
\widehat{\nabla} u_{\epsilon}^{e}(x)=\lim _{\substack{y \rightarrow x \\ y \in \Omega \backslash \bar{\omega}_{\epsilon}}} \widehat{\nabla} u_{\epsilon}(y), \quad \widehat{\nabla} u_{\epsilon}^{i}(x)=\lim _{\substack{y \rightarrow x \\ y \in \omega_{\epsilon}}} \widehat{\nabla} u_{\epsilon}(y)
$$

For $y \in \Omega$, we will denote by $N(\cdot, y)$ the Neumann function related to Ω, i.e., the weak solution to the problem

$$
\left\{\begin{align*}
\operatorname{div}\left(\mathbb{C}_{0} \widehat{\nabla} N(\cdot, y)\right) & =-\delta_{y} \mathrm{I}_{d} \quad \text { in } \Omega, \tag{9}\\
\left(\mathbb{C}_{0} \widehat{\nabla} N(\cdot, y)\right) \cdot \nu & =-\frac{1}{|\partial \Omega|} \mathrm{I}_{d} \quad \text { on } \partial \Omega
\end{align*}\right.
$$

with the normalization conditions (7) and where I_{d} is the identity matrix in \mathbb{R}^{2}.
Note that $N(x, y)$ is regular for $x \neq y$ and, at $x=y$, has the same singularities of $\Gamma(x-y)$, where $\Gamma=\left(\Gamma_{i j}\right)_{i, j=1}^{2}$ is the fundamental solution in the free space of the system

$$
\operatorname{div}\left(\mathbb{C}_{0} \widehat{\nabla} \cdot\right)=0 \quad \text { in } \quad \mathbb{R}^{2}
$$

and is given by

$$
\Gamma_{i j}(x)=\frac{A}{2 \pi} \delta_{i j} \ln |x|-\frac{B}{2 \pi} \frac{x_{i} x_{j}}{|x|^{2}}
$$

where $A=\frac{1}{2}\left(\frac{1}{\mu_{0}}+\frac{1}{\lambda_{0}+2 \mu_{0}}\right)$ and $B=\frac{1}{2}\left(\frac{1}{\mu_{0}}-\frac{1}{\lambda_{0}+2 \mu_{0}}\right)$.
Let us fix an orthonormal system (n, τ) on σ_{0} such that n is a unit normal vector field to the curve and τ is a unit tangent vector field. If σ_{0} is a closed curve, then we will take n to point in the outward direction of the domain it encloses. Let κ denote the curvature of σ_{0} and, for $a, b \in \mathbb{R}^{2}$, let $a \otimes b$ denote the tensor product $a \otimes b=a_{i} b_{j}$.

We are now ready to state our main result.

Theorem 2.1. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded smooth domain and let $\sigma_{0} \subset \subset \Omega$ be a simple curve satisfying (3). Assume (4), (5), and (6) and let u_{ϵ} and u_{0} be the solutions to (1) and (2), respectively, satisfying (7). For every $x \in \sigma_{0}$, there exists a fourth order symmetric tensor field $\mathcal{M}(x)$ such that, for $y \in \partial \Omega$ and $\epsilon \rightarrow 0$,

$$
\begin{equation*}
\left(u_{\epsilon}-u_{0}\right)(y)=2 \epsilon \int_{\sigma_{0}} \mathcal{M}(x) \widehat{\nabla} u_{0}(x) \cdot \widehat{\nabla} N(x, y) d \sigma_{0}(x)+o(\epsilon) \tag{10}
\end{equation*}
$$

The term $o(\epsilon)$ is bounded by $C \epsilon^{1+\theta}\|g\|_{H^{-1 / 2}(\partial \Omega)}$, with $0<\theta<1$ and C depending only on $\theta, \Omega, \alpha_{0}, \beta_{0}$, and K.

Furthermore, on σ_{0},

$$
\begin{aligned}
\mathcal{M} \widehat{\nabla} u_{0}= & a \operatorname{div} u_{0} I_{d}+b \widehat{\nabla} u_{0} \\
& +c\left(\frac{\partial\left(u_{0} \cdot \tau\right)}{\partial \tau}+\kappa\left(u_{0} \cdot n\right)\right) \tau \otimes \tau+d \frac{\partial\left(u_{0} \cdot n\right)}{\partial n} n \otimes n
\end{aligned}
$$

where

$$
\begin{align*}
& a=\left(\lambda_{1}-\lambda_{0}\right) \frac{\lambda_{0}+2 \mu_{0}}{\lambda_{1}+2 \mu_{1}}, \quad b=2\left(\mu_{1}-\mu_{0}\right) \frac{\mu_{0}}{\mu_{1}} \tag{11}\\
& c=2\left(\mu_{1}-\mu_{0}\right)\left[\left(\frac{2 \lambda_{1}+2 \mu_{1}-\lambda_{0}}{\lambda_{1}+2 \mu_{1}}-\frac{\mu_{0}}{\mu_{1}}\right)\right] \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
d=2\left(\mu_{1}-\mu_{0}\right) \frac{\mu_{1} \lambda_{0}-\mu_{0} \lambda_{1}}{\mu_{1}\left(\lambda_{1}+2 \mu_{1}\right)} . \tag{13}
\end{equation*}
$$

The proof of the theorem is contained in section 4.
3. Energy and a priori estimates. In this section we will show that, for $\epsilon \rightarrow 0$,

$$
\begin{equation*}
\left\|u_{\epsilon}-u_{0}\right\|_{H^{1}(\Omega)}=O\left(\epsilon^{1 / 2}\right) \tag{14}
\end{equation*}
$$

In order to establish it we will need the following version of the Korn inequality.
Lemma 3.1. Let Ω be a Lipschitz connected open set in \mathbb{R}^{2}. Let $u \in H^{1}\left(\Omega, \mathbb{R}^{2}\right)$ and let $W_{0}=\int_{\Omega} \frac{1}{2}\left(\nabla u-(\nabla u)^{T}\right)$.

Then, there exists a constant C such that

$$
\begin{equation*}
\left\|\nabla u-W_{0}\right\|_{L^{2}(\Omega)} \leq C\|\widehat{\nabla} u\|_{L^{2}(\Omega)} . \tag{15}
\end{equation*}
$$

For the proof, see [T, section 3].
Proposition 3.2. Let u_{ϵ} and u_{0} be solutions to (1) and (2), respectively. There exists a constant C depending on Ω, K, α_{0}, and β_{0}, such that

$$
\begin{equation*}
\left\|u_{\epsilon}-u_{0}\right\|_{H^{1}(\Omega)} \leq C \epsilon^{1 / 2}\|g\|_{H^{-1 / 2}(\partial \Omega)} \tag{16}
\end{equation*}
$$

Proof. Since $\int_{\partial \Omega}\left(u_{\epsilon}-u_{0}\right)=0$, by the Poincaré inequality there exists a constant C, depending on Ω, such that

$$
\begin{equation*}
\int_{\Omega}\left|u_{\epsilon}-u_{0}\right|^{2} \leq C \int_{\Omega}\left|\nabla\left(u_{\epsilon}-u_{0}\right)\right|^{2} \tag{17}
\end{equation*}
$$

It thus suffices to estimate $\left\|\nabla\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}(\Omega)}$.
By the strong convexity of \mathbb{C}_{ϵ} and the Korn inequality, in the form of Lemma 3.1, applied to $u_{\epsilon}-u_{0}$, and recalling that u_{ϵ} and u_{0} satisfy (7), we get

$$
\begin{align*}
\int_{\Omega} \mathbb{C}_{\epsilon} \widehat{\nabla}\left(u_{\epsilon}-u_{0}\right) \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right) & \geq \xi_{0} \int_{\Omega}\left|\widehat{\nabla}\left(u_{\epsilon}-u_{0}\right)\right|^{2} \\
& \geq C \int_{\Omega}\left|\nabla\left(u_{\epsilon}-u_{0}\right)\right|^{2} \tag{18}
\end{align*}
$$

where C depends on α_{0}, β_{0}, and Ω.
Now, observe that

$$
\begin{equation*}
\int_{\Omega} \mathbb{C}_{\epsilon} \widehat{\nabla}\left(u_{\epsilon}-u_{0}\right) \cdot \widehat{\nabla}\left(u_{\epsilon}-u_{0}\right)=\int_{\omega_{\epsilon}}\left(\mathbb{C}_{0}-\mathbb{C}_{1}\right) \widehat{\nabla} u_{0} \cdot \widehat{\nabla}\left(u_{\epsilon}-u_{0}\right), \tag{19}
\end{equation*}
$$

which follows by integration by parts and uses the fact that $\left(\mathbb{C}_{\epsilon} \widehat{\nabla} u_{\epsilon}\right) \cdot \nu=\left(\mathbb{C}_{0} \widehat{\nabla} u_{0}\right) \cdot \nu$ on $\partial \Omega$. Indeed

$$
\begin{gathered}
\int_{\Omega} \mathbb{C}_{\epsilon} \widehat{\nabla}\left(u_{\epsilon}-u_{0}\right) \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right)-\int_{\omega_{\epsilon}}\left(\mathbb{C}_{0}-\mathbb{C}_{1}\right) \widehat{\nabla} u_{0} \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right) \\
=\int_{\Omega \backslash \omega_{\epsilon}} \mathbb{C}_{0} \hat{\nabla}\left(u_{\epsilon}-u_{0}\right) \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right)+\int_{\omega_{\epsilon}}\left(\mathbb{C}_{1} \widehat{\nabla} u_{\epsilon}-\mathbb{C}_{0} \widehat{\nabla} u_{0}\right) \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right) \\
=\int_{\Omega} \mathbb{C}_{\epsilon} \widehat{\nabla} u_{\epsilon} \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right)-\int_{\Omega} \mathbb{C}_{0} \widehat{\nabla} u_{0} \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right) \\
=\int_{\partial \Omega}\left(\left(\mathbb{C}_{\epsilon} \widehat{\nabla} u_{\epsilon}\right) \cdot \nu-\left(\mathbb{C}_{0} \widehat{\nabla} u_{0}\right) \cdot \nu\right) \cdot\left(u_{\epsilon}-u_{0}\right) d \sigma=0,
\end{gathered}
$$

hence (19) holds.
On the other hand, by the Hölder inequality,

$$
\begin{aligned}
& \int_{\omega_{\epsilon}}\left(\mathbb{C}_{0}-\mathbb{C}_{1}\right) \hat{\nabla} u_{0} \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right) d x \\
\leq & \max \left\{2\left|\mu_{0}-\mu_{1}\right|,\left|\lambda_{0}-\lambda_{1}\right|\right\}\left\|\nabla u_{0}\right\|_{L^{\infty}\left(\omega_{\epsilon}\right)}\left|\omega_{\epsilon}\right|^{1 / 2}\left\|\nabla\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

In order to bound $\left\|\nabla u_{0}\right\|_{L^{\infty}\left(\omega_{\epsilon}\right)}$ note that for small ϵ, say $\epsilon<K / 2$, the distance between ω_{ϵ} and $\partial \Omega$ is bounded from below by $K / 2$. Hence, by standard interior regularity estimates for elliptic systems (see [C]),

$$
\left\|\nabla u_{0}\right\|_{L^{\infty}\left(\omega_{\epsilon}\right)} \leq C\left\|u_{0}\right\|_{H^{1}(\Omega)}
$$

where C depends on α_{0}, β_{0}, and K.
By the divergence theorem, the trace theorem (see [LM]), and the Poincaré inequality,

$$
\left\|u_{0}\right\|_{H^{1}(\Omega)} \leq C\|g\|_{H^{-1 / 2}(\partial \Omega)}
$$

where C depends only on Ω. Finally,

$$
\begin{equation*}
\left\|\nabla u_{0}\right\|_{L^{\infty}\left(\omega_{\epsilon}\right)} \leq C\|g\|_{H^{-1 / 2}(\partial \Omega)} \tag{21}
\end{equation*}
$$

where C depends on $\Omega, \alpha_{0}, \beta_{0}$, and K.

So, by (18), (19), and (20) we obtain

$$
\left\|\nabla\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}(\Omega)} \leq C\left|\omega_{\epsilon}\right|^{1 / 2}\|g\|_{H^{-1 / 2}(\partial \Omega)}
$$

where $C=C\left(\Omega, \alpha_{0}, \beta_{0}, K\right)$. By assumption (3), we can estimate

$$
\begin{equation*}
\left|\omega_{\epsilon}\right| \leq C \epsilon \tag{22}
\end{equation*}
$$

where C depends only on K. By putting together (21), (22), and the Poincarè inequality (17), we get (16).

Besides the energy estimates (16), a key ingredient to establish the asymptotic expansion of Theorem 2.1 is a gradient estimate for elliptic systems modeling composite materials that has been established by Li and Nirenberg in [LN]. Here we state and use a simplified version of Proposition 5.1 in [LN].

Let D be the unit square $D=[-1,1] \times[-1,1]$, and let $f_{0}, \ldots, f_{l+1} \in C^{2}([-1,1])$ such that

$$
-1=f_{0}\left(x_{1}\right)<f_{1}\left(x_{1}\right)<\cdots<f_{l+1}\left(x_{1}\right)=1 \quad \text { for } \quad x_{1} \in[-1,1]
$$

Let

$$
D_{m}=\left\{x=\left(x_{1}, x_{2}\right) \in D: f_{m-1}\left(x_{1}\right)<x_{2}<f_{m}\left(x_{1}\right)\right\} \quad \text { for } \quad 1 \leq m \leq l+1
$$

We suppose that the origin does not belong to the graphs of the functions f_{j}, and we denote by m_{0} the index for which

$$
f_{m_{0}}(0)<0<f_{m_{0}+1}(0)
$$

Let us also set $\frac{1}{2} D=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right]$.
Let \mathbb{C} be a bounded symmetric Lamé tensor defined in D and such that \mathbb{C} is constant in each D_{m} with corresponding Lamé coefficients λ_{m} and μ_{m}. Then the following estimate holds.

Proposition 3.3. Let $u \in H^{1}\left(D, \mathbb{R}^{2}\right)$ be a weak solution to

$$
\operatorname{div}(\mathbb{C} \widehat{\nabla} u)=0 \quad \text { in } \quad D
$$

Then, for any $x \in \bar{D}_{m_{0}} \cap \frac{1}{2} D$,

$$
\begin{equation*}
|\nabla u(x)-\nabla u(0)| \leq C\|u\|_{L^{2}(D)}|x|^{\alpha} \tag{23}
\end{equation*}
$$

where $\alpha \in(0,1 / 4)$ and C depends on $\alpha, l, \lambda_{m}, \mu_{m}$, and $\left\|f_{m}\right\|_{C^{2}([-1,1])}$, for $m=$ $1, \ldots, l+1$.

For the proof of this result, see [LN, section 5].
4. Proof of Theorem 2.1. We divide the proof into several steps: in the first step we write $\left(u_{\epsilon}-u_{0}\right)_{\left.\right|_{\partial \Omega}}$ in terms of an integral over ω_{ϵ} of the product of $\widehat{\nabla} u_{\epsilon}^{i}$ and $\widehat{\nabla} N$.

In the second step, by using the estimate of Proposition 3.3, we reduce this integral to an integral over some part of $\partial \omega_{\epsilon}$. In the third part, we use the transmission conditions and introduce the tensor \mathcal{M}. The fourth part contains the conclusion of the proof.

First step.

We are going to show that, for $y \in \partial \Omega$,

$$
\begin{equation*}
\left(u_{\epsilon}-u_{0}\right)(y)=\int_{\omega_{\epsilon}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon} \cdot \widehat{\nabla} N(\cdot, y) \tag{24}
\end{equation*}
$$

In order to get (24) we recall that, for $y \in \Omega$, the function $N(\cdot, y)$ satisfies

$$
\int_{\Omega} \mathbb{C}_{0} \widehat{\nabla} N(\cdot, y) \cdot \widehat{\nabla} v=-v(y)+\frac{1}{|\partial \Omega|} \int_{\partial \Omega} v \quad \forall v \in H^{1}(\Omega)
$$

By choosing $v=u_{\epsilon}-u_{0}$ and using the normalization (7) we get

$$
\begin{equation*}
\int_{\Omega} \mathbb{C}_{0} \widehat{\nabla} N(\cdot, y) \cdot \widehat{\nabla}\left(u_{\epsilon}-u_{0}\right)=-\left(u_{\epsilon}-u_{0}\right)(y) \tag{25}
\end{equation*}
$$

Observe now that

$$
\begin{gather*}
\int_{\Omega} \mathbb{C}_{0} \widehat{\nabla} N(\cdot, y) \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right)=\int_{\omega_{\epsilon}}\left(\mathbb{C}_{0}-\mathbb{C}_{1}\right) \hat{\nabla} N(\cdot, y) \cdot \hat{\nabla} u_{\epsilon} \\
\quad+\int_{\Omega} \mathbb{C}_{\epsilon} \hat{\nabla} N(\cdot, y) \cdot \hat{\nabla} u_{\epsilon}-\int_{\Omega} \mathbb{C}_{0} \hat{\nabla} N(\cdot, y) \cdot \widehat{\nabla} u_{0} \tag{26}
\end{gather*}
$$

Since u_{ϵ} and u_{0} are solutions to (1) and (2), respectively, we have

$$
\begin{aligned}
\int_{\Omega} \mathbb{C}_{0} \widehat{\nabla} N(\cdot, y) \cdot \widehat{\nabla} u_{0} & =\int_{\partial \Omega} g \cdot N(\cdot, y) \\
& =\int_{\Omega} \mathbb{C}_{\epsilon} \widehat{\nabla} u_{\epsilon} \cdot \widehat{\nabla} N(\cdot, y)
\end{aligned}
$$

hence (26) becomes

$$
\int_{\Omega} \mathbb{C}_{0} \widehat{\nabla} N(\cdot, y) \cdot \hat{\nabla}\left(u_{\epsilon}-u_{0}\right)=\int_{\omega_{\epsilon}}\left(\mathbb{C}_{0}-\mathbb{C}_{1}\right) \widehat{\nabla} N(\cdot, y) \cdot \widehat{\nabla} u_{\epsilon}
$$

and, by inserting this last relation into (25,) we get (24) for $y \in \Omega$.
Finally, since $u_{\epsilon}-u_{0}$ is continuous up to $\partial \Omega$, we get (24) for any $y \in \partial \Omega$.
Second step.
Let β be a constant $0<\beta<1$, and set

$$
\omega_{\epsilon}^{\prime}=\left\{x+\mu n(x): x \in \sigma_{0}, d\left(x, \partial \sigma_{0}\right)>\epsilon^{\beta}, \mu \in(-\epsilon, \epsilon)\right\}
$$

Notice that if σ_{0} is a closed simple curve, then $\omega_{\epsilon}^{\prime}=\omega_{\epsilon}$.
Let us write

$$
\begin{align*}
\int_{\omega_{\epsilon}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \hat{\nabla} u_{\epsilon} \cdot \hat{\nabla} N(\cdot, y) & =\int_{\omega_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \hat{\nabla} u_{\epsilon} \cdot \hat{\nabla} N(\cdot, y) \\
& +\int_{\omega_{\epsilon} \backslash \omega_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon} \cdot \hat{\nabla} N(\cdot, y) \tag{27}
\end{align*}
$$

Concerning the last term in (27)

$$
\begin{align*}
\left|\int_{\omega_{\epsilon} \backslash \omega_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \hat{\nabla} u_{\epsilon} \cdot \hat{\nabla} N(\cdot, y)\right| & \leq\left|\int_{\omega_{\epsilon} \backslash \omega_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla}\left(u_{\epsilon}-u_{0}\right) \cdot \hat{\nabla} N(\cdot, y)\right| \\
& +\left|\int_{\omega_{\epsilon} \backslash \omega_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{0} \cdot \widehat{\nabla} N(\cdot, y)\right| \tag{28}
\end{align*}
$$

In order to bound the first term on the right-hand side (RHS) of (28) we use the energy estimate (16) and the fact that, for $y \in \partial \Omega,\|\nabla N(\cdot, y)\|_{L^{\infty}\left(\omega_{\epsilon}\right)}$ is bounded uniformly in ϵ. Moreover, since

$$
\left|\omega_{\epsilon} \backslash \omega_{\epsilon}^{\prime}\right| \leq C \epsilon^{1+\beta}
$$

we get

$$
\left|\int_{\omega_{\epsilon} \backslash \omega_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla}\left(u_{\epsilon}-u_{0}\right) \cdot \widehat{\nabla} N(\cdot, y)\right| \leq C \epsilon^{1+\beta / 2}\|g\|_{H^{-1 / 2}(\partial \Omega)}
$$

where $C=C\left(\Omega, K, \alpha_{0}, \beta_{0}\right)$.
In the last term on the RHS of (28) we use the regularity estimates for u_{0} so that

$$
\begin{aligned}
\left|\int_{\omega_{\epsilon} \backslash \omega_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{0} \cdot \widehat{\nabla} N(\cdot, y)\right| & \leq C\left\|\nabla u_{0}\right\|_{L^{\infty}\left(\omega_{\epsilon}\right)}\|\nabla N(\cdot, y)\|_{L^{\infty}\left(\omega_{\epsilon}\right)} \cdot\left|\omega_{\epsilon} \backslash \omega_{\epsilon}^{\prime}\right| \\
& \leq C \epsilon^{1+\beta}\|g\|_{H^{-1 / 2}(\partial \Omega)}
\end{aligned}
$$

where $C=C\left(K, \alpha_{0}, \beta_{0}\right)$ and so (27) becomes, for $\epsilon \rightarrow 0$,

$$
\begin{equation*}
\int_{\omega_{\epsilon}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \hat{\nabla} u_{\epsilon} \cdot \hat{\nabla} N(\cdot, y)=\int_{\omega_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon} \cdot \hat{\nabla} N(\cdot, y)+O\left(\epsilon^{1+\beta / 2}\right) \tag{29}
\end{equation*}
$$

Now let us denote by σ_{μ}^{\prime}, for $\mu \in[-\epsilon, \epsilon]$, the curve

$$
\sigma_{\mu}^{\prime}=\left\{x+\mu n(x): x \in \sigma_{0}, d\left(x, \partial \sigma_{0}\right)>\epsilon^{\beta}\right\}
$$

For every point $x+\mu n(x) \in \omega_{\epsilon}^{\prime}$ (for $\mu \in(-\epsilon, \epsilon)$), let us consider the point $x+$ $\epsilon n(x) \in \sigma_{\epsilon}^{\prime}$ and let us compare $\nabla u_{\epsilon}(x+\mu n(x))$ with $\nabla u_{\epsilon}^{i}(x+\epsilon n(x))$.

More precisely, we will establish that, for $\alpha \in(0,1 / 4)$,

$$
\begin{equation*}
\left|\nabla u_{\epsilon}(x+\mu n(x))-\nabla u_{\epsilon}^{i}(x+\epsilon n(x))\right| \leq C \epsilon^{-\beta(2+\alpha)} \epsilon^{\alpha}\|g\|_{H^{-1 / 2}(\partial \Omega)} \tag{30}
\end{equation*}
$$

where $C=C\left(K, \alpha_{0}, \beta_{0}, \alpha\right)$.
Let ϵ be small enough to have

$$
\begin{equation*}
2 \epsilon<\frac{\epsilon^{\beta}}{2 \sqrt{2}} \tag{31}
\end{equation*}
$$

We note that the distance between $x+\mu n(x)$ and $x+\epsilon n(x)$ is smaller than 2ϵ and that, in a neighborhood of $x+\mu n(x)$ of radius ϵ^{β}, the boundary $\partial \omega_{\epsilon}$ is represented by graphs of smooth functions. In particular, if we set the origin to $x+\mu n(x)$, up to a rotation of the coordinate system $\left(z_{1}, z_{2}\right)$, we have that there exist two functions g_{1} and g_{2} such that, for $-\frac{\epsilon^{\beta}}{\sqrt{2}}<z_{1}<\frac{\epsilon^{\beta}}{\sqrt{2}}$,

$$
\mathbb{C}_{\epsilon}\left(z_{1}, z_{2}\right)=\left\{\begin{array}{lll}
\mathbb{C}_{0} & \text { if } & -\frac{\epsilon^{\beta}}{\sqrt{2}}<z_{2}<g_{1}\left(z_{1}\right) \\
\mathbb{C}_{1} & \text { if } & g_{1}\left(z_{1}\right)<z_{2}<g_{2}\left(z_{1}\right), \\
\mathbb{C}_{0} & \text { if } & g_{2}\left(z_{1}\right)<z_{2}<\frac{\epsilon^{\beta}}{\sqrt{2}}
\end{array}\right.
$$

By the a priori assumptions on σ_{0} we know that

$$
\left\|g_{1}\right\|_{C^{2}}, \quad\left\|g_{2}\right\|_{C^{2}} \leq K
$$

Consider now the function

$$
v(y)=u_{\epsilon}\left(\frac{\epsilon^{\beta}}{\sqrt{2}} y\right)
$$

which is defined in $[-1,1] \times[-1,1]$. Notice that v solves

$$
\operatorname{div}(\tilde{\mathbb{C}} \widehat{\nabla} v)=0 \quad \text { in } \quad(-1,1) \times(-1,1)
$$

where

$$
\tilde{\mathbb{C}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{lll}
\mathbb{C}_{0} & \text { if } & -1<y_{2}<f_{1}\left(y_{1}\right)=\sqrt{2} \epsilon^{-\beta} g_{1}\left(\frac{\epsilon^{\beta}}{\sqrt{2}} y_{1}\right) \\
\mathbb{C}_{1} & \text { if } & f_{1}\left(y_{1}\right)<y_{2}<f_{2}\left(y_{1}\right)=\sqrt{2} \epsilon^{-\beta} g_{2}\left(\frac{\epsilon^{\beta}}{\sqrt{2}} y_{1}\right) \\
\mathbb{C}_{0} & \text { if } & f_{2}\left(y_{1}\right)<y_{2}<1
\end{array}\right.
$$

Let us check that we can apply Proposition 3.3 , with $l=2$ and $m_{0}=1$. Since $\left|g_{i}\left(y_{1}\right)\right|<\frac{\epsilon^{\beta}}{\sqrt{2}}$ and the derivative of g_{i} is bounded by K for $i=1,2$, then

$$
\left\|g_{i}\right\|_{L^{\infty}} \leq(K+1) \frac{\epsilon^{\beta}}{\sqrt{2}}, \quad i=1,2
$$

From this last estimate, and from the C^{2} bounds on g_{1} and g_{2}, we get

$$
\left\|f_{i}\right\|_{C^{2}([-1,1])} \leq 2 K+1 \quad \text { for } \quad i=1,2
$$

Since we set the origin at the point $x+\mu n(x)$, we have that

$$
|x+\epsilon n(x)|=|x+\mu n(x)+(\epsilon-\mu) n(x)|=|(\epsilon-\mu) n(x)| \leq 2 \epsilon
$$

Hence, if we set $\bar{y}=\sqrt{2} \epsilon^{-\beta}(x+\epsilon n(x))$ we have, by (31),

$$
|\bar{y}|=\sqrt{2} \epsilon^{-\beta}|x+\epsilon n(x)| \leq \sqrt{2} \epsilon^{-\beta} \cdot 2 \epsilon \leq \frac{1}{2}
$$

and, $\bar{y} \in \bar{D}_{m_{0}} \cap \frac{1}{2} D$. By Proposition 3.3,

$$
|\nabla v(\bar{y})-\nabla v(0)| \leq C\|v\|_{L^{2}(D)}|\bar{y}|^{\alpha}
$$

where C depends only on K, α_{0}, β_{0}, and $\alpha \in(0,1 / 4)$. If we read this estimate for the function u_{ϵ} we get

$$
\begin{aligned}
\left|\nabla u_{\epsilon}(x+\mu n(x))-\nabla u_{\epsilon}^{i}(x+\epsilon n(x))\right| & \leq C\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)} \epsilon^{-\beta(2+\alpha)}|(\mu-\epsilon) n(x)|^{\alpha} \\
& \leq C\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)} \epsilon^{-\beta(2+\alpha)} \epsilon^{\alpha} .
\end{aligned}
$$

Since

$$
\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)} \leq C\left\|\nabla u_{\epsilon}\right\|_{L^{2}(\Omega)} \leq C\|g\|_{H^{-1 / 2}(\partial \Omega)}
$$

we finally have (30).
Due to (30), we can approximate the values of ∇u_{ϵ} in $\omega_{\epsilon}{ }^{\prime}$ with the values on $\sigma_{\epsilon}^{\prime}$.
Let us denote by $\sigma_{0}{ }^{\prime}=\left\{x \in \sigma_{0}: d\left(x, \partial \sigma_{0}\right)>\epsilon^{\beta}\right\}$. Due to the regularity assumption on σ_{0},

$$
d \sigma_{x}^{\mu}=(1+O(\epsilon)) d \sigma_{x}^{0}
$$

where $d \sigma_{x}^{\mu}$ and $d \sigma_{x}^{0}$ denote the infinitesimal arclengths on σ_{μ}^{\prime} and σ_{0}^{\prime}, respectively.
Hence,

$$
\begin{aligned}
& \int_{\omega_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \hat{\nabla} u_{\epsilon}(x) \cdot \hat{\nabla} N(x, y) d x \\
= & \int_{-\epsilon}^{\epsilon} \int_{\sigma_{\mu}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon}(x) \cdot \widehat{\nabla} N(x, y) d \sigma_{x}^{\mu} d \mu \\
= & \int_{-\epsilon}^{\epsilon} \int_{\sigma_{0}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon}(x+\mu n(x)) \cdot \widehat{\nabla} N(x+\mu n(x), y) d \sigma_{x}^{0} d \mu+O\left(\epsilon^{2}\right) \\
= & \int_{-\epsilon}^{\epsilon} \int_{\sigma_{0}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon}(x+\epsilon n(x)) \cdot \widehat{\nabla} N(x+\epsilon n(x), y) d \sigma_{x}^{0} d \mu \\
& +O\left(\epsilon^{(1-\beta)(1+\alpha)}\right) \\
(32)= & 2 \epsilon \int_{\sigma_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon}^{i} \cdot \widehat{\nabla} N(\cdot, y)+O\left(\epsilon^{1+\alpha-\beta(2+\alpha)}\right),
\end{aligned}
$$

for $\beta<\alpha(2+\alpha)^{-1}$.
Third step.
Let us now extend the fields n and τ from σ_{0} to $\omega_{\epsilon}^{\prime}$. For $x \in \sigma_{0}^{\prime}$ we set n and τ equal to $n(x)$ and $\tau(x)$ all along the line segment $x+\mu n(x)$, for $\mu \in[-\epsilon, \epsilon]$.

We will show, by using the transmission condition (8), that on $\sigma_{\epsilon}^{\prime}$,

$$
\begin{equation*}
\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon}^{i}=\mathcal{M}_{\epsilon} \widehat{\nabla} u_{\epsilon}^{e} \tag{33}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{M}_{\epsilon} \widehat{\nabla} u_{\epsilon}^{e}= & a \operatorname{div} u_{\epsilon}^{e} \mathrm{I}_{d}+b \widehat{\nabla} u_{\epsilon}^{e}+c\left(\frac{\partial\left(u_{\epsilon}^{e} \cdot \tau\right)}{\partial \tau}+\kappa_{\epsilon}\left(u_{\epsilon}^{e} \cdot n\right)\right) \tau \otimes \tau \\
& +d \frac{\partial\left(u_{\epsilon}^{e} \cdot n\right)}{\partial n} n \otimes n
\end{aligned}
$$

with a, b, c, and d given by (11), (12), and (13), and κ_{ϵ} being the curvature of $\sigma_{\epsilon}^{\prime}$.
Let us express the transmission conditions (8) and $\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon}^{i}$ in the n, τ coordinate system, namely

$$
\begin{align*}
\frac{\partial\left(u_{\epsilon}^{i} \cdot \tau\right)}{\partial \tau}+\kappa_{\epsilon}\left(u_{\epsilon}^{i} \cdot n\right) & =\frac{\partial\left(u_{\epsilon}^{e} \cdot \tau\right)}{\partial \tau}+\kappa_{\epsilon}\left(u_{\epsilon}^{e} \cdot n\right) \\
\frac{\partial\left(u_{\epsilon}^{i} \cdot n\right)}{\partial \tau}-\kappa_{\epsilon}\left(u_{\epsilon}^{i} \cdot \tau\right) & =\frac{\partial\left(u_{\epsilon}^{e} \cdot n\right)}{\partial \tau}-\kappa_{\epsilon}\left(u_{\epsilon}^{e} \cdot \tau\right) \tag{34}\\
\lambda_{1}\left(\frac{\partial\left(u_{\epsilon}^{i} \cdot \tau\right)}{\partial \tau}+\kappa_{\epsilon}\left(u_{\epsilon}^{i} \cdot n\right)+\frac{\partial\left(u_{\epsilon}^{i} \cdot n\right)}{\partial n}\right) & +2 \mu_{1} \frac{\partial\left(u_{\epsilon}^{i} \cdot n\right)}{\partial n} \\
=\lambda_{0}\left(\frac{\partial\left(u_{\epsilon}^{e} \cdot \tau\right)}{\partial \tau}+\kappa_{\epsilon}\left(u_{\epsilon}^{e} \cdot n\right)\right. & \left.+\frac{\partial\left(u_{\epsilon}^{e} \cdot n\right)}{\partial n}\right)+2 \mu_{0} \frac{\partial\left(u_{\epsilon}^{e} \cdot n\right)}{\partial n} \\
\mu_{1}\left(\frac{\partial\left(u_{\epsilon}^{i} \cdot \tau\right)}{\partial n}-\kappa_{\epsilon}\left(u_{\epsilon}^{i} \cdot \tau\right)+\frac{\partial\left(u_{\epsilon}^{i} \cdot n\right)}{\partial \tau}\right) & =\mu_{0}\left(\frac{\partial\left(u_{\epsilon}^{e} \cdot \tau\right)}{\partial n}-\kappa_{\epsilon}\left(u_{\epsilon}^{e} \cdot \tau\right)+\frac{\partial\left(u_{\epsilon}^{e} \cdot n\right)}{\partial \tau}\right)
\end{align*}
$$

and

$$
\begin{align*}
\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon}^{i} & =\left(\lambda_{1}-\lambda_{0}\right)\left[\frac{\partial\left(u_{\epsilon}^{i} \cdot \tau\right)}{\partial \tau}+\frac{\partial\left(u_{\epsilon}^{i} \cdot n\right)}{\partial n}+\kappa_{\epsilon}\left(u_{\epsilon}^{i} \cdot n\right)\right](n \otimes n+\tau \otimes \tau) \\
& +2\left(\mu_{1}-\mu_{0}\right)\left[\left(\frac{\partial\left(u_{\epsilon}^{i} \cdot \tau\right)}{\partial \tau}+\kappa_{\epsilon}\left(u_{\epsilon}^{i} \cdot n\right)\right) \tau \otimes \tau+\frac{\partial\left(u_{\epsilon}^{i} \cdot n\right)}{\partial n} n \otimes n\right. \\
& \left.+\frac{1}{2}\left(\frac{\partial\left(u_{\epsilon}^{i} \cdot \tau\right)}{\partial n}+\frac{\partial\left(u_{\epsilon}^{i} \cdot n\right)}{\partial \tau}-\kappa_{\epsilon}\left(u_{\epsilon}^{i} \cdot \tau\right)\right)(\tau \otimes n+n \otimes \tau)\right] . \tag{35}
\end{align*}
$$

By solving the system (34) with respect to the derivatives of the components of u_{ϵ}^{i}, and inserting the result into (35), we derive (33).

Now, by inserting (33) into (32), we get

$$
\begin{equation*}
\int_{\sigma_{\epsilon}^{\prime}}\left(\mathbb{C}_{1}-\mathbb{C}_{0}\right) \widehat{\nabla} u_{\epsilon}^{i} \cdot \widehat{\nabla} N(\cdot, y)=2 \epsilon \int_{\sigma_{\epsilon}^{\prime}} \mathcal{M}_{\epsilon} \widehat{\nabla} u_{\epsilon}^{e} \cdot \widehat{\nabla} N(\cdot, y)+O\left(\epsilon^{1+\alpha-\beta(2+\alpha)}\right) \tag{36}
\end{equation*}
$$

Fourth step.

We will show that

$$
\begin{equation*}
\left\|\nabla u_{\epsilon}^{e}-\nabla u_{0}\right\|_{L^{\infty}\left(\sigma_{\epsilon}^{\prime}\right)} \leq C \epsilon^{\gamma}\|g\|_{H^{-1 / 2}(\partial \Omega)} \tag{37}
\end{equation*}
$$

for some positive γ.
In order to prove the above inequality, we need the following theorem.
TheOrem 4.1 (mean value property). Let Ψ be a biharmonic scalar, vector, or tensor field in a open bounded domain D. Then, for any ball $B_{\rho}(y) \subset \subset D$,

$$
\begin{equation*}
\Psi(y)=\frac{1}{2 \pi}\left[\frac{4}{\rho^{2}} \int_{B_{\rho}(y)} \Psi(x) d x-\frac{1}{\rho} \int_{\partial B_{\rho}(y)} \Psi(x) d \sigma_{x}\right] \tag{38}
\end{equation*}
$$

For the proof of Theorem 4.1, see $[\mathrm{N}]$.
Since $\nabla u_{\epsilon}-\nabla u_{0}$ is biharmonic in $\Omega \backslash \bar{\omega}_{\epsilon}$ we might use the mean value property (38) for points in the set $\Omega_{K} \backslash \bar{\omega}_{d}$, where $\Omega_{K}=\left\{x \in \Omega: d(x, \partial \Omega)>\frac{1}{2 K}\right\}$ and d is such that $2 \epsilon<d$.

Observe that, by (38), for every $y \in \Omega_{K} \backslash \bar{\omega}_{d}$ and for $0<\lambda \leq \frac{d}{2}$,

$$
\begin{equation*}
\nabla\left(u_{\epsilon}-u_{0}\right)(y)=\frac{1}{2 \pi}\left[\frac{4}{\lambda^{2}} \int_{B_{\lambda}(y)} \nabla\left(u_{\epsilon}-u_{0}\right)-\frac{1}{\lambda} \int_{\partial B_{\lambda}} \nabla\left(u_{\epsilon}-u_{0}\right)\right] \tag{39}
\end{equation*}
$$

By using the divergence theorem we can rewrite (39) as follows:

$$
\nabla\left(u_{\epsilon}-u_{0}\right)(y)=\frac{1}{2 \pi}\left[\frac{4}{\lambda^{2}} \int_{\partial B_{\lambda}(y)}\left(u_{\epsilon}-u_{0}\right) \otimes \tilde{\nu} d \sigma-\frac{1}{\lambda} \int_{\partial B_{\lambda}} \nabla\left(u_{\epsilon}-u_{0}\right)\right]
$$

where $\tilde{\nu}$ is the outward normal vector to ∂B_{λ}. If we multiply the last relation by λ^{3} and integrate from 0 to $\rho=\frac{d}{2}$ we get

$$
\begin{equation*}
\nabla\left(u_{\epsilon}-u_{0}\right)(y)=\frac{12}{\pi}\left[\frac{4}{d^{4}} \int_{B_{\frac{d}{2}}(y)}\left(u_{\epsilon}-u_{0}\right) \otimes \underline{r} d x-\frac{1}{d^{4}} \int_{B_{\frac{d}{2}}(y)} r^{2} \nabla\left(u_{\epsilon}-u_{0}\right) d x\right] \tag{40}
\end{equation*}
$$

where $\underline{r}(x)=x-y, r=|\underline{r}|$.
From (40) and (16) we have that

$$
\begin{equation*}
\left\|\nabla\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{\infty}\left(\Omega_{K} \backslash \omega_{d}\right)} \leq C d^{-2} \epsilon^{\frac{1}{2}} \tag{41}
\end{equation*}
$$

where $C=C\left(\Omega, K, \alpha_{0}, \beta_{0}\right)$. Let $x=z+\epsilon n(z)$ be any point on $\sigma_{\epsilon}^{\prime}$ and let x_{d} be the point $x_{d}=z+d n(z)$. Since the entire line segment from x to x_{d} lies in $\Omega \backslash \bar{\omega}_{\epsilon}$ and has distance greater than $\frac{\epsilon^{\beta}}{2}$ from $\partial \sigma_{0}$, by Proposition 3.3 and arguing similarly as we did to prove (30), we have

$$
\begin{equation*}
\left|\nabla u_{\epsilon}^{e}(x)-\nabla u_{\epsilon}\left(x_{d}\right)\right| \leq C \epsilon^{-(2+\alpha) \beta} d^{\alpha}\|g\|_{H^{-1 / 2}(\partial \Omega)} \tag{42}
\end{equation*}
$$

where $C=C\left(K, \alpha_{0}, \beta_{0}\right)$.
By combining (41) and (42) we have that for any $x \in \sigma_{\epsilon}^{\prime}$

$$
\begin{aligned}
\left|\nabla u_{\epsilon}^{e}(x)-\nabla u_{0}(x)\right| & \leq\left|\nabla u_{\epsilon}^{e}(x)-\nabla u_{\epsilon}\left(x_{d}\right)\right| \\
& +\left|\nabla u_{\epsilon}\left(x_{d}\right)-\nabla u_{0}\left(x_{d}\right)\right|+\left|\nabla u_{0}\left(x_{d}\right)-\nabla u_{0}(x)\right| \\
& \leq C\left(d^{\alpha} \epsilon^{-(2+\alpha) \beta}+d^{-2} \epsilon^{\frac{1}{2}}+d\right)\|g\|_{H^{-1 / 2(\partial \Omega)}} .
\end{aligned}
$$

By choosing

$$
d=\epsilon^{\frac{1}{2(\alpha+2)}}+\beta
$$

we have (37) with $\gamma=\frac{\alpha}{2(\alpha+2)}-2 \beta$. Notice that $\gamma>0$ if we choose $\beta<\frac{\alpha}{4(\alpha+2)}$.
By using (37), we have

$$
2 \epsilon \int_{\sigma_{\epsilon}^{\prime}} \mathcal{M}_{\epsilon} \widehat{\nabla} u_{\epsilon}^{e} \cdot \widehat{\nabla} N(\cdot, y)=2 \epsilon \int_{\sigma_{\epsilon}^{\prime}} \mathcal{M}_{\epsilon} \widehat{\nabla} u_{0} \cdot \widehat{\nabla} N(\cdot, y)+O\left(\epsilon^{1+\gamma}\right)
$$

Now, we recall that $d \sigma_{x}^{\epsilon}=(1+O(\epsilon)) d \sigma_{0}$ and observe that, by assumption (3), $\mathcal{M}_{\epsilon}=(1+O(\epsilon)) \mathcal{M}$. Hence

$$
\begin{equation*}
2 \epsilon \int_{\sigma_{\epsilon}^{\prime}} \mathcal{M}_{\epsilon} \widehat{\nabla} u_{\epsilon}^{e} \cdot \widehat{\nabla} N(\cdot, y)=2 \epsilon \int_{\sigma_{0}} \mathcal{M} \widehat{\nabla} u_{0} \cdot \widehat{\nabla} N(\cdot, y)+O\left(\epsilon^{1+\gamma}\right) \tag{43}
\end{equation*}
$$

Finally, if we compare the remainders in the expansion in formulas (29), (32), (36), and (43), we have that (10) holds, if we choose $\alpha \in(0,1 / 4)$ and $\beta \in(0,1)$ such that $\beta<\frac{\alpha}{4(\alpha+2)}$.

Remark 4.2. The asymptotic expansion also holds in the case where $\sigma_{0}=\cup_{i=1}^{M} \sigma_{i}$ and $\sigma_{1}, \ldots, \sigma_{M}$ are disjoint and far from each other. In that case

$$
\left(u_{\epsilon}-u_{0}\right)(y)=2 \epsilon \sum_{i=1}^{M} \int_{\sigma_{i}} \mathcal{M}_{i} \widehat{\nabla} u_{0} \cdot \widehat{\nabla} N(\cdot, y) d \sigma_{i}+o(\epsilon)
$$

where \mathcal{M}_{i} is the restriction to σ_{i} of the tensor \mathcal{M}.

REFERENCES

[ABF] H. Ammari, E. Beretta, and E. Francini, Reconstruction of thin conductivity imperfections, Appl. Anal., 83 (2004), pp. 63-76.
[ABF2] H. Ammari, E. Beretta, and E. Francini, Reconstruction of thin conductivity imperfections, II. The case of multiple segments, Appl. Anal., 85 (2006), pp. 87-105.
[AK] H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Math. 1846, Springer-Verlag, Berlin, 2004.
[AKNT] H. Ammari, H. Kang, G. Nakamura, and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity, 67 (2002), pp. 97-129.
[BFV] E. Beretta, E. Francini, and M. S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl., 82 (2003), pp. 1277-1301.
[C] S. Campanato, Sistemi Ellittici in Forma di Divergenza. Regolarità all'interno, Quaderni, Scuola Normale Superiore di Pisa, Italy, 1980.
[F] G. Fichera, Existence theorems in elasticity, in Handbuch der Physik, Vol. VI, SpringerVerlag, Berlin, Heidelberg, New York, 1972, pp. 347-389.
[LM] J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, Berlin, 1972.
[LN] Y. Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material, Commun. Pure Appl. Math., 56 (2003), pp. 892-925.
[N] M. Nicolesco, Les Fonctions Polyharmoniques, Hermann, Paris, 1936.
[T] A. Tiero, On Korn's inequality in the second case, J. Elasticity, 54 (1999), pp. 187-191.
T. Valent, Boundary Value Problems of Finite Elasticity, Springer Tracts in Natural Philosophy 31, Springer-Verlag, New York, 1988.

[^0]: *Received by the editors December 28, 2005; accepted for publication (in revised form) June 15,2006 ; published electronically DATE. This work is partly supported by MIUR under grant 2004011204.
 http://www.siam.org/journals/sima/x-x/64859.html
 ${ }^{\dagger}$ Dipartimento di Matematica "G. Castelnuovo," Università di Roma "La Sapienza," P.le Aldo Moro, 2-00185 Rome, Italy (beretta@mat.uniroma1.it)
 ${ }^{\ddagger}$ Dipartimento di Matematica "U. Dini," Università degli Studi di Firenze, Viale Morgagni, 67A - 50134 Firenze, Italy (francini@math.unifi.it)

