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'An Econometric Approach to Demand, Supply and Service Quality in
the Taxi Industry.

Jeremy P. Toner
Institute for Transport Studies

University of Leeds

Abstract.

This paper uses data collected during various unmet demand
studies to build econometric models of the taxi market. The
aim is to use these models to derive the elasticities of demand
for taxis with respect to price and service quality.

It is found that the cross-sectional approach adopted fails to
pickup any significant service quality effects. The price
elasticity was about -2 under a constant elasticity

formulation, and ranged between -2.5 to -3.5 if allowed to vary
with price.



AN ECONOMETRIC APPROACH TO DEMAND, SUPPLY AND SERVICE -
QUALITY IN THE TAXI INDUSTRY. :

1 Introduction.

This section uses data collected during various unmet demand
studies to build econometric models of the taxi market. The
system it was hoped to model is depicted in figure 1.

Exogenous

- Demand é Deman

Factors

service

Exogenous

Supply é Supply
Factors

Figure 1: cross-sectional econometric model

It can be seen that three models are required for the system; a
demand model, a supply model and a quality of service model. The
first is clearly some measure of the use of taxis in the
districts and the second some indicator of vehicle stock; the
third is a representation of waiting time or the probability of
waiting.

Although the model building procedure is quite simple in theory
(demand is a function of price, service quality/supply, other
relevant variables; supply is a function of demand, any other
relevant variables; service quality is a funtion of demand and
supply), there is considerable room for manceuvre in deciding on
the appropriate variables to include. The first consideration is
whether to model actual trips taken (number of trips is a
function of fare, population, etc) or a trip-rate model (number
of trips per capita is a function of fare, etc); there is no a
priori reason to favour one method over the other, and it is
therefore a question of which approach gives the best models.

The second consideration is which indicators of demand, supply
and service quality to use. For demand, we can use data derived
from rank observations (which cover only rank trips) or from
interviews (which cover all trips); these can be adjusted by the
known breakdown of trips between rank and phone booking to give
estimates of total demand based on rank observations or rank
demand based on interviews. Supply can be either the hackney
carriage fleet or the combined hackney and hire car fleet.
Service quality can be represented by average waiting times
derived from rank cbservations, average waiting times derived
from interviews or proportion of taxi users having to wait™ (again
derived from interviews). Once more, it is not clear that any of




these options is inherently superior to another. Table 1 below
shows some of the different demand measures which can be used.

Table 1: demand indicators

DIST RDEM IDEM RDEMPC IDEMPC FARE
A 10000 128064 0.0216 0.276 215
B 3200 42975 0.0168 0.225 230
c 5400 91098 0.0143 0.241 210
D 5900 117480 0.0083 0.165 235
E 3800 57846 0.0122, 0.186 175
F 28500 142788 = 0.0651 0.326 220
G - 8000 129584 0.0385 0.623 .~ 185
H 2500 62400 0.0240 0.600 200
I 2000 26334 0.0260 0.342 200
J 7500 86420 0.0259 0.298 200
K 12700 157634 0.0236 0.293 205
L 6500 19686 0.0637 0.193 260
M 3000 25661 . 0.0448 0.383 200
N 7500 179955 ' 0.0269 « 0.645 210
o 3000 61500 0.0244 0.500 200
P 2300 13000 0.0115 0.065 240
0 11500 157200 0.0383 0.524 190
Key

Weekly rank hirings from rank observations

RDEMPC = RDEM per capita .

IDEM = Total weekly hirings from interviews

IDEMPC = IDEM per capita _

FARE = fare for one person making 2% mile trip during the day

There was considerable scope for including different fare
variables. Although there was generally no information about
trip lengths, ruling out the possibility of using an average
fare, there was some thought given to the mileage figure to use
in calculating the fare and also whether to use night time rather
than day time fares. To include two fare variables would have
introduced a multicollinearity problem, and the choice of mileage
could have ranged quite reasonably from about 2 miles to 4 miles.
2% miles was chosen as a typical trip length. It is in fact the
existence of the "drop" which creates a problem. If fares were
calculated simply on a mileage basis, then the choice of trip
length included in the analysis would not affect the
elasticities; however, for certain model forms, the elasticities
depend on the trip length used. However, since there are
potentially appropriate functional forms in which allowances can
be made for trip length assumption, notably linear and
exponential models, the 2% mile assumption need not be too
restrictive.



2 Demand models. -

When modelling total demand (using RDEM or IDEM) it is obviously
not wise to expect variations in fare alone to pick up changes in
demand; allowance needs to be made for the population (POP).
Using rank observations to generate the dependent variable RDEM, :
very few acceptable models were obtained. The best (t-statistics
in parentheses} was

LRDEM = 8.285 -+ 2.44E-06POP - 0.16FARE

(5.500) (2.862) (0.229)
R?=0.369 F=4.100 €7=-0.29 €,=-0.43 = €,=-0.35
€ is fhe price elasticity of demand at the lLowest observed fare

€ is the price elasticity of demand at the highest observed fare
€n is the price elasticity of demand at the mean of observed fares
FARE is in pounds

Clearly the coefficient on fare is insignificant, the model being
swanped by the presence of POP. Use of interview data to
generate demand levels proved more fruitful. Presented below are
linear, exponential and double-log models. (L preceding a
variable indicates logg,.)

IDEM = 213599 + 0.207POP - 87284FARE

(2.164) (3.7) (1.86)
LINEAR
R2=0.531  F=7.927 €7=-1.22 €,=-29.27 € =—2.07
LIDEM = 13.99 + 3.14E-06POP - 1.78FARE
(10.78) (4.28) (2.88)
EXPONENTIAL
R2=0.634 F=12.125 €=-3.11 €,=-4.62 €;=—3.73
LIDEM = 18.29 + 0.834LPOP~ 3.275LFARE
(2.60 ) (4.66) (2.59)
DOUBLE LOG -

R2=0.6625 F=13.74 €=-3.275E

In comparing these models, it is incorrect to use R2 as a
criterion since the dependent variable is not the gsame in all
models. It is possible to calculate an adjusted R® which allows
for this; but here we can compare the models on other grounds.
The linear model clearly does not work well in extreme cases -
note the very high price elasticity (-29.27) for the district
with the highest fare. This arises because the elasticity in
this case is —-87284*FARE/DEM  (predicted demand) and any -
elasticity formulation with demand in the denominator will give



high values at low demand (whether the low demand is caused .by
the high fares or by a small population); the same problem
appears with a semilog demand function.

The double-log model achieves a better R? than the exponential,
but the t-statistic on FARE is not as good. Furthermore, the
double-log formulation is sensitive to the 2% mile trip length
assumption; the given figure of -3.275 is an upper limit as the
drop tends to zero or the mileage rate to infinity. For all our
districts, the elasticity with rescect to the mileage rate is
smaller than -3.275, although that is the elasticity with respect
to the price of a 2% mile trip. It is not possible to say what
the elasticity with respect to the price of (say) a four mile
trip would be, since the coefficient would change.

In the exponential model, the elasticity with respect to the
price of a 2% mile trip varies between -3.11 and -4.72 . Again,
the elasticities with respect to the mileage rate are smaller
than these by an amount (1.78*DROP). However, the mileage
elasticities thus calculated would be the same for a four mile
trip or a twenty mile trip. We can also calculate the price
elasticity of demand for four mile trips; this is given by

F, /4
4 , . .
€4 = €g3. where F, is the fare for an 'n' mile trip.

Clearly a drop of zero which means a strictly mileage related
fare would give the elasticity of demand for trips constant in
each district irrespective of the trip length assumption.

Overall, the indication from these models is that the price
elasticity of demand is of the order of -3 in our districts.
However, with only two independent variables in the above models,
it is possible that other relevant factors were omitted. The
best models calibrated including other variables were:

LIDEM = 12.77 -~ 1.24FARE - 0.5RV + 6.4E-06POP + 1.86E-07DENSQ
(11.3 ) (2.32) (2.20 (2.93) (3.35)
EXPONENTIAL

R2=0.818 R2?=0.757 F=13.46 €;=-2.18 €=-3.23 € =-2.61

LIDEM = -14.78 - 1.95LFARE - 1.24LRV + 1.27LPOP + 0.86LDENSQ
(1.78 ) -{1.64) (1.90) (2.63) (3.26)
DOUBLE LOG -

R2=0.8235 R%=0.765 F=14.0 €=-1.954

The 2 are both better than for the two independent variable
‘models (0.617 and 0.582 for double-log and exponential
respectively) and the t-statistics are still significant e¥en
with the reduced number of degrees of freedom. The elasticities



turn out lower than before, broadly in the range -2 to -3. - -
Looking at the other variables included, we found significant
effects for the total rateable value of the district and the
population-weighted population density. Total rateable value is
included as a proxy for the wealth or prosperity of the district.
The negative coefficients, suggesting less taxi trips in a more
prosperous district, imply that taxi travel is an inferior good.
It may reflect higher car ownership levels in more affluent
districts; this would be expected to suppress the demand for taxi
travel. The DENSQ term is population times population density:;
the positive coefficients mean that for a given populatlon, more
densely populated areas generate more trips; for a given
population density, a greater population generates more trips;
and there is an interaction between the two Wthh generates even
more trips.

Another factor which influences demand is the quality of service.
We attempted to calibrate models based on the observed average
waiting time, the reported average waiting time and the
proportion of people waiting at least a minute. Many models
generated wrong-sign coefficients, suggesting a simultaneity
problem; more people travelling causes higher waiting times,
although higher waiting times would be expected to reduce demand.
The former effect was the one usually picked up by the models,
although some achieved plausible results. In all cases, demand
measured by rank observation was easier to predict than any
measure based on interview data.

ILRDEM = 7.99 + 2.45E-06POP — 0.00586RWAIT
(23.8 ) (2.86) (0.262)

R2=0.370 F=4.133 7;=-0.01 71,=-0.165 7,=-0.086

RDEM = -51416 + 5716.8LPOP - 3343.9LWAIT1
(2.15) (2.80) (1.46)

R%=0.37 F=4.09 7T1=-0.14 Tp="0.155 7,=-0.143

The first model was the best using RWAIT, the observed average
waiting time. As can be seen from the insignificant t-statistic,
RWAIT does not have a significant effect on demand levels, and
thus yields very small elasticities. The second model, using
WAIT1, might best be interpreted as the effect on the level of
demand of the probability of having to wait. The coefficient is
significant at the 10% level {one tailed test with 14 df) and
provides elasticities in a close range around ~0.15 . No model
using IDEM as the dependent variable produced any meaningful
results. Considering that IDEM was better than RDEM when using
the fares data, it is clear that we have a problem in modelling
. demand as a function of both fare and quality of service; it was
not possible to produce significant and sensible coefficients on
each independent variable and, given the relative insignificance
of waiting time on demand, the favoured approach for an overall
demand model was to use IDEM as the dependent variable and



disregard gquality of service. R

Turning to per capita demand models, the same sort of results
were produced, but with less good fits. Using RDEMPC, only one
model produced the correct sigg on fare; and that had all
parameters insignificant and R“= 0.0004 . Clearly not worth
pursuing. Using IDEMPC, the linear and semilog models had the
same problem at high fares as the direct demand models - very
high elasticities. The double-log and exponential models gave
more plausible results; L

LIDEMPC = 16.55 — 3.332LFARE
(2.46)  (2.64)

R2=0.318 F=6.98 €=-3,332

LIDEMPC = 2.145 - 1.6FARE
(1.76) (2.76)

2_ — = = =
R}—0.336 F=7.6 €1=-2.8 €p=-4.16 €y~ 3.36

once again, we get price elasticities of the order of -3 and
subject to the same caveats and interpretations as previously.
The influence of waiting time on demand was even more negligible
in the per capita models. The only right sign model with even
borderline significance (coefficient not quite significant at
10%) was

RDEMPC = 0.059 - 0.0087LWAIT1
(2.54) (1.34)

2. - = =— =
R*=0.106 F=1.783 77=-0.11 Th™ 0.165 7T,=—0.157

Again, low elasticities and an inability to incorporate fare and
service quality in the same demand model.

Generally, the per capita approach provided better models when
locking at the influence of supply on demand. The total vehicle
fleet had little effect on demand, whether the latter was
measured by RDEMPC or IDEMPC; it was the supply of hackney
carriages per head of population which had the anticipated
effect; a more generous provision was related with a greater use
of cabs.

RDEMPC = 0.156 + 0.017LTAXPC
(3.30) (2.70)

SEMILOG

R

=0.51

=0.328 F=7.30 my=1.03 m=0.33 7wy



ILRDEMPC = 0.83 + 0.615LTAXPC .
(0.51) (2.82)
DOUBLE=-LOG
R2=0.346 F=7.94 7=0.615

IDEMPC = 1.309 + 0.13LTAXPC
(2.39) (1.76)
SEMILO
R%=0.172 F=3.106 7;=0.54 7,=0.25 w;=0.35

The elasticities require careful interpretation; as elasticities
of demand with respecty to level of supply, they are not directly
analagous to waiting time elasticities. However, it can be seen
that an increase in supply would be expected to have a positive
effect on demand. }

The conclusion from the demand analysis is that demand is elastic
with respect to price (probably with elasticity in excess of two
in most cases) and inelastic with respect to waiting time ( of
the order of -0.15). However, this cross-sectional approach is
clearly not able to pick up waiting time effects and to do so
will require a different technique.

3 wWaiting tiﬁe models.

Waiting time was modelled as a function of demand, supply and
other indicators such as the licence premium. Using RWAIT as the
dependent variable, both IDEM and IDEMPC werg able to achieve
significant coefficients, albeit with poor R“.

RWAIT = 0.586 + 4.73E-06IDEM
(1.88) (1.56)

R%=0.14 F=2.43
RWAIT = 0.517 + 1.406IDEMPC
(1.40) (1.47)
R%=0.13 F=2.152
These models reflect the simultaneity problem; they are right
sign and hence wrong sign if the dependent and independent
variables were transposed. Using WAIT1 as the dependent

variable, we cbtained

LWAIT1 = -1.6 — 0.696LTAXPC
(0.94) (3.02)

R%2=0.374 F=9.09

LWAIT1 = 4.17 - 861.5TAXPC




(19.2) (3.42) - -

R2=0.438 F=11.86

LWAIT1 = 2.12 + 0.167PREM
(4.45) (3.09)

R%2=0.389 F=9.53

The first two demonstrate a negative relationship between supply
and the probability of waltlng, the last shows that the
probablllty of waltlng is higher where the premlum is higher, an
unsurprising result given that the premium arises because of
limitations on supply. Overall, the waiting time models were of
little use on their own, and were subsequently used in an attempt
to model demand and waiting time 51multaneously to see if the
correct signs could be achieved on waiting time in the demand
equation.

4 Supply models

Here, we attempted to predict taxi numbers (or taxis per head)
using the other data. Stepwise regression techniques were used
with an entry level of 15%. All the "successful" models had
taxis only and not total fleet size as the dependent variable.
The level of demand as derived from the rank observations entered
all the models and other frequently occurring variables were the
licence premium and the district's total rateable value.

TAXI = 22.46 + 0.013RDEM + 2.0E-08RV
(4.27) (2.0)

R%=0.76 F=26.39

TAXI = -416.9 + 83.6LRDEM + 58.3LRV - 22.2LPREM - 192.9L.PHONE
(2.45) (1.73) (3.2) (2.31)

£%=0.76 F=13.56

ITAXTI = -9.407 + O0.45LRDEM + 0.53LRV - 0.124LPREM
(2.63) (2.94) (3.37)

§2=0.77 F=18.82

The first model predicts the number of taxis rising with demand
and the wealth of the district. The second also models the
impact of the premium (it reduces the number of cabs) and the
proportion of all trips (ta%i and hire car) undertaken by phone.
As more trips are booked by phone, the number of taxis decline:



while the result is to be expected, the direction of causality is
unclear since it is not known whether the large amount of phone
booking obviates the need for taxis or whether the lack of taxis
increases the demand for phone bookings.

Using TAXIPC as a measure of supply, we see fare and population
density entering the model:

LTAXIPC =-12.87+0.342LRDEMPC+1.302LFARE+0.341LPOPDENS-0.137LPREM
(2.12) (1.80) (2.00) ' (4.44)

R?=0.731 F=11.87

Thus districts with a higher per capita supply of taxis have
higher fares; this is the argument of anti-deregqulationists, that
extra capacity has to be paid for through higher fares. More
densely populated districts have more taxis per head. Because
demand entered into the supply models and supply entered demand
models, it was decided to attempt simultaneous estimation. The
results are reported in section 5 below.

5 Simultaneous estimation

A number of different ways were tried to model the simultaneity
apparent in the system from figure 1 . Three different
techniques were used; two-stage least squares (2SLS) for
exactly-identified systems; three-stage least squares (3SLS) for
over-identified systems; and joint generalised least squares
(JGLS) where dependent variables did not appear in other
equations burt it was still felt that because of the inter-
relationship an overall "best" set of models would be preferable
to individual "best" models.

We looked first at demand and waiting time. An exactly-
identified system (below) was calibrated using 2SLS. As we have

IDEMPC
RWATT

f (RWAIT, FARE)
g (IDEMPC, IDEM)

(i

already seen, there is a conflict in choosing the variables to
enter; IDEMPC rather than RDEMPC works with FARE, but RDEMPC is
better with RWAIT. Not surprisingly, therefore, the results were
poor, especially for the waiting time model, and the simultaneity
problem (RWAIT having the wrong sign in the demand equation) was
not resolved.

IDEMPC = 0.974 + 0.21RWAIT - 0.399FARE
(2.00) (1.25) (1.95)

R2=0.309 F=3.14
RWAIT = 0.674 - 0.395IDEMPC + 5.3E-06IDEM
(1.10) (0.17) (1.15)

R%=0.135 F=1.09

10



Clearly the waiting time model in particular is very poor; -the
insignificant coefficient on IDEMPC means that a simultaneous
approach is not called for in this instance, and it would
therefore appear that the problem of incorporating waiting time
into the demand equation in a meaningful way is intractable given
these data. This was confirmed by the inability of 3SLS
operating. on a three equation system (demand, waiting time,
supply) to produce consistent, realistic results with acceptable
t-ratios and goodness of fit statlstlcs. In the demand
equations, the right sign on TAXY (positive) gave the wrong sign
on WAIT; when the model achieved the right sign on WAIT
(negative), it had the wrong sign on TAXI. All in all, it was
not possible to produce sensible results including a waltlng time
term or equation, so attention was turned to modelllng demand and
supply equations. Poor paraméter estimates were obtained for
truly simultaneous systems, and so reported below are the
results from JGLS estimation. In both cases, the supply models
are essentially linear (but with the log of the premium value).
There are two demand models; one is exponential, the other
constant elasticity. Linear and semilog models are not reported
because of the problems with the elasticities in districts with _
small populations and hence low demand. The dummy variables used
in the supply model require some explanation and justification.
It was thought that metropolitan districts might be expected to
have more taxis than shire districts, cet. par.. Two dummies
cater for this; SAMET for five districts in the same county
(which are thus under the same PTA and face the same competition
from buses) and OMET for other metropolitan districts.  TST is a
dummy representing the existence of a tourist-type trade, two
historic towns, a seaside resort and a city with a major
international alrport were awarded this dummy. SMPOP has been
allocated to towns with a population under 100,000. Given the
predominance of large metropolitan districts in the rest of the
sample, it was felt that to ignore towns which were so different
would distort the model.

The exponential model:

LIDEM = 13.11 - 1.40FARE - 0.48RV + 6.1E-06POP + 1.9E-07DENSQ
(11.93) (2.68) (2.16) (2.84) (3.44)

TAXI =208-34.9LPREM+182SAMET+970MET+105SMPOP+148TST~2 . 6E~05DENSQ
" (6.07)(6.75)  (3.69)  (2.84) (5.41) (5.20) (10.28)

Weighted system R%=0.9185

The double-log model

LIDEM =-14.75 - 2.29LFARE ~ 1.27LRV + 1.26LPOP + 0.8SLDENSQ
(1.88 ) (2.04) (2.08) (2.73) (3.47)

TAXI =205-33.9LPREM+178SAMET+980MET+98SMPOP+147TST-2. S5E-05DENSQ
(6.13)(6.78)  (3.79)  (2.74) (5.54) (5.17) (10.23)

Weighted system R%=0.9201
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Both models manage to predict both demand and the number of. taxis
quite well. The exponential model produces a correlation between
actual and predicted demand of 0.82 and actual and predicted
number of taxis of 0.97 . The corresponding figures for the
double-log model are 0.89 and 0.97 . The price elasticities from
the exponential model range from -2.45 to -3.63; the figure from
the double-log model is -2.29 . In spite of the attractions of a
variable price-elasticity model, the better predictive ability of
the double-log model, in particular for districts which both
models find difficult, means that is probably to be favoured.

6 Conclusion

We have demonstrated in this paper that a cross-sectional
approach fails to pick up significant service quality effects on
the demand for taxis. Whether this is because they do not exist
or because of problems with the data is a moot point; whatever
the cause, we cannot be satisfied that waiting time is completely
insignificant, although it is clearly a minor influence compared
with price. For simple per capita models, price elasticity of
demand was found to be about -3.3 . More complex direct demand
models suggested a figure of about -2 if we impose a constant
elasticity form or between -2.5 and -3.5 if elasticity varies
with price. The few insignificant waiting time elasticities
were of the order of -0.15 . We found demand negatively related
with the total rateable value of a“district, but positively
related with the population-weighted population density. While
we consider that these models provide an indication of the sort
of magnitude we may find for the demand elasticities, the
problems involved in selecting the variables and the somewhat
crude aggregation techniques employed mean that we cannot be as
certain as we would wish that these are the true figures, and we
have therefore attempted in other papers to establish these
values by other means. o
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