Purdue University

Purdue e-Pubs

Department of Food Science Faculty Publications

Department of Food Science

6-2020

Role of Gut Microbiota in Anti-Colitic Effects of Color-Fleshed Potatoes

Lavanya Reddivari

Shiyu Li

Tianmin Wang

Mary Kennett

Jairam Vanamala

Follow this and additional works at: https://docs.lib.purdue.edu/foodscipubs

Part of the Food Science Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Role of Gut Microbiota in Anti-Colitic Effects of Color-Fleshed Potatoes

Lavanya Reddivari, 1 Shiyu Li, 1 Tianmin Wang, 2 Mary Kennett, 2 and Jairam Vanamala 2

¹Purdue University; and ²Penn State University

Objectives: The prevalence of ulcerative colitis (UC), a chronic inflammatory bowel disease, is on the rise with \sim 700,000 patients in the US alone in 2018. Gut bacterial dysbiosis plays an important role in ulcerative colitis. We have recently shown that anthocyanin-containing potatoes exert anti-inflammatory activity in colitic mice. However, no information is available on whether gut bacteria play a role in the anti-colitic activity of color-fleshed potatoes. This study examined the anti-colitic activity of red/purple-fleshed potatoes in mice with intact and antibiotic-ablated microbiome.

Methods: We used DSS-induced murine (C57BL6) colitis model with and without the administration of antibiotics in drinking water for nine weeks. Mice were randomly assigned to the control (AIN-93G diet), DSS (AIN-93G diet), DSS + PP (20% purple potato) and DSS + RP (20% red potato) groups. After eight weeks, mice were treated with 2% DSS in their drinking water for five days to induce colitis. Intestinal permeability was measured using FITC-dextran. Serum

myeloperoxidase (MPO) levels were measured using ELISA. RT-PCR was used to analyze the relative gene expression levels of cytokines and bacterial abundance.

Results: Administration of antibiotics resulted in a 95% reduction in gut bacterial load. Antibiotics administration did not alter food intake, water intake, and weight gain. Antibiotic-treated mice had five times greater cecum weight, a hallmark of germ-free mice, compared to no-antibiotic mice. In antibiotic mice, DSS-induced splenomegaly, elevated gut permeability (serum levels of FITC-dextran), and reduced colon length and weight were more pronounced compared to no antibiotic mice. Purple- or red-fleshed potato supplementation (20% w/w) ameliorated ($P \leq 0.05$) DSS-induced reduction in colon length, elevation in permeability, spleen weight and MPO levels in no antibiotic mice only. Moreover, purple-fleshed potato supplementation alone improved the ZO-1 and MUC-2 gene expression levels in no-antibiotic mice, but not in microbiota-ablated mice.

Conclusions: In summary, these results suggest that purple-fleshed potatoes are more potent compared to red-fleshed potatoes and the gut microbiome is critical for the anti-colitic activity of anthocyanin-containing potatoes.

Funding Sources: USDA-NIFA awards 2016-67,017-29,285 and 2019-67,017-29,258.