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AN ASYMPTOTIC FORMULA FOR THE DISPLACEMENT FIELD
IN THE PRESENCE OF THIN ELASTIC INHOMOGENEITIES∗

ELENA BERETTA† AND ELISA FRANCINI‡

Abstract. We consider a plane isotropic homogeneous elastic body with thin elastic inho-
mogeneities in the form of small neighborhoods of simple smooth curves. We derive a rigorous
asymptotic expansion of the boundary displacement field as the thickness of the neighborhoods goes
to zero.
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1. Introduction. Let Ω ⊂ R
2 be a bounded smooth domain representing the

region occupied by an elastic material.
Let σ0 ⊂ Ω be a simple smooth curve and define, for a positive small ε, the set

ωε = {x ∈ Ω : d(x, σ0) < ε} ,

which represents an inclusion of small size made of a different elastic material.
Let C0 and C1 be the elastic tensor fields in Ω \ ωε and ωε, respectively.
Given a traction field g on ∂Ω, the displacement field uε, generated by this traction

in the body containing the inclusion ωε, solves the following system of linearized
elasticity: {

div (Cε∇̂uε) = 0 in Ω,

(Cε∇̂uε) · ν = g on ∂Ω,
(1)

where Cε = C0χΩ\ωε
+C1χωε , ∇̂uε = 1

2

(∇uε + (∇uε)
T
)

is the symmetric deformation
tensor and ν denotes the outward unit normal to ∂Ω.

Let us also introduce the background displacement u0, namely the solution of{
div (C0∇̂u0) = 0 in Ω,

(C0∇̂u0) · ν = g on ∂Ω.
(2)

The goal of this paper is to find an asymptotic expansion for (uε−u0)|∂Ω
as ε → 0.

An analogous expansion has been derived in [BFV] for the case of thin conductivity
inclusions. These expansions represent a powerful tool to solve the inverse problem
of identifying the inclusions, given boundary measurements (see, [ABF] and [ABF2]
for the case of thin conductivity inclusions and [AK] for further references).
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In [AKNT] the authors derive an asymptotic expansion for the boundary displace-
ment field (uε − u0)|∂Ω

in the case of diametrically small elastic inclusions, namely
inclusions of the form z + εB, where z is a point in Ω and B is a bounded domain
containing the origin. The approach they use, based on the method of layer poten-
tials (see [AK]), allows them to find a very accurate expansion. Unfortunately, this
method does not seem to work in the case of thin elastic inclusions. Hence, in order to
derive the expansion in our context, we apply similar arguments as in [BFV] for con-
ductivity inclusions; more precisely, we use a variational approach and fine regularity
estimates for solutions of elliptic systems with discontinuous coefficients obtained by
Li and Nirenberg in [LN]. The main difficulty arising in the framework of linear elas-
ticity, compared to the conductivity case, consists of finding an explicit representation
formula for the tensor appearing in the first order term of the asymptotic expansion.

The plan of the paper is as follows: in section 2 we introduce some notation and
state the main result. Section 3 is devoted to the derivation of some estimates and
properties of the displacement field, and in section 4 we prove our main result.

2. The main result. Let us introduce some notation and assumptions that will
be useful in what follows.

(a) We will assume that σ0 is of class C3 and that there exists some K > 0 such
that

d(σ0, ∂Ω) ≥ K−1,

‖σ0‖C3 ≤ K,(3)

K−1 ≤ length(σ0) ≤ K.

Moreover, we assume that for every x ∈ σ0 there are two discs, B1 and B2, of radius
K−1 such that

B1 ∩B2 = B1 ∩ σ0 = B2 ∩ σ0 = {x}.
The latter assumption guarantees that different parts of σ0 do not get too close, so
that ωε does not self-intersect for small ε.

(b) Ω and ωε are both homogeneous and isotropic, i.e., the elastic tensor fields
C0 and C1 are of the following form:

(Cm)ijlk = λmδijδkl + μm(δkiδlj + δkjδli), for i, j, k, l = 1, 2, m = 0, 1,(4)

where (λ0, μ0) and (λ1, μ1) are the Lamè coefficients corresponding to Ω \ ωε and ωε,
respectively, and (λ0 − λ1)

2 + (μ0 − μ1)
2 
= 0.

(c) There are two positive constants α0 and β0 such that

min(μ0, μ1) ≥ α0, min(2λ0 + 2μ0, 2λ1 + 2μ1) ≥ β0.(5)

We note that the last conditions ensure that Cε is strongly convex in Ω, i.e., if we set
ξ0 = min(2α0, β0) , then

CεA ·A ≥ ξ0|A|2,
for any symmetric 2 × 2 matrix A, where A ·B =

∑
ij aijbij and |A|2 = A ·A.

(d) We shall prescribe a traction field g ∈ H−1/2(∂Ω,R2) satisfying the compati-
bility condition ∫

∂Ω

g ·R = 0,(6)
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for every infinitesimal rigid displacement R, that is R(x) = c + Wx, where c is any
constant vector in R

2 and W any constant 2 × 2 skew matrix.
Under our assumptions there exist weak solutions uε and u0 ∈ H1(Ω,R2) to

the problems (1) and (2), respectively (see, for example, [V] or [F]). Concerning
uniqueness we recall that solutions of the above problems are uniquely determined
up to infinitesimal rigid displacements. Hence, in order to uniquely identify such
solutions, we assume that uε and u0 satisfy the normalization conditions∫

∂Ω

u = 0,

∫
Ω

∇u− (∇u)T = 0.(7)

It is easy to see that if uε is solution of (1), then it solves the Lamé system⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ0Δuε + (λ0 + μ0)∇(divuε) = 0 in Ω \ ωε,
μ1Δuε + (λ1 + μ1)∇(divuε) = 0 in ωε,

ui
ε = ue

ε on ∂ωε,(
C0∇̂ui

ε

)
ν =

(
C1∇̂ue

ε

)
ν on ∂ωε,

(8)

where ν is the outward unit normal to ∂ωε, and, for x ∈ ∂ωε,

ue
ε(x) = lim

y→x

y∈Ω\ωε

uε(y), ui
ε(x) = lim

y→x
y∈ωε

uε(y),

and

∇̂ue
ε(x) = lim

y→x

y∈Ω\ωε

∇̂uε(y), ∇̂ui
ε(x) = lim

y→x
y∈ωε

∇̂uε(y).

For y ∈ Ω, we will denote by N(·, y) the Neumann function related to Ω, i.e., the
weak solution to the problem{

div
(
C0∇̂N(·, y)) = −δy Id in Ω,(

C0∇̂N(·, y)) · ν = − 1
|∂Ω| Id on ∂Ω,

(9)

with the normalization conditions (7) and where Id is the identity matrix in R
2.

Note that N(x, y) is regular for x 
= y and, at x = y, has the same singularities

of Γ(x− y), where Γ = (Γij)
2
i,j=1 is the fundamental solution in the free space of the

system

div (C0∇̂ ·) = 0 in R
2,

and is given by

Γij(x) =
A

2π
δij ln |x| − B

2π

xixj

|x|2 ,

where A = 1
2

(
1
μ0

+ 1
λ0+2μ0

)
and B = 1

2

(
1
μ0

− 1
λ0+2μ0

)
.

Let us fix an orthonormal system (n, τ) on σ0 such that n is a unit normal vector
field to the curve and τ is a unit tangent vector field. If σ0 is a closed curve, then we
will take n to point in the outward direction of the domain it encloses. Let κ denote
the curvature of σ0 and, for a, b ∈ R

2, let a⊗b denote the tensor product a⊗b = aibj .
We are now ready to state our main result.
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Theorem 2.1. Let Ω ⊂ R
2 be a bounded smooth domain and let σ0 ⊂⊂ Ω be

a simple curve satisfying (3). Assume (4), (5), and (6) and let uε and u0 be the
solutions to (1) and (2), respectively, satisfying (7). For every x ∈ σ0, there exists a
fourth order symmetric tensor field M(x) such that, for y ∈ ∂Ω and ε → 0,

(uε − u0)(y) = 2ε

∫
σ0

M(x)∇̂u0(x) · ∇̂N(x, y) dσ0(x) + o(ε).(10)

The term o(ε) is bounded by Cε1+θ‖g‖H−1/2(∂Ω), with 0 < θ < 1 and C depending
only on θ, Ω, α0, β0, and K.

Furthermore, on σ0,

M∇̂u0 = adivu0 Id + b∇̂u0

+c

(
∂(u0 · τ)

∂τ
+ κ(u0 · n)

)
τ ⊗ τ + d

∂(u0 · n)

∂n
n⊗ n,

where

a = (λ1 − λ0)
λ0 + 2μ0

λ1 + 2μ1
, b = 2(μ1 − μ0)

μ0

μ1
,(11)

c = 2(μ1 − μ0)

[(
2λ1 + 2μ1 − λ0

λ1 + 2μ1
− μ0

μ1

)]
,(12)

and

d = 2(μ1 − μ0)
μ1λ0 − μ0λ1

μ1(λ1 + 2μ1)
.(13)

The proof of the theorem is contained in section 4.

3. Energy and a priori estimates. In this section we will show that, for ε → 0,

‖uε − u0‖H1(Ω) = O(ε1/2).(14)

In order to establish it we will need the following version of the Korn inequality.
Lemma 3.1. Let Ω be a Lipschitz connected open set in R

2. Let u ∈ H1(Ω,R2)
and let W0 =

∫
Ω

1
2

(∇u− (∇u)T
)
.

Then, there exists a constant C such that

‖∇u−W0‖L2(Ω) ≤ C‖∇̂u‖L2(Ω).(15)

For the proof, see [T, section 3].
Proposition 3.2. Let uε and u0 be solutions to (1) and (2), respectively. There

exists a constant C depending on Ω, K, α0, and β0, such that

‖uε − u0‖H1(Ω) ≤ Cε1/2‖g‖H−1/2(∂Ω).(16)

Proof. Since
∫
∂Ω

(uε − u0) = 0, by the Poincaré inequality there exists a constant
C, depending on Ω, such that∫

Ω

|uε − u0|2 ≤ C

∫
Ω

|∇(uε − u0)|2.(17)
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It thus suffices to estimate ‖∇(uε − u0)‖L2(Ω).
By the strong convexity of Cε and the Korn inequality, in the form of Lemma 3.1,

applied to uε − u0, and recalling that uε and u0 satisfy (7), we get∫
Ω

Cε∇̂(uε − u0) · ∇̂(uε − u0) ≥ ξ0

∫
Ω

|∇̂(uε − u0)|2

≥ C

∫
Ω

|∇(uε − u0)|2,(18)

where C depends on α0, β0, and Ω.
Now, observe that∫

Ω

Cε∇̂(uε − u0) · ∇̂(uε − u0) =

∫
ωε

(C0 − C1)∇̂u0 · ∇̂(uε − u0),(19)

which follows by integration by parts and uses the fact that (Cε∇̂uε) ·ν = (C0∇̂u0) ·ν
on ∂Ω. Indeed∫

Ω

Cε∇̂(uε − u0) · ∇̂(uε − u0) −
∫
ωε

(C0 − C1)∇̂u0 · ∇̂(uε − u0)

=

∫
Ω\ωε

C0∇̂(uε − u0) · ∇̂(uε − u0) +

∫
ωε

(C1∇̂uε − C0∇̂u0) · ∇̂(uε − u0)

=

∫
Ω

Cε∇̂uε · ∇̂(uε − u0) −
∫

Ω

C0∇̂u0 · ∇̂(uε − u0)

=

∫
∂Ω

((
Cε∇̂uε

)
· ν −

(
C0∇̂u0

)
· ν

)
· (uε − u0) dσ = 0,

hence (19) holds.
On the other hand, by the Hölder inequality,∫

ωε

(C0 − C1) ∇̂u0 · ∇̂(uε − u0) dx

≤ max {2|μ0 − μ1|, |λ0 − λ1|} ‖∇u0‖L∞(ωε)|ωε|1/2‖∇(uε − u0)‖L2(Ω).(20)

In order to bound ‖∇u0‖L∞(ωε) note that for small ε, say ε < K/2, the distance
between ωε and ∂Ω is bounded from below by K/2. Hence, by standard interior
regularity estimates for elliptic systems (see [C]),

‖∇u0‖L∞(ωε) ≤ C‖u0‖H1(Ω),

where C depends on α0, β0, and K.
By the divergence theorem, the trace theorem (see [LM]), and the Poincaré in-

equality,

‖u0‖H1(Ω) ≤ C‖g‖H−1/2(∂Ω),

where C depends only on Ω. Finally,

‖∇u0‖L∞(ωε) ≤ C‖g‖H−1/2(∂Ω),(21)

where C depends on Ω, α0, β0, and K.
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So, by (18), (19), and (20) we obtain

‖∇(uε − u0)‖L2(Ω) ≤ C|ωε|1/2‖g‖H−1/2(∂Ω),

where C = C(Ω, α0, β0,K). By assumption (3), we can estimate

|ωε| ≤ Cε,(22)

where C depends only on K. By putting together (21), (22), and the Poincarè in-
equality (17), we get (16).

Besides the energy estimates (16), a key ingredient to establish the asymptotic
expansion of Theorem 2.1 is a gradient estimate for elliptic systems modeling com-
posite materials that has been established by Li and Nirenberg in [LN]. Here we state
and use a simplified version of Proposition 5.1 in [LN].

Let D be the unit square D = [−1, 1] × [−1, 1], and let f0, . . . , fl+1 ∈ C2([−1, 1])
such that

−1 = f0(x1) < f1(x1) < · · · < fl+1(x1) = 1 for x1 ∈ [−1, 1].

Let

Dm = {x = (x1, x2) ∈ D : fm−1(x1) < x2 < fm(x1)} for 1 ≤ m ≤ l + 1.

We suppose that the origin does not belong to the graphs of the functions fj , and we
denote by m0 the index for which

fm0
(0) < 0 < fm0+1(0).

Let us also set 1
2D = [− 1

2 ,
1
2 ] × [− 1

2 ,
1
2 ].

Let C be a bounded symmetric Lamé tensor defined in D and such that C is
constant in each Dm with corresponding Lamé coefficients λm and μm. Then the
following estimate holds.

Proposition 3.3. Let u ∈ H1(D,R2) be a weak solution to

div
(
C∇̂u

)
= 0 in D.

Then, for any x ∈ Dm0
∩ 1

2D,

|∇u(x) −∇u(0)| ≤ C‖u‖L2(D)|x|α,(23)

where α ∈ (0, 1/4) and C depends on α, l, λm, μm, and ‖fm‖C2([−1,1]), for m =
1, . . . , l + 1.

For the proof of this result, see [LN, section 5].

4. Proof of Theorem 2.1. We divide the proof into several steps: in the first
step we write (uε − u0)|∂Ω

in terms of an integral over ωε of the product of ∇̂ui
ε and

∇̂N .
In the second step, by using the estimate of Proposition 3.3, we reduce this integral

to an integral over some part of ∂ωε. In the third part, we use the transmission
conditions and introduce the tensor M. The fourth part contains the conclusion of
the proof.
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First step.
We are going to show that, for y ∈ ∂Ω,

(uε − u0)(y) =

∫
ωε

(C1 − C0) ∇̂uε · ∇̂N(·, y).(24)

In order to get (24) we recall that, for y ∈ Ω, the function N(·, y) satisfies∫
Ω

C0∇̂N(·, y) · ∇̂v = −v(y) +
1

|∂Ω|
∫
∂Ω

v ∀v ∈ H1(Ω).

By choosing v = uε − u0 and using the normalization (7) we get∫
Ω

C0∇̂N(·, y) · ∇̂(uε − u0) = −(uε − u0)(y).(25)

Observe now that∫
Ω

C0∇̂N(·, y) · ∇̂(uε − u0) =

∫
ωε

(C0 − C1) ∇̂N(·, y) · ∇̂uε

+

∫
Ω

Cε∇̂N(·, y) · ∇̂uε −
∫

Ω

C0∇̂N(·, y) · ∇̂u0.(26)

Since uε and u0 are solutions to (1) and (2), respectively, we have∫
Ω

C0∇̂N(·, y) · ∇̂u0 =

∫
∂Ω

g ·N(·, y)

=

∫
Ω

Cε∇̂uε · ∇̂N(·, y),

hence (26) becomes∫
Ω

C0∇̂N(·, y) · ∇̂(uε − u0) =

∫
ωε

(C0 − C1) ∇̂N(·, y) · ∇̂uε,

and, by inserting this last relation into (25,) we get (24) for y ∈ Ω.
Finally, since uε − u0 is continuous up to ∂Ω, we get (24) for any y ∈ ∂Ω.
Second step.

Let β be a constant 0 < β < 1, and set

ω′
ε =

{
x + μn(x) : x ∈ σ0, d(x, ∂σ0) > εβ , μ ∈ (−ε, ε)

}
.

Notice that if σ0 is a closed simple curve, then ω′
ε = ωε.

Let us write∫
ωε

(C1 − C0) ∇̂uε · ∇̂N(·, y) =

∫
ω′

ε

(C1 − C0) ∇̂uε · ∇̂N(·, y)

+

∫
ωε\ω′

ε

(C1 − C0) ∇̂uε · ∇̂N(·, y).(27)

Concerning the last term in (27)∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂uε · ∇̂N(·, y)
∣∣∣∣∣ ≤

∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂(uε − u0) · ∇̂N(·, y)
∣∣∣∣∣

+

∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂u0 · ∇̂N(·, y)
∣∣∣∣∣ .(28)
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In order to bound the first term on the right-hand side (RHS) of (28) we use the
energy estimate (16) and the fact that, for y ∈ ∂Ω, ‖∇N(·, y)‖L∞(ωε) is bounded
uniformly in ε. Moreover, since

|ωε \ ω′
ε| ≤ Cε1+β ,

we get ∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂(uε − u0) · ∇̂N(·, y)
∣∣∣∣∣ ≤ Cε1+β/2‖g‖H−1/2(∂Ω),

where C = C(Ω,K, α0, β0).
In the last term on the RHS of (28) we use the regularity estimates for u0 so that∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂u0 · ∇̂N(·, y)
∣∣∣∣∣ ≤ C‖∇u0‖L∞(ωε)‖∇N(·, y)‖L∞(ωε) · |ωε \ ω′

ε|

≤ Cε1+β‖g‖H−1/2(∂Ω),

where C = C(K,α0, β0) and so (27) becomes, for ε → 0,∫
ωε

(C1 − C0) ∇̂uε · ∇̂N(·, y) =

∫
ω′

ε

(C1 − C0) ∇̂uε · ∇̂N(·, y) + O(ε1+β/2).(29)

Now let us denote by σ′
μ, for μ ∈ [−ε, ε], the curve

σ′
μ =

{
x + μn(x) : x ∈ σ0, d(x, ∂σ0) > εβ

}
.

For every point x + μn(x) ∈ ω′
ε (for μ ∈ (−ε, ε)), let us consider the point x +

εn(x) ∈ σ′
ε and let us compare ∇uε(x + μn(x)) with ∇ui

ε(x + εn(x)).
More precisely, we will establish that, for α ∈ (0, 1/4),

|∇uε(x + μn(x)) −∇ui
ε(x + εn(x))| ≤ Cε−β(2+α)εα‖g‖H−1/2(∂Ω),(30)

where C = C(K,α0, β0, α).
Let ε be small enough to have

2ε <
εβ

2
√

2
.(31)

We note that the distance between x + μn(x) and x + εn(x) is smaller than 2ε and
that, in a neighborhood of x + μn(x) of radius εβ , the boundary ∂ωε is represented
by graphs of smooth functions. In particular, if we set the origin to x + μn(x), up to
a rotation of the coordinate system (z1, z2), we have that there exist two functions g1

and g2 such that, for − εβ√
2
< z1 < εβ√

2
,

Cε(z1, z2) =

⎧⎪⎨⎪⎩
C0 if − εβ√

2
< z2 < g1(z1),

C1 if g1(z1) < z2 < g2(z1),

C0 if g2(z1) < z2 < εβ√
2
.

By the a priori assumptions on σ0 we know that

‖g1‖C2 , ‖g2‖C2 ≤ K.



THIN ELASTIC INHOMOGENEITIES 9

Consider now the function

v(y) = uε

(
εβ√
2
y

)
,

which is defined in [−1, 1] × [−1, 1]. Notice that v solves

div
(
C̃∇̂v

)
= 0 in (−1, 1) × (−1, 1),

where

C̃(y1, y2) =

⎧⎪⎨⎪⎩
C0 if − 1 < y2 < f1(y1) =

√
2ε−βg1(

εβ√
2
y1),

C1 if f1(y1) < y2 < f2(y1) =
√

2ε−βg2(
εβ√
2
y1),

C0 if f2(y1) < y2 < 1.

Let us check that we can apply Proposition 3.3, with l = 2 and m0 = 1. Since

|gi(y1)| < εβ√
2

and the derivative of gi is bounded by K for i = 1, 2, then

‖gi‖L∞ ≤ (K + 1)
εβ√
2
, i = 1, 2.

From this last estimate, and from the C2 bounds on g1 and g2, we get

‖fi‖C2([−1,1]) ≤ 2K + 1 for i = 1, 2.

Since we set the origin at the point x + μn(x), we have that

|x + εn(x)| = |x + μn(x) + (ε− μ)n(x)| = |(ε− μ)n(x)| ≤ 2ε.

Hence, if we set y =
√

2ε−β(x + εn(x)) we have, by (31),

|y| =
√

2ε−β |x + εn(x)| ≤
√

2ε−β · 2ε ≤ 1

2
,

and, y ∈ Dm0
∩ 1

2D. By Proposition 3.3,

|∇v(y) −∇v(0)| ≤ C‖v‖L2(D)|y|α,
where C depends only on K, α0, β0, and α ∈ (0, 1/4). If we read this estimate for
the function uε we get∣∣∇uε(x + μn(x)) −∇ui

ε(x + εn(x))
∣∣ ≤ C‖uε‖L2(Ω)ε

−β(2+α)|(μ− ε)n(x)|α
≤ C‖uε‖L2(Ω)ε

−β(2+α)εα.

Since

‖uε‖L2(Ω) ≤ C‖∇uε‖L2(Ω) ≤ C‖g‖H−1/2(∂Ω)

we finally have (30).
Due to (30), we can approximate the values of ∇uε in ωε

′ with the values on σ′
ε.

Let us denote by σ0
′ = {x ∈ σ0 : d(x, ∂σ0) > εβ}. Due to the regularity

assumption on σ0,

dσμ
x = (1 + O(ε))dσ0

x,
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where dσμ
x and dσ0

x denote the infinitesimal arclengths on σ′
μ and σ′

0, respectively.

Hence,∫
ω′

ε

(C1 − C0) ∇̂uε(x) · ∇̂N(x, y) dx

=

∫ ε

−ε

∫
σ′
μ

(C1 − C0) ∇̂uε(x) · ∇̂N(x, y) dσμ
x dμ

=

∫ ε

−ε

∫
σ0

′
(C1 − C0) ∇̂uε(x + μn(x)) · ∇̂N(x + μn(x), y) dσ0

x dμ + O(ε2)

=

∫ ε

−ε

∫
σ′
0

(C1 − C0) ∇̂uε(x + εn(x)) · ∇̂N(x + εn(x), y) dσ0
x dμ

+O(ε(1−β)(1+α))

= 2ε

∫
σ′
ε

(C1 − C0) ∇̂ui
ε · ∇̂N(·, y) + O(ε1+α−β(2+α)),(32)

for β < α(2 + α)−1.

Third step.
Let us now extend the fields n and τ from σ0 to ω′

ε. For x ∈ σ′
0 we set n and τ equal

to n(x) and τ(x) all along the line segment x + μn(x), for μ ∈ [−ε, ε].

We will show, by using the transmission condition (8), that on σ′
ε,

(C1 − C0) ∇̂ui
ε = Mε∇̂ue

ε ,(33)

where

Mε∇̂ue
ε = adivue

ε Id + b∇̂ue
ε + c

(
∂(ue

ε · τ)

∂τ
+ κε(u

e
ε · n)

)
τ ⊗ τ

+d
∂(ue

ε · n)

∂n
n⊗ n,

with a, b, c, and d given by (11), (12), and (13), and κε being the curvature of σ′
ε.

Let us express the transmission conditions (8) and (C1 − C0) ∇̂ui
ε in the n, τ

coordinate system, namely

∂(ui
ε · τ)

∂τ
+ κε(u

i
ε · n) =

∂(ue
ε · τ)

∂τ
+ κε(u

e
ε · n),

∂(ui
ε · n)

∂τ
− κε(u

i
ε · τ) =

∂(ue
ε · n)

∂τ
− κε(u

e
ε · τ),(34)

λ1

(
∂(ui

ε · τ)

∂τ
+ κε(u

i
ε · n) +

∂(ui
ε · n)

∂n

)
+ 2μ1

∂(ui
ε · n)

∂n

= λ0

(
∂(ue

ε · τ)

∂τ
+ κε(u

e
ε · n) +

∂(ue
ε · n)

∂n

)
+ 2μ0

∂(ue
ε · n)

∂n
,

μ1

(
∂(ui

ε · τ)

∂n
− κε(u

i
ε · τ) +

∂(ui
ε · n)

∂τ

)
= μ0

(
∂(ue

ε · τ)

∂n
− κε(u

e
ε · τ) +

∂(ue
ε · n)

∂τ

)
,
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and

(C1 − C0) ∇̂ui
ε = (λ1 − λ0)

[
∂(ui

ε · τ)

∂τ
+

∂(ui
ε · n)

∂n
+ κε(u

i
ε · n)

]
(n⊗ n + τ ⊗ τ)

+ 2(μ1 − μ0)

[(
∂(ui

ε · τ)

∂τ
+ κε(u

i
ε · n)

)
τ ⊗ τ +

∂(ui
ε · n)

∂n
n⊗ n

+
1

2

(
∂(ui

ε · τ)

∂n
+

∂(ui
ε · n)

∂τ
− κε(u

i
ε · τ)

)
(τ ⊗ n + n⊗ τ)

]
.(35)

By solving the system (34) with respect to the derivatives of the components of ui
ε,

and inserting the result into (35), we derive (33).
Now, by inserting (33) into (32), we get∫

σ′
ε

(C1 − C0) ∇̂ui
ε · ∇̂N(·, y) = 2ε

∫
σ′
ε

Mε∇̂ue
ε · ∇̂N(·, y) + O(ε1+α−β(2+α)).(36)

Fourth step.
We will show that

‖∇ue
ε −∇u0‖L∞(σ′

ε)
≤ Cεγ‖g‖H−1/2(∂Ω)(37)

for some positive γ.
In order to prove the above inequality, we need the following theorem.
Theorem 4.1 (mean value property). Let Ψ be a biharmonic scalar, vector, or

tensor field in a open bounded domain D. Then, for any ball Bρ(y) ⊂⊂ D,

Ψ(y) =
1

2π

[
4

ρ2

∫
Bρ(y)

Ψ(x) dx− 1

ρ

∫
∂Bρ(y)

Ψ(x) dσx

]
.(38)

For the proof of Theorem 4.1, see [N].
Since ∇uε −∇u0 is biharmonic in Ω \ ωε we might use the mean value property

(38) for points in the set ΩK \ ωd, where ΩK =
{
x ∈ Ω : d(x, ∂Ω) > 1

2K

}
and d is

such that 2ε < d.
Observe that, by (38), for every y ∈ ΩK \ ωd and for 0 < λ ≤ d

2 ,

∇(uε − u0)(y) =
1

2π

[
4

λ2

∫
Bλ(y)

∇(uε − u0) − 1

λ

∫
∂Bλ

∇(uε − u0)

]
.(39)

By using the divergence theorem we can rewrite (39) as follows:

∇(uε − u0)(y) =
1

2π

[
4

λ2

∫
∂Bλ(y)

(uε − u0) ⊗ ν̃ dσ − 1

λ

∫
∂Bλ

∇(uε − u0)

]
,

where ν̃ is the outward normal vector to ∂Bλ. If we multiply the last relation by λ3

and integrate from 0 to ρ = d
2 we get

∇(uε − u0)(y) =
12

π

⎡⎣ 4

d4

∫
B d

2
(y)

(uε − u0) ⊗ r dx− 1

d4

∫
B d

2
(y)

r2∇(uε − u0) dx

⎤⎦ ,(40)
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where r(x) = x− y, r = |r|.
From (40) and (16) we have that

‖∇(uε − u0)‖L∞(ΩK\ωd) ≤ Cd−2ε
1
2 ,(41)

where C = C(Ω,K, α0, β0). Let x = z + εn(z) be any point on σ′
ε and let xd be the

point xd = z + dn(z). Since the entire line segment from x to xd lies in Ω \ ωε and

has distance greater than εβ

2 from ∂σ0, by Proposition 3.3 and arguing similarly as
we did to prove (30), we have

|∇ue
ε(x) −∇uε(xd)| ≤ Cε−(2+α)βdα‖g‖H−1/2(∂Ω),(42)

where C = C(K,α0, β0).
By combining (41) and (42) we have that for any x ∈ σ′

ε

|∇ue
ε(x) −∇u0(x)| ≤ |∇ue

ε(x) −∇uε(xd)|
+ |∇uε(xd) −∇u0(xd)| + |∇u0(xd) −∇u0(x)|
≤ C

(
dαε−(2+α)β + d−2ε

1
2 + d

)
‖g‖H−1/2(∂Ω) .

By choosing

d = ε
1

2(α+2)
+β

we have (37) with γ = α
2(α+2) − 2β. Notice that γ > 0 if we choose β < α

4(α+2) .

By using (37), we have

2ε

∫
σ′
ε

Mε∇̂ue
ε · ∇̂N(·, y) = 2ε

∫
σ′
ε

Mε∇̂u0 · ∇̂N(·, y) + O(ε1+γ).

Now, we recall that dσε
x = (1 + O(ε))dσ0 and observe that, by assumption (3),

Mε = (1 + O(ε))M. Hence

2ε

∫
σ′
ε

Mε∇̂ue
ε · ∇̂N(·, y) = 2ε

∫
σ0

M∇̂u0 · ∇̂N(·, y) + O(ε1+γ).(43)

Finally, if we compare the remainders in the expansion in formulas (29), (32),
(36), and (43), we have that (10) holds, if we choose α ∈ (0, 1/4) and β ∈ (0, 1) such
that β < α

4(α+2) .

Remark 4.2. The asymptotic expansion also holds in the case where σ0 = ∪M
i=1σi

and σ1, . . . , σM are disjoint and far from each other. In that case

(uε − u0)(y) = 2ε

M∑
i=1

∫
σi

Mi∇̂u0 · ∇̂N(·, y) dσi + o(ε),

where Mi is the restriction to σi of the tensor M.
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